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Abstract We review algorithms developed for nonnegative matrix factorization (NMF) and
nonnegative tensor factorization (NTF) from a unified view based on the block coordinate
descent (BCD) framework. NMF and NTF are low-rank approximation methods for matri-
ces and tensors in which the low-rank factors are constrained to have only nonnegative
elements. The nonnegativity constraints have been shown to enable natural interpretations
and allow better solutions in numerous applications including text analysis, computer vision,
and bioinformatics. However, the computation of NMF and NTF remains challenging and
expensive due the constraints. Numerous algorithmic approaches have been proposed to effi-
ciently compute NMF and NTF. The BCD framework in constrained non-linear optimization
readily explains the theoretical convergence properties of several efficient NMF and NTF
algorithms, which are consistent with experimental observations reported in literature. In
addition, we discuss algorithms that do not fit in the BCD framework contrasting them from
those based on the BCD framework. With insights acquired from the unified perspective,
we also propose efficient algorithms for updating NMF when there is a small change in the
reduced dimension or in the data. The effectiveness of the proposed updating algorithms are
validated experimentally with synthetic and real-world data sets.
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1 Introduction

Nonnegative matrix factorization (NMF) is a dimension reduction and factor analysis method.
Many dimension reduction techniques are closely related to the low-rank approximations
of matrices, and NMF is special in that the low-rank factor matrices are constrained to
have only nonnegative elements. The nonnegativity reflects the inherent representation of
data in many application areas, and the resulting low-rank factors lead to physically natural
interpretations [66]. NMF was first introduced by Paatero and Tapper [74] as positive matrix
factorization and subsequently popularized by Lee and Seung [66]. Over the last decade,
NMF has received enormous attention and has been successfully applied to a broad range
of important problems in areas including text mining [77,85], computer vision [47,69],
bioinformatics [10,23,52], spectral data analysis [76], and blind source separation [22] among
many others.

Suppose a nonnegative matrix A ∈ R
M×N is given. When the desired lower dimension

is K , the goal of NMF is to find two matrices W ∈ R
M×K and H ∈ R

N×K having only
nonnegative elements such that

A ≈WHT . (1)

According to (1), each data point, which is represented as a column in A, can be approximated
by an additive combination of the nonnegative basis vectors, which are represented as columns
in W. As the goal of dimension reduction is to discover compact representation in the form of
(1), K is assumed to satisfy that K < min {M, N }. Matrices W and H are found by solving
an optimization problem defined with Frobenius norm, Kullback-Leibler divergence [67,68],
or other divergences [24,68]. In this paper, we focus on the NMF based on Frobenius norm,
which is the most commonly used formulation:

min
W,H

f (W,H) = ‖A−WHT ‖2F (2)

subject to W ≥ 0,H ≥ 0.

The constraints in (2) mean that all the elements in W and H are nonnegative. Problem (2)
is a non-convex optimization problem with respect to variables W and H, and finding its
global minimum is NP-hard [81]. A good algorithm therefore is expected to compute a local
minimum of (2).

Our first goal in this paper is to provide an overview of algorithms developed to solve (2)
from a unifying perspective. Our review is organized based on the block coordinate descent
(BCD) method in non-linear optimization, within which we show that most successful NMF
algorithms and their convergence behavior can be explained. Among numerous algorithms
studied for NMF, the most popular is the multiplicative updating rule by Lee and Seung [67].
This algorithm has an advantage of being simple and easy to implement, and it has contributed
greatly to the popularity of NMF. However, slow convergence of the multiplicative updating
rule has been pointed out [40,71], and more efficient algorithms equipped with stronger
theoretical convergence property have been introduced. The efficient algorithms are based
on either the alternating nonnegative least squares (ANLS) framework [53,59,71] or the
hierarchical alternating least squares (HALS) method [19,20]. We show that these methods
can be derived using one common framework of the BCD method and then characterize some
of the most promising NMF algorithms in Sect. 2. Algorithms for accelerating the BCD-based
methods as well as algorithms that do not fit in the BCD framework are summarized in Sect. 3,
where we explain how they differ from the BCD-based methods. In the ANLS method, the
subproblems appear as the nonnegativity constrained least squares (NLS) problems. Much
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research has been devoted to design NMF algorithms based on efficient methods to solve the
NLS subproblems [18,42,51,53,59,71]. A review of many successful algorithms for the NLS
subproblems is provided in Sect. 4 with discussion on their advantages and disadvantages.

Extending our discussion to low-rank approximations of tensors, we show that algo-
rithms for some nonnegative tensor factorization (NTF) can similarly be elucidated based
on the BCD framework. Tensors are mathematical objects for representing multidimen-
sional arrays; vectors and matrices are first-order and second-order special cases of tensors,
respectively. The canonical decomposition (CANDECOMP) [14] or the parallel factorization
(PARAFAC) [43], which we denote by the CP decomposition, is one of the natural exten-
sions of the singular value decomposition to higher order tensors. The CP decomposition
with nonnegativity constraints imposed on the loading matrices [19,21,32,54,60,84], which
we denote by nonnegative CP (NCP), can be computed in a way that is similar to the NMF
computation. We introduce details of the NCP decomposition and summarize its computation
methods based on the BCD method in Sect. 5.

Lastly, in addition to providing a unified perspective, our review leads to the realizations of
NMF in more dynamic environments. Such a common case arises when we have to compute
NMF for several K values, which is often needed to determine a proper K value from data.
Based on insights from the unified perspective, we propose an efficient algorithm for updating
NMF when K varies. We show how this method can compute NMFs for a set of different
K values with much less computational burden. Another case occurs when NMF needs to
be updated efficiently for a data set which keeps changing due to the inclusion of new data
or the removal of obsolete data. This often occurs when the matrices represent data from
time-varying signals in computer vision [11] or text mining [13]. We propose an updating
algorithm which takes advantage of the fact that most of data in two consecutive time steps
are overlapped so that we do not have to compute NMF from scratch. Algorithms for these
cases are discussed in Sect. 7, and their experimental validations are provided in Sect. 8.

Our discussion is focused on the algorithmic developments of NMF formulated as (2).
In Sect. 9, we only briefly discuss other aspects of NMF and conclude the paper.

Notations: Notations used in this paper are as follows. A lowercase or an uppercase letter,
such as x or X , denotes a scalar; a boldface lowercase letter, such as x, denotes a vector;
a boldface uppercase letter, such as X, denotes a matrix; and a boldface Euler script letter,
such as X, denotes a tensor of order three or higher. Indices typically start from 1 to its
uppercase letter: For example, n ∈ {1, . . . , N }. Elements of a sequence of vectors, matrices,
or tensors are denoted by superscripts within parentheses, such as X(1), . . . ,X(N ), and the
entire sequence is denoted by

{
X(n)

}
. When matrix X is given, (X)·i or x·i denotes its i th

column, (X)i · or xi · denotes its i th row, and xi j denotes its (i, j)th element. For simplicity,
we also let xi (without a dot) denote the i th column of X. The set of nonnegative real numbers
are denoted by R+, and X ≥ 0 indicates that the elements of X are nonnegative. The notation
[X]+ denotes a matrix that is the same as X except that all its negative elements are set
to zero. A nonnegative matrix or a nonnegative tensor refers to a matrix or a tensor with
only nonnegative elements. The null space of matrix X is denoted by null(X). Operator

⊗

denotes element-wise multiplcation of vectors or matrices.

2 A unified view—BCD framework for NMF

The BCD method is a divide-and-conquer strategy that can be generally applied to non-linear
optimization problems. It divides variables into several disjoint subgroups and iteratively
minimize the objective function with respect to the variables of each subgroup at a time.
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We first introduce the BCD framework and its convergence properties and then explain
several NMF algorithms under the framework.

Consider a constrained non-linear optimization problem:

min f (x) subject to x ∈ X , (3)

where X is a closed convex subset of R
N . An important assumption to be exploited in the

BCD framework is that X is represented by a Cartesian product:

X = X1 × · · · × XM , (4)

where Xm,m = 1, . . . ,M , is a closed convex subset of R
Nm satisfying N = ∑M

m=1 Nm .
Accordingly, vector x is partitioned as x = (x1, . . . , xM ) so that xm ∈ Xm for m = 1, . . . ,M .
The BCD method solves for xm fixing all other subvectors of x in a cyclic manner. That is,
if x(i) = (x(i)1 , . . . , x(i)M ) is given as the current iterate at the i th step, the algorithm generates

the next iterate x(i+1) = (x(i+1)
1 , . . . , x(i+1)

M ) block by block, according to the solution of the
following subproblem:

x(i+1)
m ← arg min

ξ∈Xm

f
(

x(i+1)
1 , . . . , x(i+1)

m−1 , ξ, x(i)m+1, . . . , x(i)M

)
. (5)

Also known as a non-linear Gauss-Siedel method [5], this algorithm updates one block
each time, always using the most recently updated values of other blocks xm̃, m̃ �= m. This is
important since it ensures that after each update the objective function value does not increase.
For a sequence

{
x(i)
}

where each x(i) is generated by the BCD method, the following property
holds.

Theorem 1 Suppose f is continuously differentiable in X = X1×· · ·×XM , where Xm,m =
1, . . . ,M, are closed convex sets. Furthermore, suppose that for all m and i , the minimum of

min
ξ∈Xm

f
(

x(i+1)
1 , . . . , x(i+1)

m−1 , ξ, x(i)m+1, . . . , x(i)M

)

is uniquely attained. Let
{
x(i)
}

be the sequence generated by the BCD method in (5). Then,
every limit point of

{
x(i)
}

is a stationary point. The uniqueness of the minimum is not required
when M is two.

The proof of this theorem for an arbitrary number of blocks is shown in Bertsekas [5], and
the last statement regarding the two-block case is due to Grippo and Sciandrone [41]. For a
non-convex optimization problem, most algorithms only guarantee the stationarity of a limit
point [46,71].

When applying the BCD method to a constrained non-linear programming problem, it
is critical to wisely choose a partition of X , whose Cartesian product constitutes X . An
important criterion is whether subproblems (5) for m = 1, . . . ,M are efficiently solvable:
For example, if the solutions of subproblems appear in a closed form, each update can be
computed fast. In addition, it is worth checking whether the solutions of subproblems depend
on each other. The BCD method requires that the most recent values need to be used for each
subproblem (5). When the solutions of subproblems depend on each other, they have to be
computed sequentially to make use of the most recent values; if solutions for some blocks are
independent from each other, however, simultaneous computation of them would be possible.
We discuss how different choices of partitions lead to different NMF algorithms. Three cases
of partitions are shown in Fig. 1, and each case is discussed below.
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(a) (c)(b)

Fig. 1 Different choices of block partitions for the BCD method for NMF where W ∈ R
M×K+ and H ∈

R
N×K+ . In each case, the highlighted part for example is updated fixing all the rest. a Two matrix blocks.

b 2K vector blocks. c K (M + N ) scalar blocks

2.1 BCD with two matrix blocks—ANLS method

In (2), a natural partitioning of the variables is the two blocks representing W and H, as
shown in Fig. 1a. In this case, following the BCD method in (5), we take turns solving

W← arg min
W≥0

f (W,H) and H← arg min
H≥0

f (W,H). (6)

These subproblems can be written as

min
W≥0
‖HWT − AT ‖2F and (7a)

min
H≥0
‖WHT − A‖2F . (7b)

Since subproblems (7) are the nonnegativity constrained least squares (NLS) problems, the
two-block BCD method has been called the alternating nonnegative least square (ANLS)
framework [53,59,71]. Even though the subproblems are convex, they do not have a closed-
form solution, and a numerical algorithm for the subproblem has to be provided. Several
approaches for solving the NLS subproblems proposed in NMF literature are discussed in
Sect. 4 [18,42,51,53,59,71]. According to Theorem 1, the convergence property of the ANLS
framework can be stated as follows.

Corollary 1 If a minimum of each subproblem in (7) is attained at each step, every limit
point of the sequence

{
(W,H)(i)

}
generated by the ANLS framework is a stationary point of

(2).

Note that the minimum is not required to be unique for the convergence result to hold
because the number of blocks are two [41]. Therefore, H in (7a) or W in (7b) need not
be of full column rank for the property in Corollary 1 to hold. On the other hand, some
numerical methods for the NLS subproblems require the full rank conditions so that they
return a solution that attains a minimum: See Sect. 4 as well as regularization methods in
Sect. 2.4.

Subproblems (7) can be decomposed into independent NLS problems with a single right-
hand side vector. For example,

min
W≥0

∥
∥
∥HWT − AT

∥
∥
∥

2

F
=

M∑

m=1

min
wm·≥0

∥
∥
∥HwT

m· − aT
m·
∥
∥
∥

2

F
, (8)

and we can solve the problems in the second term independently. This view corresponds to
a BCD method with M + N vector blocks, in which each block corresponds to a row of
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W or H. In literature, however, this view has not been emphasized because often it is more
efficient to solve the NLS problems with multiple right-hand sides altogether: See Sect. 4.

2.2 BCD with 2K vector blocks—HALS/RRI method

Let us now partition the unknowns into 2K blocks in which each block is a column of
W or H, as shown in Fig. 1b. In this case, it is easier to consider the objective function in the
following form:

f (w1, . . . ,wK ,h1, . . . ,hK ) =
∥
∥
∥
∥
∥

A−
K∑

k=1

wkhT
k

∥
∥
∥
∥
∥

2

F

, (9)

where W = [w1, . . .wK ] ∈ R
M×K+ and H = [h1, . . . ,hK ] ∈ R

N×K+ . The form in (9)
represents that A is approximated by the sum of K rank-one matrices.

Following the BCD scheme, we can minimize f by iteratively solving

wk ← arg min
wk≥0

f (w1, . . . ,wK ,h1, . . . ,hK )

for k = 1, . . . , K , and

hk ← arg min
hk≥0

f (w1, . . . ,wK ,h1, . . . ,hK )

for k = 1, . . . , K . These subproblems appear as

min
w≥0
‖hkwT − RT

k ‖2F and min
h≥0
‖wkhT − Rk‖2F , (10)

where

Rk = A−
K∑

k̃=1,k̃ �=k

wk̃hT
k̃
. (11)

A promising aspect of this 2K block partitioning is that each subproblem in (10) has a
closed-form solution, as characterized in the following theorem.

Theorem 2 Consider a minimization problem

min
v≥0
‖uvT −G‖2F (12)

where G ∈ R
M×N and u ∈ R

M are given. If u is a nonzero vector, v = [GT u]+
uT u

is the unique

solution for (12), where ([GT u]+)n = max((GT u)n, 0) for n = 1, . . . , N.

Proof Letting vT = (v1, . . . , vN ), we have

min
v≥0

∥
∥
∥uvT −G

∥
∥
∥

2

F
=

N∑

n=1

min
vn≥0
‖uvn − gn‖22 ,

where G = [g1, . . . , gN ], and the problems in the second term are independent of each other.
Let h(vn) = ‖uvn − gn‖22 = ‖u‖22v2

n − 2vnuT gn + ‖gn‖22. Since ∂h
∂vn
= 2(vn‖u‖22 − gT

n u),

if gT
n u ≥ 0, it is clear that the minimum value of h(vn) is attained at vn = gT

n u
uT u

. If gT
n u < 0,

the value of h(vn) increases as vn becomes larger than zero, and therefore the minimum is

attained at vn = 0. Combining the two cases, the solution can be expressed as vn = [g
T
n u]+
uT u

.
�	
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Using Theorem 2, the solutions of (10) can be stated as

wk ← [Rkhk]+
‖hk‖22

and hk ← [R
T
k wk]+
‖wk‖22

. (13)

This 2K -block BCD algorithm has been studied under the name of the hierarchical alternating
least squares (HALS) method by Cichocki et al. [19,20] and the rank-one residue iteration
(RRI) independently by Ho [44]. According to Theorem 1, the convergence property of the
HALS/RRI algorithm can be written as follows.

Corollary 2 If the columns of W and H remain nonzero throughout all the iterations and
the minimums in (13) are attained at each step, every limit point of the sequence

{
(W,H)(i)

}

generated by the HALS/RRI algorithm is a stationary point of (2).

In practice, a zero column could occur in W or H during the HALS/RRI algorithm. This
happens if hk ∈ null(Rk),wk ∈ null(RT

k ),Rkhk ≤ 0, or RT
k wk ≤ 0. To prevent zero

columns, a small positive number could be used for the maximum operator in (13): That is,
max(·, ε) with a small positive number ε such as 10−16 is used instead of max(·, 0) [20,35].
The HALS/RRI algorithm with this modification often shows faster convergence compared to
other BCD methods or previously developed methods [37,59]. See Sect. 3.1 for acceleration
techniques for the HALS/RRI method and Sect. 6.2 for more discussion on experimental
comparisons.

For an efficient implementation, it is not necessary to explicitly compute Rk . Replacing
Rk in (13) with the expression in (11), the solutions can be rewritten as

wk ←
[
wk + (AH)·k−(WHT H)·k

(HT H)kk

]

+ and (14a)

hk ←
[
hk + (AT W)·k−(HWT W)·k

(WT W)kk

]

+ . (14b)

The choice of update formulae is related with the choice of an update order. Two versions of
an update order can be considered:

w1 → h1 → · · · → wK → hK (15)

and

w1 → · · · → wK → h1 → · · · → hK . (16)

When using (13), update order (15) is more efficient because Rk is explicitly computed and
then used to update both wk and hk . When using (14), although either (15) or (16) can be used,
update order (16) tends to be more efficient in environments such as MATLAB based on our
experience. To update all the elements in W and H, update formulae (13) with ordering (15)
require 8K M N +3K (M+ N ) floating point operations, whereas update formulae (14) with
either choice of ordering require 4K M N + (4K 2 + 6K )(M + N ) floating point operations.
When K � min(M, N ), the latter is more efficient. Moreover, the memory requirement of
(14) is smaller because Rk need not be stored. For more details, see Cichocki and Phan [19].

2.3 BCD with K (M + N ) scalar blocks

In one extreme, the unknowns can be partitioned into K (M+ N ) blocks of scalars, as shown
in Fig. 1c. In this case, every element of W and H is considered as a block in the context
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of Theorem 1. To this end, it helps to write the objective function as a quadratic function of
scalar wmk or hnk assuming all other elements in W and H are fixed:

f (wmk) =
∥
∥
∥
∥
∥
∥

⎛

⎝am· −
∑

k̃ �=k

wmk̃hT
·k̃

⎞

⎠− wmkhT·k

∥
∥
∥
∥
∥
∥

2

2

+ const, (17a)

f (hnk) =
∥
∥
∥
∥
∥
∥

⎛

⎝a·n −
∑

k̃ �=k

w·k̃ hnk̃

⎞

⎠− w·khnk

∥
∥
∥
∥
∥
∥

2

2

+ const, (17b)

where am· and a·n denote the mth row and the nth column of A, respectively. According to
the BCD framework, we iteratively update each block by

wmk ← arg min
wmk≥0

f (wmk) =
[

wmk + (AH)mk − (WHT H)mk

(HT H)kk

]

+
(18a)

hnk ← arg min
hnk≥0

f (hnk) =
[

hnk + (A
T W)nk − (HWT W)nk

(WT W)kk

]

+
. (18b)

The updates of wmk and hnk are independent of all other elements in the same column.
Therefore, it is possible to update all the elements in each column of W (and H) simulta-
neously. Once we organize the update of (18) column-wise, the result is the same as (14).
That is, a particular arrangement of the BCD method with scalar blocks is equivalent to the
BCD method with 2K vector blocks. Accordingly, the HALS/RRI method can be derived
by the BCD method either with vector blocks or with scalar blocks. On the other hand, it is
not possible to simultaneously solve for the elements in each row of W (or H) because their
solutions depend on each other. The convergence property of the scalar block case is similar
to that of the vector block case.

Corollary 3 If the columns of W and H remain nonzero throughout all the iterations and if
the minimums in (18) are attained at each step, every limit point of the sequence

{
(W,H)(i)

}

generated by the BCD method with K (M + N ) scalar blocks is a stationary point of (2).

The multiplicative updating rule also uses element-wise updating [67]. However, the
multiplicative updating rule is different from the scalar block BCD method in a sense that its
solutions are not optimal for subproblems (18). See Sect. 3.2 for more discussion.

2.4 BCD for some variants of NMF

To incorporate extra constraints or prior information into the NMF formulation in (2), various
regularization terms can be added. We can consider an objective function

min
W,H≥0

∥
∥
∥A−WHT

∥
∥
∥

2

F
+ φ(W)+ ψ(H), (19)

where φ(·) and ψ(·) are regularization terms that often involve matrix or vector norms.
Here we discuss the Frobenius-norm and the l1-norm regularization and show how NMF
regularized by those norms can be easily computed using the BCD method. Scalar parameters
α or β in this subsection are used to control the strength of regularization.

The Frobenius-norm regularization [53,76] corresponds to

φ(W) = α‖W‖2F and ψ(H) = β ‖H‖2F . (20)
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The Frobenius-norm regularization may be used to prevent the elements of W or H from
growing too large in their absolute values. It can also be adopted to stabilize the BCD methods.
In the two matrix block case, since the uniqueness of the minimum of each subproblem is
not required according to Corollary 1, H in (7a) or W in (7b) need not be of full column
rank. The full column rank condition is however required for some algorithms for the NLS
subproblems, as discussed in Sect. 4. As shown below, the Frobenius-norm regularization
ensures that the NLS subproblems of the two matrix block case are always defined with
a matrix of full column rank. Similarly in the 2K vector block or the K (M + N ) scalar
block cases, the condition that wk and hk remain nonzero throughout all the iterations can
be relaxed when the Frobenius-norm regularization is used.

Applying the BCD framework with two matrix blocks to (19) with the regularization term
in (20), W can be updated as

W← arg min
W≥0

∥
∥
∥
∥

(
H√
αIK

)
WT −

(
AT

0K×M

)∥∥
∥
∥

2

F
, (21)

where IK is a K × K identity matrix and 0K×M is a K × M matrix containing only zeros,

and H can be updated with a similar reformulation. Clearly, if α is nonzero,

(
H√
αIK

)
in

(21) is of full column rank. Applying the BCD framework with 2K vector blocks, a column
of W is updated as

wk ←
[

(HT H)kk

(HT H)kk + αwk + (AH)·k − (WHT H)·k
(HT H)kk + α

]

+
. (22)

If α is nonzero, the solution of (22) is uniquely defined without requiring hk to be a nonzero
vector.

The l1-norm regularization can be adopted to promote sparsity in the factor matrices. In
many areas such as linear regression [80] and signal processing [16], it has been widely known
that the l1-norm regularization promotes sparse solutions. In NMF, sparsity was shown to
improve the part-based interpretation [47] and the clustering ability [52,57]. When sparsity
is desired on matrix H, the l1-norm regularization can be set as

φ(W) = α‖W‖2F and ψ(H) = β
N∑

n=1

‖hn·‖21, (23)

where hn· represents the nth row of H. The l1-norm term of ψ(H) in (23) promotes sparsity
on H while the Frobenius norm term of φ(W) is needed to prevent W from growing too
large. Similarly, sparsity can be imposed on W or on both W and H.

Applying the BCD framework with two matrix blocks to (19) with the regularization term
in (23), W can be updated as (21), and H can be updated as

H← arg min
H≥0

∥
∥
∥
∥

(
W√
β11×K

)
HT −

(
A

01×N

)∥∥
∥
∥

2

F
, (24)

where 11×K is a row vector of length K containing only ones. Applying the BCD framework
with 2K vector blocks, a column of W is updated as (22), and a column of H is updated as

hk ←
[

hk + (A
T W)·k −H((WT W)·k + β1K )

(WT W)kk + β
]

+
. (25)
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Note that the l1-norm term in (23) is written as the sum of the squares of the l1-norm of
the columns of H. Alternatively, we can impose the l1-norm based regularization without
squaring: That is,

φ(W) = α‖W‖2F and ψ(H) = β
N∑

n=1

K∑

k=1

|hnk | . (26)

Although both (23) and (26) promote sparsity, the squared form in (23) is easier to handle
with the two matrix block case, as shown above. Applying the 2K -vector BCD framework
on (19) with the regularization term in (26), the update for a column of h is written as

hk ←
[

hk + (A
T W)·k − (HWT W)·k + 1

2β1K

(WT W)kk

]

+
.

For more information, see [19], Section 4.7.4 of [22], and Section 4.5 of [44]. When the
BCD framework with two matrix blocks is used with the regularization term in (26), a
custom algorithm for l1-regularized least squares problem has to be involved: See, e.g., [30].

3 Acceleration and other approaches

3.1 Accelerated methods

The BCD methods described so far have been very successful for the NMF computation.
In addition, several techniques to accelerate the methods have been proposed. Korattikara
et al. [62] proposed a subsampling strategy to improve the two matrix block (i.e., ANLS)
case. Their main idea is to start with a small factorization problem, which is obtained by
random subsampling, and gradually increase the size of subsamples. Under the assumption
of asymptotic normality, the decision whether to increase the size is made based on sta-
tistical hypothesis testing. Gillis and Glineur [38] proposed a multi-level approach, which
also gradually increases the problem size based on a multi-grid representation. The method
in [38] is applicable not only to the ANLS methods, but also to the HALS/RRI method and
the multiplicative updating method.

Hsieh and Dhillon proposed a greedy coordinate descent method [48]. Unlike the
HALS/RRI method, in which every element is updated exactly once per iteration, they selec-
tively choose the elements whose update will lead to the largest decrease of the objective
function. Although their method does not follow the BCD framework, they showed that every
limit point generated by their method is a stationary point. Gillis and Glineur also proposed
an acceleration scheme for the HALS/RRI and the multiplicative updating methods: Unlike
the standard versions, their approach repeats updating the elements of W several times before
updating the elements of H [37]. Noticeable improvements in the speed of convergence is
reported.

3.2 Multiplicative updating rules

The multiplicative updating rule [67] is by far the most popular algorithm for NMF. Each
element is updated through multiplications as

wmk ← wmk
(AH)mk

(WHT H)mk
, hnk ← hnk

(AT W)nk

(HWT W)nk
. (27)
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Since elements are updated in this multiplication form, the nonnegativity is always satisfied
when A is nonnegative. This algorithm can be contrasted with the HALS/RRI algorithm as
follows. The element-wise gradient descent updates for (2) can be written as

wmk ← wmk + λmk

[
(AH)mk − (WHT H)mk

]
and

hnk ← hnk + μnk

[
(AT W)nk − (HWT W)nk

]
,

where λmk and μnk represent step-lengths. The multiplicative updating rule is obtained by
taking

λmk = wmk

(WHT H)mk
andμnk = hnk

(HWT W)nk
, (28)

whereas the HALS/RRI algorithm interpreted as the BCD method with scalar blocks as in
(18) is obtained by taking

λmk = 1

(HT H)kk
and μnk = 1

(WT W)kk
. (29)

The step-lengths chosen in the multiplicative updating rule is conservative enough so that the
result is always nonnegative. On the other hand, the step-lengths chosen in the HALS/RRI
algorithm could potentially lead to a nonnegative value, and therefore the projection [·]+ is
needed. Although the convergence property of the BCD framework holds for the HALS/RRI
algorithm as in Corollary 3, it does not hold for the multiplicative updating rule since the
step-lengths in (28) does not achieve the optimal solution. In practice, the convergence of
the HALS/RRI algorithm is much faster than that of the multiplicative updating.

Lee and Seung [67] showed that under the multiplicative updating rule, the objective
function in (2) is non-increasing. However, it is unknown whether it converges to a stationary
point. Gonzalez and Zhang demonstrated the difficulty [40], and the slow convergence of
multiplicative updates has been further reported in [53,58,59,71]. To overcome this issue,
Lin [70] proposed a modified update rule for which every limit point is stationary; note that,
after this modification, the update rule becomes additive instead of multiplicative.

Since the values are updated only though multiplications, the elements of W and H
obtained by the multiplicative updating rule typically remain nonzero. Hence, its solution
matrices typically are denser than those from the BCD methods. The multiplicative updating
rule breaks down if a zero value occurs to an element of the denominators in (27). To
curcumvent this difficulty, practical implementations often add a small number, such as
10−16, to each element of the denominators.

3.3 Alternating least squares method

In the two-block BCD method of Sect. 2.1, it is required to find a minimum of the
nonnegativity-constrained least squares (NLS) subproblems in (7). Earlier, Berry et al. has
proposed to approximately solve the NLS subproblems hoping to accelerate the algorithm [4].
In their alternating least squares (ALS) method, they solved the least squares problems ignor-
ing the nonnegativity constraints, and then negative elements in the computed solution matrix
are set to zeros. That is, W and H are updated as
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WT ←
[(

HT H
)−1 (

HT AT
)]

+
and (30a)

HT ←
[(

WT W
)−1 (

WT A
)]

+
. (30b)

When HT H or WT W is rank-deficient, the Moore-Penrose pseudo-inverse may be used
instead of the inverse operator. Unfortunately, results from (30) are not the minimizers of
subproblems (7). Although each subproblem of the ALS method can be solved efficiently,
the convergence property in Corollary 1 is not applicable to the ALS method. In fact, the
ALS method does not necessarily decrease the objective function after each iteration [59].

It is interesting to note that the HALS/RRI method does not have this difficulty although
the same element-wise projection is used. In the HALS/RRI method, a subproblem in the
form of

min
x≥0

∥
∥
∥bxT − C

∥
∥
∥

2

F
(31)

with b ∈ R
M and C ∈ R

M×N is solved with x←
[

CT b
bT b

]

+, which is the optimal solution of

(31) as shown in Theorem 2. On the other hand, in the ALS algorithm, a subproblem in the
form of

min
x≥0
‖Bx − c‖22 (32)

with B ∈ R
M×N and c ∈ R

M is solved with x←
[(

BT B
)−1

BT c
]

+, which is not an optimal

solution of (32).

3.4 Successive rank one deflation

Some algorithms have been designed to compute NMF based on successive rank-one defla-
tion. This approach is motivated from the fact that the singular value decomposition (SVD)
can be computed through successive rank-one deflation. When considered for NMF, however,
the rank-one deflation method has a few issues as we summarize below.

Let us first recapitulate the deflation approach for SVD. Consider a matrix A ∈ R
M×N of

rank R, and suppose its SVD is written as

A = U�VT =
R∑

r=1

σr ur vT
r , (33)

where U = [u1 . . . uR
] ∈ R

M×R and V = [ v1 . . . vR
] ∈ R

N×R are orthogonal matrices,
and Σ ∈ R

R×R is a diagonal matrix having σ1 ≥ · · · ≥ σR ≥ 0 in the diagonal. The rank-K
SVD for K < R is obtained by taking only the first K singular values and corresponding
singular vectors:

ÃK = ŨK Σ̃ K ṼT
K =

K∑

k=1

σkukvT
k ,

where ŨK ∈ R
M×K and ṼK ∈ R

N×K are sub-matrices of U and V obtained by taking the
leftmost K columns. It is well-known that the best rank-K approximation of A in terms of
minimizing the l2-norm or the Frobenius norm of the residual matrix is the rank-K SVD: See
Theorem 2.5.3 in Page 72 of Golub and Van Loan [39]. The rank-K SVD can be computed
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through successive rank one deflation as follows. First, the best rank-one approximation,
σ1u1vT

1 , is computed with an efficient algorithm such as the power iteration. Then, the
residual matrix is obtained as Ẽ1 = A − σ1u1vT

1 =
∑R

r=2 σr ur vT
r , and the rank of Ẽ1 is

R − 1. For the residual matrix Ẽ1, its best rank-one approximation, σ2u2vT
2 , is obtained,

and the residual matrix Ẽ2, whose rank is R − 2, can be found in the same manner: Ẽ2 =
Ẽ1−σ2u2vT

2 =
∑R

r=3 σr ur vT
r . Repeating this process for K times, one can obtain the rank-K

SVD.
When it comes to NMF, a notable theoretical result about nonnegative matrices relates

SVD and NMF when K = 1. The following theorem, which extends the Perron-Frobenius
theorem [3,45], is shown in Chapter 2 of Berman and Plemmons [3].

Theorem 3 For a nonnegative symmetric matrix A ∈ R
N×N+ , the eigenvalue of A with the

largest magnitude is nonnegative, and there exists a nonnegative eigenvector corresponding
to the largest eigenvalue.

A direct consequence of Theorem 3 is the nonnegativity of the best rank-one approxima-
tion.

Corollary 4 (Nonnegativity of best rank-one approximation) For any nonnegative matrix
A ∈ R

M×N+ , the following minimization problem

min
u∈RM ,v∈RN

∥
∥
∥A− uvT

∥
∥
∥

2

F
. (34)

has an optimal solution satisfying u ≥ 0 and v ≥ 0.

Another way to realizing Corollary 4 is through the use of the SVD. For a nonnegative
matrix A ∈ R

M×N+ and for any vectors u ∈ R
M and v ∈ R

N ,

∥
∥
∥A− uvT

∥
∥
∥

2

F
=

M∑

m=1

N∑

n=1

(amn − umvn)
2

≥
M∑

m=1

N∑

n=1

(amn − |um | |vn |)2 . (35)

Hence, element-wise absolute values can be taken from the left and right singular vectors that
correspond to the largest singular value to achieve the best rank-one approximation satisfying
nonnegativity. There might be other optimal solutions of (34) involving negative numbers:
See [34].

The elegant property in Corollary 4, however, is not readily applicable when K ≥ 2. After
the best rank-one approximation matrix is deflated, the residual matrix may contain negative
elements, and then Corollary 4 is not applicable any more. In general, successive rank-one
deflation is not an optimal approach for NMF computation. Let us take a look at a small
example which demonstrates this issue. Consider matrix A given as

A =
⎛

⎝
4 6 0
6 4 0
0 0 1

⎞

⎠ .

The best rank-one approximation of A is shown as A1 below. The residual is E1 = A−A1,
which contains negative elements:
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A1 =
⎛

⎝
5 5 0
5 5 0
0 0 0

⎞

⎠ , E1 =
⎛

⎝
−1 1 0
1 −1 0
0 0 1

⎞

⎠ .

One of the best rank-one approximations of E1 with nonnegativity constraints is A2, and the
residual matrix is E2 = A1 − A2:

A2 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , E2 =
⎛

⎝
−1 1 0
1 −1 0
0 0 0

⎞

⎠ .

The nonnegative rank-two approximation obtained by this rank-one deflation approach is

A1 + A2 =
⎛

⎝
5 5 0
5 5 0
0 0 1

⎞

⎠ .

However, the best nonnegative rank-two approximation of A is in fact Â2 with residual
matrix Ê2:

Â2 =
⎛

⎝
4 6 0
6 4 0
0 0 0

⎞

⎠ , Ê2 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

Therefore, a strategy that successively finds the best rank-one approximation with
nonnegativity constraints and deflates in each step does not necessarily lead to an optimal
solution of NMF.

Due to this difficulty, some variations of rank-one deflation have been investigated for
NMF. Biggs et al. [6] proposed a rank-one reduction algorithm in which they look for a
nonnegative submatrix that is close to a rank-one approximation. Once such a submatrix is
identified, they compute the best rank-one approximation using the power method and ignore
the residual. Gillis and Glineur [36] sought a nonnegative rank-one approximation under the
constraint that the residual matrix remains element-wise nonnegative. Due to the constraints,
however, the problem of finding the nonnegative rank-one approximation becomes more
complicated and computationally expensive than the power iteration. Optimization properties
such as a convergence to a stationary point has not been shown for these modified rank-one
reduction methods.

It is worth noting the difference between the HALS/RRI algorithm, described as the 2K
vector block case in Sect. 2.2, and the rank-one deflation method. These approaches are
similar in that the rank-one approximation problem with nonnegativity constraints is solved
in each step, filling in the kth columns of W and H with the solution for k = 1, . . . , K . In
the rank-one deflation method, once the kth columns of W and H are computed, they are
fixed and kept as a part of the final solution before the (k + 1)th columns are computed. On
the other hand, the HALS/RRI algorithm updates all the columns through multiple iterations
until a local minimum is achieved. This simultaneous searching for all 2K vectors throughout
the iterations is necessary to achieve an optimal solution of NMF, unlike in the case of SVD.

4 Algorithms for the nonnegativity constrained least squares problems

We review numerical methods developed for the NLS subproblems in (7). For simplicity, we
consider the following notations in this section:
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min
X≥0
‖BX− C‖2F =

R∑

r=1

‖Bxr − cr‖22 , (36)

where B ∈ R
P×Q,C = [c1, . . . , cR] ∈ R

Q×R , and X = [x1, . . . , xR] ∈ R
Q×R . We mainly

discuss two groups of algorithms for the NLS problems. The first group consists of the
gradient descent and the Newton-type methods that are modified to satisfy the nonnegativity
constraints using a projection operator. The second group consists of the active-set and the
active-set-like methods, in which zero and nonzero variables are explicitly kept track of and
a system of linear equations is solved at each iteration. For more details, see Lawson and
Hanson [64], Bjork [8], and Chen and Plemmons [15].

To facilitate our discussion, we state a simple NLS problem with a single right-hand side:

min
x≥0

g(x) = ‖Bx − c‖22. (37)

Problem (36) may be solved by handling independent problems for the columns of X, whose
form appears as (37). Otherwise, the problem in (36) can also be transformed into

min
x1,...,xR≥0

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

B
. . .

B

⎞

⎟
⎠

⎛

⎜
⎝

x1
...

xR

⎞

⎟
⎠−

⎛

⎜
⎝

c1
...

cR

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

2

2

. (38)

4.1 Projected iterative methods

Projected iterative methods for the NLS problems are designed based on the fact that the
objective function in (36) is differentiable and that the projection to the nonnegative orthant
is easy to compute. The first method of this type proposed for NMF was the projected gradient
method of Lin [71]. Their update formula is written as

x(i+1) ←
[
x(i) − α(i)∇g(x(i))

]

+ , (39)

where x(i) and α(i) represent the variables and the step length at the i th iteration. Step length
α(i) is chosen by a back-tracking line search to satisfy Armijo’s rule with an optional stage
that increases the step length. Kim et al. [51] proposed a quasi-Newton method by utilizing
the second order information to improve convergence:

x(i+1) ←
([

y(i) − α(i)D(i)∇g(y(i))
]
+

0

)
, (40)

where y(i) is a subvector of x(i) with elements that are not optimal in terms of the Karush–
Kuhn–Tucker (KKT) conditions. They efficiently updated D(i) using the BFGS method and
selected α(i) by a back-tracking line search. Whereas Lin considered a stacked-up problem
as in (38), the quasi-Newton method by Kim et al. was applied to each column separately.

A notable variant of the projected gradient method is the Barzilai-Borwein method [7].
Han et al. [42] proposed alternating projected Barzilai-Borwein method for NMF. A key
characteristic of the Barzilai-Borwein method in unconstrained quadratic programming is
that the step-length is chosen by a closed-form formula without having to perform a line
search:

x(i+1) ←
[
x(i) − α(i)∇g(x(i))

]

+ with α(i) = sT s
yT s

, where

s = x(i) − x(i−1) and y = ∇g(x(i))− ∇g(x(i−1)).
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Algorithm 1 Outline of the Active-set Method for minx≥0 g(x) = ‖Bx − c‖22 (See [64] for
more details)
1: Initialize x (typically with all zeros).
2: Set I,E (working sets) to be indices representing zero and nonzero variables. Let xI and xE denote

the subvectors of x with corresponding indices, and let BI and BE denote the submatrices of B with
corresponding column indices.

3: for i = 1, 2, . . . do
4: Solve an unconstrained least squares problem,

min
z

∥
∥BE z− c

∥
∥2

2 . (41)

5: Check if the solution is nonegative and satisfies KKT conditions. If so, set xE ← z, set xI with zeros,
and return x as a solution. Otherwise, update x,I, and E .

6: end for

When the nonnegativity constraints are given, however, back-tracking line search still had to
be employed. Han et al. discussed a few variations of the Barzilai-Borwein method for NMF
and reported that the algorithms outperform Lin’s method.

Many other methods have been developed. Merritt and Zhang [73] proposed an interior
point gradient method, and Friedlander and Hatz [32] used a two-metric projected gradient
method in their study on NTF. Zdunek and Cichocki [86] proposed a quasi-Newton method,
but its lack of convergence was pointed out [51]. Zdunek and Cichocki [87] also studied the
projected Landweber method and the projected sequential subspace method.

4.2 Active-set and active-set-like methods

The active-set method for the NLS problems is due to Lawson and Hanson [64]. A key
observation is that, if the zero and nonzero elements of the final solution are known in
advance, the solution can be easily computed by solving an unconstrained least squares
problem for the nonzero variables and setting the rest to zeros. The sets of zero and nonzero
variables are referred to as active and passive sets, respectively. In the active-set method,
so-called workings sets are kept track of until the optimal active and passive sets are found.
A rough pseudo-code for the active-set method is shown in Algorithm 1.

Lawson and Hanson’s method has been a standard for the NLS problems, but applying
it directly to NMF is very slow. When used for NMF, it can be accelerated in two differ-
ent ways. The first approach is to use the QR decomposition to solve (41) or the Cholesky
decomposition to solve the normal equations

(
BT

E BE
)

z = BT
E c and have the Cholesky or

QR factors updated by the Givens rotations [39]. The second approach, which was proposed
by Bro and De Jong [9] and Ven Benthem and Keenan [81], is to identify common compu-
tations in solving the NLS problems with multiple right-hand sides. More information and
experimental comparisons of these two approaches are provided in [59].

The active-set methods possess a property that the objective function decreases after each
iteration; however, maintaining this property often limits its scalability. A main computational
burden of the active-set methods is in solving the unconstrained least squares problem (41);
hence, the number of iterations required until termination considerably affects the computa-
tion cost. In order to achieve the monotonic decreasing property, typically only one variable
is exchanged between working sets per iteration. As a result, when the number of unknowns
is large, the number of iterations required for termination grows, slowing down the method.
The block principal pivoting method developed by Kim and Park [58,59] overcomes this
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limitation. Their method, which is based on the work of Judice and Pires [50], allows the
exchanges of multiple variables between working sets. This method does not maintain the
nonnegativity of intermediate vectors nor the monotonic decrease of the objective function,
but it requires a smaller number of iterations until termination than the active set methods. It
is worth emphasizing that the grouping-based speed-up technique, which was earlier devised
for the active-set method, is also effective with the block principal pivoting method for the
NMF computation: For more details, see [59].

4.3 Discussion and other methods

A main difference between the projected iterative methods and the active-set-like methods
for the NLS problems lies in their convergence or termination. In projected iterative methods,
a sequence of tentative solutions is generated so that an optimal solution is approached in
the limit. In practice, one has to somehow stop iterations and return the current estimate,
which might be only an approximation of the solution. In the active-set and active-set-like
methods, in contrast, there is no concept of a limit point. Tentative solutions are generated
with a goal of finding the optimal active and passive set partitioning, which is guaranteed
to be found in a finite number of iterations since there are only a finite number of possible
active and passive set partitionings. Once the optimal active and passive sets are found,
the methods terminate. There are trade-offs of these behavior. While the projected iterative
methods may return an approximate solution after a few number of iterations, the active-set
and active-set-like methods only return a solution after they terminate. After the termination,
however, the solution from the active-set-like methods is an exact solution only subject to
numerical rounding errors while the solution from the projected iterative methods might be
an approximate one.

Other approaches for solving the NLS problems can be considered as a subroutine for the
NMF computation. Bellavia et al. [2] have studied an interior point Newton-like method, and
Franc et al. [31] presented a sequential coordinate-wise method. Some observations about the
NMF computation based on these methods as well as other methods are offered in Cichocki
et al. [22]. Chu and Lin [18] proposed an algorithm based on low-dimensional polytope
approximation: Their algorithm is motivated by a geometrical interpretation of NMF that
data points are approximated by a simplicial cone [27].

Different conditions are required for the NLS algorithms to guarantee convergence or
termination. The requirement of the projected gradient method [71] is mild as it only requires
an appropriate selection of the step-length. Both the quasi-Newton method [51] and the
interior point gradient method [73] require that matrix B in (37) is of full column rank. The
active-set method [53,64] does not require the full-rank condition as long as a zero vector is
used for initialization [28]. In the block principal pivoting method [58,59], on the other hand,
the full-rank condition is required. Since NMF is formulated as a lower rank approximation
and K is typically much smaller than the rank of the input matrix, the ranks of both W and H in
(7) typically remain full. When this condition is not likely to be satisfied, the Frobenius-norm
regularization of Sect. 2.4 can be adopted to guarantee the full rank condition.

5 BCD framework for nonnegative CP

Our discussion on the low-rank factorizations of nonnegative matrices naturally extends
to those of nonnegative tensors. In this section, we discuss nonnegative CANDE-
COMP/PARAFAC (NCP) and explain how it can be computed by the BCD framework.
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A few other decomposition models of higher order tensors have been studied, and interested
readers are referred to [1,61]. The organization of this section is similar to that of Sect. 2,
and we will show that the NLS algorithms reviewed in Sect. 4 can also be used to factorize
tensors.

Let us consider an N th-order tensor A ∈ R
M1×···×MN . For an integer K , we are

interested in finding nonnegative factor matrices H(1), . . . ,H(N ) where H(n) ∈R
Mn×K for

n = 1, . . . , N such that

A ≈ [[H(1), . . . ,H(N )]], (42)

where

H(n) =
[

h(n)1 . . . h(n)K

]
for n = 1, . . . , N and (43)

[[H(1), . . . ,H(N )]] =
K∑

k=1

h(1)k ◦ · · · ◦ h(N )k . (44)

The ‘◦’ symbol represents the outer product of vectors, and a tensor in the form of
h(1)k ◦· · ·◦h(N )k is called a rank-one tensor. Model (42) is known as CANDECOMP/PARAFAC
(CP) [14,43]: In the CP decomposition, A is represented as the sum of K rank-one tensors.
The smallest integer K for which (42) holds as equality is called the rank of tensor A. The
CP decomposition reduces to a matrix decomposition if N = 2. The nonnegative CP decom-
position is obtained by adding nonnegativity constraints to factor matrices H(1), . . . ,H(N ).
A corresponding problem can be written as, for A ∈ R

M1×···×MN+ ,

min
H(1),...,H(N )

f (H(1), . . . ,H(N )) =
∥
∥
∥A − [[H(1), . . . ,H(N )]]

∥
∥
∥

2

F
,

s.t. H(n) ≥ 0 for n = 1, . . . N . (45)

We discuss algorithms for solving (45) in this section [19,32,54,60]. Toward that end, we
introduce definitions of some operations of tensors.

Mode-n matricization: The mode-n matricization of A ∈ R
M1×···×MN , denoted by A<n>,

is a matrix obtained by linearizing all the indices of tensor A except n. Specifically, A<n> is
a matrix of size Mn × (∏N

ñ=1,ñ �=n Mñ), and the (m1, . . . ,m N )th element of A is mapped to
the (mn, J )th element of A<n> where

J = 1+
N∑

j=1

(m j − 1)J j and J j =
j−1∏

l=1,l �=n

Ml .

Mode-n fibers: The fibers of higher-order tensors are vectors obtained by specifying
all indices except one. Given a tensor A ∈ R

M1×···×MN , a mode-n fiber denoted by
am1...mn−1:mn+1...m N is a vector of length Mn with all the elements having m1, . . . ,mn−1,

mn+1, . . . ,m N as indices for the 1st, . . . , (n−1)th, (n+2)th, . . . , N th orders. The columns
and the rows of a matrix are the mode-1 and the mode-2 fibers, respectively.

Mode-n product: The mode-n product of a tensor A ∈ R
M1×···×MN and a matrix U ∈

R
J×Mn , denoted by A×n U, is a tensor obtained by multiplying all mode-n fibers of A with

the columns of U. The result is a tensor of size M1 × · · · × Mn−1 × J × Mn+1 × · · · × MN

having elements as

(A×n U)m1...mn−1 jmn+1...m N
=

Mn∑

mn=1

xm1...m N u jmn .
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In particular, the mode-n product of A and a vector u ∈ R
Mn is a tensor of size M1 × · · · ×

Mn−1 × Mn+1 × · · · × MN .
Khatri-Rao product: The Khatri-Rao product of two matrices A ∈ R

J1×L and B ∈ R
J2×L ,

denoted by A� B ∈ R
(J1 J2)×L , is defined as

A� B =

⎡

⎢
⎢
⎢
⎣

a11b1 a12b2 · · · a1L bL

a21b1 a22b2 · · · a2L bL
...

...
. . .

...

aJ11b1 aJ12b2 · · · aJ1 L bL

⎤

⎥
⎥
⎥
⎦
.

5.1 BCD with N matrix blocks

A simple BCD method can be designed for (45) considering each of the factor matrics
H(1), . . . ,H(N ) as a block. Using notations introduced above, approximation model (42) can
be written as, for any n ∈ {1, . . . , N },

A<n> ≈ H(n)
(

B(n)
)T
, (46)

where

B(n) = H(N ) � · · · �H(n+1) �H(n−1) � · · · �H(1)

∈ R

(∏N
ñ=1,ñ �=n Mñ

)
×K
. (47)

Representation in (46) simplifies the treatment of this N matrix block case. After
H(2), . . . ,H(N ) are initialized with nonnegative elements, the following subproblem is solved
iteratively for n = 1, . . . N :

H(n) ← arg min
H≥0

∥
∥
∥B(n)HT − (A<n>)T

∥
∥
∥

2

F
. (48)

Since subproblem (48) is an NLS problem, as in the matrix factorization case, this matrix-
block BCD method is called the alternating nonnegative least squares (ANLS) framework
[32,54,60]. The convergence property of the BCD method in Theorem 1 yields the following
corollary.

Corollary 5 If a unique solution exists for (48) and is attained for n = 1, . . . , N, then every

limit point of the sequence
{(

H(1), . . . ,H(N )
)(i)}

generated by the ANLS framework is a

stationary point of (45).

In particular, if each B(n) is of full column rank, the subproblem has a unique solution.
Algorithms for the NLS subproblems discussed in Sect. 4 can be used to solve (48).

For higher order tensors, the number of rows in B(n) and (A<n>)T , i.e.,
∏N

ñ=1,ñ �=n Mñ , can

be quite large. However, often B(n) and (A<n>)T do not need to be explicitly constructed. In

most algorithms explained in Sect. 4, it is enough to have B(n)T (A<n>)T and
(
B(n)

)T
B(n).

It is easy to verify that B(n)T (A<n>)T can be obtained by successive mode-n products:

B(n)T
(
A<n>)T = A×1 H(1) . . .×(n−1) H(n−1)

×(n)H(n) . . .×(N ) H(N ). (49)
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In addition,
(
B(n)

)T
B(n) can be obtained as

(
B(n)

)T
B(n) =

N⊗

ñ=1,ñ �=n

(
H(ñ)

)T
H(ñ), (50)

where
⊗

represents element-wise multiplication.

5.2 BCD with K N vector blocks

Another way to apply the BCD framework to (45) is to treat each column of H(1), . . . ,H(N )

as a block. The columns are updated by solving, for n = 1, . . . N and for k = 1, . . . , K ,

h(n)k ←

arg min
h≥0

∥
∥
∥[[h(1)k , . . . ,h(n−1)

k ,h,h(n+1)
k , · · · ,h(N )k ]] −Rk

∥
∥
∥

2

F
. (51)

where

Rk = A −
K∑

k̃=1,k̃ �=k

h(1)
k̃
◦ · · · ◦ h(N )

k̃
.

Using matrix notations, problem (51) can be rewritten as

h(n)k ← arg min
h≥0

∥
∥
∥b(n)k hT − (R<n>

k

)T
∥
∥
∥

2

F
, (52)

where R<n>
k is the mode-n matricization of Rk and

b(n)k = h(N )k � · · · � h(n+1)
k � h(n−1)

k � · · · � h(1)k

∈ R

(∏N
ñ=1,ñ �=n Mñ

)
×1
. (53)

This vector-block BCD method corresponds to the HALS method by Cichocki et al. for
NTF [19,22]. The convergence property in Theorem 1 yields the following corollary.

Corollary 6 If a unique solution exists for (52) and is attained for n = 1, . . . , N and for

k = 1, . . . , K , every limit point of the sequence
{(

H(1), . . . ,H(N )
)(i)}

generated by the

vector-block BCD method is a stationary point of (45).

Using Theorem 2, the solution of (52) is

h(n)k ←
[
R<n>

k b(n)k

]

+∥
∥
∥b(n)k

∥
∥
∥

2

2

. (54)

Solution (54) can be evaluated without constructing R<n>
k . Observe that

(
b(n)k

)T
b(n)k =

N∏

ñ=1,ñ �=n

(
h(ñ)k

)T
h(ñ)k , (55)
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which is a simple case of (50), and

R<n>
k b(n)k =

⎛

⎝A −
K∑

k̃=1,k̃ �=k

h(1)
k̃
◦ · · · ◦ h(N )

k̃

⎞

⎠

<n>

b(n)k (56)

= A<n>b(n)k −
K∑

k̃=1,k̃ �=k

⎛

⎝
N∏

ñ=1,ñ �=n

(
h(ñ)

k̃

)T
h(ñ)k

⎞

⎠h(n)
k̃
. (57)

Solution (54) can then be simplified as

h(n)k ←
⎡

⎢
⎣h(n)k +

A<n>b(n)k −H(n)
(⊗N

ñ=1,ñ �=n

(
H(ñ)

)T
H(ñ)

)

·k
∏N

ñ=1,ñ �=n

(
h(ñ)k

)T
h(ñ)k

⎤

⎥
⎦ , (58)

where A<n>b(n)k can be computed using (49). Observe the similarity between (58) and (14).

6 Implementation issues and comparisons

6.1 Stopping criterion

Iterative methods have to be equipped with a criterion for stopping iterations. In NMF or
NTF, an ideal criterion would be to stop iterations after a local minimum of (2) or (45) is
attained. In practice, a few alternatives have been used.

Let us first discuss stopping criteria for NMF. A naive approach is to stop when the decrease
of the objective function becomes smaller than some predefined threshold:

f (W(i−1),H(i−1))− f (W(i),H(i)) ≤ ε, (59)

where ε is a tolerance value to choose. Although this method is commonly adopted, it is
potentially misleading because the decrease of the objective function may become small
before a local minimum is achieved. A more principled criterion was proposed by Lin as fol-
lows [71]. According to the Karush–Kuhn–Tucher (KKT) conditions, (W,H) is a stationary
point of (2) if and only if [17]

W ≥ 0, H ≥ 0, (60a)

∇ fW = ∂ f (W,H)
∂W

≥ 0, ∇ fH = ∂ f (W,H)
∂H

≥ 0, (60b)

W
⊗∇ fW = 0, H

⊗∇ fH = 0, (60c)

where

∇ fW = 2WHT H− 2AH and

∇ fH = 2HWT W− 2AT W.
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Define the projected gradient ∇ p fW ∈ R
M×K as,

(∇ p fW
)

mk ≡
{
(∇ fW)mk if (∇ fW)mk < 0 or Wmk > 0,

0 otherwise,

for m = 1, . . . ,M and k = 1, . . . , K , and ∇ p fH similarly. Then, conditions (60) can be
rephrased as

∇ p fW = 0 and ∇ p fH = 0.

Denote the projected gradient matrices at the i th iteration by ∇ p f (i)W and ∇ p f (i)H , and define

Δ(i) =
√∥
∥
∥∇ p f (i)W

∥
∥
∥

2

F
+
∥
∥
∥∇ p f (i)H

∥
∥
∥

2

F
. (61)

Using this definition, the stopping criterion is written by

Δ(i)

Δ(0)
≤ ε, (62)

whereΔ(0) is from the initial values of (W,H). Unlike (59), (62) guarantees the stationarity
of the final solution. Variants of this criterion was used in [40,53].

An analogous stopping criterion can be derived for the NCP formulation in (45).
The gradient matrix ∇ fH(n) can be derived from the least squares representation in (48):

∇ fH(n) = 2H(n)
(

B(n)
)T

B(n) − 2A<n>B(n).

See (49) and (50) for efficient computation of
(
B(n)

)T
B(n) and A<n>B(n). With function Δ

defined as

Δ(i) =
√√
√
√

N∑

n=1

∥
∥
∥∇ p f (i)

H(n)

∥
∥
∥

2

F
, (63)

criterion in (62) can be used to stop iterations of an NCP algorithm.
Using (59) or (62) for the purpose of comparing algorithms might be unreliable. One might

want to measure the amounts of time until several algorithms satisfy one of these criteria and
compare them [53,71]. Such comparison would usually reveal meaningful trends, but there
are some caveats. The difficulty of using (59) is straightforward because, in some algorithm
such as the multiplicative updating rule, the difference in (59) can become quite small before
arriving at a minimum. The difficulty of using (62) is as follows. Note that the diagonal
rescaling of W and H does not affect the quality of approximation: For a diagonal matrix
D ∈ R

K×K+ with positive diagonal elements, WHT =WD−1 (HD)T . However, the norm of
the projected gradients in (61) is affected by a diagonal scaling:

(
∂ f

∂(WD−1)
,

∂ f

∂(HD)

)
=
((

∂ f

∂W

)
D,
(
∂ f

∂H

)
D−1

)
.

Hence, two solutions that are only different up to a diagonal scaling have the same objective
function value, but they can be measured differently in terms of the norm of the projected
gradients. See Kim and Park [59] for more information. Ho [44] considered including a
normalization step before computing (61) to avoid this issue.
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6.2 Results of experimental comparisons

A number of papers have reported the results of experimental comparisons of NMF algo-
rithms. A few papers have shown the slow convergence of Lee and Seung’s multiplicative
updating rule and demonstrated the superiority of other algorithms published subsequently
[40,53,71]. Comprehensive comparisons of several efficient algorithms for NMF were con-
ducted in Kim and Park [59], where MATLAB implementations of the ANLS-based methods,
the HALS/RRI method, the multiplicative updating rule, and a few others were compared.
In their results, the slow convergence of the multiplicative updating was confirmed, and the
ALS method in Sect. 3.3 was shown to fail to converge in many cases. Among all the meth-
ods tested, the HALS/RRI method and the ANLS/BPP method showed the fastest overall
convergence.

Further comparisons are presented in Gillis and Glineur [37] and Hsieh and Dhillon [48]
where the authors proposed acceleration methods for the HALS/RRI method. Their compar-
isons show that the HALS/RRI method or the accelerated versions converge the fastest among
all methods tested. Korattikara et al. [62] demonstrated an effective approach to accelerate
the ANLS/BPP method. Overall, the HALS/RRI method, the ANLS/BPP method, and their
accelerated versions show the state-of-the-art performance in the experimental comparisons.

Comparison results of algorithms for NCP are provided in [60]. Interestingly, the
ANLS/BPP method showed faster convergence than the HALS/RRI method in the ten-
sor factorization case. Further investigations and experimental evaluations of the NCP
algorithms are needed to fully explain these observations.

7 Efficient NMF updating: algorithms

In practice, we often need to update a factorization with a slightly modified condition or
some additional data. We consider two scenarios where an existing factorization needs to
be efficiently updated to a new factorization. Importantly, the unified view of the NMF
algorithms presented in earlier chapters provides useful insights when we choose algorithmic
components for updating. Although we focus on the NMF updating here, similar updating
schemes can be developed for NCP as well.

7.1 Updating NMF with an increased or decreased K

NMF algorithms discussed in Sects. 2 and 3 assume that K , the reduced dimension, is
provided as an input. In practical applications, however, prior knowledge on K might not be
available, and a proper value for K has to be determined from data. To determine K from
data, typically NMFs are computed for several different K values and then the best K is
chosen according to some criterion [10,33,49]. In this case, computing several NMFs each
time from scratch would be very expensive, and therefore it is desired to develop an algorithm
to efficiently update an already computed factorization. We propose an algorithm for this task
in this subsection.

Suppose we have computed Wold ∈ R
M×K1+ and Hold ∈ R

N×K1+ as a solution of (2) with

K = K1. For K = K2 which is close to K1, we are to compute new factors Wnew ∈ R
M×K2+

and Hnew ∈ R
N×K2+ as a minimizer of (2). Let us first consider the K2 > K1 case, which is

shown in Fig. 2. Each of Wnew and Hnew in this case contains K2 − K1 additional columns
compared to Wold and Hold . A natural strategy is to initialize new factor matrices by recycling
Wold and Hold as
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Fig. 2 Updating NMF with an increased K

Wnew = [Wold Wadd ] and Hnew = [Hold Hadd ], (64)

where Wadd ∈R
M×(K2−K1)+ and Hadd ∈R

N×(K2−K1)+ are generated with, e.g., random non-
negative entries. Using (64) as initial values, we can execute an NMF algorithm to find the
solution of (2). Since Wold and Hold already approximate A, this warm-start strategy is
expected to be more efficient than computing everything from scratch.

We further improve this strategy based on the following observation. Instead of initializing
Wadd and Hadd with random entries, we can compute Wadd and Hadd that approximately
factorize the residual matrix, i.e., A−WoldHT

old . This can be done by solving the following
problem:

(Wadd ,Hadd)←

arg min
W ∈ R

M×(K2−K1)

H ∈ R
N×(K2−K1)

∥
∥
∥(A−WoldHT

old)−WHT
∥
∥
∥

2

F
(65)

subject to W ≥ 0,H ≥ 0.

Problem (65) need not be solved very accurately. Once an approximate solution is obtained,
it is used to initialize Wnew and Hnew in (64) and then an NMF algorithm is executed for
entire matrices Wnew and Hnew .

When K2 < K1, we need less columns in Wnew and Hnew than in Wold and Hold . For a
good initialization of Wnew and Hnew, we need to choose the columns from Wold and Hold .
Observing that

A ≈WoldHT
old =

K1∑

k=1

(Wold)·k (Hold)
T·k , (66)

K2 columns can be selected as follows. Let δk be the squared Frobenius norm of the kth
rank-one matrix in (66), given as

δk = ‖ (Wold)·k (Hold)
T·k ‖2F = ‖ (Wold)·k ‖22‖ (Hold)·k ‖22.

We then take the largest K2 values from δ1, . . . , δK1 and use corresponding columns of Wold

and Hold as initializations for Wnew and Hnew .
Summarizing the two cases, an algorithm for updating NMF with an increased or decreased

K value is presented in Algorithm 2. Note that the HALS/RRI method is chosen for Step
2: Since the new entries appear as column blocks (see Fig. 2), the HALS/RRI method is an
optimal choice. For Step 2, although any algorithm may be chosen, we have adopted the
HALS/RRI method for our experimental evaluation in Sect. 8.1.
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Algorithm 2 Updating NMF with Increased or Decreased K Values

Input: A ∈ R
M×N+ ,

(
Wold ∈ R

M×K1+ ,Hold ∈ R
N×K1+

)
as a minimizer of (2), and K2.

Output:
(

Wnew ∈ R
M×K2+ ,Hnew ∈ R

N×K2+
)

as a minimizer of (2).

1: if K2 > K1 then
2: Approximately solve (65) with the HALS/RRI method to find (Wadd ,Hadd ).
3: Let Wnew ← [Wold Wadd ] and Hnew ← [Hold Hadd ].
4: end if
5: if K2 < K1 then
6: For k = 1, . . . , K1, let

δk = ‖ (Wold )·k ‖22‖ (Hold )·k ‖22.
7: Let J be the indices corresponding to the K2 largest values of δ1, . . . , δK1 .
8: Let Wnew and Hnew be the submatrices of Wold and Hold obtained from the columns indexed by J .
9: end if
10: Using Wnew and Hnew as initial values, execute an NMF algorithm to compute NMF of A.

7.2 Updating NMF with incremental data

In applications such as video analysis and mining of text stream, we have to deal with dynamic
data where new data keep coming in and obsolete data get discarded. Instead of completely
recomputing the factorization after only a small portion of data are updated, an efficient
algorithm needs to be designed to update NMF. Let us first consider a case that new data are
observed, as shown in Fig. 3. Suppose we have computed Wold ∈ R

M×K+ and Hold ∈ R
N×K+

as a minimizer of (2) for A ∈ R
M×N+ . New data, ΔA ∈ R

M×ΔN+ , are placed in the last
columns of a new matrix as Ã = [AΔA]. Our goal is to efficiently compute the updated
NMF

Ã = [AΔA] ≈WnewHT
new,

where Wnew ∈ R
M×K+ and Hnew ∈ R

(N+ΔN )×K
+ .

The following strategy we propose is simple but efficient. Since columns in Wold form
a basis whose nonnegative combinations approximate A, it is reasonable to use Wold to

initialize Wnew . Similarly, Hnew is initialized as

[
Hold

ΔH

]
where the first part, Hold , is obtained

from the existing factorization. A new coefficient submatrix, ΔH ∈ R
ΔN×K+ , is needed to

represent the coefficients for new data. Although it is possible to initialize ΔH with random
entries, an improved approach is to solve the following NLS problem:

ΔH← arg min
H∈RΔN×K

‖WoldHT −ΔA‖2F s.t. H ≥ 0. (67)

Using these initializations, we can then execute an NMF algorithm to find an optimal solution
for Wnew and Hnew. Various algorithms for the NLS problem, discussed in Sect. 4, maybe
used to solve (67). In order to achieve optimal efficiency, due to the fact that the number
of rows of ΔHT is usually small, the block principal pivoting algorithm is one of the most
efficient method as demonstrated in [59]. We summarize this method for updating NMF with
incremental data in Algorithm 3.
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Fig. 3 Updating NMF with incremental data

Algorithm 3 Updating NMF with Incremental Data

Input: A ∈ R
M×N+ ,

(
Wold ∈ R

M×K+ ,Hold ∈ R
N×K+

)
as a solution of Eq. (2), and ΔA ∈ R

M×ΔN+ .

Output: Wnew ∈ R
M×K+ and Hnew ∈ R

(N+ΔN )×K
+ as a solution of Eq. (2).

1: Solve the following NLS problem:

ΔH← arg min
H∈RΔN×K

‖Wold HT −ΔA‖2F s.t. H ≥ 0.

2: Let Wnew ←Wold and Hnew ←
[

Hold
ΔH

]
.

3: Using Wnew and Hnew as initial values, execute an NMF algorithm to compute NMF of [A ΔA ].

Deleting obsolete data is easier. If A = [ΔAÃ] where ΔA ∈ R
M×ΔN+ is to be discarded,

we similarly divide Hold as Hold =
[
ΔH
H̃old

]
. We then use Wold and H̃old to initialize Wnew

and Hnew and execute an NMF algorithm to find a minimizer of (2).

8 Efficient NMF updating: experiments and applications

We provide the experimental validations of the effectiveness of Algorithms 2 and 3 and show
their applications. The computational efficiency was compared on dense and sparse synthetic
matrices as well as on real-world data sets. All the experiments were executed with MATLAB
on a Linux machine with 2GHz Intel Quad-core processor and 4GB memory.

8.1 Comparisons of NMF updating methods for varying K

We compared Algorithm 2 with two alternative methods for updating NMF. The first method
is to compute NMF with K = K2 from scratch using the HALS/RRI algorithm, which
we denote as ‘recompute’ in our figures. The second method, denoted as ‘warm-restart’ in
the figures, computes the new factorization as follows. If K2 > K1, it generates Wadd ∈
R

M×(K2−K1)+ and Hadd ∈ R
N×(K2−K1)+ using random entries to initialize Wnew and Hnew

as in (64). If K2 < K1, it randomly selects K2 pairs of columns from Wold and Hold to
initialize the new factors. Using these initializations, ‘warm-restart’ executes the HALS/RRI
algorithm to finish the NMF computation.

Synthetic data sets and performance comparisons on them are as follows. We created both
dense and sparse matrices. For dense matrices, we generated W ∈ R

M×K+ and H ∈ R
N×K+

with random entries and computed A = WHT . Then, Gaussian noise was added to the
elements of A where the noise has zero mean and standard deviation is 5 % of the average
magnitude of elements in A. All negative elements after adding the noise were set to zero.
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We generated a 600×600 dense matrix with K = 80. For sparse matrices, we first generated
W ∈ R

M×K+ and H ∈ R
N×K+ with 90 % sparsity and computed A = WHT . We then used a

soft-thresholding operation to obtain a sparse matrix A,1 and the resulting matrix had 88.2 %
sparsity. We generated a synthetic sparse matrix of size 3, 000× 3, 000.2 In order to observe
efficiency in updating, an NMF with K1 = 60 was first computed and stored. We then
computed NMFs with K2 = 50, 65, and 80. The plots of relative error vs. execution time
for all three methods are shown in Fig. 4. Our proposed method achieved faster convergence
compared to ‘warm-restart’ and ‘recompute’, which sometimes required several times more
computation to achieve the same accuracy as our method. The advantage of the proposed
method can be seen in both dense and sparse cases.

We have also used four real-world data sets for our comparisons. From the Topic Detection
and Tracking 2 (TDT2) text corpus,3 we selected 40 topics to create a sparse term-document
matrix of size 19, 009× 3, 087. From the 20 Newsgroups data set,4 a sparse term-document
matrix of size 7, 845× 11, 269 was obtained after removing keywords and documents with
frequency less than 20. The AT&T facial image database5 produced a dense matrix of size
10, 304×400. The images in the CMU PIE database6 were resized to 64×64 pixels, and we
formed a dense matrix of size 4, 096× 11, 554.7 We focused on the case when K increases,
and the results are reported in Fig. 5. As with the synthetic data sets, our proposed method
was shown to be the most efficient among the methods we tested.

8.2 Applications of NMF updating for varying K

Algorithm 2 can be used to determine the reduced dimension, K , from data. Our first example,
shown in Fig. 6a, is determining a proper K value that represents the number of clusters.
Using NMF as a clustering method [57,63], Brunet et al. [10] proposed to select the number
of clusters by computing NMFs with multiple initializations for various K values and then
evaluating the dispersion coefficients (See [10,52,57] for more details). We took the MNIST
digit image database [65] and used 500 images with 28 × 28 pixels from each of the digits
6, 7, 8, and 9. The resulting data matrix was of size 784 × 2, 000. We computed NMFs for
K = 3, 4, 5, and 6 with 50 different initializations for each K . The top of Fig. 6a shows
that K = 4 can be correctly determined from the point where the dispersion coefficient
starts to drop. The bottom of Fig. 6a shows the box-plot of the total execution time needed
by Algorithm 2, ‘recompute’, and ‘warm-restart’. We applied the same stopping criterion in
(62) for all three methods.

Further applications of Algorithm 2 are shown in Fig. 6b, c. Figure 6b demonstrates a
process of probing the approximation errors of NMF with various K values. With K =
20, 40, 60 and 80, we generated 600×600 synthetic dense matrices as described in Sect. 8.1.
Then, we computed NMFs with Algorithm 2 for K values ranging from 10 to 160 with a step
size 5. The relative objective function values with respect to K are shown in Fig. 6b. In each
of the cases where K = 20, 40, 60, and 80, we were able to determine the correct K value
by choosing a point where the relative error stopped decreasing significantly.

1 For each element ai j , we used ai j ← max(ai j − 2, 0).
2 We created a larger matrix for the sparse case to clearly illustrate the relative efficiency.
3 http://projects.ldc.upenn.edu/TDT2/.
4 http://people.csail.mit.edu/jrennie/20Newsgroups/.
5 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
6 http://www.ri.cmu.edu/projects/project_418.html.
7 http://www.zjucadcg.cn/dengcai/Data/FaceData.html.
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Fig. 4 Comparisons of updating and recomputing methods for NMF when K changes, using synthetic matri-
ces. The relative error represents ‖A−WHT ‖F/‖A‖F , and time was measured in seconds. The dense matrix
was of size 600× 600, and the sparse matrix was of size 3, 000× 3, 000. See text for more details. a Dense,
K : 60→ 50. b Sparse, K : 60→ 50. c Dense, K : 60→ 65. d Sparse, K : 60→ 65. e Dense, K : 60→ 80.
f Sparse, K : 60→ 80

Figure 6c demonstrates the process of choosing K for a classification purpose. Using the
10, 304× 400 matrix from the AT&T facial image database, we computed NMF to generate
a K dimensional representation of each image, taken from each row of H. We then trained a
nearest neighbor classifier using the reduced-dimensional representations [83]. To determine
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Fig. 5 Comparisons of updating and recomputing methods for NMF when K changes, using real-world data
sets. The relative error represents ‖A − WHT ‖F/‖A‖F , and time was measured in seconds. The AT&T
and the PIE data sets were dense matrices of size 10, 304 × 400 and 4, 096 × 11, 554, respectively. The
TDT2 and the 20 Newsgroup data sets were sparse matrices of size 19, 009 × 3, 087 and 7, 845 × 11, 269,
respectively. a AT&T, dense, K : 80→ 100, b PIE, dense, K : 80→ 100, c TDT2, sparse, K : 160→ 200,
d 20 Newsgroup, sparse, K : 160→ 200

the best K value, we performed the 5-fold cross validation: Each time a data matrix of size
10, 304×320 was used to compute W and H, and the reduced-dimensional representations for

the test data Ã were obtained by solving a NLS problem, minH̃≥0

∥
∥
∥Ã−WH̃

∥
∥
∥

2

F
. Classification

errors on both training and testing sets are shown in Fig. 6c. Five paths of training and testing
errors are plotted using thin lines, and the averaged training and testing errors are plotted using
thick lines. Based on the figure, we chose K = 13 since the testing error barely decreased
beyond the point whereas the training error approached zero.

8.3 Comparisons of NMF updating methods for incremental data

We also tested the effectiveness of Algorithm 3. We created a 1, 000 × 500 dense matrix
A as described in Sect. 8.1 with K = 100. An initial NMF with K = 80 was computed
and stored. Then, an additional data set of size 1, 000× 10, 1, 000× 20, or 1, 000× 50 was
appended, and we computed the updated NMF with several methods as follows. In addition
to Algorithm 3, we considered four alternative methods. A naive approach that computes
the entire NMF from scratch is denoted as ‘recompute’. An approach that initializes a new
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Fig. 6 a Top Dispersion coefficients (see [10,57]) obtained by using 50 different initializations for each K ,
Bottom Execution time needed by our method, ‘recompute’, and ‘warm-restart’. b Relative errors for various
K values on data sets created with K = 20, 40, 60 and 80. c Classification errors on training and testing data
sets of AT&T facial image database using 5-fold cross validation

coefficient matrix as Hnew =
[

Hold

ΔH

]
whereΔH is generated with random entries is denoted

as ‘warm-restart’. The incremental NMF algorithm (INMF) [11] as well as the online NMF
algorithm (ONMF) [13] were also included in the comparisons. Figure 7 shows the execution
results, where our proposed method outperforms other methods tested.

9 Conclusion and discussion

We have reviewed algorithmic strategies for computing NMF and NTF from a unifying
perspective based on the BCD framework. The BCD framework for NMF and NTF enables
simplified understanding of several successful algorithms such as the alternating nonnegative
least squares (ANLS) and the hierarchical alternating least squares (HALS) methods. Based

123



J Glob Optim (2014) 58:285–319 315

0 5 10 15

0.05

0.06

0.07

0.08

0.09

0.1

Execution time

R
el

at
iv

e 
er

ro
r

Recompute
Warm−restart
INMF
ONMF
Our Method

(a)

0 5 10 15

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Execution time

R
el

at
iv

e 
er

ro
r

Recompute
Warm−restart
INMF
ONMF
Our Method

(b)

0 5 10 15

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Execution time

R
el

at
iv

e 
er

ro
r

Recompute
Warm−restart
INMF
ONMF
Our Method

(c)

Fig. 7 Comparisons of NMF updating methods for incremental data. Given a 1, 000 × 500 matrix and a
corresponding NMF, ΔN additional data items were appended and the NMF was updated. The relative error
represents ‖A−WHT ‖F/‖A‖F , and time was measured in seconds. a 
N = 10, b 
N = 20, c 
N = 50

on the BCD framework, the theoretical convergence properties of the ANLS and the HALS
methods are readily explained. We have also summarized how previous algorithms that do
not fit in the BCD framework differ from the BCD-based methods. With insights from the
unified view, we proposed efficient algorithms for updating NMF both for the cases that the
reduced dimension varies and that data are incrementally added or discarded.

There are many other interesting aspects of NMF that are not covered in this paper. Depend-
ing on the probabilistic model of the underlying data, NMF can be formulated with various
divergences. Formulations and algorithms based on Kullback-Leibler divergence [67,79],
Bregman divergence [24,68], Itakura-Saito divergence [29], and Alpha and Beta divergences
[21,22] have been developed. For discussion on nonnegative rank as well as the geometric
interpretation of NMF, see Lin and Chu [72], Gillis [34], and Donoho and Stodden [27].
NMF has been also studied from the Bayesian statistics point of view: See Schmidt et al.
[78] and Zhong and Girolami [88]. In the data mining community, variants of NMF such as
convex and semi-NMFs [25,75], orthogonal tri-NMF [26], and group-sparse NMF [56] have
been proposed, and using NMF for clustering has been shown to be successful [12,57,63].
For an overview on the use of NMF in bioinformatics, see Devarajan [23] and references
therein. Cichocki et al.’s book [22] explains the use of NMF for signal processing. See Chu
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and Plemmons [17], Berry et al. [4], and Cichocki et al. [22] for earlier surveys on NMF. See
also Ph.D. dissertations on NMF algorithms and applications [34,44,55].

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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