
Algorithmica (1994)12:148 169 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Algorithms for Parallel Memory,

II: Hierarchical Multilevel Memories 1

J. S. Vitter 2 and E. A. M. Shriver 3

Abstract, In this paper we introduce parallel versions of two hierarchical memory models and give

optimal algorithms in these models for sorting, FFT, and matrix multiplication. In our parallel models,
there are P memory hierarchies operating simultaneously; communication among the hierarchies takes
place at a base memory level. Our optimal sorting algorithm is randomized and is based upon the
probabilistic partitioning technique developed in the companion paper for optimal disk sorting in a
two-level memory with parallel block transfer. The probability of using l times the optimal running

time is exponentially small in/(log/) log P.

Key Words. Memory hierarchies, Multilevel memory, Sorting, Distribution sort, FFT, Matrix multi-

plication, Matrix transposition.

1. Introduction. Large-scale computer systems contain many levels of memory--
ranging from very small but very fast registers, to successively larger but slower
memories, such as multiple levels of cache, primary memory, magnetic disks, and
archival storage. An elegant hierarchical memory model was introduced by Aggar-
wal et al. [1] and further developed by Aggarwal et aI. [-23 to take into account
block transfer. All computation takes place in the central processing unit (CPU),
one instruction per unit time. Access to memory takes a varying amount of time,
depending on how low in the memory hierarchy the memory access is. Optimal
bounds are obtained in [-1] and 1-23 for several sorting and matrix-related

problems.
In this paper we investigate the capabilities of parallel memory hierarchies. In

the next section we define two uniform memory models, each consisting of P
hierarchical memories connected together at their base levels. The P hierarchical
memories can be either of the two types [13, 1-2] mentioned earlier.

For each model, we develop matching upper and lower bounds for the problems

A summarized version of this research was presented at the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, MD, May 1990. This work was done while the first author was at
Brown University. Support was provided in part by a National Science Foundation Presidential
Young Investigator Award with matching funds from IBM, by NSF Research Grants DCR-8403613
and CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval
Research and the Defense Advanced Research Projects Agency under Contract N00014-91-J-4052
ARPA Order 8225. This work was done in part while the second author was at Brown University

supported by a Bellcore graduate fellowship and at Bellcore.
2 Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129, USA.
3 Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA.

Received September 26, 1990; revised January 14, 1993. Communicated by C. K. Wong.

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 149

of sorting, FFT, and matrix multiplication, which are defined in Section 3. The

algorithms that realize the optimal bounds for sorting are applications of the

optimal disk sorting algorithm developed in the companion paper [11] for a

two-level memory model with parallel block transfer. We apply the partitioning

technique of [11] to the one-hierarchy sorting algorithms of [1] and [2]. Intui-

tively, the hierarchical algorithms are optimal because the internal processing in

the corresponding two-level algorithms is efficient. The main results are given in

Section 4 and are proved in Sections 5-10. Conclusions and open problems are

discussed in Section 11.

2. Parallel Hierarchical Memory Models. A hierarchical memory model is a

uniform model consisting of memory whose locations take different amounts of

time to access. The basic unit of transfer in the hierarchical memory model H M M

[1] is the record; access to location x takes time f(x). The block transfer model

BT [2] represents a notion of block transfer applied to H M M ; in the BT model,

access to the t + 1 records at locations x - t, x - t + 1 x takes time f (x) + t.
Typical access cost functions are f (x) = log x and f (x) = x ~, for some ~ > 0. A

model similar to the BT model that allows pipelined access to memory in O(log n)

time was developed independently by Luccio and Pagli [5].

We can think of a memory hierarchy as being organized into discrete levels, as

shown in Figure 1 for H M M ; for each k > 1, level k contains the 2 k-1 locations

at addresses 2 k- 1 2 k- 1 + 1 2 k - 1. We restrict our attention to well-behaved

access costs f (x) , in which f (x) is nondecreasing and there are constants c and Xo

such that f(2x) < cf(x), for all x > Xo. For such f (x) , access to any location on

level k takes | time. The access cost functions f (x) = log x and f (x) = x ~,
for some ~ > 0, are well behaved. ~ For example, if f (x) = log x, access to any

location on level k takes time ~ k.

Both the H M M and BT hierarchical memory models can be augmented to

allow parallel data transfer. One possibility is to have a discretized hierarchy, in

which each memory component is connected to P larger but slower memory

level 6 I I
I

level 5] I

level 4

level 3

level 2 t
level 1

IcPul
Fig. 1. The HMM hierarchical memory model [1].

4 For simplicity of notation, we use log x, where x > 1, to denote the quantity max{l, log 2 x}.

150 J.S. Vitter and E. A. M. Shriver

r i

Fig. 2. A parallel hierarchical memory. The P individual memory hierarchies can be either of

type HMM or of type BT, The P CPUs can communicate among one another via the network;

we assume, for example, that the P records stored in their accumulators can be sorted in O(log P)

time.

components at the next level. A cleaner and more feasible extension, which we

adopt in this paper, is to have P separate memories connected together at the

base level of each hierarchy. Our model is pictured in Figure 2.

More specifically, we assume that the P hierarchies can each function in-

dependently. Communication between hierarchies takes place at the base memory
level (level 1), which consists of location 1 from each of the P hierarchies. We

assume that the P base memory level locations are interconnected via a network

such as a hypercube or cube-connected cycles so that the P records in the base

memory level can be sorted in O(log P) time (perhaps via a randomized algorithm

[9]) and so that two x / ~ x x//ff/2 matrices stored in the base memory level

can be multiplied in O(x/~) time. We denote by P -H MM and P-BT the P-

hierarchy variants of the hierarchical memory models H M M and BT, as described

above.
We refer to the P locations, one per hierarchy, at the same relative position in

each of the P hierarchies as a track, by analogy with the two-level disk model

[11]. The ith track, for i > 1, consists of location i from each of the P hierarchies.
In this terminology the base memory level is the track at location 1. The global
memory locations (which refer collectively to the P hierarchies combined) are

numbered track by track. That is, the global memory locations in track 1 are
numbered 1, 2 P; the global memory locations in track 2 are numbered P + 1,

P § 2 , . . . , 2 P ; and so on.

3. Problem Definitions. The following definitions of sorting, FFT, and standard

matrix multiplication are essentially those of the companion paper [11].

SORTING.

Problem Instance: The N records are stored in the first N global memory locations.
Goal: The N records are stored in sorted nondecreasing order in the first N global

memory locations.

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 151

FAST FOURIER TRANSFORM (FFT).

Problem Instance: Let N be a power of 2. The N records are stored in the first N
global memory locations.

Goal: The N output nodes of the FFT digraph are "pebbled" (as explained below),
and the N records are stored in the first N global memory locations.

The FFT digraph consists of log N + 1 columns each containing N nodes;
column 0 contains the N input nodes, and column log N contains the N output
nodes. Each noninput node has indegree 2, and each nonoutput node has
outdegree 2. We denote the ith node (0 < i < N - 1) in column j (0 < j < log N)
in the FFT digraph by ni, j. For j > 1 the two predecessors to node n,,~ are nodes
ni,j_, and ni@2j_,,j_l, where @ denotes the exclusive-or operation on the binary
representations. (Note that nodes n~,j and n~ez_,,j each have the same two
predecessors).

The ith node in each column corresponds to record R~. We are allowed to pebble

node ni, ~ if its two predecessors ni, ~_ 1 and ni@z-l,j_ 1 have already been pebbled;
the cost of the pebbling is the cost of accessing the records R~ and R~ez_,
corresponding to the two predecessors. Intuitively, the FFT problem can be
phrased as the problem of pumping the records up and down the hierarchies in
a way that permits the computation implied by the FFT digraph.

STANDARD MATRIX MULTIPLICATION.
Problem Instance: The elements of two k x k matrices, A and B, where 2k 2 = N,

are each stored in the first N global memory locations.
Goal: The product C = A x B, formed by the standard matrix multiplication

algorithm that uses O(k 3) arithmetic operations, is stored in the first N/2 global
memory locations.

4. Main Results. The fundamental problem that arises in trying to take full
advantage of parallel transfer in these models is how to distribute records among
the P memory hierarchies so that each hierarchy is kept "busy." We show later
how the randomized distribution sort algorithm of [11] for a two-level memory
model with parallel block transfer can be used as a basic building block to get
optimal sorting algorithms for the hierarchical models. The lower bounds for
P-HMM and P-BT are based upon the approach used in [1] and [2].

THEOREM 1. In the P - H M M model the time for sorting and the FFT i s

~(~- log N l o g (~
\Iog r l i

if f (x) = log x,

/ I ' N ' X = + i + N l o g N)

~ if f (x) = x ~, ot>O.

152 J.S. Vitter and E. A. M. Shriver

The upper bound for sorting is given by a randomized algorithm for the first two
cases; the probability of using more than l times the optimal number of l/Os falls
off exponentially in/(log/) log P. In the sorting lower bound for the f (x) = x ~ case,
the (N/P)log N term requires the comparison model of computation. The time for
multiplying two k x k matrices together using the standard algorithm is

0 l o g k + if f (x) = x ~, ct=�89

if f (x) = x ~, ~>�89

THEOREM 2. In the P-BT model the time for sorting and the FFTis

if f (x) = x ~, ~ = 1 ,

if f (x) ---= x ~, o: > 1.

The upper bounds for the first two cases of sorting are given by a randomized
algorithm; the probability of using more than I times the optimal number of I/Os
falls off exponentially in/(log/) log P. The (N/P) log N terms in the sorting lower
bounds require the comparison model of computation. The time for multiplying two
k x k matrices together using the standard algorithm is

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 153

O(p~/2 log k + ~ -) if f (x) = x ~, o~=~,

if f (x) = x ~, ~ > ~ .

In Sections 5-10 we prove Theorems 1 and 2. In the process we also develop
optimal algorithms in the P-HMM and P-BT models for matrix addition, and the
so-called "simple" problems (like two-way merging) of [1-1 and [2]. Our techniques
can be extended to get optimal algorithms for other problems of [1], [2], and
[11], such as searching, generating permutations, and permutation networks.

Our optimal P-HMM and P-BT algorithms for sorting and FFT are applica-
tions of the optimal algorithms of [11-1 for the two-level model with parallel block
transfer, applied to the H M M and BT algorithms given in [1] and [2]. The
optimality of the resulting P-HMM and P-BT algorithms reflects the fact that the
internal processing done by the two-level algorithms on which they are based is
very efficient, both sequentially and in parallel.

5. Sorting in P-HMM. In this section we derive the matching upper and lower
bounds for sorting in the P-HMM model given in Theorem 1. We prove that the
randomized distribution sort algorithm we develop is simultaneously optimal for
all well-behaved access cost functions, as defined in Section 2.

The sorting algorithm is a modified version of the optimal distribution sort
algorithm for the one-hierarchy H M M [1]. For simplicity, we assume that
records have distinct key values; this assumption is satisfied, for example, if we
append to the key field of each record the original global memory location of
the record. Distribution sort works by forming a set of S - 1 partitioning
elements b 1, b E b s _ l , for some S > 2, and breaking up the file into the S
buckets defined by the partitioning elements. The j th bucket consists of all the
records R in the file whose key values are in the range

b j_ x < key(R) <_ b j,

where for convenience we define b o = - o e and b s = + oo. Each bucket is then
sorted recursively. The final sorted order is the concatenation of the S sorted
buckets.

The key component of our P-HMM algorithm is the partitioning technique of
[11], which we use to spread the records in each bucket evenly among the P
memory hierarchies so that the next level of recursion can proceed optimally. The
partitioning technique is actually two techniques--Phase 1 and Phase 2----each
with its own range of applicability. In Phase 1, when N > P3/Z/ln P, a randomized
approach akin to hashing is used to distribute the records of each bucket evenly
among the hierarchies. One intuition why it works well is that in hashing when
the load factor is large enough (at least logarithmic in the number of slots in the
hash table), the items are evenly distributed; by that, we mean that the largest-

154 J.S. Vitter and E. A. M. Shriver

populated slot has roughly the same number of items as an average-sized slot.

However, when N < P3/E/ln P, the distribution is no longer even. In this case we

use the Phase 2 partitioning technique, motivated by a different instance of the

hashing problem. Both Phase 1 and Phase 2 work with overwhelming probability

in their respective ranges of applicability.

First we develop some useful notation like that of [11], but simplified for our

purpose: Hierarchy striping is a programming technique in which the P hierarchies

are coordinated so that at any given time the memory locations accessed by the

P hierarchies are coordinated so that at any given time the memory locations

accessed by the P hierarchies form a track. Hierarchy striping has the effect of

making the parallel hierarchies act like a single hierarchy in which P records can

be stored at each location.

We maintain the pointers last_writej.k and next_writek, for 1 _ j _ S, 1 _< k _ P,
to keep track of the S buckets formed in Phase I of the algorithm below. The

pointer last_writej, k points to the last location in the kth hierarchy written to by

the j th bucket. The pointer next writek points to the next unwritten location in

the kth hierarchy.

The final carryover we use from [11] is a simplified notion of diagonal, for use

in Phase 2, when N < p3/2/ln P. For simplicity of exposition, let us assume that

N and P are powers of 2. Every diagonal contains p2/N records from each of the

NIP tracks of the hierarchical memory. The ith diagonal consists of the following

P records: the kth track, for 1 < k < N/P, contributes the p2/N locations

(k + i - 2) mod ~ - + 1, (k + i - 2) mod ~ - + 2

(k + i - 2) mod ~ - + ~ - .

The sorting algorithm works as follows:

1. We assume without loss of generality that the N records are situated in level

Flog(N/P)-] + 1 on the P hierarchies. If N _< P, we sort the file in the base

memory level. Otherwise we do the following steps:

2. We subdivide the file of N records into t = [-min{x/~, N/P}-] subsets, ~r

N2, . - . , Nt, each of size IN~t_] or of size LN/tJ + 1. We sort each Ni recursively,

after bringing its records to level [-log(N/Pt)-] + 1 of the hierarchical memory.

3. [Find partitioning elements.] We determine the number S of partitions and
choose the S - 1 partitioning elements as follows: Let us define

In N

x = x/P
In 2 M

2N

P

if P2 <_ N,

p3/2
if - - ~ N < p2,

In P
p3/2

if P < N <
In P"

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 155

We form a set A of at least N/log N elements consisting of the key value of
every tlog NJth record from each f#/. We sort A using two-way merge sort with

hierarchy striping. We set S to be LIAWLIAI/x]] + 1 ,~ x. We define the j th
partitioning element bj, for each 1 < j < S - 1, to be the jklAI/xJth smallest
element of A. We move the partitioning elements to level [log(S/P)7 + 1.

4. [Phase 1 or Phase 2?] If N > Pa/2/lnP, we do Step 5 corresponding to
Phase 1; otherwise we do Steps 6 and 7, corresponding to Phase 2.

5. [Phase 1.] For each 1 < i < t in sequence, we partition fgi by processing it in
sorted order. We move P records at a time to the base memory level and
determine which bucket each record belongs to by merging in the partitioning
elements. The partitioning elements can be processed P elements at a time, so
that the merging proceeds optimally; when the next track of partitioning
elements is needed, it is read into the base memory level. We then randomly
scramble the P records and write the records back to level [-log(N/P)7 + 1. If the
record written in the kth hierarchy belongs to the jth bucket ~ , we update the
pointers last_writej, k and next_writek, which are stored in hierarchy k, so that
all the records of each bucket are linked together in the hierarchy, which is
necessary for the next recursive application of the algorithm. We then proceed
to Step 8.

6. [-Phase 2--Pass 1.] We scramble the N records, P at a time, by reading the file
to the base memory level, track by track, randomly permuting the P records
there, and writing them back to level [log(N/P)7 + 1.

7. [Phase 2--Pass 2.] We move P records at a time to the base memory level, one
diagonal at a time, as defined above. For each diagonal of P records, we
partition the records into buckets by sorting the P records and the partitioning
elements. (The number of partitioning elements is 2N/P < P, for P > 4.) We
write the P records back to level Flog(N/P)q + 1, cycling through the buckets;
if a bucket is empty, a dummy record is written. Let d be the least common
multiple of P and S. After every d/S cycles of P writes, we skip over the next
hierarchy before beginning the next cycle of P writes.

8. [Sort recursively.] For each 1 < j < S in sequence, we sort the j th bucket
recursively, after bringing the records of ~ to level Flog(N/SP)q + 1 of the
hierarchical memory. (With high probability, the records in each bucket are
distributed evenly among the P hierarchies, and thus each bucket can be
accessed in O((N/SP)f(N/P)) time.) The sorted list of N records consists of the
concatenated sorted buckets.

The value of x in Step 3, which determines the number of partitioning elements,
is chosen so that the partitioning analysis from the companion paper [11] can be
modified to show that the records with high probability are distributed evenly
among the buckets.

5.1. Logarithmic Access Cost. Let us first consider the case f (x) = log x of
Theorem 1.

THEOREM 3. The time used by the above algorithm to sort N >_ P records in the

156 J.S. vitter and E. A. M. Shriver

P-HMM model with f(x) = log x is

�9 / l o g
O(N log N , o g ~ J J

with overwhelming probability. In particular, the probability that the number of I/Os
used is more than l times the average is exponentially small in/(log/) log P.

PROOF. Let T(N) be the time used by this algorithm to sort a file of N records.
For N > p2, the time needed in Step 2 to subdivide the set of N records, move

the records to the correct level, and sort the [-x/-N-] subsets f#, is

x/~T(w/N) + o (N log N).

The execution time for the two-way merge sort used in Step 3 to sort n elements
is O((n/P) log n(log(n/P) + log P)) = O((n/P) log 2 n). Since n ~ N/log N, the result-
ing time to find the S - 1 partitioning elements is O((N/P) log N). The method of
choosing the partitioning elements guarantees that the size Nj of the jth bucket
is at most 2N/(S - 1), for each 1 < j < S; the proof is along the lines of Lemmas
3 and 4 in the companion paper [11]. The time needed to partition the file in
Steps 5-7 is O((N/P) log(N/P) + (N/P) log P) = O((N/P) log N). The analysis in the
companion paper [11] can be modified to show that with high probability the
records in each bucket are distributed evenly over the P hierarchies, so that the
time for sorting the buckets recursively in Step 8 is with high probability

l_<j_<s ~ log ,

where ~1 <_s<_s Nj = N and Ni <_ 2N/S for each 1 < j < S. Hence, for N > p 2 with
high probability we have

T(N) = x/~T(xfN) + ~ T(Nj) + O(N)
1 <_jz~/N/lnN~ ~ log N .

If N < p2, there will be at most two more applications of Phase 1 and one
application of Phase 2, each phase taking O((N/P)log N) time with high prob-
ability. The remaining subfiles will have size at most P and can be sorted in the
base memory level in time O((N/P)log P) time. This yields as desired the time
bound

N , f l o g
T(N) = 0 ~ log N l o g ~ j j

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 157

with high probability. The probability bounds quoted in Theorem 3 follow from

those in [11]. []

The following lower bound matches the algorithm's running time in Theorem 3,
and thus the algorithm is optimal. It is interesting to note that this lower bound,
as well as several others in this paper, ignores the cost of the network communica-
tion and considers only the cost of memory access.

THEOREM 4 . The time required to sort N > P records in the P - H M M model with

f (x) = log x is

, flog N~'~
f~(N log N l o g t ~)) .

PROOF. Let A be a sorting algorithm that is optimal in the P-HMM model. Let
us define the "sequential time" of A to be the sum of its time costs for each of the
P hierarchies; the sequential time of A is at most P times its running time.
Following the approach in [1], we can imagine superimposing onto the P-HMM-
type hierarchical memory a sequence of two-level memories. For each M in
the range P < M < N, we superimpose on the P-HMM an internal memory of
size M and one infinite-sized disk.

By [3], the I/O complexity of sorting N records with one disk, no blocking,
and an internal memory of size M is

(1) Tu(N) = nfN\ logl~ M).

The " - M " term permits M records to reside initially in the internal memory. In
each individual hierarchy every transfer done by A that corresponds to an I/O
with respect to an internal memory of size M contributes

' :(7) :(7)

to its sequential time. In other words, if we let T:(N) denote the sequential time
for A, we have

,2,

158 J.s. vitter and E. A. M. Shriver

Forf (x) = log x, we have 6f(M/P) = log((M + 1)/M) --- | Plugging this and
(1) into (2) we get

= f~ ~ 1)) log N TI(N) (V<~t<N (N I ~ = ~ (N , / l ogN '~ ,

Dividing the sequential time TI(N) by P gives us the desired lower bound. []

5.2. Other Access Costs. First we show the lower bound corresponding to case
f (x) = x ~, for ~ > 0, of Theorem 1:

THEOREM 5. The time required to sort N >_ P records in the P - H M M model with
f (x) = x ~, for ct > O, is

N N)

The (N/P) log N term depends on using the comparison model of computation.

PROOF. We apply the same approach as in Theorem 4, except that we use
f (x) = x ~. Substituting 6f (m/P) = | ~- lIP 0 and (1) into (2), we get

Dividing the sequential time Ts(N) by P gives us the first term of the desired lower
bound. The second term follows from the N log N lower bound for sorting in the
comparison model of computation. []

The next theorem shows that the sorting algorithm given earlier in Section 5 is
uniformly optimal (in the language of [1]) in that it is optimal for all well-behaved
access costs f(x) , as defined in Section 2. In particular, it follows that the sorting
algorithm's running time for the case f (x) = x ~, where e > 0, meets the lower
bound of Theorem 5 and is therefore optimal. The following theorem, when
combined with Theorem 4, also gives an alternate proof of Theorem 3.

THEOREM 6. The algorithm given at the beginning of Section 5 is optimal for all
well-behaved access costs f(x).

PROOF. We use a parallelized version of the approach of rl], combined with the
lower bound strategy of Theorems 4 and 5. Let T~t.v(N) be the average number
of I/O steps done by the sorting algorithm with respect to an internal memory of

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 159

size M, where we allow each hierarchy to move simultaneously, in a single I/O
step, a record between internal memory and external memory. From the algorithm,
for N > M 2, we get the recurrence

rM , (N) = +
N

2 TM, p(Nj) +
1 <_j<_x~/logN

with high probability, where ~1 _<j_<s Nj = N and Nj <_ 2N/S, for 1 _ j _< S. When
N < M 2, we have TM, e(N) = O(N/P) with high probability. This recurrence can
be solved by iteration to get

(3)

with high probability, which by (1) is within an O(M/P) additive term of optimal.
The communication time used by the algorithm in the base memory level is

(l~) (4) 0 log P ~ log N .

Putting together these last two facts, we find that the extra time used by the
algorithm over and above the lower bound resulting from (2) is

(5) O F l ~ Z ~ - 6 f
P<M<N

1
= O ~ l o g N + ~ f -- f (1)-- ~

P<M<N

= 0 F l o g N + F f

with high probability. The first term in (5) corresponds to the lower bound that
arises from the comparison model of computation. The second term in (5) is the
time to "touch" all the records in the file (that is, bring all the records at least
once to the base memory level) when the access cost f(x) is well behaved, and
thus it is dominated by the lower bound resulting from (2). It follows that the
sorting algorithm is optimal. []

6. Sorting in P-BT. In this section we show the matching upper and lower bounds
quoted in Theorem 2 in Section 4 for sorting in the P-BT model. The following
useful lemma is a parallel version of a theorem in [2].

160 J.S. Vitter and E. A. M. Shriver

LEMMA 1. The time to merge two sorted lists of n >_ P elements in the P - B T model is

//n// , n
if f (x) = log x,

if f (x) = x ~, 0 < ~ < 1 ,

O + ~ l o g P if f (x) = x ' , ~ > 1.

PROOF (SKETCH). The lists are stored on the P hierarchies in such a manner that

they are striped across the tracks. We merge the two lists one track at a time,

accessing all P hierarchies. To do the merging, we use 3P stacks, three stacks per

hierarchy. A stack can be maintained in each individual hierarchy with an

amortized cost per operation of

if

O (l o g p) if f (x) = x~, ~ = 1 ,

O if f (x) = x ~, ~ > 1 ,

where n is the number of operations [2]. The cost of merging two lists of P elements

in base memory is log P. The merging consists of 2n/P stack operations and n/P
base memory merges. []

6.1. Access Cost f (x) = x ~, where �89 < ~ < 1. Let us first consider the access cost
function f (x) = x ~, where �89 < ~ < 1. We can access the levels within our hierarchies

optimally if we read and write (x/P) ~ elements at a time when we access global
location x.

Our optimal P-BT sorting algorithm is a modified version of the one-hierarchy
algorithm presented in [2]. The key component of the algorithm is our use of the
partitioning technique of [11] to spread the records in each bucket evenly among

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 161

the P hierarchies. For brevity we present only the portion of the P-BT sorting
algorithm whose description differs from the P-HMM sorting algorithm of

Section 5.

2. Same as Step 2 of the P-HMM sorting algorithm, except that we subdivide the
file of N records into t = F(N/P) 1 - ~ subsets, so that each subset will contain
about P(N/Py records, for purposes of optimal transfer.

3. [Find partitioning elements.] We determine the number S of partitions and
choose the S - 1 partitioning elements as follows: Let us define

((NPy

ln(NP)

x - x/P

if p~1+~)/(1-~) < N,

p3/2
if - - < N < P(~ + ~)/(1 - or)

In P

if
p3/2

P < N < - -
In P"

We form a set A of at least N/log N elements consisting of the key value of
every [_log NAth record from each ~i. We form A by "touching" each ~i and
accumulating the desired key values, with each hierarchy processing up to
FN/P-] elements of the N elements in the file. We sort A using two-way merge
sort by recursively applying the algorithm presented in Lemma 1. We set S to
be [_IAI/[_lAr/x_J_J + 1 ~ x. We define the j th partitioning element bj to be the
j[_[A[/xdth smallest element of A. We move the partitioning elements to level

Flog(S/P)-] + 1.
8. [Reposition buckets and sort recursively.] For each 1 _< j _< S in sequence, we

reposition the elements within the j th bucket ~ so that they are stored in
contiguous memory locations in each hierarchy. For each 1 _< j _< S in sequence,
we sort the jth bucket ~ recursively, after bringing the records of ~ to level
Flog(N/SP)-] + 1 of the hierarchical memory. (With high probability, the records
in each bucket are distributed evenly among the P hierarchies.) The sorted list
of N records consists of the concatenated sorted buckets.

In Step 5 we use the " touch" algorithm of [2] independently in each hierarchy to
process records P at a time. We partition the records into buckets by merging the
partitioning elements with each sorted subset ~i.

THEOREM 7. The time used by the above algorithm to sort N >_ P records in the
P-BT model with f (x) = x ~, for 0 < ~ < 1, is

log N)

162 J.S. Vitter and E. A. M. Shriver

with overwhelming probability. In particular, the probability that the number of I/Os
used is more than l times the average is exponentially small in/(log/) log P.

PROOF. Let T(N) be the time used by this algorithm to sort a file of N records.
For N _> Pt~ +,)/tl-,), the time needed in Step 2 to subdivide the set of N records,
move the subsets to faster memory, and sort the subsets ffi is bounded by

N �9 N l - , N ~

The time for touching the f#i subsets and accumulating the N/log N elements
of set A in Step 3 is O((N/P)log log(N/P)) [2]. Using Lemma 1, we can
show that the time for the two-way merge sort used in Step 3 to sort n
elements is O((n/P) log n(log log n + log P)). Since n ~ N/log N, the resulting
time to find the S partitioning elements is O((N/P)(log log N + log P)). The
method of choosing the partitioning elements guarantees that the size Nj of the
j th bucket is at most 2N/S, for each 1 < j < S. By Lemma 1, the time needed to
partition the file in Steps 5-7 is O(t(N/tP)(log log N + log P) + t(S/P) log log S) =
O((N/P)(log log N + log P)). The data movement to reposition the buckets in
Step 8 can be done by the same method used by the one-hierarchy algorithm [2],
that is, by computing the generalized matrix transposition for each hierarchy
independently; the time needed is thus O((N/P)Oog log(N/P)) 4) with high proba-
bility. The analysis in the companion paper [11] can be modified to show that
with high probability the records in each bucket are distributed evenly over the P
hierarchies, so that the time for sorting the buckets recursively in Step 8 is with
high probability

T(Nj)+ O(N log log N),
l <_j<_S

where Nj is the size of the j th bucket Sj, ~1 <_i<_s Nj = N, and Nj < 2N/S for
each j. Hence, for N _ ptl +,)/(1-,), with high probability we have

T(N) = -p T P ~ + Z
1 < j <~ F(NP)~/In(NP) "]

T(Nj)

and Nj < 2N 1 -~P-" ln(NP) for each j.
If N < P~I +,)/tx-,), there will be at most a constant number of applications of

Phase 1 and one application of Phase 2, each phase taking O((N/P) log N) time
with high probability. The remaining subfiles will have size at most P and can be

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 163

sorted in the base memory level in O((N/P) log P) time with high probability. This

yields as desired the time bound

T(N) = O log N

with high probability. The probability bounds follow from those derived

in [11]. []

A lower bound of ta((N/P) log N) time for sorting with f (x) = x ~, for �89 < ~ < 1,

follows from the well-known lower bound for sorting in a RAM under the

comparison model of computation.

6.2. Other Access Cost Functions. Since the above algorithm is optimal for the

access cost function f (x) = x 1/2, it is also optimal for f (x) = log x and f (x) = x ~,
for 0 < ~ <�89

Now let us consider the access cost function f (x) = x ~, where ~ > 1. For
N > P3/2/ln P, we sort by a simple application of divide-and-conquer two-way

merge sort. The upper bound of Theorem 2 follows by using the algorithm of

Lemma 1 for merging two sorted lists. If N < P3/2/ln P, we use the partitioning

algorithm (Phase 2) with t = NIP.
When f (x) = x ~, ~ = 1, and N < P3/2/ln P, the cost for the data movement

in Step 2 is O((N/P)log(N/P)), and the cost for the actual sorting in the base

memory level is O((N/P) log P). The set A in Step 3 can be sorted by binary merge

sort in O((N/P)log N) time. The permuting and data movement in Step 6 takes

O((N/PXlog P + log(N/P))) = O((N/P) log N) time, and the transposition and
permuting required in Step 7 takes O((N/P)(log P + log2(N/P))) time. The data

movement to reposition the buckets in Step 8 can be done as noted earlier by the
one-hierarchy algorithm [2], that is, by computing the generalized matrix trans-

position for each hierarchy independently; the time needed is O((N/P)(log2(N/P)))
with high probability. The previous remarks given in the proof of Theorem 7

about the distribution properties of Phase 2 still apply. This gives us the resulting
high probability sorting time bound of O((N/P)(log2(N/P) + log N)) for the case

f (x) = x ", ~ = 1, as listed in Theorem 2.
For the case N < P3/2/ln P when f (x) = x ~, ct > 1, the above algorithm yields

the time bound in Theorem 2 of O((N/P) ~ + (N/P) log N).

The ~((N/P)log N) terms in the lower bounds of Theorem 2 come from the

comparison model of computation. The f~((N/P)log2(N/P)) term in the lower

bound for the case f (x) = x ", ~ = 1, the f~((N/P) ~ + (N/P) log N) term in the lower

bound for the case f (x) = x ", ~ > 1, follow from a parallelization of the P = 1
bounds in [2].

7. F F T in P-HMM. The P -HMM lower bounds proved in Theorems 4 and 5
for sorting apply also to the F F T computation. This follows immediately by

164 J.s. vitter and E. A. M. Shriver

substituting the phrase " F F T " for "sorting" in the proofs of the theorems. What
remains to prove the FFT bounds in Theorem 1 is to give the FFT algorithm
that meets these bounds.

We can perform the FFT when N > p2 using the following well-known
technique that mimics somewhat the recursive decomposition used in Theorem 3.
(The reader is referred to Section 5 in 1-11] for a discussion of FFT and the
shuffle-merge technique.)

1. We start by computing x /N FFTs. The ith FFT is computed on the ith

continguous group of a/NiP tracks.

2. We shuffle-merge the records to form x / ~ new contiguous groups of v/NiP

tracks. For each 1 < i < ~ , the ith new group consists of the ith record from

each of the original x / ~ groups.

3. We finish the computation by doing v /N FFTs, one for each of the new groups.

If P < N < p2, we do NiP FFTs, each FFT of size P, followed by a shuffle-merge,
followed by FFTs of size NiP.

THEOREM 8. The time used by the above algorithm to compute on N-input FFT
with f(x) = log x is

, t/log N'~'~

PROOF. Let T(N) be the time to perform the FFT. Steps 1 and 3 take

O(x//-NT(x/~ + (NIP)log(NiP)) time. The shuffling step can be done in linear
time O((N/P)log(NiP)) once each group is "shifted" by an appropriate offset. By
"shift" we mean that every record that is stored in the kth hierarchy is moved
to hierarchy 1 + (k + offset- 1)rood P. The ith group is shifted by offset =
(i - 1) mod P. The shifting can be done in time O((N/P) log N). This gives us

(N) = + 0 F log N ,

which yields the desired bound. []

The proof of Theorem 6 carries over to show that the above algorithm is
uniformly optimal for all well-behaved access cost functions.

8. FFT in P-BT. In this section we apply the results of Section 7 to prove the
FFT portion of Theorem 2. The lower bounds for sorting apply also to FFT. The
FFT algorithm that meets these bounds is based on the FFT algorithm of
Section 7. The shuffling is done by touching the records in each group, using the

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 165

touching algorithm of [-2] applied to the hierarchies independently. For each P
records of a group that are touched at the same time, the records are shifted by
the offset amount while in the base level memory.

9. Standard Matrix Multiplication in P-HMM

9.1. Upper Bounds. Before we present our optimal standard matrix multi-
plication algorithm in the P-HMM model, we first present a lemma that we need
to show optimality.

LEMMA 2. The time used to add two k x k matrices, where k > P, is

k k)
O ~- log ff /f f (x) = log x,

{ { k2 "V<+ ix l

PROOF (SKETCH). Two matrices can be added by touching the corresponding
elements of the matrices simultaneously, using the naive touching algorithm
applied to the hierarchies independently. Once two elements are in base memory
level together, they can be added. []

We use the following divide-and-conquer algorithm, as for two-level memories
[11]:

1. If k < w/M, we multiply the matrices internally. Otherwise we do the following
steps:

2. We subdivide A and B into eight k/2 x k/2 submatrices: Ax-A 4 and Bx-B 4.

A 3 A J ' B 3 B 4 "

We reposition the records so that A1-A 4 and B1-B 4 are each stored in
row-major order.

3. We recursively multiply the eight pairs of submatrices.
4. We add the four pairs of submatrices which resulted from the above multi-

plications, giving C1-C 4.
5. We reposition C~-C 4 so that C is stored in row-major order.

The repositioning of the matrices can be done in the same time as the touching
problem. We define T(k) to be the time used by the algorithm to multiply two

166 J.S. Vitter and E. A. M. Shriver

k x k matrices together. For f(x) = log x, we get from Lemma 2

Using the stopping condition T(x/rfi)= v/P, we get the desired upper bound
O(k3/p) of Theorem 1. The upper bounds for the other access cost functions follow
by using the other cases of Lemma 2.

9.2. Lower Bounds. The standard matrix multiplication algorithm given earlier
for the logarithmic access cost is uniformly optimal, that is, it is optimal for all
well-behaved access cost functions. This can be proved using the same approach
as in Theorem 6. By [10], the I/O complexity of multipling two k x k matrices
with one disk, no blocking, and an internal memory of size M is

(6)
k3) Tu(k 2)=f~ ~ - M .

Let TM, p(N) be the average number of I/O steps done by the standard matrix
multiplication algorithm with respect to an internal memory of size M, where we
allow each hierarchy to move simultaneously, in a single I/O step, a record between

internal memory and external memory. From the algorithm, for k > x / ~ , we get
the recurrence

TM,p(k) = 8T~t,p + ~ .

For smaller k < x ~ , we have TM,p(k) = O(k/P). The solution of this recurrence is

T~t, e(k) = O

which by (6) is within an O(M/P) additive term of optimal. The time used by the
algorithm in base memory level computations is

Therefore, the extra time used by the algorithm over and above the optimal
amount is

(7) 0 + ~ ~ - 6 f = O + ~ f .
P < M < k 2

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 167

The first term on the right-hand side of (7) is bounded by the number of operations
performed, and the second term is the time required to access all the elements;
thus the running time is within a constant factor of optimal.

10. Standard Matrix Multiplication in P-BT. Before we present the P-BT algo-
rithm that yields the optimal bound quoted in Theorem 2 for standard matrix

multiplication, we first present a useful lemma.

LEMMA 3. The time used to add two k x k matrices, where k > P, is

//k 2 k2Xx
O ~ l o g * ~) /f f (x) : logx,

O log logk if f (x) = x ~', 0 < ~ < 1 ,

log 0 if f (x) = x ~, a = l ,

0 if f (x) = x ~, a > l .

PROOF (SKETCH). We apply the same approach as in Lemma 2. Two matrices
can be added by touching the corresponding elements of the matrices simultan-
eously, using the touching algorithm of l-2] applied to the hierarchies inde-
pendently. Once two elements are in base memory level together, they can be
added. The resultant matrix moves to slower memory in the same manner as the
two matrices being added moved to faster memory, only backward. []

Let us consider the access cost function f (x)= x ", where 0 < a < 1. The
algorithm presented in Section 9 can be adapted to run on the P-BT model. The
repositioning of the matrices can be done in the same time as the touching problem.
We define T(k) to be the time used by the algorithm to multiply two k • k matrices
together. It is easy to see that

T(k)= 8 T (~) + O (~ log log k).

Using the stopping condition T(x/~) = x/~, we get the desired upper bound
O(ka/P) of Theorem 2 for the access cost function f(x) = x ~, where 0 < a < 1. The
lower bound of f~(ka/P) clearly holds since the number of operations performed is
O(k3).

168 J.S. Vitter and E. A. M. Shriver

Since the above algorithm is optimal for the access cost function f (x) = x 1/2, it
is also optimal for f (x) = log x. The upper bounds for the remaining cases of
Theorem 2 follow by applying the other cases of Lemma 3. The lower bound for
the access cost function f (x) = x ~, where ~ = 3 for the BT model [2] can be
modified for the P-BT model. When �9 > ~- we get a lower bound of fl((k2/py) since
that is the time needed to access the farthest elements in memory.

11. Conclusions. We have presented optimal hierarchical memory algorithms for
sorting and matrix-related problems that take advantage of multiple hierarchies.
The sorting algorithm is a randomized version of distribution sort, using the
partitioning technique of the companion paper [11], which was developed for
optimal sorting on two-level memories with parallel block transfer,

ADDENDUM. Recently an alternative two-level sorting algorithm that is both
optimal and deterministic was developed by Nodine and Vitter [6]. The algorithm
is based on merge sort and does not seem to provide optimal P-HMM and P-BT
algorithms when applied to hierarchical memory. Subsequently, Nodine and Vitter
developed optimal sorting algorithms for P-HMM and P-BT based on distribution
sort that are deterministic [8].

Another interesting type of hierarchical memory is introduced in [4]. Parallel
hierarchies of this type are studied in [7].

Acknowledgments. We thank Mark Nodine and Greg Plaxton for their helpful
comments.

References

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, A Model for Hierarchical Memory,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, May 1987,
pp. 305-314.

I-2] A. Aggarwal, A. Chandra, and M. Snir, Hierarchical Memory with Block Transfer, Proceedings
of the 28th Annual IEEE Symposium on Foundations of Computer Science, October 1987,
pp. 204-216.

I'3] A. Aggarwal and J. S. Vitter, The Input/Output Complexity of Sorting and Related Problems,
Communications of the A CM 31(9) (September 1988), 1116-1127.

I-4] B. Alpern, L. Carter, E. Feig, and T. Selker, The Uniform Memory Hierarchy Model of
Computation, Algorithmica, this issue, pp. 72-109.

1-5] F. Luccio and L Pagli, A Model of Sequential Computation Based on a Pipelined Access to
Memory, Proceedings of the 27th Annual Allerton Conference on Communication, Control, and
Computing, September 1989.

1-61 M.H. Nodine and J. S. Vitter, Large-Scale Sorting in Parallel Memories, Proceedings of the
3rd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1991, pp. 29-39.

1-7] M.H. Nodine and J. S. Vitter, Large-Scale Sorting in Uniform Memory Hierarchies, Journal
of Parallel and Distributed Computing (January 1993), special issue.

Algorithms for Parallel Memory, II: Hierarchical Multilevel Memories 169

[8] M. H. Nodine and J. S. Vitter, Deterministic Distribution Sort in Shared and Distributed

Memory Multiprocessors, Proceedings of the 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, July 1993, pp. 120-129.

[9] J.H. Reif and L. G. Valiant, A Logarithmic Time Sort on Linear Size Networks, Journal of the
ACM 34 (January 1987), 60-76.

[10] J. Savage and J. S. Vitter, Parallelism in Space-Time Tradeoffs, in Advances in Computing
Research, Vol. 4, F. P. Preparata, ed., JAI Press, Greenwich, CT 1987, pp. 117-146.

[11] J.S. Vitter and E. A. M. Shriver, Algorithms for Parallel Memory, I: Two-Level Memories,
Algorithmica, this issue, pp. 110-147.

