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Abstract

We study observation-based strategies for two-player turn-based
games on graphs with omega-regular objectives. An observation-based
strategy relies on incomplete information about the history of a play,
namely, on the past sequence of observations. Such games occur in the
synthesis of a controller that does not see the private state of the plant.
Our main results are twofold. First, we give a fixpoint algorithm for
computing the set of states from which a player can win with a deter-
ministic observation-based strategy for any omega-regular objective.
The fixpoint is computed in the lattice of antichains of state sets. This
algorithm has the advantages of being directed by the objective and
of avoiding an explicit subset construction on the game graph. Sec-
ond, we give an algorithm for computing the set of states from which
a player can win with probability 1 with a randomized observation-
based strategy for a Büchi objective. This set is of interest because in
the absence of complete information, randomized strategies are more
powerful than deterministic ones. We show that our algorithms are
optimal by proving matching lower bounds.

∗This research was supported in part by the NSF grants CCR-0225610 and CCR-
0234690, and by the SNSF under the Indo-Swiss Joint Research Programme.



1 Introduction

Two-player games on graphs play an important role in computer science. In
particular, the controller synthesis problem asks, given a model for a plant,
to construct a model for a controller such that the behaviors resulting from
the parallel composition of the two models respects a given specification
(e.g., are included in an ω-regular set). Controllers can be synthesized as
winning strategies in a graph game whose vertices represent the plant states,
and whose players represent the plant and the controller [17, 18]. Other
applications of graph games include realizability and compatibility checking,
where the players represent parallel processes of a system, or its environment
[1, 11, 6].

Most results about two-player games played on graphs make the hypoth-
esis of complete information. In this setting, the controller knows, during
its interaction with the plant, the exact state of the plant. In practice, this
hypothesis is often not reasonable. For example, in the context of hybrid
systems, the controller acquires information about the state of the plant us-
ing sensors with finite precision, which return incomplete information about
the state. Similarly, if the players represent individual processes, then a
process has only access to the public variables of the other processes, not to
their private variables [19, 2].

Two-player games of incomplete information are considerably more com-
plicated than games of complete information. First, decision problems for
incomplete-information games usually lie in higher complexity classes than
their complete-information counter-parts [19, 14, 2]. The algorithmic dif-
ference is often exponential, due to a subset construction that, similar to
the determinization of finite automata, turns an incomplete-information
game into an equivalent complete-information game. Second, because of
the determinization, no symbolic algorithms are known to solve incomplete-
information games. This is in contrast to the complete-information case,
where (often) simple and elegant fixed-point algorithms exist [12, 8]. Third,
in the context of incomplete information, deterministic strategies are some-
times insufficient. A game is turn-based if in every state one of the players
chooses a successor state. While deterministic strategies suffice to win turn-
based games of complete information, turn-based games of incomplete in-
formation require randomized strategies to win with probability 1. Fourth,
winning strategies for incomplete-information games need memory even for
simple objectives such as safety and reachability. This is again in contrast
to the complete-information case, where turn-based safety and reachability
games can be won with memoryless strategies. We will illustrate the needs



for randomization and memory with an example.
The contributions of this paper are two-fold. First, we provide a symbolic

fixed-point algorithm to solve games of incomplete information for arbitrary
ω-regular objectives. The novelty is that our algorithm is symbolic; it does
not carry out an explicit subset construction. Instead, we compute fixed
points on the lattice of antichains of state sets. Antichains of state sets can
be seen as a symbolic and compact representation for ⊆-downward-closed
sets of sets of states.1 This solution extends our recent result [10] from
safety objectives to all ω-regular objectives. To justify the correctness of
the algorithm, we transform games of incomplete information into games
of complete information while preserving the existence of winning strate-
gies for every Borel objective. The reduction is only part of the proof, not
part of the algorithm. For the special case of parity objectives, we obtain a
symbolic ExpTime algorithm for solving parity games of incomplete infor-
mation. This is optimal as the reachability problem for games of incomplete
information is known to be ExpTime-hard [19].

Second, we study randomized strategies and winning with probability 1
for incomplete-information games. To our knowledge, for these games no
algorithms (symbolic or not) are present in the literature. Following [7],
we refer to winning with probability 1 as almost-sure winning (almost win-
ning, for short), in contrast to sure winning with deterministic strategies.
We provide a symbolic ExpTime algorithm to compute the set of almost-
winning states for games of incomplete information with Büchi objectives
(reachability objectives can be obtained as a special case and for safety ob-
jectives almost-winning and sure-winning coincide). Our solution is again
justified by a reduction to games of complete information. However, for ran-
domized strategies the reduction is different, and considerably more com-
plicated. We prove our algorithm to be optimal, showing that computing
the almost-winning states for reachability games of incomplete information
is ExpTime-hard.

The structure of the paper is simple: Section 2 presents the definitions;
Section 3 gives the algorithm for the case of sure winning with determin-
istic strategies; Section 4, for the case of almost winning with randomized
strategies; and Section 5 provides the lower bounds.

1We have recently used this symbolic representation of ⊆-downward-closed sets of state
sets to propose a new algorithm to solve the universality problem for nondeterministic
finite automata. First experiments show very promising performances, see [9] for details.



Related work. In [17], Pnueli and Rosner study the synthesis of reac-
tive modules. In their framework, there is no game graph; instead, the
environment and the objective are specified using an LTL formula. In [14],
Kupferman and Vardi extend these results in two directions: they consider
CTL∗ objectives and incomplete information. Again, no game graph, but a
specification formula is given to the synthesis procedure. We believe that our
setting, where a game graph is given explicitly, is more suited to fully and
uniformly understand the role of incomplete information. Indeed, Kupfer-
man and Vardi assert that incomplete information comes at no cost, because
if the specification is given as a CTL (or CTL∗) formula, then the synthe-
sis problem is complete for ExpTime (resp., 2ExpTime), just as in the
complete-information case. These hardness results, however, depend on the
fact that the specification is given compactly as a formula. In our setting,
with an explicit game graph, reachability games of complete information are
known to be PTime-complete, whereas we know ExpTime-completeness for
reachability games of incomplete information. In [19], Reif studies the com-
plexity of sure winning for graph games of incomplete information with
simple reachability objectives. The solution proposed by Reif comes in the
form of an explicit subset construction. The hardness proof uses private
and blind alternating turing machines. None of the above works provide
symbolic solutions, and none of them consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes
(POMDPs) with boolean rewards and limit-average objectives the quan-
titative analysis (whether the value is greater than a specified value) is
EXPTIME-complete, see [15]. However, the almost-winning is a qualitative
question and the hardness result for almost-winning for incomplete infor-
mation games does not follow from those results on POMDPs. We propose
in section 5 an alternative proof of hardness for games of incomplete infor-
mation with reachability objectives and we show that this result extends to
almost winning conditions as well. To the best of our knowledge, this is the
first hardness result that applies to qualitative analysis of almost-winning
in incomplete information games.

A sub-class of semi-perfect (or semi-complete) information games (where
only one player has incomplete information and the other player has com-
plete information) is studied in [4]. The class of games in [4] is simpler than
the class of games we study and can be solved in NP ∩ coNP for parity
objectives.



2 Definitions

Games. A game structure of incomplete information is a tuple G =
〈L, l0,Σ,∆,Obs, γ〉 where L is a finite set of states, l0 ∈ L is the initial
state, Σ is a finite alphabet, ∆ ⊆ L × Σ × L is a set of labeled transitions,
Obs is a finite set of observations, and γ : Obs → 2L\∅ maps each obser-
vation to the set of states that it represents. Furthermore, we require the
following properties on G: (i) for all ℓ ∈ L, for all σ ∈ Σ, there exists ℓ′ ∈ L:
(ℓ, σ, ℓ′) ∈ ∆; (ii) the set of sets {γ(o) | o ∈ Obs} partitions L. The size of G

is |L|. We say that G = 〈L, l0,Σ,∆,Obs, γ〉 is a game structure of complete
information if Obs = L and γ(ℓ) = {ℓ} for all ℓ ∈ L. We often omit (Obs, γ)
in the description of games of complete information. For σ ∈ Σ and s ⊆ L

let PostGσ (s) = {ℓ′ ∈ L | ∃ℓ ∈ s : (ℓ, σ, ℓ′) ∈ ∆}.

Plays and observations. In a game structure, in each turn, Player 1
chooses a letter in Σ and Player 2 resolves nondeterminism by choosing the
successor. A play in G is an infinite sequence π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . .

such that (i) ℓ0 = l0, and (ii) for all i ≥ 0: (ℓi, σi, ℓi+1) ∈ ∆. The set
of plays in G is noted Play(G). Fix a play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . .

in G. The prefix up to ℓn of π is denoted by π(n), i.e., it is the fi-
nite sequence ℓ0σ0ℓ1 . . . σn−1ℓn. its length is |π(n)| = n + 1 and its last
element is Last(π(n)) = ℓn. The observation of π is the unique infi-
nite sequence Obs(π) = o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0,
ℓi ∈ γ(oi). The observation of π(n) is the prefix up to on of Obs(π).
We define similarly the observation of prefixes. The set of plays in G

is noted Play(G) and the set of prefixes in G is noted Pref(G). A state
ℓ ∈ L is reachable in G if there exists a prefix ρ ∈ Pref(G) such that
Last(ρ) = ℓ. Let ρ = ℓ0σ0ℓ1 . . . σn−1ℓn ∈ Pref(G), the observation of
ρ, noted Obs(ρ), is the unique sequence o0σ0o1 . . . σn−1on such that for
all i, 0 ≤ i ≤ n, ℓi ∈ γ(oi). Given ρ ∈ Pref(G), we define [[ρ]]

Obs
as

the set of prefixes of plays in G that have the same observation as ρ:
[[ρ]]

Obs
= {ρ′ | ρ′ ∈ Pref(G) and Obs(ρ) = Obs(ρ′)}. The knowledge asso-

ciated to a sequence of observations τ = o0σ0o1σ1 . . . σn−1on, noted K(τ), is
the set of states in which the play can be after this sequence of observations:
K(τ) = {Last(ρ) | ρ ∈ Pref(G) and Obs(ρ) = τ}.

Given ρ ∈ Pref(G), we define [[ρ]]K as the set of prefixes of plays in G

that leads to the same knowledge: [[ρ]]K = {ρ1 ∈ Pref(G) | K(Obs(ρ1)) =
K(Obs(ρ))}.



Lemma 1 Let G = 〈L, l0,Σ,∆,Obs, γ〉 be a game structure of incomplete
information. For σ ∈ Σ, ℓ ∈ L and ρ, ρ′ ∈ Pref(G) with ρ′ = ρ · σ · ℓ, let
obsℓ ∈ Obs be the unique observation such that ℓ ∈ γ(obsℓ). Then we have
K(Obs(ρ′)) = PostGσ (K(Obs(ρ))) ∩ γ(obsℓ).

Strategies. Let G = 〈L, l0,Σ,∆,Obs, γ〉 be a game structure of incom-
plete information. A deterministic strategy in G for Player 1 is a function
α : Pref(G) → Σ. For a finite set A, a probability distribution on A is a
function κ : A → [0, 1] such that

∑

a∈A κ(a) = 1. We denote the set of
probability distributions on A by D(A). Given a distribution κ ∈ D(A), let
Supp(κ) = {a ∈ A | κ(a) > 0} the support of κ. A randomized strategy in G

for Player 1 is a function α : Pref(G)→ D(Σ). A (deterministic or random-
ized) strategy α for Player 1 is said to be observation-based if for all prefixes
ρ, ρ′ ∈ Pref(G), if Obs(ρ) = Obs(ρ′) then α(ρ) = α(ρ′). In the sequel, we
are interested in the existence of observation-based strategies for Player 1.
A deterministic strategy in G for Player 2 is a function β : Pref(G)×Σ→ L

such that ∀ρ ∈ Pref(G) · ∀σ ∈ Σ : (Last(ρ), σ, β(ρ, σ)) ∈ ∆. A randomized
strategy in G for Player 2 is a function β : Pref(G) × Σ → D(L) such that
∀ρ ∈ Pref(G) ·∀σ ∈ Σ ·∀ℓ ∈ Supp(β(ρ, σ)) : (Last(ρ), σ, ℓ) ∈ ∆. We denote by
AG,AO

G and BG the set of all Player 1 strategies, the set of all observation-
based Player 1 strategies, and the set of all Player 2 strategies, respectively.
All the results of the paper can also be proved if strategies are mappings
from sequence of states only (without the moves).

The outcome of two deterministic strategies α (for Player 1) and β

(for Player 2) in G is the play π = ℓ0σ0ℓ1 . . . σn−1ℓnσn · · · ∈ Play(G)
such that for all i ≥ 0, we have σi = α(π(i)) and ℓi+1 = β(π(i), σi).
This play is noted outcome(G,α, β). The outcome of two randomized
strategies α (for Player 1) and β (for Player 2) in G is the set of plays
π = ℓ0σ0ℓ1 . . . σn−1ℓnσn · · · ∈ Play(G) such that for all i ≥ 0, we have
α(π(i))(σi) > 0 and β(π(i), σi)(li+1) > 0. The outcome set of the determinis-
tic (resp. randomized) strategy α for Player 1 in G is the set Outcome1(G,α)
of plays outcome(G,α, β) such that β is a deterministic (resp. randomized)
strategy for Player 2. Similarly, the outcome set of the deterministic (resp.
randomized) strategy β for Player 2 in G is the set Outcome2(G,β) of plays
outcome(G,α, β) such that α is a deterministic (resp. randomized) strategy
for Player 1.

Objectives. An objective in G is a set φ of infinite sequences of ob-
servations and input letters, i.e. φ ⊆ (Obs × Σ)ω. A play π =



ℓ0σ0ℓ1 . . . σn−1ℓnσn · · · ∈ Play(G) satisfies an objective φ (noted π |= φ) iff
Obs(π) ∈ φ. Objectives are generally Borel measurable; a Borel objective is
a Borel set in the Cantor topology on (Obs×Σ)ω [13]. We also consider reach-
ability, safety, (open and closed sets in the Cantor topology on (Obs×Σ)ω,
respectively) Büchi, coBüchi and parity objectives. The parity objectives
are a canonical form to express all ω-regular objectives [20]. For a play π =
ℓ0σ0ℓ1 . . . we denote by Inf(π) the set of observations that appear infinitely
often in Obs(π), i.e., Inf(π) = {o ∈ Obs | li ∈ γ(o) for infinitely many i’s}.

• Reachability and safety objectives. Given a set of observations O ⊆
Obs, the reachability objective Reach(O) requires that an observation
in O is visited at least once, i.e. Reach(O) = { π = ℓ0σ0ℓ1σ1 . . . ∈
Play(G) | ∃k ≥ 0.∃o ∈ O.ℓk ∈ γ(o) }. Dually, the safety objective
Safe(O) requires that only observations in O be visited. Formally we
have Safe(O) = { π = ℓ0σ0ℓ1σ1 . . . ∈ Play(G) | ∀k ≥ 0 · ∃o ∈ O : ℓk ∈
γ(o) }.

• Büchi and coBüchi objectives. The Büchi objective Buchi(O) requires
that an observation in O is visited infinitely often, i.e. Buchi(O) = {π |
Inf(π) ∩ O 6= ∅ }. Dually, the coBüchi objective coBuchi(O) requires
that only observations in O be visited infinitely often. Formally we
have coBuchi(O) = { π | Inf(π) ⊆ O }.

• Parity objectives. For d ∈ N, let p : Obs→ { 0, 1, . . . , d } be a priority
function that maps each observation to a non-negative integer. The
parity objective Parity(p) requires that the minimum priority that ap-
pears infinitely often is even. Formally we have Parity(p) = { π |
min{ p(O) | O ∈ Inf(π) } is even }.

Observe that by definition for all objectives φ, if π |= φ and Obs(π) =
Obs(π′), then π′ |= φ.

Given a game structure of incomplete information G and a state ℓ of G,
we write Gℓ for the game structure of incomplete information that results
from G by changing the initial state to ℓ: that is, if G = 〈L, l0,Σ,∆,Obs, γ〉,
then Gℓ = 〈L, ℓ,Σ,∆,Obs, γ〉.

An event is a measurable set of paths (or a Borel objective), and given
two strategies α and β, the probabilities of events are uniquely defined [21].

We denote by Prα,β
ℓ (φ) the probability that an objective φ is satisfied in the

game Gℓ given strategies α and β.



Sure winning and almost winning. A strategy λi for Player i in G

is sure-winning for an objective φ iff for all π ∈ Outcomei(G,λi), we have
π |= φ. A strategy α for Player 1 is almost-winning for an objective φ,

if for all randomized strategies β for Player 2 we have Prα,β
l0

(φ) = 1. The
set of sure-winning (resp. almost-winning) states of a game structure of
incomplete information G for the objective φ is the set of states ℓ such
that Player 1 has a deterministic sure-winning (resp. randomized almost-
winning) observation-based strategy in Gℓ for the objective φ.

Theorem 1 (Determinacy [16]). For all Borel objectives φ, for all
complete-information game structures G either there exists a deterministic
sure-winning strategy for Player 1 for objective φ, or there exists a deter-
ministic sure-winning strategy for Player 2 for objective Play(G) \ φ.

Notice that deterministic strategies suffice for sure-winning a game:
given a randomized strategy α for Player 1, let αD be a deterministic strategy
such that for all ρ ∈ Pref(G), αD(ρ) chooses an input letter from Supp(α(ρ)).
Clearly Outcome1(G,αD) ⊆ Outcome1(G,α) and hence if α is sure-winning,
then so is αD. The result also holds for observation-based strategies and
for complete-information games. Hence deterministic strategies suffices for
sure-winning and also for complete-information games randomized strategies
are no more powerful than deterministic strategies. However, for almost-
winning, randomized strategies are more powerful than deterministic strate-
gies as shown by Example 1

Example 1 Consider the game structure shown in Figure 1. The obser-
vations o1, o2, o3, o4 are such that γ(o1) = {ℓ1}, γ(o2) = {ℓ2, ℓ

′
2}, γ(o3) =

{ℓ3, ℓ
′
3}, γ(o4) = {ℓ4}. The transitions are shown as labeled edges in the fig-

ure and the initial state is ℓ1. The objective of Player 1 is Reach({o4}), i.e.
to reach state ℓ4. We argue that the game is not sure-winning for Player 1.
Let αD be any deterministic strategy for Player 1. Consider a strategy β

for Player 2 as follows: for all ρ ∈ Pref(G) such that Last(ρ) ∈ γ(o2),
if αD(ρ) = a, then in the previous round β chooses the state ℓ2, and if
αD(ρ) = b, then in the previous round β chooses the state ℓ′2. Given αD

and β, outcome(G,αD , β) never reaches ℓ4. However we show that the game
G is almost-winning for Player 1. Consider the randomized strategy that
plays a and b uniformly at random at all states. Every time the game vis-
its observation o2, for any strategy for Player 2, the game visits ℓ3 and ℓ′3
with probability 1

2 , and hence also reaches ℓ4 with probability 1
2 . It easily fol-

lows that against all Player 2 strategies the play eventually reaches ℓ4 with
probability 1.
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Figure 1: Game structure G.

Spoiling strategies. To spoil a strategy of Player 1 (for sure-winning),
Player 2 does not need the full memory of the history of the play, he only
needs counting strategies. We say that a deterministic strategy β : Pref(G)×
Σ → L for Player 2 is counting if for all prefixes ρ, ρ′ ∈ Pref(G) such that
|ρ| = |ρ′| and Last(ρ) = Last(ρ′), and for all σ ∈ Σ, we have β(ρ, σ) =
β(ρ′, σ). Let Bc

G be the set of counting strategies for Player 2. The memory
needed by a counting strategy is only the number of turns that have been
played. This type of strategy is sufficient to spoil the non-winning strategies
of Player 1.

Proposition 1 Let G be a game structure of incomplete information and
φ be an objective. There exists an observation-based strategy αo ∈ AO

G such
that for all β ∈ BG we have outcome(G,αo, β) ∈ φ if and only if there exists
an observation-based strategy αo ∈ AO

G such that for all counting strategies
βc ∈ Bc

G we have outcome(G,αo, βc) ∈ φ.

Proof. We prove the equivalent statement that: ∀αo ∈ Ao
G · ∃β ∈ BG :

outcome(G,αo, β) 6∈ φ iff ∀αo ∈ Ao
G · ∃β

c ∈ Bc
G : outcome(G,αo, βc) 6∈ φ.

The right implication (←) is trivial. For the left implication (→), let
αo ∈ Ao

G be an arbitrary observation-based strategy for Player 1 in G.
Let β ∈ BG be a strategy for Player 2 such that outcome(G,αo, β) 6∈ φ.
Let outcome(G,αo, β) = ℓ0σ0ℓ1 . . . σn−1ℓnσn . . . and define a counting strat-
egy βc for Player 2 such that ∀ρ ∈ Pref(G) · ∀σ ∈ Σ : if Last(ρ) = ℓn−1

and σ = σn−1 for n = |ρ|, then βc(ρ, σ) = ℓn, and otherwise βc(ρ, σ)
is fixed arbitrarily in the set PostGσ (Last(ρ)). Clearly, βc is a counting
strategy and we have outcome(G,αo, β) = outcome(G,αo, βc) and thus
outcome(G,αo, βc) 6∈ φ. �



3 Sure Winning

First, we show that a game structure of incomplete information G can be
encoded in a game structure of complete information GK such that for
any Borel objective φ, there exists a deterministic observation-based sure-
winning strategy for Player 1 in G for φ if and only if there exists a de-
terministic sure-winning strategy for Player 1 in GK for φ. We obtain GK

using a subset construction. A state in GK is a set of states of G that cor-
responds to the knowledge of Player 1. In the worst case, the size of GK is
exponentially larger than the size of G. Second, we present a fixed point
algorithm based on antichains of set of states [10] whose correctness relies
on our subset construction, but that avoids the explicit construction of GK.

3.1 Subset construction for sure winning

Subset construction. Given a game structure of incomplete information
G = (L, l0,Σ,∆,Obs, γ), we define the knowledge-based subset construction
of G as the following game structure of complete information:

GK = 〈L, {l0},Σ,∆K〉

where L = 2L\{∅} and (s1, σ, s2) ∈ ∆K iff ∃obs ∈ Obs: s2 = PostGσ (s1) ∩
γ(obs) and s2 6= ∅. Notice that for all s ∈ L, for all σ ∈ Σ, there exists
s′ ∈ L: (s, σ, s′) ∈ ∆K.

A (deterministic or randomized) strategy in GK is called a knowledge-
based strategy. To distinguish between a general strategy in G, an
observation-based strategy in G and a knowledge-based strategy in GK, we
often use the notations α,αo, and αK respectively.

Lemma 2 For all set s ∈ L that is reachable in GK, for all observation
obs ∈ Obs, we have either s ⊆ γ(obs) or s ∩ γ(obs) = ∅.

Proof. First, the property holds for s = {l0}, the initial state in GK as it
is a singleton. Second, we show that the property holds for any successor s′

of any state s in GK. Assume that (s, σ, s′) ∈ ∆K. Then we know that s′ =
PostGσ (s)∩γ(obs) for some obs ∈ Obs. Hence, s′ ⊆ γ(obs) and s′∩γ(obs′) = ∅
for any obs′ 6= obs since the set {γ(obs) | obs ∈ Obs} partitions L. �

By an abuse of notation, we define the observation of a play
π = s0σ0s1 . . . σn−1snσn · · · ∈ Play(GK) as the sequence Obs(π) =
o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, si ⊆ γ(oi). This sequence is



unique by Lemma 2. We also say that π satisfies an objective φ ⊆ (Obs×Σ)ω

iff Obs(π) ∈ φ. Lemma 2 justifies the following definition:

Definition 1 For a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Play(GK), define the
observation of π as the unique sequence Obs(π) = o0σ0o1 . . . σn−1onσn . . .

such that for any i ≥ 0, si ⊆ γ(oi). �

As above, we say that a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Play(GK)
satisfies an objective φ iff the sequence of observations o0o1 . . . on . . . such
that for all i ≥ 0, ℓi ∈ γ(oi) belongs to φ.

Lemma 3 If Player 1 has a deterministic sure-winning strategy in GK for
an objective φ, then he has a deterministic observation-based sure-winning
strategy in G for φ.

Proof. Let αK be a deterministic sure-winning strategy for Player 1 in
GK with the objective φ. Define αo a strategy for Player 1 in G as
follows: for every ρ ∈ Pref(G), let αo(ρ) = αK(ρK) where ρK is de-
fined from ρ = ℓ0σ0ℓ1 . . . σn−1ℓn by ρK = s0σ0s1 . . . σn−1sn where si =
K(Obs(ℓ0σ0ℓ1 . . . σi−1ℓi)) for each 0 ≤ i ≤ n. Clearly, αo is an determin-
istic observation-based strategy as Obs(ρ) = Obs(ρ′) implies ρK = ρ′K.

By contradiction, assume that αo is not a sure-winning strategy for
Player 1 in G with the objective φ. Then there exists a play π ∈
Outcome1(G,αo) such that π 6|= φ. Let π = ℓ0σ0ℓ1σ1 . . . and consider
the infinite sequence πK = s0σ0s1σ1 . . . where si = K(Obs(π(i))) for
each i ≥ 0. We show that πK ∈ Outcome1(G

K, αK). First, we have
s0 = K(Obs(π(0))) = K(Obs(ℓ0)) = {ℓ0}. Second, for any i ≥ 0, we
have si = K(Obs(π(i))) and by Lemma 1 si+1 = PostGσi

(si) ∩ γ(obs) where
obs is such that ℓi+1 ∈ γ(obs) and so (si, σi, si+1) ∈ ∆K. Third, by de-
finition of αo, we have σi = αo(π(i)) = αK(πK(i)). This entails that
πK ∈ Outcome1(G

K, αK).
Now, observe that trivially ℓi ∈ K(Obs(π(i))) for any i ≥ 0, that is

ℓi ∈ si and so si ∩ γ(obsi) 6= ∅ where obsi is the unique observation such
that ℓi ∈ γ(obsi). Hence, by Lemma 2, we have si ⊆ γ(obsi). Consequently,
Obs(πK) = Obs(π) and thus πK 6|= φ which contradicts the fact that αK is
a sure-winning strategy for Player 1 in GK with the objective φ. Therefore,
αo is a sure-winning strategy for Player 1 in G with the objective φ. �

Lemma 4 If Player 1 does not have a deterministic sure-winning strategy
in GK for a Borel objective φ, then Player 1 does not have a deterministic
observation-based sure-winning strategy in G for φ.



Proof. First, observe that if there exists no sure-winning strategy for
Player 1 in GK with objective φ, then by the Determinacy Theorem (The-
orem 1), Player 2 has a spoiling strategy βS such that for any play πK ∈
Outcome2(G

K, βS) we have πK 6|= φ. By contradiction, assume that Player 1
has an observation-based sure-winning strategy αo in G for φ. We construct
the tree T(αo, βS) = 〈N,Σ,∆T 〉 where N =

⋃

i≥0 Ni and ∆T =
⋃

i≥1 Ei.
The sets Ni (i ≥ 0) and Ei (i ≥ 1) are constructed inductively as follows:
let N0 = {ℓ0} and s0 = {ℓ0}. The following properties clearly hold for i = 0:

(a) si = {Last(ρ) | ρ ∈ Ni},

(b) Ni ⊆ Pref(G) and s0σ0s1σ1 . . . σi−1si ∈ Pref(GK),

(c) ∀ρ, ρ′ ∈ Ni : Obs(ρ) = Obs(ρ′) and

(d) ∀ρ ∈ Ni : si = K(Obs(ρ)).

Assume that we have constructed the sets Ni and si for i = 0, . . . , k and
the labels σi for i = 0, . . . , k − 1 such that (a), (b), (c), (d) hold and let us
construct Nk+1, sk+1 and σk such that (a), (b), (c), (d) hold for i = k + 1.
Let

• ρ ∈ Nk and τ = Obs(ρ),

• σk = αo(ρ) (by (c), σk is independent of the choice of ρ since αo is
observation-based),

• sk+1 = βS(s0σ0s1σ1 . . . σk−1sk, σk),

• Nk+1 = {ρσkl
′ | ρ ∈ Nk ∧ l′ ∈ sk+1 ∧ (Last(ρ), σ, l′) ∈ ∆},

• Ek+1 = {(ρ, σk, ρσkl
′) | ρ ∈ Nk ∧ ρσkl

′ ∈ Nk+1}.

Then, we have (i) sk+1 6= ∅ (ii) (sk, σk, sk+1) ∈ ∆K and thus sk+1 ⊆
PostGσk

(sk) and (iii) sk+1 ⊆ γ(obs) for some obs ∈ Obs. We prove that:

(a′) sk+1 = {Last(ρ) | ρ ∈ Nk+1}. By definition of Nk+1, we have ∀ρ ∈
Nk+1 : Last(ρ) ∈ sk+1. By (ii), we have that ∀l′ ∈ sk+1 · ∃l ∈ sk :
(l, σk, l

′) ∈ ∆ and by (a), this entails that ∀l′ ∈ sk+1 · ∃ρ ∈ Nk :
ρσkl

′ ∈ Nk+1, that is sk+1 ⊆ {Last(ρ) | ρ ∈ Nk};

(b′) Nk+1 ⊆ Pref(G) and s0σ0 . . . σksk+1 ∈ Pref(GK). This follows from (b)
and the definition of Nk+1 and sk+1;



(c′) ∀ρ, ρ′ ∈ Nk+1 : Obs(ρ) = Obs(ρ′). Let ρ, ρ′ ∈ Nk+1. By definition of
Nk+1 and by (iii), we have Obs(ρ) = τσkobs where τ is independent
of ρ by (c). Therefore Obs(ρ′) = τσkobs;

(d′) ∀ρ ∈ Nk+1 : sk+1 = K(Obs(ρ)). This is established by Lemma 1.

Now, by (a) and (i), the tree T(αo, βS) is infinite and by König’s Lemma
it contains an infinite sequence ρ0, σ0, ρ1, σ1, . . . such that ρ0 = {ℓ0} and for
all i ≥ 1, (ρi−1, σi−1, ρi) ∈ ∆T . Correspondingly, let π = ℓ0σ0ℓ1σ1 . . . such
that ℓi = Last(ρi) for each i ≥ 0. By construction of T(αo, βS), we have
π(i) ∈ Pref(G) and σi = αo(π(i)) for all i ≥ 0. Hence π ∈ Outcome1(G,αo)
and therefore π |= φ. Consider the infinite sequence πK = s0σ0s1σ1 . . . (the
set si have been constructed together with the sets Ni). By construction
of T(αo, βS), we have si+1 = βS(s0σ0 . . . σi−1si, σi) for all i ≥ 0 and thus
πK ∈ Outcome2(G

K, βS) and πK 6|= φ. However, by (a) and (d) we have
Obs(π) = Obs(πK) which contradicts the fact that π |= φ and πK 6|= φ.
Therefore, Player 1 cannot have a sure-winning observation-based strategy
αo in G for φ. �

Lemma 3 and Lemma 4 yield Theorem 2.

Theorem 2 Player 1 has a deterministic sure-winning strategy in GK for
a Borel objective φ if and only if Player 1 has a deterministic observation-
based sure-winning strategy in G for φ.

3.2 Two interpretations of the µ-calculus

Form the results of Section 3.1, we could solve a game G of incomplete
information with objective φ by constructing the knowledge-based subset
construction GK of G and solve the resulting game of complete information
for the objective φ using standard methods. For the important class of ω-
regular objectives, there exists a fixed point theory –the µ-calculus– for this
purpose [8]. When run on GK, those fixed point algorithms compute sets of
sets of states of the game G. An important property of those sets is that
they are downward closed for set inclusion: if Player 1 has a deterministic
strategy to win the game G when her knowledge is the set s, then she also
has a deterministic strategy to win the game when her knowledge is s′ with
s′ ⊆ s. And thus, if s is a sure-winning state of GK, then so is s′. Based
on this property, we devise a new algorithm for solving games of incomplete
information.

An antichain of nonempty sets of states is a set q ⊆ 2L\∅ such that for all
s, s′ ∈ q, we have s 6⊂ s′. Let A be the set of antichains of nonempty subsets



of L and consider the following partial order on A: for all q, q′ ∈ A, let q ⊑ q′

iff ∀s ∈ q : ∃s′ ∈ q′ : s ⊆ s′. For q ⊆ 2L\∅, define the set of maximal elements
of q by ⌈q⌉ = {s ∈ q | s 6= ∅ ∧ ∄s′ ∈ q : s ⊂ s′}. Clearly, ⌈q⌉ is an antichain.
The least upper bound of q, q′ ∈ A is q⊔ q′ = ⌈{s | s ∈ q ∨ s ∈ q′}⌉ and their
greatest lower bound is q ⊓ q′ = ⌈{s ∩ s′ | s ∈ q ∧ s′ ∈ q′}⌉. The definition of
those two operators extends naturally to sets of antichains, and the greatest
element of A is ⊤ = {L} and the least element is ⊥ = ∅. The partially
ordered set 〈A,⊑,⊔,⊓,⊤,⊥〉 forms a complete lattice. We see antichains of
state sets as a symbolic representation of ⊆-downward closed sets of state
sets.

A game-lattice is a complete lattice V together with a predecessor oper-
ator CPre : V → V . Given a game structure G = 〈L, l0,Σ,∆,Obs, γ〉 and
its knowledge-based subset construction GK = 〈L, {l0},Σ,∆K〉, we consider
two game-lattices: the lattice of subsets 〈S,⊆,∪,∩,L, ∅〉 (where S = 2L)
with the predecessor operator CPre : S → S defined by:

CPre(q) = {s ∈ L | ∃σ ∈ Σ · ∀s′ : if (s, σ, s′) ∈ ∆K then s′ ∈ q}

and the lattice of antichains 〈A,⊑,⊔,⊓, {L}, ∅〉 with the predecessor oper-
ator ⌈CPre⌉ : A → A defined by:

⌈CPre⌉(q) = ⌈{s ∈ L | ∃σ ∈ Σ · ∀o ∈ Obs · ∃s′ ∈ q : Postσ(s) ∩ γ(o) ⊆ s′}⌉

The µ-calculus formulas are generated by the grammar:

ϕ ::= obs | x | ϕ ∨ ϕ | ϕ ∧ ϕ | pre(ϕ) | µx.ϕ | νx.ϕ

for atomic propositions obs ∈ Obs and variables x. We can define ¬obs as a
shortcut for

∨

o′∈Obs\{o} o′. A variable is free in a formula ϕ if it is not under
the scope of a quantification µx or νx. A formula ϕ is closed if it contains
no free variable. Given a game-lattice V , a valuation E for the variables is a
function that maps every variable x to an element in V . For q ∈ V , we write
E [x 7→ q] for the valuation that agrees with E on all variables, except that x

is mapped to q. Given a game-lattice V , and a valuation E , each µ-calculus
formula ϕ specifies an element [[ϕ]]VE of V , which is defined inductively by
the following equations:



Lattice of subsets

[[obs]]SE= {s ∈ L | s ⊆ γ(obs)}

[[x]]SE= E(x)

[[ϕ1

{

∨
∧

}

ϕ2]]
S
E=[[ϕ1]]

S
E

{

∪
∩

}

[[ϕ2]]
S
E

[[pre(ϕ)]]SE= CPre([[ϕ]]SE )

[[
{

µ
ν

}

x.ϕ]]SE=
{

∩
∪

}

{q | q =[[ϕ]]SE[x 7→q]}

Lattice of antichains

[[obs]]AE = {γ(obs)}

[[x]]AE = E(x)

[[ϕ1

{

∨
∧

}

ϕ2]]
A
E =[[ϕ1]]

A
E

{

⊔
⊓

}

[[ϕ2]]
A
E

[[pre(ϕ)]]AE = ⌈CPre⌉([[ϕ]]AE )

[[
{

µ
ν

}

x.ϕ]]AE =
{

⊓
⊔

}

{q | q =[[ϕ]]AE[x 7→q]}

If ϕ is a closed formula, then [[ϕ]]V =[[ϕ]]VE for any valuation E .

Theorem 3 ([8]) For all ω-regular objectives φ there exists a closed µ-
calculus formula ϕφ such that for all complete information game structures
G, [[ϕφ]]S is the set of sure-winning states of G for φ.

Downward closure. Given a set q ∈ S, the downward closure of q is the
set q↓ = {s ∈ L | ∃s′ ∈ q : s ⊆ s′}. Observe that in particular, for all q ∈ S
we have ∅ 6∈ q↓ and ⌈q⌉↓ = q↓. The sets q↓ (q ∈ S) are the downward closed
sets. We say that a valuation E for the variables is downward closed if every
variable x is mapped to a downward closed set, that is E(x) = E(x)↓.

Lemma 5 For all downward closed sets q, q′ ∈ S, we have

⌈q ∩ q′⌉ = ⌈q⌉ ⊓ ⌈q′⌉ and ⌈q ∪ q′⌉ = ⌈q⌉ ⊔ ⌈q′⌉.

Lemma 6 For all µ-calculus formulas ϕ, for all downward closed valuations
E in the lattice of subsets, the set [[ϕ]]SE is downward closed.

Proof. We prove this lemma by induction on the structure of ϕ.

• if ϕ ≡ obs for obs ∈ Obs. It is immediate to show that [[ϕ]]SE= [[ϕ]]SE↓.



• if ϕ ≡ x for a variable x. We have [[ϕ]]SE= E(x) which is downward
closed by hypothesis.

• if ϕ ≡ ϕ1

{

∨
∧

}

ϕ2 and both [[ϕ1]]
S
E and [[ϕ2]]

S
E are downward closed.

Then we have [[ϕ]]SE = [[ϕ1]]
S
E

{

∪
∩

}

[[ϕ2]]
S
E and the result follows from

the fact that union and intersection of downward closed sets are down-
ward closed.

• if ϕ ≡ pre(ϕ1) and [[ϕ1]]
S
E is downward closed. We show that [[ϕ]]SE is

downward closed. Let s1 ∈[[ϕ]]SE and let s2 ∈ L such that s2 ⊆ s1. Let
us show that s2 ∈[[ϕ]]SE . By definition of CPre, since s1 ∈[[pre(ϕ1)]]

S
E ,

there exists σ ∈ Σ such that for any s′1, if (s1, σ, s′1) ∈ ∆K then
s′1 ∈[[ϕ1]]

S
E . Consider any s′2 such that (s2, σ, s′2) ∈ ∆K. According to

Definition 1, we have s′2 = Postσ(s2) ∩ γ(obs) 6= ∅ for some obs ∈ Obs.
Now, let s′1 = Postσ(s1) ∩ γ(obs). Since s2 ⊆ s1, we have s′2 ⊆ s′1
and thus s′1 6= ∅. Therefore (s1, σ, s′1) ∈ ∆K and so s′1 ∈[[ϕ1]]

S
E . As

the latter set is downward closed, we also have s′2 ∈[[ϕ1]]
S
E and thus

s2 ∈[[pre(ϕ1)]]
S
E .

• if ϕ ≡ νx.ϕ1 and [[ϕ1]]
S
E ′ is downward closed for any downward closed

valuation E ′. By Tarski’s theorem, [[ϕ]]SE is one of the set in the in-
finite sequence q0, q1, . . . defined by q0 = L and for every i ≥ 1,
qi =[[ϕ]]SE[x 7→qi−1]

. Since q0 is downward closed, every qi (i ≥ 1) is
also downward closed by the induction hypothesis.

• if ϕ ≡ µx.ϕ1 and [[ϕ1]]
S
E ′ is downward closed for any downward closed

valuation E ′. The proof is similar to the previous case.

�

Lemma 7 For all µ-calculus formulas ϕ, for all downward closed valuations
E in the lattice of subsets, we have

⌈

[[ϕ]]SE
⌉

=[[ϕ]]A⌈E⌉ where ⌈E⌉ is a valuation

in the lattice of antichains defined by ⌈E⌉(x) = ⌈E(x)⌉ for all variables x.

Proof. We prove this by induction on the structure of ϕ.

• if ϕ ≡ obs for obs ∈ Obs. The claim is immediate.

• if ϕ ≡ x for a variable x. We have
⌈

[[ϕ]]SE
⌉

= ⌈E(x)⌉ =[[ϕ]]A⌈E⌉.



• if ϕ ≡ ϕ1

{

∨
∧

}

ϕ2 and both
⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉ and

⌈

[[ϕ2]]
S
E

⌉

=[[ϕ2]]
A
⌈E⌉.

Using Lemma 5 and Lemma 6, we have successively:

⌈

[[ϕ]]SE
⌉

=
⌈

[[ϕ1]]
S
E

{

∪
∩

}

[[ϕ2]]
S
E

⌉

=

⌈

[[ϕ1]]
S
E

⌉

{

⊔
⊓

}

⌈

[[ϕ2]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉

{

⊔
⊓

}

[[ϕ2]]
A
⌈E⌉ .

• if ϕ ≡ pre(ϕ1) and
⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉.

1. We prove the inclusion [[ϕ]]A⌈E⌉⊆
⌈

[[ϕ]]SE
⌉

. First, we show that for

any state s ∈ ⌈CPre⌉([[ϕ1]]
A
⌈E⌉), we have s ∈ CPre([[ϕ1]]

S
E ). We

know that there exists σ ∈ Σ such that ∀o ∈ Obs · ∃s′′ ∈[[ϕ1]]
A
⌈E⌉:

Postσ(s)∩ γ(o) ⊆ s′′. Since
⌈

[[ϕ1]]
S
E

⌉

=[[ϕ1]]
A
⌈E⌉ (induction hypoth-

esis), it is clear that for such σ, if (s, σ, s′) ∈ ∆K, then there exists
s′′ ∈

⌈

[[ϕ1]]
S
E

⌉

such that s′ ⊆ s′′. And since [[ϕ1]]
S
E is downward

closed (by Lemma 6) we have s′ ∈[[ϕ1]]
S
E , so that s ∈ CPre([[ϕ1]]

S
E )

(and thus s ∈[[ϕ]]SE ).

Second, we show that s is maximal in [[ϕ]]SE . By contradiction,
assume that there exists s1 ∈[[ϕ]]SE with s ⊂ s1. Then, by the
same argument as in the first part of the proof of the inclu-
sion

⌈

[[ϕ]]SE
⌉

⊆[[ϕ]]A⌈E⌉, we have that s1 satisfies the definition

of ⌈CPre⌉([[ϕ1]]
A
⌈E⌉) up to the operator ⌈·⌉. This means that s is

not maximal in ⌈CPre⌉([[ϕ1]]
A
⌈E⌉), a contradiction.

2. We prove the inclusion
⌈

[[ϕ]]SE
⌉

⊆[[ϕ]]A⌈E⌉. This is trivial if
⌈

[[ϕ]]SE
⌉

=

∅. Otherwise, let us first show that [[ϕ1]]
A
⌈E⌉ 6= ∅. Let s ∈

⌈

[[ϕ]]SE
⌉

.

Then, there exists σ ∈ Σ such that for any s′, if (s, σ, s′) ∈ ∆K

then s′ ∈[[ϕ1]]
S
E . Since the transition relation of G is total and the

observations partition the state space, we have Postσ(s)∩γ(obs) 6=
∅ for some obs ∈ Obs. Therefore, [[ϕ1]]

S
E is nonempty and so is

[[ϕ1]]
A
⌈E⌉.

Now, we proceed with the proof of inclusion. Let s ∈
⌈

[[ϕ]]SE
⌉

, and
let σ ∈ Σ such that such that for any s′, if (s, σ, s′) ∈ ∆K then
s′ ∈[[ϕ1]]

S
E . Let us show that s ∈ ⌈CPre⌉([[ϕ1]]

A
⌈E⌉). First, consider

an arbitrary observation obs ∈ Obs and let s′ = Postσ(s)∩γ(obs).
We must show that there exists s′′ ∈[[ϕ1]]

A
⌈E⌉ such that s′ ⊆ s′′.

This is obvious if s′ = ∅ since [[ϕ1]]
A
⌈E⌉ is nonempty. Otherwise, by

Definition 1 we have (s, σ, s′) ∈ ∆K and therefore s′ ∈[[ϕ1]]
S
E . Since



[[ϕ1]]
A
⌈E⌉=

⌈

[[ϕ1]]
S
E

⌉

(induction hypothesis), there exists s′′ ∈[[ϕ1]]
A
⌈E⌉

such that s′ ⊆ s′′.

Second, let us show that s is maximal in ⌈CPre⌉([[ϕ1]]
A
⌈E⌉). By

contradiction, assume that there exists s1 ∈ ⌈CPre⌉([[ϕ1]]
A
⌈E⌉) with

s ⊂ s1. Then, by the same argument as in the first part of the
proof of the inclusion [[ϕ]]A⌈E⌉⊆

⌈

[[ϕ]]SE
⌉

, we have s1 ∈[[ϕ]]SE . This

implies that s 6∈
⌈

[[ϕ]]SE
⌉

, a contradiction.

• if ϕ ≡ νx.ϕ1 and
⌈

[[ϕ1]]
S
E ′

⌉

=[[ϕ1]]
A
⌈E ′⌉ for any downward closed valuation

E ′. By Tarski’s theorem, [[ϕ]]SE is one of the set in the infinite sequence
q0, q1, . . . defined by q0 = L and for every i ≥ 1, qi =[[ϕ]]SE[x 7→qi−1]

;

and similarly, [[ϕ]]A⌈E⌉ is one of the set in the infinite sequence q′0, q
′
1, . . .

defined by q′0 = {L} and for all i ≥ 1, qi =[[ϕ]]A⌈E⌉[x 7→q′i−1
]. Observe that

q′0 = ⌈q0⌉. By induction, assume that q′i−1 = ⌈qi−1⌉ for some i ≥ 1.
Then clearly q′i = ⌈qi⌉ as ⌈E⌉[x 7→ q′i−1] =

⌈

E [x 7→ qi−1]
⌉

.

• if ϕ ≡ µx.ϕ1 and
⌈

[[ϕ1]]
S
E ′

⌉

=[[ϕ1]]
A
⌈E ′⌉ for any downward closed valuation

E ′. The proof is similar to the previous case.

�

From Theorems 2 and 3 and Lemma 7, we can decide the existence of a
deterministic observation-based sure-winning strategy for Player 1 without
constructing GK.

Theorem 4 Let G be a game structure of incomplete information with ini-
tial state l0. For all ω-regular objectives φ, Player 1 has a deterministic
observation-based strategy in G for φ if and only if {l0} ⊑[[ϕφ]]A.

Corollary 1 Let G be a game structure of incomplete information.
Whether a state ℓ of G is a sure-winning state for a parity objective Parity(p)
can be decided in ExpTime.

The argument to prove Corollary 1 is that the size and the number of
fixed-point quantifier alternations of a µ-calculus formula ϕ for a parity
objective φ are polynomial in the number of priorities, and the size of the
parity objective φ. The evaluation of ϕ is exponential in the size of φ.



4 Almost Winning

Given a game structure G of incomplete information we construct game
structure H by subset construction and establish certain equivalences of
randomized strategies in G and H. We then show how the reduction can be
used to obtain a symbolic EXPTIME algorithm to compute almost-winning
states in G for Büchi objectives.

4.1 Subset construction for almost winning

Reduction. Given a game structure of incomplete information G =
(L, l0,Σ,∆,Obs, γ), we construct a game structure of complete information
H = (Q, ql0 ,Σ,∆H) as follows: Q = { (s, ℓ) | ∃o ∈ Obs. s ⊆ γ(o), ℓ ∈ s };
when H is in a state (s, ℓ), it corresponds in G to the state ℓ and the knowl-
edge of Player 1 is s; the initial state is ql0 = ({ l0 }, l0); the transition
relation ∆H ⊆ Q × Σ × Q is defined as follows: ((s, ℓ), σ, (s′, ℓ′)) ∈ ∆H iff
∃o ∈ Obs : s′ = PostGσ (s) ∩ γ(o) and (ℓ, σ, ℓ′) ∈ ∆.

Plays, prefixes and cones of prefixes A play in H is an infinite alter-
nating sequence q0σ0q1σ1 . . . of states in Q and input letters from Σ. We
denote by Play(H) the set of plays of H. A prefix ρH = q0σ0q1σ1 . . . σn−1qn

is a prefix of a play in H. For a prefix ρH = q0σ0q1σ1 . . . σn−1qn we denote
by Last(ρH) = qn the last state in ρH and by |ρH | = n + 1 the length of ρH .
We denote by Pref(H) the set of prefixes in H. For a prefix ρH ∈ Pref(H),
let Cone(ρH) = { πH ∈ Play(H) | ρH is a prefix of πH }. The definition of
Cone(ρG) for prefixes ρG ∈ Pref(G) is similar.

Equivalence of states, prefixes and plays Two states q = (s, ℓ) and
q′ = (s′, ℓ′) of H are equivalent, noted q ≈ q′, iff s = s′. Two prefixes
ρH = q0σ0q1 . . . σn−1qn and ρ′H = q′0σ

′
0q

′
1 . . . σ′

n−1q
′
n, are equivalent, noted

ρH ≈ ρ′H , iff for all 0 ≤ i ≤ n we have qi ≈ q′i and for all 0 ≤ i ≤ n − 1 we
have σi = σ′

i. Two plays πH , π′
H ∈ Play(H) are equivalent, noted πH ≈ π′

H ,
iff for all i ≥ 0 we have πH(i) ≈ π′

H(i). For a state q ∈ Q we denote by
[q]≈ = { q′ ∈ Q | q ≈ q′ } the ≈-equivalence class of q. We define a similar
notation for prefixes and plays.

Positional and equivalence preserving strategies. A strategy for
Player 1 is a function αH : Pref(H)→ D(Σ). A strategy αH for Player 1 in
H is positional if it is independent of the prefix of plays and depends only on
the last state, i.e. for all ρH , ρ′H ∈ Pref(H) such that Last(ρH) = Last(ρ′H)
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Figure 2: Game structure H (for G of Figure 1).

we have αH(ρH) = αH(ρ′H). A positional strategy αH can be viewed
as a function αH : Q → D(Σ). A strategy αH for Player 1 is equiva-
lence preserving if for all ρH , ρ′H ∈ Pref(H) such that ρH ≈ ρ′H we have
αH(ρH) = αH(ρ′H). We denote by AH ,AP

H ,A≈
H the set of all strategies,

the set of all positional strategies, and the set of all equivalence preserving

strategies for Player 1, respectively. We denote by A
≈(P )
H = A≈

H ∩ A
P
H the

set of equivalence preserving positional strategies. A strategy for Player 2
is a function βH : Pref(H) × Σ→ D(Q) such that for all ρH ∈ Pref(H), for
all σ ∈ Σ, Supp(βH(ρH , σ)) ⊆ PostHLast(()(ρH ), { σ }). We denote by BH the
set of all Player 2 strategies.

Objectives. Objectives ΦH in H are subsets of (Q×Σ)ω. The definition
of objectives are similar to as in Section 2. An objective ΦH is equivalence
preserving if for all πH ∈ ΦH , [πH ]≈ ⊆ ΦH .

Example 2 Given the game structure G of incomplete information G of
Figure 1 the game structure H produced by the reduction of Section 4 is
shown in Figure 2. All the states are almost-winning for the Büchi objective
Buchi({ ({ ℓ4 }, ℓ4) }). For a state q we say Rank(q) = j if q ∈ Rank(j) \
Rank(j−1) (see notations after Lemma 11 for definition of Rank). The rank
of the states as obtained from Lemma 12 are shown along side the states. The
positional strategy that plays both a and b with equal probability is almost-
winning for all states. For states q of Rank(1), Rank(3) and Rank(4) we have
if Rank(q) = j, then PostHa (q) ⊆ Rank(j−1) and PostHb (q) ⊆ Rank(j−1). For
states with Rank(2) we have if q = ({ ℓ2, ℓ

′
2 }, ℓ2), then PostHb (q) ⊆ Rank(1);

and if q = ({ ℓ2, ℓ
′
2 }, ℓ

′
2), then PostHa (q) ⊆ Rank(1).

Mapping of prefixes and plays. We define a mapping h : Pref(G) →
Pref(H) that maps prefixes in G to prefixes in H as follows: given ρG =



ℓ0σ0ℓ1σ1 . . . σn−1ℓn we have h(ρG) = q0σ0q1σ1 . . . σn−1qn, where qi = (si, ℓi)
and si = K(Obs(ρ(i))). The mapping h for plays is defined similarly.

Proposition 2 The mapping h is a bijection.

Mapping of strategies for Player 1. Given a strategy αH in H we
construct a strategy αG = h(αH) as follows: given ρG ∈ Pref(G) we have
αG(ρG) = αH(h(ρG)). Similarly given a strategy αG in G we construct a
strategy αH = g(αG) as follows: given ρH ∈ Pref(H) we have αH(ρH) =
αG(h−1(ρH)).

Proposition 3 The following properties hold.

1. For the strategy mapping h : AH → AG we have

(a) if Obs(ρG) = Obs(ρ′G), then h(ρG) ≈ h(ρ′G); and

(b) if αH is equivalence preserving, then h(αH) is observation-based.

2. For the strategy mapping g : AG → AH we have

(a) if ρH ≈ ρ′H , then Obs(h−1(ρH)) = Obs(h−1(ρ′H)); and

(b) if αG is observation-based, then g(αG) is equivalence preserving.

Mapping of strategies for Player 2. Observe that for all q ∈ Q, σ ∈ Σ
and ℓ ∈ L we have |{ q′ = (s′, ℓ) | (q, σ, q′) ∈ ∆H }| ≤ 1. Given a strategy
βH in H we construct a strategy βG = h(βH) as follows: for ρG ∈ Pref(G),
σ ∈ Σ and ℓ ∈ L we have βG(ρG, σ)(ℓ) = βH(h(ρG), σ)(s, ℓ), where (s, ℓ) ∈
PostHσ (Last(h(ρG))). Similarly given a strategy βG in G we construct a
strategy βH = g(βG) as follows: for ρH ∈ Pref(H), σ ∈ Σ, q = (s, ℓ) ∈ Q we
have βH(ρH , σ)(q) = βG(h−1(ρH), σ)(ℓ).

Lemma 8 The following assertions hold.

1. For all ρH ∈ Pref(H), for every equivalence preserving strategy αH ,
for every strategy βH we have

PrαH ,βH
ql0

(Cone(ρH)) = Pr
h(αH),h(βH)
l0

(h−1(Cone(ρH))).

2. For all ρG ∈ Pref(G), for every observational strategy αG, for every
strategy βG we have

PrαG,βG

l0
(Cone(ρG)) = Prg(αG),g(βG)

ql0
(h(Cone(ρG))).



Proof. The following properties follow from the construction of strategies
in Subsection 4.1.

1. For all ρH ∈ Pref(H), for every equivalence preserving strategy αH ,
for every strategy βH and for all ρ′H such that |ρ′H | = |ρH | + 1, we

have PrαH ,βH
ql0

(

Cone(ρ′H) | Cone(ρH)
)

= Pr
h(αH ),h(βH)
l0

(

h−1(Cone(ρ′H)) |

h−1(Cone(ρH))
)

.

2. For all ρG ∈ Pref(G), for every observation-based strategy αG, for
every strategy βG and for all ρ′G such that |ρ′G| = |ρG| + 1, we

have PrαG,βG

l0

(

Cone(ρ′G) | Cone(ρG)
)

= Pr
g(αG),g(βG)
ql0

(

h(Cone(ρ′G)) |

h(Cone(ρG))
)

.

The proof for the first part is as follows: observe that

PrαH ,βH
ql0

(Cone(ql0)) = Pr
g(αH),g(βH)
l0

(h−1Cone(q0)))

= Pr
g(αH),g(βH)
l0

(Cone(l0)) = 1.

The rest follows from the above properties and induction. The proof for the
second part is similar. �

Theorem 5 For all incomplete information game structures G, all Borel
objectives ΦG and for all equivalence preserving Borel objectives ΦH , for
all observation-based player 1 strategies αG, for all equivalence preserving
player 1 strategies αH , for all player 2 strategies βG and βH we have

PrαG,βG

l0
(ΦG) = Prg(αG),g(βG)

q0
(h(ΦG));

PrαH ,βH
q0

(ΦH) = Pr
h(αG),h(βG)
l0

(h−1(ΦG)).

Proof. The proof is as follows: by the Caratheódary unique extension
theorem a probability measure defined on Cone’s has an unique extension to
all Borel objectives. The result then follows from Lemma 8 and the unique
extension theorem. �

Corollary 2 follows from Theorem 5.

Corollary 2 For all Borel objectives ΦG we have

sup
αG∈AO

G

infβG∈BG
PrαG,βG

l0
(ΦG) = sup

αH∈A≈

H

infβH∈BH
PrαH ,βH

ql0
(h(ΦG));

∃αG ∈ A
O
G. ∀βG ∈ BG. PrαG,βG

l0
(ΦG) = 1

iff ∃αH ∈ A
≈
H . ∀βH ∈ BH . PrαH ,βH

ql0
(h(ΦG)) = 1.



4.2 Almost winning for Büchi objectives

We first illustrate the need of memory and randomization for almost-winning
in incomplete information games with Büchi objectives.

Example 3 (Memory is needed to almost-win) Consider the example
of Figure 3. The objective of Player 1 is to reach a state with observation
o4. We show that Player 1 has no observation based sure-winning strategy

q0

q1

q2

q3

q4

q5

q6

b

a, b

a, b

a

a

a

b

a

a

b

a

b

b

a

Figure 3: The observations are as follows: o1 = {q0}, o2 = {q1, q2}, o3 =
{q3, q4}, o4 = {q5}, o5 = {q6}.

in this game. This is because when we fix an observation-based strategy for
Player 1, Player 2 has a spoiling strategy to maintain the game into the
states {q0, q1, q2}. Indeed, at q0, the only reasonable choice for Player 1
is to play a. Then Player 2 can choose to go either in q1 or q2. In both
cases, the observation will be the same for Player 1. After seeing o1ao2, if
the strategy of Player 1 is to play a then Player 2 chooses q2, otherwise, if
Player 1 strategy is to play b then Player 2 chooses q1. This can be repeated
and so Player 2 has a spoiling strategy against any observation based strategy
of Player 1.

We now show that almost-winning strategies exist for Player 1. Consider
that Player 1 plays an observation-based randomized strategy α as follows:
after a sequence of observations τ ,



• in any observation sequence τ such that Last(τ) = o1, α(τ)(a) = 1 and
α(τ)(b) = 0,

• in any observation sequence τ such that Last(τ) = o2, α(τ)(a) = 0.5
and α(τ)(b) = 0.5,

• in any observation sequence τ = τ ′·o1 ·σ·o3, α(τ)(a) = 1 and α(τ)(b) =
0,

• in any observation sequence τ = τ ′·o2 ·σ·o3, α(τ)(a) = 0 and α(τ)(b) =
1,

• otherwise take, arbitrarily, α(τ)(a) = 1 and α(τ)(b) = 0.

The strategy α is almost-winning against any randomized strategy of
Player 2. Note that the strategy α uses memory and this is necessary because
when receiving observation o3, Player 1 has to play a if the game was just
before in a state satisfying observation o1 and b if the game was just before
in state satisfying o2.

Given a game structure G let H be the corresponding game structure
constructed by the reduction. Given O ⊆ Obs let BO = { q = (s, l) ∈ Q |
∃o ∈ O.s ⊆ γ(o) }. We have h(Buchi(O)) = Buchi(BO) = { πH ∈ Play(H) |
Inf(πH)∩BO 6= ∅ }. We first show that almost-winning for Büchi objectives
wrt to equivalence preserving strategies is equivalent to almost-winning wrt
to equivalence preserving positional strategies. Formally, for BO ⊆ Q, let

Q≈
AS

= { q ∈ Q | ∃αH ∈ A
≈
H .∀βH ∈ BH .∀q′ ∈ [q]≈. PrβH ,βH

q′ (Buchi(BO)) = 1 };

Q
≈(P )
AS

= { q ∈ Q | ∃αH ∈ A
≈(P )
H .∀βH ∈ BH .∀q′ ∈ [q]≈. PrβH ,βH

q′ (Buchi(BO)) = 1 }.

We will prove that Q≈
AS

= Q
≈(P )
AS

. Proposition 4 follows from the construc-
tion of H from G; and yields Lemma 9.

Proposition 4 For all q ∈ Q, for all q1 ∈ [q]≈, for all σ ∈ Σ, if (q1, σ, q′1) ∈
∆H , then for all q′2 ∈ [q′1]≈, there exists q2 ∈ [q1]≈ such that (q2, σ, q′2) ∈ ∆H .

Lemma 9 Given an equivalence preserving strategy αH , a prefix ρH ∈
Pref(H) and a state q, if there exists a strategy βH such that
PrαH ,βH

q (Cone(ρH)) > 0, then for every ρ′H such that ρ′H ≈ ρH there ex-

ists a strategy β′
H and a state q′ ∈ [q]≈ such that Pr

αH ,β′

H

q′ (Cone(ρ′H)) > 0.



Observe that

Q\Q≈
AS = {q ∈ Q | ∀αH ∈ A

≈
H .∃βH ∈ BH .∃q′ ∈ [q]≈.PrαH ,βH

q′ (Buchi(BO)) < 1}.

It follows from Lemma 9 that if a play starts in Q≈
AS

and reaches (Q \Q≈
AS

)
with positive probability, then for all equivalence preserving strategies for
Player 1, there is a Player 2 strategy that ensures that the Büchi objective
Buchi(BO) is not satisfied with probability 1.

Notations. For a state q ∈ Q and Y ⊆ Q we denote by Allow(q, Y ) =
{ σ ∈ Σ | PostHσ (q) ⊆ Y }. For a state q ∈ Q and Y ⊆ Q we denote by
Allow([q], Y ) =

⋂

q′∈[q]≈
Allow(q′, Y ).

Lemma 10 For all q ∈ Q≈
AS

we have Allow([q], Q≈
AS

) 6= ∅.

Proof. Assume towards contradiction that there exists q ∈ Q≈
AS

such that
Allow([q], Q≈

AS
) = ∅. Then for all σ ∈ Σ there exists q′ ∈ [q]≈ such that

PostHσ (q′) ∩ (Q \ Q≈
AS

) 6= ∅. Hence for all equivalence preserving strategy
αH there exists q′ ∈ [q]≈ such that αH(q′)(σ) > 0 and PostHσ (q′) ∩ (Q \
Q≈

AS
) 6= ∅. Hence for every equivalence strategy αH there is a state q′ ∈ [q]≈

and a strategy βH for Player 2 such that Q \ Q≈
AS

is reached with positive
probability. This contradicts that [q]≈ ⊆ Q≈

AS
. �

Lemma 11 Given q ∈ Q≈
AS

let αH be an equivalence preserving strategy

such that for all βH and for all q′ ∈ [q]≈ we have PrαH ,βH

q′ (Buchi(BO)) = 1.
For all ρH = q0σ0q1 . . . σn−1qn ∈ Pref(H) such that for all 0 ≤ i ≤ n,

qi ∈ Q≈
AS

, if there is a strategy βH such that PrαH ,βH

q′ (Cone(ρH)) > 0, then
Supp(αH(ρH)) ⊆ Allow([q], Q≈

AS
).

Proof. Assume towards contradiction for a history ρH satisfying the con-
ditions of the lemma there exists σ ∈ Supp(αH(ρH)) \Allow([q], Q≈

AS
). Then

there exists q′n ∈ [q]Q≈

AS
such that PostHσ (q′n) ∩ (Q \ Q≈

AS
) 6= ∅. Then there

exists ρ′H such that ρH ≈ ρ′H and Last(ρ′H) = q′n. Then by Lemma 9 there

exists a strategy β′
H and q′ ∈ [q]≈ such that Pr

αH ,β′

H

q′ (Cone(ρ′H)) > 0. Then
given ρ′H and the strategy αH there exists a Player 2 strategy such that
Q \Q≈

AS
is reached with positive probability. This contradicts that αH is an

almost-winning strategy. �

Notations. We inductively define ranks of the states in Q≈
AS

as follows: let
Rank(0) = BO ∩Q≈

AS
, and

Rank(j + 1) = Rank(j) ∪ { q ∈ Q≈
AS
| ∃σ ∈ Allow([q], Q≈

AS
).PostHσ (q) ⊆ Rank(j) }.



Let j∗ = min{ i | Rank(i) = Rank(i + 1) }, and Q∗ = Rank(j∗).

Lemma 12 Q∗ = Q≈
AS

.

Proof. Clearly by definition Q∗ ⊆ Q≈
AS

. We now prove that Q≈
AS
⊆ Q∗.

Assume towards contradiction X = Q≈
AS
\ Q∗ 6= ∅. For all states q ∈ X,

for all σ ∈ Allow([q], Q≈
AS

), we have PostHσ (q) ∩X 6= ∅; as otherwise q would
have been in Q∗. Hence for every state q ∈ X and σ ∈ Allow([q], Q≈

AS
) there

exists q′ ∈ X and (q, σ, q′) ∈ ∆H . Fix a strategy βH for Player 2 as follows:
for a state q ∈ X and the input letter σ ∈ Allow([q], Q≈

AS
) choose a successor

q′ ∈ X such that (q, σ, q′) ∈ ∆H . Consider a state q ∈ X and an equivalence
preserving almost-winning strategy for Player 1 from q. By Lemma 11, the
strategy αH satisfies that for histories ρH = q0σ0q1 . . . σn−1qn (satisfying the
conditions of Lemma 11) we have Supp(αH(ρH)) ⊆ Allow([qn], Q≈

AS
). Hence

it follows that PrαH ,βH
q (Safe(X)) = 1. Since BO ∩Q≈

AS
⊆ Q∗, it follows that

BO ∩X = ∅. Hence PrαH ,βH
q (Reach(BO)) = 0, and PrαH ,βH

q (Buchi(BO)) =
0. This contradicts that αH is an equivalence preserving almost-winning
strategy. �

An equivalence-preserving positional strategy. Consider the equiv-
alence preserving positional strategy α

p
H defined as follows: for a state

q ∈ Q≈
AS

play all the moves in Allow([q], Q≈
AS

) uniformly at random.

Lemma 13 For all states q ∈ Q≈
AS

, for all strategies βH we have:

• Pr
α

p
H

,βH
q (Safe(Q≈

AS
)) = 1; and

• Pr
α

p
H

,βH
q (Reach(BO ∩Q≈

AS
)) = 1.

Proof. By Lemma 12 we have Q∗ = Q≈
AS

. Let z = |Q∗|.

• For a state q ∈ Q≈
AS

we have PostHσ (q) ⊆ Q≈
AS

for all σ ∈ Allow([q], Q≈
AS

).
Hence it follows for all states q ∈ Q≈

AS
, for all strategies βH for Player 2

we have Pr
α

p

H
,βH

q (Safe(Q≈
AS

)) = 1.

• For a state q ∈ (Rank(j +1)\Rank(j)), there exists σ ∈ Allow([q], Q≈
AS

)
such that PostHσ (q) ⊆ Rank(j). For a set Y ⊆ Q let ♦j(Y ) denote the
set of paths that reaches Y within j steps. It follows that for all states
q ∈ Rank(j + 1), for all strategies βH we have

Pr
α

p

H
,βH

q (♦1(Rank(j))) ≥
1

|Σ|
.



Let B = BO ∩ Q≈
AS

. By induction on the ranks it follows that for all
states q ∈ Q∗, for all strategies βH we have

Pr
α

p

H
,βH

q (♦z(Rank(0))) = Pr
α

p

H
,βH

q (♦z(B)) ≥
( 1

|Σ|

)z

= r > 0.

For m > 0 we have Pr
α

p

H
,βH

q (♦m·z(B)) ≥ 1− (1− r)m. Thus we have

Pr
α

p

H
,βH

q (Reach(B)) = lim
m→∞

Pr
α

p

H
,βH

q (♦m·z(B)) ≥ lim
m→∞

1−(1−r)m = 1.

The result follows. �

It follows from Lemma 13 that given the strategy α
p
H , the set Q≈

AS
is

never left and the states in BO ∩Q≈
AS

are reached with probability 1. Since
this happens for every state in Q≈

AS
it follows that the set BO∩Q≈

AS
is visited

infinitely often with probability 1, i.e., the Büchi objective Buchi(BO) is sat-
isfied with probability 1. The above analysis along with the fact that [ql0 ]≈

is a singleton and Corollary 2 proves that Q≈
AS

= Q
≈(P )
AS

. Theorem 6 follows
and the result also easily specializes for the case of reachability objectives.

Theorem 6 For all incomplete information game structures G, for a set
O of observations, there exists an observation-based almost-winning strategy
in G for the objective Buchi(O) iff there exists an equivalence preserving
positional almost-winning strategy in H for the objective Buchi(BO).

Symbolic algorithm We present a symbolic quadratic time (in the size
of H) algorithm to compute the set Q≈

AS
. For Y ⊆ Q and X ⊆ Y , let

Apre(Y,X) = { q ∈ Y | ∃σ ∈ Allow([q], Y ). PostHσ (q) ⊆ X };

Spre(Y ) = { q ∈ Y | Allow([q], Y ) 6= ∅ } = Apre(Y, Y ).

Let φ = νY.µX.
(

Apre(Y,X) ∨ (BO ∧ Spre(Y )
)

and Z =[[φ]].

Lemma 14 Z = Q≈
AS

.

Proof of Lemma 14. We prove Z = Q≈
AS

by proving inclusion in both
directions. We have Z =[[φ]] and φ = νY.µX.

(

Apre(Y,X) ∨ (BO ∧ Spre(Y ))
)



1. We first show that Z ⊆ Q≈
AS

. Since Z is a fixed-point of φ we have

Z =[[µX.
(

Apre(Z,X) ∨ (BO ∧ Spre(Z))
)

]] .

We analyze the evaluation of Z as the fixed-point as follows: let X0 = ∅
and Xi+1 = Apre(Z,Xi) ∨ (BO ∧ Spre(Z)). Observe that since X0 = ∅
we have Apre(Z,X0) = ∅ and hence X1 = BO∩Spre(Z) ⊆ BO. Let j∗ =
min{ i | Xi+1 = Xi } and we have Z = Xj∗. Consider the equivalence
preserving strategy α

p
H for Player 1 that at a state q ∈ Z plays all

moves in Allow([q], Z) uniformly at random. For all strategies βH for

Player 2 and for all states q ∈ Z we have Pr
α

p

H
,βH

q (Safe(Z)) = 1. Also
for a state q ∈ (Xi+1 \Xi) \BO we have there exists σ ∈ Allow([q], Z)
such that PostHσ (q) ⊆ Xi, i.e., for a state q ∈ (Xi+1 \Xi) \ BO, given
α

p
H against all strategies βH the next state is in Xi with probability at

least 1
|Σ| . Arguments similar to Lemma 13 establishes that α

p
H is an

almost-winning strategy for all states q ∈ Z. Hence we have Z ⊆ Q≈
AS

.

2. We now show that Q≈
AS
⊆ Z. We first show that Q≈

AS
satisfies that

Q≈
AS =[[µX.

(

Apre(Q≈
AS,X) ∨ (BO ∧ Spre(Q≈

AS))
)

]] .

Observe that Q≈
AS

= Spre(Q≈
AS

). We now analyze the evaluation of
Q≈

AS
as the fixed-point Q∗ as shown in Lemma 12. Let X0 = ∅, then

Apre(Q≈
AS

,X0) = ∅. Hence X1 = Apre(Q≈
AS

) ∨ (BO ∧ Spre(Q≈
AS

)) =
BO ∧Q≈

AS
= Rank(0) (as defined before Lemma 12). By the definition

of Rank(j + 1) from Rank(j) and the definition of Apre(·, ·) and Spre(·)
it follows that for all i > 0, given Rank(i− 1) = Xi, we have Rank(i +
1) = Xi = Apre(Q≈

AS
,Xi) ∨ (BO ∧ Spre(Q≈

AS
)). By induction we have

Q∗ =[[µX.
(

Apre(Q≈
AS

,X) ∨ (BO ∧ Spre(Q≈
AS

))
)

]]. Since Q∗ = Q≈
AS

(by
Lemma 12) we have

Q≈
AS =[[µX.

(

Apre(Q≈
AS,X) ∨ (BO ∧ Spre(Q≈

AS))
)

]] .

Since Z is the greatest fixed-point we have Q≈
AS
⊆ Z.

The result follows. �

Theorem 7 Let G be a game structure of incomplete information and a set
O of observations. Whether a state ℓ of G is an almost-winning state for a
Büchi objective Buchi(O) can be decided in ExpTime.



Lemma 14 and the fact that H is exponential in size of G yield Theo-
rem 7. The arguments for the proof of Theorem 6 and Theorem 7 do not
directly extend to coBüchi or parity objectives in general. In fact Theo-
rem 6 does not hold for parity objectives in general for the following reason:
in concurrent games with parity objectives with more than two priorities
almost-winning strategies require infinite memory in general; for an exam-
ple see [5]. Such concurrent games are reducible to semi-perfect information
games [4] and semi-perfect information games are reducible to the incom-
plete information games we study. Hence reduction to a finite game structure
and obtaining randomized memoryless strategy is not possible in general for
parity objectives. Theorem 6 and Theorem 7 may hold for coBüchi objec-
tives, but there does not seem to be a simple extension of arguments of
Büchi objectives to the coBüchi case. The results similar to Theorem 6 and
Theorem 7 for coBüchi objectives is open.

Direct symbolic algorithm As in Section 3.2, the structure H has not
to be constructed explicitly and we can obtain a direct fixed point algorithm
on a well chosen lattice. The fixed point formula to compute the set Q≈

AS
is

evaluated on the lattice 〈2Q,⊆,∪,∩, Q, ∅〉. It is easy to show that the sets
computed by the fixed point algorithm are downward closed for the following
order on Q: for (s, ℓ), (s′, ℓ′) ∈ Q let (s, ℓ) � (s′, ℓ′) iff ℓ = ℓ′ and s ⊆ s′.
Then, we can define an antichain over Q as a set of pairwise �-incomparable
elements of Q, and compute the almost-sure winning states in the lattice of
antichains over Q, without explicitly constructing H.

5 Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized)
observation-based sure-winning (resp. almost-winning) strategy for Player 1
in games of incomplete information is EXPTIME-hard already for reacha-
bility objectives. Note that the result for sure-winning follows from results
in [19] but our new proof extends to almost-winning as well.

Sure winning. To show the lower bound result, we use a reduction of
the membership problem for polynomial space Alternating Turing Machine.
An alternating Turing machine (ATM) is a tuple M = 〈Q, q0, g,Σi,Σt, δ, F 〉
where:

• Q is a finite set of control states;



• q0 ∈ Q is the initial state;

• g : Q→ {∧,∨};

• Σi = {0, 1} is the input alphabet;

• Σt = {0, 1, 2} is the tape alphabet and 2 is the blank symbol;

• δ ⊆ Q× Σt ×Q× Σt × {−1, 1} is a transition relation; and

• F ⊆ Q is the set of accepting states.

We say that M is a polynomial space ATM if for some polynomial p(·), the
space used by M on any input word w is bounded by p(|w|).

Without loss of generality, we make the hypothesis that the initial control
state of the machine is a ∨-state and that transitions link ∨-state to ∧-state
and vice versa. A word w is accepted by an ATM M if there exists a run tree
of M on w whose all leaf nodes are accepting configurations. The AND-OR
graph of the polynomial space ATM (M,p) on the input word w ∈ Σ∗ is
G(M,p) = 〈S∨, S∧, s0,⇒, R〉 where

• S∨ = {(q, h, t) | q ∈ Q, g(q) = ∨, 1 ≤ h ≤ p(|w|) and t ∈ Γp(|w|)};

• S∧ = {(q, h, t) | q ∈ Q, g(q) = ∧, 1 ≤ h ≤ p(|w|) and t ∈ Γp(|w|)};

• s0 = (q0, 1, t) where t = w.Γp(|w|)−|w|;

• ((q1, h1, t1), (q2, h2, t2)) ∈⇒ iff there exists (q1, t1(h1), q, γ, d) ∈ δ such
that q2 = q, h2 = h1 + d, t2(h1) = γ and t2(i) = t1(i) for all i 6= h1;

• R = {(q, h, t) ∈ S∨ ∪ S∧ | q ∈ F}.

A word w is accepted by (M,p) iff R is reachable in G(M,p). The member-
ship problem is to decide if a given word w is accepted by a given polynomial
space ATM (M,p). This problem is known to be ExpTime-hard [3].

Idea of the reduction. Given a polynomial space ATM M and a word w,
we construct a game of size polynomial in the size of (M,w) to simulate the
execution of M on w. Player 1 makes choices in ∨-states and Player 2 makes
choices in ∧-states. Furthermore, Player 1 is responsible for maintaining
the symbol under the tape head. The objective is to reach an accepting
configuration of the ATM.

Each turn proceeds as follows. In an ∨-state, by choosing a letter (t, a)
in the alphabet of the game, Player 1 reveals (i) the transition t of the ATM



that he has chosen (this way he also reveals the symbol that is currently
under the tape head) and (ii) the symbol a under the next position of the
tape head. If Player 1 lies about the current or the next symbol under the
tape head, he should loose the game, otherwise the game proceeds. The
machine is now in an ∧-state and Player 1 has no choice: he announces a
special symbol ǫ and Player 2, by resolving nondeterminism on ǫ, chooses
a transition of the Turing machine which is compatible with the current
symbol under the tape head revealed by Player 1 at the previous turn. The
state of the ATM is updated and the game proceeds. The transition chosen
by Player 2 is visible in the next state of the game and so Player 1 can
update his knowledge about the configuration of the ATM. Player 1 wins
whenever an accepting configuration of the ATM is reached, that is w is
accepted.

The difficulty is to ensure that Player 1 looses when he announces a
wrong content for the cell under the tape head. As the number of configura-
tions of the polynomial ATM is exponential, we can not directly encode the
full configuration of the ATM in the states of the game. To overcome this
difficulty, we use the power of incomplete information as follows. Initially,
Player 2 chooses a position k, 1 ≤ k ≤ p(|w|), on the tape: this number
as well as the symbol σ ∈ {0, 1, 2} that lies in the tape cell number k is
maintained all along the game in the non-observable portion of the game
states. The pair (σ, k) is thus private to Player 2 and invisible to Player 1.
Thus, at any point in the game, Player 2 can check whether Player 1 is lying
when announcing the content of cell number k, and go to a sink state if
Player 1 cheats (no other states can be reached from there). Since Player 1
does not know which cell is monitored by Player 2 (k is private), to avoid
loosing, he should not lie about any of the tape cells and thus he should
faithfully simulate the machine. Then, he wins the game if and only if the
ATM accepts the words w.

Almost winning. To establish lower bound for almost-winning, we can
use the same reduction. Randomization can not help Player I in this game.
Indeed, at any point of the game, if Player I takes a chance in either not
faithfully simulating the ATM or lying about the symbol under the tape
head, the sink state is reached. In those case, the probability to reach the
sink state is positive and so the probability to win the game is strictly less
than one. We now present the details of the reduction of the hardness proof.



Reduction Given a polynomial space ATM (M,p), with M =
〈Q, q0, g,Σi,Σt, δ, F 〉 and a word w, we construct the following game struc-
ture GM,p,w = 〈L, l0,Σ,∆,Obs, γ〉, where:

• The set of positions L = {init}∪{sink}∪L1∪L2 where: L1 = (δ∪{−})×
Q×{1, . . . , p(|w|)}×{1, . . . , p(|w|)}×Σt. A state (t, q, h, k, σ) consists
of a transition t of the ATM chosen by Player 2 at the previous round
or − if this is the first round where Player 1 plays, the current control
state q of M , the position h of the tape head, the pair (k, σ) such that
the k-th symbol of the tape is σ, this pair (k, σ) will be kept invisible
for Player 1. L2 = Q× {1, . . . , p(|w|)} × Σt × {1, . . . , p(|w|)} × Σt. A
state (q, h, γ, k, σ) consists of q, h, k, σ as in L1 and γ is the symbol
that Player 1 claims to be under the tape head. The objective for
Player 1 will be to reach a state l ∈ L associated with an accepting
control state of M .

• l0 = init.

• Σ = {ǫ} ∪ (δ × Σt).

• The transition relation ∆ contains the following sets of transitions:

– I1 that contains transitions (init, ǫ, (−, q0, 1, k, σ)) where (i) 1 ≤
k ≤ p(|w|) and (ii) σ = w(k) if 1 ≤ k ≤ |w| and σ = 2 otherwise.
I2 that contains transitions (init, (t, γ), sink) where (t, γ) ∈ δ×Σt.
So, at the initial state init Player 1 has to play ǫ in order to avoid
entering sink. By resolving nondeterminism on ǫ, Player 2 chooses
a tape cell to monitor.

– S that contains transitions (sink, σ, sink) for all σ ∈ Σ. When the
sink state is entered, the game stays there forever.

– L1.1 that contains transitions ((t, q, h, k, σ), ǫ, sink). L1.2 that con-
tains transitions ((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), sink) where
q1 6= q or ¬(1 ≤ h + d ≤ p(|w|)). L1.3 contains the transi-
tions ((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), sink) where h = k∧γ1 6=
σ or h + d = k ∧ γ3 6= σ. L1.4 contains the transitions
((t, q, h, k, σ), ((q1 , γ1, q2, γ2, d), γ3), (q2, h + d, γ3, k, σ′)) such that
q = q1, 1 ≤ h + d ≤ p(|w|), h = k → (γ1 = σ ∧ σ′ = γ2), and
h 6= k → σ′ = σ. Those transitions are associated with states
of the game where Player 1 chooses a transition of the ATM to
execute (if he proposes ǫ, the game evolves to the sink state, see
L1.1). The transition proposed by Player 1 should be valid for the



current control state of the ATM and the head should not exit
the bounded tape after execution of the transition by the ATM,
otherwise the game evolves to the sink state, see L.1.2. When
choosing a letter, Player 1 also reveals the current letter under
the tape head (given by the transition) as well as the letter under
the next position of the tape head. If one of those positions is
the one that is monitored by Player 2, the game evolves to the
sink state in case Player 1 lies, see L1.3, L1.4.

– L2.1 contains the transitions ((q, h, γ1, k, σ), ǫ, ((q1, γ2, q2, γ3, d), q3, h+
d, k, σ′)) such that q = q1, q2 = q3, γ1 = γ2, 1 ≤ h + d ≤ p(|w|),
h = k → σ′ = γ3, and h 6= k → σ′ = σ. L2.2 contains the
transitions ((q, h, γ1, k, σ), ǫ, sink) such that there does not exist
a transition (q, γ1, q1, γ2, d) ∈ δ with 1 ≤ h + d ≤ p(|w|).
L2.3 contains the transitions ((q, h, γ1, k, σ), (t, γ), sink) where
(t, γ) ∈ Σ \ {ǫ}. Those transitions are associated with states of
the game where Player 2 chooses the next transition of the ATM
to execute. Player 1 should play ǫ otherwise the game goes to
the sink state (see L2.3, also the game goes to the sink state if
there is no valid transition to execute in the ATM (see L2.2).
In the other cases, Player 1 proposes ǫ and Player 2 chooses a
valid transition by resolving nondeterminism. The copy of the
monitored cell is updated if necessary.

• Obs = {init, sink}∪Obs1∪Obs2 where Obs1 = {(t, q, h) | ∃(t, q, h, k, σ) ∈
L1} and Obs1 = {(q, h, γ) | ∃(q, h, γ, k, σ) ∈ L2}.

• γ is defined as follows: γ(init) = {init}, γ(sink) = {sink}, for all
(t, q, h) ∈ Obs1, γ(t, q, h) = {(t, q, h, k, σ) ∈ L1}, for all (q, h, γ) ∈
Obs2, γ(q, h, γ) = {(q, h, γ, k, σ) ∈ L2}.

Finally, the objective φ of this game for Player 1 is to reach a state
where the associated control state of the ATM is accepting, i.e. φ =
{o1o2 . . . on · · · ∈ Obsω | ∃i ≥ 0 : (oi = (t, q, h) ∈ Obs1 ∨ oi = (q, h, γ) ∈
Obs2) ∧ q ∈ F}.

It follows that Player 1 has an observation-based sure-winning (or
almost-winning) strategy in the game GM,p,w for the objective φ iff the
word w is accepted by the polynomial space ATM (M,p).

Theorem 8 Player 1 has a deterministic (resp. randomized) observation-
based sure-winning (resp. almost-winning) strategy in the game GM,p,w for



the objective φ iff the word w is accepted by the polynomial space ATM
(M,p).

Theorem 9 Given a game structure of incomplete information G with
reachability objective φ and a state ℓ, deciding (a) whether ℓ is a sure-winning
state for φ in G is ExpTime-hard; and (b) whether ℓ is an almost-winning
state for φ in G is ExpTime-hard.
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