
Algorithms for Phylogeny Reconstruction in a NewMathematical ModelGabriele LenziniDepartment of Computer ScienceUniversity of PisaCorso Italia, 4056126 Pisa, Italye-mail lenzini@di.unipi.it
Silvia MarianelliDepartment of MathematicsUniversity of PisaVia F. Buonarroti, 256127 Pisa, ItalyAbstractThe evolutionary history of a set of species is represented by a tree,called a phylogenetic tree or phylogeny, whose structure depends onprecise biological assumptions about the evolution of species. Problemsrelated to phylogeny reconstruction (i.e., �nding a tree representationof information regarding a set of items) are widely studied in computerscience. Most of these problems have been found to be NP-hard, butthey can sometimes be solved polynomially if appropriate restrictionson the structure of the tree are �xed. The aim of this paper is tosummarize the most recent problems and results in phylogeny recon-struction, and to introduce an innovative tree model, the PhylogeneticParsimonious tree (PP tree), which is justi�ed by a biologically sig-ni�cant hypothesis. Using the PP tree, two problems are studied: theexistence and the reconstruction of a tree both when sequences of char-acters and partial order on interspecies distances, are given. We provecomplexity results that con�rm the hardness of this class of problems.
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1 Introduction to phylogenetic problemsThe evolutionary history of a set of species is usually described by a rootedtree called a phylogenetic tree, or phylogeny, formally de�ned as follows:De�nition 1.1 Let S be a set of species. A phylogenetic tree T is a tree(V;E) where:� V is a set f1; : : : ;mg of nodes, such that V � S; S are at least theleaves of T , and nodes in V � S stand for extinct species.� E is a set f(i; j) : i; j 2 V g of edges, and the presence of an edge(i; j) 2 E means that j directly descends from i.Finding a tree-representation of information about a set S of items is animportant algorithmical problem. It has been related to phylogeny recon-struction since the 1960s when, for the �rst time, computers were used toinfer phylogenetic relationships in numerical taxonomy [25]. Many di�erentinstances of this problem have been de�ned and studied, and this experiencehas shown that:1. most of them are NP-complete or NP-hard ;2. sometimes the existence of polynomial algorithms depends on restric-tions imposed upon the structure of the tree.1.1 Biological data modelsData can came directly from both DNA and protein analysis [21]; for thisreason a species set can be mathematically described as� a set of character sequences;� a matrix of distances.A character is a bit of information that assume a �nite number of states.For example in a DNA sequence, a character is a single nucleotide: it hasfour possible states A, G, C, T . Each species is identi�ed by a sequence(i.e., a vector) of characters.De�nition 1.2 A species is a vector (c1; : : : ; ck) where ci is one of the m+1states of the i-th character; we can assume that ci 2 A = f0; : : : ;mg,8 i 2 f1; : : : ; kg. 2



Note: if the evolutionary age of each state, the polarity, is known the oldestof the state is associated with 0, the next with the 1, and so on up to theyoungest.An interspecies distance dij is a non-negative real number expressing ameasure either of a genetic similarity or a genetic distance between i and j[21]. Distances are usually given by a square, species � species, symmetricmatrix M , such that M [i; j] = dij , 8 i; j. 1 As any species i has alwaysnull distance from itself, we assume M [i; i] = 0.1.2 Evolutionary hypothesesPhylogenetic problems are usually based on biological hypotheses. Two ofthe most common ones are:� irreversibility of acquired characters hypothesis: for each character,state i evolves only into the next (i+ 1), and it cannot change back;� parsimony hypothesis: the most reliable (i.e., likely) phylogenetic tree,called parsimonious trees, is that which has a minimum number ofextinct species.Usually the choice of a tree model is justi�ed by the assumption that acertain hypothesis is true.2 Background in phylogeny reconstructionWe now summarize same recent problems and results in the phylogeny re-construction. A distinction can be made in terms of the data model used.2.1 Character sequencesAs we saw in Section 1.1, a species can be a vector (c1; : : : ; ck) such that8i 2 f1; : : : ; kg, ci 2 A = f0; : : : ;mg. Two classes of problem can bede�ned:� character compatibility problems (or perfect phylogeny problems);� parsimony problems.In the character compatibility class we �nd the following problem:1We indicate with dij the single distance between i and j, while (d)ij indicates theclass of distances dij , 8 i; j. 3



De�nition 2.1 ([29]) A set S of species is compatible if it is possible to�nd a tree T = (V;E), named perfect phylogeny, such that:1. S � V � Ak, that is each node in V is labelled with a vector of kcharacter states;2. species in S lie on the leaves of T ;3. 8ci and 8a 2 A, the set of nodes n = (c1; : : : ; ck) such that ci = a,induces a connected sub-graph of T (see Figure 1).Condition 2 in de�nition 2.1 describes a widely used model of a phylogenetictree, but others are possible; condition 3 expresses the irreversibility of theacquired characters hypothesis.
A C B D

00000

01000 00100

11000 01010 00100 00101

2 3

1 4 5

Figure 1: A perfect phylogeny for species A = (11000), B = (00100),C = (01010) and D = (00101). In the example only binary charactersare used, and on the edges the indix of the character is reported that hasevolved from 0 to 1.De�nition 2.2 (Perfect Phylogeny problem) Given a set S of N speciesdecide whether or not S is compatible.The Perfect Phylogeny problem is NP-complete ( [2, 26]). AnO(mk+1 (k + 1)k + Nk2 ) algorithm exists ([22]), which is polynomial whenthe number k of characters is bounded by a constant; in particular a linear-time algorithm is known when only three characters are used ( [14, 13]). Inthe case of binary characters (m = 2), there exists an optimal O(kN) timealgorithm ( [12]). An O(Nk2) time algorithm is known for trinary (m = 3)characters in [6], and an O(N2k) time algorithm for quaternary (m = 4)characters was found in [15]. 4



The problems de�ned in the parsimony class di�erently use the parsi-mony hypothesis: the general target is �nding a parsimonious tree (Sec-tion 1.2). In order to de�ne the class of parsimony problems more easily,we assume that a species is identi�ed by one single character c instead of avector.De�nition 2.3 (Parsimony problem) Let S be a species set. The mostparsimonious tree, is a tree T = (V;E) such that:1. V � A, that is every node of T is labelled with a character state;2. species in S lie on the leaves of T ;3. it minimizes the following quantity:X(i;j)2E L(i; j)where L(i; j) is the function \length of the edge (i; j)", and usually expressesthe cost of evolution from state i to state j. If this evolution is not biologicallypossible L(i; j) is set to 1.Note: in order to minimize only the number of dead species, just setL(i; j) = 1 8i; j.Di�erent instances of the parsimony problem arise when varying thefunction L ([28]). In general, if k characters are used, we can easily extendthe de�nition, but a further condition is needed:4. 8(i; j) 2 E, with i = (c1; : : : ; ck) and j = (d1; : : : ; dk), i and j di�erexactly in one position.All problems in this class are known to be NP-complete ([5]).2.2 DistancesThe target in this class is to �nd an edge-weighted tree which exactly, orapproximately, realizes a given distance matrix.De�nition 2.4 Let T = (V;E) an edge-weighted tree. The tree-distancedTij between two nodes i and j in V is the length of the path Pij from i to j,calculated as the sum of edge-lengths on Pij.5



De�nition 2.5 (Phylogeny reconstruction from distances) LetM bea square n � n matrix of non negative reals, and S a set of n species.Determine an edge-weighted phylogenetic tree T = (V;E) for S, such that8i; j 2 S, dTij =M [i; j]. If such a T exists, we say that it realizes M .Given a matrix M , the existence of a tree T that realizes M is a propertyof the matrix M itself, known as additivity ; in other words if the matrix isadditive then there exists (a unique [30]) T such that dTij = M [i; j]. It isknown that, given an n � n matrix M , it is possible to verify whether itis additive, and build the tree in O(n2) time [4]. The problem, as de�nedin de�nition 2.5, is far from describing a real situation. In fact, biologicaldistances are rarely additive and a tree T that realizes a matrix distancedoes not exist. For this reason it is usually requested that the tree-distancedTij best approximates M [i; j].De�nition 2.6 (Phylogeny approximated reconstruction) Let M bea square n � n matrix of non negative reals, and S a set of n species.Determine an edge-weighted phylogenetic tree T = (V;E) for S, such that8i; j 2 S, dTij �M [i; j].Various mathematical de�nitions for � have been proposed, and most of therelated optimal problems are shown NP-hard (for a good survey see [7]).In [16] a new data model has recently been proposed related with dis-tances, where only a partial order on distances is known. Since the setof tree-distances (dT )ij is totally ordered, a new class of problem can bede�ned.De�nition 2.7 (Phylogeny reconstruction from partial order) Givena set S of species, and a partial order <p on (d)ij distances, �nd an edgeweighted phylogeny T for S, such that the total order <t on (dT )ij is atopological sort of <p, that is 8i; j; h; k : dij <p dhk =) dTij <t dThk.If T exists we say that T is consistent with the partial order. In [16]the partial order is described by a set of experiments, and an experiment isconducted in the following model:De�nition 2.8 ( [16]) Given a triple species i, j and k an Ordering Model(OM) experiment is a partial or total order on the triple of distances dij,dik and djk, with =, < and > explicitly indicated.For example an OM experiment on i, j and k can give the result dij < dik =djk. In [16] the following tree models were de�ned:6



� unweighted edge tree T (i. e., with edges of length 1), such thata species in S lies only on the leaves of T , and without internal nodesof degree 2 (except for the root).� weighted edge tree T , such that species in S lies only on the leavesof T .The choice of bounding the degree of nodes (those corresponding to deadspecies) is justi�ed in [30], and its goal is to avoid paths of nodes of degree2 which are the same as a weighted edge. The existence problem for thismodel is:De�nition 2.9 (Existence from partial orders [16]) Given a set S ofspecies, and a partial order Exp(S) on (d)ij distances, decide whether existsan unweighted phylogeny T for S, consistent with Exp(S), such that speciesin S lies only on the leaves of T , and without internal nodes of degree 2(except for the root).Fact 2.10 ([16]) The problem existence from partial orders of an unweightedtree is NP-complete.The reconstruction can be performed by an algorithm of time complexityO(N3), supposing that existence problem has a�rmative answer.Fact 2.11 ([16]) The existence of a weigthed tree problem is NP-complete,while the relative reconstruction problem is still open.3 A new tree modelIn this section we introduce a new tree model based on a hypothesis manybiologists agree upon. This hypothesis, which we call the natural death (ND)hypothesis, is the following:Hypothesis of natural death. A dead species cannot have a living an-cestor, that is the oldest species must disappear �rst.The concept of living species, versus dead species, refers to the present orpast existence of a known species; on the other hand dead species are un-known a priori. The ND hypothesis justi�es a new general tree model whereliving species can lie on internal nodes too; these nodes must also induct aforest of subtrees (Figure 2). On the basis of the ND hypothesis we de�nethe following models of parsimonious phylogenetic forest and parsimoniousphylogenetic tree. 7
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Figure 2: (a)A tree that agrees with the ND hypothesis; subtrees are shownin circles. (b) A tree that does not agree with the ND hypothesis (b).De�nition 3.1 A parsimonious forest is a forest of living species with theminimum number of trees, that is where any species at the root of a tree cannot have a living ancestor.De�nition 3.2 A phylogenetic forest is a forest of living species such thatthere exists a path of only dead species from each root to a particular species,called Root.De�nition 3.3 A parsimonious-phylogenetic forest (in short PP forest) isa phylogenetic and parsimonious forest.Figure 3 shows an example of each type of forest. Finally:De�nition 3.4 A parsimonious-phylogenetic tree (in short PP tree) is aphylogenetic tree such that the set of nodes labelled with living species inductsa PP forest.By using the PP tree we stipulate the parsimony hypothesis as follows:before considering dead species to justify a descent, we look for a livingancestor. In addition, we are also interested in the Optimal PP tree, theone with the minimum number of dead species. Two fundamental problemsarise:De�nition 3.5 (Existence of a PP tree) Given a species set S, decidewhether there exists a PP tree for S.8
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descendantFigure 3: (a) Parsimony and (b) non parsimony forest. (c) Phylogeneticand (d) non phylogenetic forest.De�nition 3.6 (Reconstruction of a PP tree) Supposing that the ex-istence problem has an a�rmative answer, give to give an algorithm thatbuilds the PP tree.Note: deciding the existence of a PP tree is the same as deciding theexistence of a PP forest for S.Our models have general properties that are independent of the datathat describes a species.Proposition 3.7 Let be S a species set. If there exists a phylogenetic forestF for S, then there exists a PP forest for S.Proof. Let F be a phylogenetic forest for S. If F is parsimonious then F isa PP forest ; otherwise there is at least one root r in F which can be directlyderived from a living species. Suppose F is composed of trees T1; : : : ; Thwhose roots are respectively r1; : : : ; rh. LetL = fi=riderives from a living speciesgwe modify F by executing the following command:for each i 2 L do connect the root ri to its living fatherThis modi�cation has no e�ect on the phylogenetic part of F . The forest F 0we obtain is a PP forest, since F 0 is both phylogenetic (by hypothesis) andparsimonious (by construction).Proposition 3.8 Let S be a species set. If there exists a PP forest F forS, then every parsimonious forest is also a phylogenetic forest ( i.e., it is aPP forest). 9
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3.1 Existence and reconstruction from charactersIn this section, we study existence and reconstruction problems when speciesare vectors of k integers belonging to f0; 1; : : : ;mg. We assume that theirreversibility of acquired characters hypothesis is true, that is characterstates are ordered by age, from 0 (the oldest), tillm (the youngest). We callthat model f0 ! 1 ! : : : ! mg, and we start our analysis in the simplermodel f0! 1g.3.1.1 Model f0! 1gThe biological interpretation of this model is easy: each character can as-sume only two states 0 and 1, of which 0 is the older. Species are identi�edwith vectors of k binary digits. As a Consequently we can represent at most2k di�erent species, but the number N of living species (those from set S)is much less than 2k, in real cases. All the 2k possible species are consideredas vertexes on a k-cube in a k-dimensional space, and they can be groupedinto levels.De�nition 3.10 Given a species s = (c1; : : : ; ck) the level of s, lev(s), isPki=1 ciThis k-cube is the supporting structure on which to build our PP tree. Thevertex r = (0; : : : ; 0) at level 0 is the known a priori Root. To completelycharacterise a PP tree in this model we should de�ne when one speciesderives from another.De�nition 3.11 A species s derives from a species t if and only if lev(s) =lev(t) + 1The existence problem is de�ned as follows:De�nition 3.12 (Problem P1) Let be H = f1; 0gk a k-cube, S a set ofN species such that S � f1; 0gk. Decide whether there is a subtree T =(VT ; ET ) of H, such that T is a PP tree for S.We have:Theorem 3.13 Problem P1 can be solved in O(kN2) time, when N 2 O(2k).Proof. The proof is given by the following algorithm. It is divided into twophases: the construction of a parsimonious forest and a test for the existenceof a path of dead species. 11



Algorithm 1Phase 1: Construction of a parsimonious forest Fgiven a set S = fs1; : : : ; sNg of species.let root(T ) bea function that returns the species at the root of tree T ;let addSon(T1; T2) bea function that returns a tree obtained by connectingthe root of the tree T2 to the root of tree T1;beginF := S;(F is composed of N one{node trees, one for each species in S)let maxL, minL bethe maximum, minimum level of species in S;for L := maxL downto minL+ 1 dofor each species s in S at level L doif there exists a species t at level L� 1 suchthat s derives from t thenbeginlet T1, T2 bethe tree in F such that root(T2) = s and root(T1) = t;F := F � fT1; T2g;T1 := addSon(T1; T2);F := F [ T1;endelse skip(s is a root of some tree in F );endProposition 3.14 The time complexity of phase 1 is O(kN2)Algorithm 2Phase 2: Determination of the existence of a subset of dead speciesthat connects each root of F to r = (0; : : : ; 0).beginlet S0 bethe set of roots of forest F built in phase 1;(basic cases)case F of(F is a phylogeny forest)� is composed of only one tree,or all the roots are at the same level,success;� is composed of more than one tree andthe species r = (0; : : : ; 0) is in S,12



there does not exist any phylogeny forest; fail;otherwise(looking for dead species connections)begin[1] <built the k-cube from level 0 tothe level of the root at maximum level in F >if there exist a path that connect each root to r = (0; : : : ; 0)then (F is a phylogeny forest) success;else (F is not a phylogeny forest) fail;end;endcase;end.Proposition 3.15 Time complexity of phase 2 is O(k2k). The 2k factor isdue to instruction [1]; only if N 2 O(2k) is the cost of phase 2 polynomialin N .If phase 2 is successful then F is a PP forest, that is a PP tree exists. Of allpossible PP trees, we are interested in the one with the minimum numberof dead species, the Optimal PP tree, because it satis�es the parsimonyhypothesis (Section 1.2). Let us de�ne the related decisional problem:De�nition 3.16 (Problem P2) Let be H = f1; 0gk a k-cube, S a set of Nspecies such that S � 1; 0k, and b a positive integer. There exists a subtreeT = (VT ; ET ) of H, such that T is a PP tree for S, and jVT � Sj � b?We now demonstrate that the problem is NP-complete by building a poly-nomial reduction from the following problem known as Vertex Cover, andshown NP-complete in [10].De�nition 3.17 (Vertex Cover (VC)) Let G = (VG; EG) a graph, d � jVGjan integer value. There exists a subset V of VG, such that jV j � d, and foreach (i; j) 2 EG, we have i 2 V or j 2 V ?We have:Theorem 3.18 P2 is NP-complete.Proof. First of all P2 is in NP. In fact suppose that T = (VT ; E) is asolution of the P2 problem. We can easily test if it is a solution by visitingthe tree T and verifying that every living node has living children. This testcan obviously be performed in O(N2) time. Let x = [G = (VG; EG); d] aninstance of the VC problem; let us construct an instance f(x) = [S; k; b] ofP2 as follows (Figure 5): 13
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 	5        →  (0, 0, 0, 0, 1, 0)
 	6        →  (0, 0, 0, 0, 0, 1)

• d = 4  →  b = 5

• edges → vectors
	 (1, 2) → (1, 1, 0, 0, 0, 0)
 	(1, 3) → (1, 0, 1, 0, 0, 0)
 	(1, 6) → (1, 0, 0, 0, 0, 1)
 	…
 	(5, 6) → (0, 0, 0, 0, 1, 1)Figure 5: Reduction from an instance of the VC problem to an instance ofthe P2 problem.� k = jVGj;� S = fh 2 f0; 1gk=8(i; j) 2 EG, h has 1's in position i and position j, and 0's elsewhereg;� b = d+ 1;The function f can obviously be computed in polynomial time. Supposenow that x was a yes instance for the VC problem, and let V be the vertexcover of G, such that jV j � k. The PP Optimal tree T = (VT ; ET ) can beconstructed from f(x) as follows:(VT ) First VT = S; then for each vertex v 2 V , add to VT the vector hat level 1 with a 1 in the position v. Finally add to VT the rootr = (0; : : : ; 0);(ET ) ET = f(i; j)=j 2 S and i = (c1; : : : ; ck) is a vector at level 1 such thatit has 1 in the same position as j has (if more than one choice for iis possible, choose arbitrarily)g. Finally add to ET the edges whichconnect each considered vector at level 1 to the root r = (0; : : : ; 0).The obtained tree T = (VT ; ET ) is a PP tree such that jVT �Sj � d+1 =b; f(x) is thus a yes instance of the P2 problem. Suppose now that f(x)was a yes instance of P2 problem, and T = (VT ; ET ) was the PP tree suchthat jVT � Sj � b. Since every vector in S at level 2, their fathers shouldlie at level 1, and they are, in turn, connected to the root r = (0; : : : ; 0).These vectors at level 1 are at most d. De�ning V as the set of vertexes14



corresponding to these vectors, V is a vertex cover of G such that jV j � d,and x is a yes instance of VC.Corollary 3.19 Reconstructing a PP Optimal tree is an NP-hard problem.Corollary 3.19 conjectures that any algorithm to reconstruct a PP Opti-mal tree has an exponential time complexity unless P = NP. This con�rmsthe di�culty of phylogeny problems: even in the simple model f0 ! 1g,the reconstruction problem is intractable. Even if we relax the target of�nding an optimal solution, we still have to resort to heuristics. We nowdescribe an algorithm which uses a heuristic function of local search, whichtries to minimize the overall number of dead species, by minimizing theinsertion of dead species at each step. The PP tree is constructed bottom-up and, at each step, a couple of species is connected to the common an-cestor selected by the heuristic. Phase 1 of the algorithm is the same asalgorithm 2; we report only Phase 2 assuming that F is a PP forest andS0 = fall the species at root of trees in Fg of cardinality r.Algorithm 3Phase 2: reconstruction of a PP tree.let S0 be fs1; : : : ; srg;begininitialisationh := 1; Sh := S0, NmDeadSp := 0 , Nh := r;while Nh > 1 dobegindetermining the common ancestorfor i, j := 1 to Nh dolet Dij be the common ancestor of si, sjobtained as follows: Dij [r] := si[r] _ sj [r], 8r = 1; : : : ; k;let Du be the ancestor Duv at maximum level among those in Dij ;updating variablesSh = Sh � fsu; svg [Dh ;calculating the number of dead species inserted depending on Dhcase Dh of�Dh 2 fsu; vjg : Nh := Nh � 1 ;NmDeadSp := NmDeadSp +maxflev(su); lev (sv)g � lev (Dh)� 1;�Dh 2 Sh : Nh := Nh � 2;NmDeadSp := NmDeadSp + (lev (su)� lev (Dh)� 1)+(lev(sv)� lev (Dh)� 1);�Dh 62 Sh : Nh := Nh � 1;NmDeadSp := NmDeadSp + 1+(lev(su)� lev (Dh)� 1) + (lev (sv)� lev (Dh)� 1);15



endcase;endwhile;end.Fact 3.20 The algorithm has O(kr3) time complexity.The error committed by algorithm 4 was studied in [19], but with no de-�nitive results. An interesting test was done using that algorithm withsequences obtained from a PCR analysis of DNA on Primates [3]. the cor-rect relationship was inferred, and this encouraging practical result made usdecide to report the algorithm.3.1.2 Model f0! 1! : : :! mgThis model is the natural extention of the previous f0! 1g. Each charactercan assume m+1 di�erent states of which 0 is the oldest. Both consistenceand reconstruction problems can be de�ned in this model using a general-ization of k-cube ( [19]). We also reached similar NP-complete results withsimilar methods, which we omit.3.2 Existence and reconstruction from partial ordersWe now perform the same analysis as in Section 3.1 using a partial orderon distances. We recall from Section 2.2 that a partial order on distances isgiven by a set Exp(S) of OM experiments on triple species in S. LetN = jSj;although the input size is O(N3) we refer to N as the main parameter.3.2.1 Existence of a PP treeWe now consider the PP tree model introduced in Section 3. As was donein [16], we bound the degree of internal nodes standing for dead species tobe greater than 2. We de�ne the following existence problem of a PP tree:De�nition 3.21 (Problem P3) Given a set S of species, and a partial or-der Exp(S) on (d)ij distances, decide whether exists an unweighted PP treeT for S, consistent with Exp(S), such that T has no nodes standing for deadspecies of degree 2 (except for the root).We have:Theorem 3.22 Problem P3 is NP-complete16



Proof. The reduction is from the problem P which was shown to be NP-complete in [16]. First we prove that the problem is in NP . We can testwhether a tree T = (V;E) is a solution for the problem. We can test inO(jV j) whether T is a PP tree visiting T , and in O(N4) whether T isconsistent with Exp(S). In fact, for each i, j and k we calculate, in O(N),the length of paths Pij , Pjk , Pik and compare their order with the OMexperiment on triple i, j and k which are at most N(N � 1)(N � 2). Letx = [S;Exp(S)] be an instance of P . We construct an instance f(x) =[S0;Exp 0(S0)] of P3 as follows:� S0 = S [ fx1; : : : ; xNg, where xi are new living species;� Exp0(S0) = Exp(S) [ (SNi=1Ai), where Ai are new OM Experimentson species xi, si and y, 8y 2 S0�fxi; sig, with the result dsixi < dsiy <dyxi .Function f(x) can obviously be calculated in polynomial time. Supposethat x is a yes instance for P , and T = (V;E) the phylogeny that satis�esExp(S). The tree T 0 = (V 0; E0) solution of f(x) is the following (Figure 6):� V 0 = V [ fx1; : : : xNg; i.e. we add the species xi as new leaves;� E0 = E [ (SNi=1Ai); i.e. we connect each xi to si.T 0 is consistent with Exp 0(S0). In fact distances (d0T )ij concerning the newleaves xi are consistent with the new experiment Ai, while the remaining(d0T )ij concerns only species in S, which are consistent with experiments inExp(S) by hypothesis.
x = [ S ={s1 ,… sN } ,  Exp (S )] f ( x )=[ S '=  S∪ { x1,  … ,  x N } , Exp ' (S ') ]

s1, … ,  si ,…,  sN x 1, … , x i ,… ,  x N

s1 s N s
iFigure 6: Example of reduction from an instance of problem P1 to problemP . Suppose now that f(x) is a yes instance for P3, and T 0 = (V 0; E0) thephylogeny that satis�es Exp 0(S0). T 0 has all xi at leaves, and each xi is17



connected to the node si. The tree T = (V;E) solution of x is the following(see Figure 6): V = V 0 � fx1; : : : ; xNg; that is we cut o� the xi leaves;E = E0 � [(SNi=1Ai); we cut o� all edges (si, xi) which are redundant.T is consistent with Exp(S): in fact the distances (d0T )ij , concerning theremaining species (those in S), are consistent with experiments in Exp(S)by hypothesis.3.2.2 Reconstruction of a PP treeWe now study the reconstruction problem of a PP tree by assuming thatthe related consistency problem has an a�rmative answer. We have:Theorem 3.23 Assuming that the consistency problem has an a�rmativeanswer, the reconstruction problem for a PP tree T { such that it has nonodes (except for the root) standing for dead species has degree 2 { can besolved with an algorithm of O(N4) time complexity .The proof is given by the following algorithm. The frame of the algorithmis the same as algorithm 2 in Section 3.1. It is divided into two phases: �rstwe construct a parsimonious forest F , and then we connect each root of Fto Root, thus obtaining a PP tree. We have:De�nition 3.24 A supernode V is either a tree, or a single node. We referto a supernode both as a tree and as the set of species on its nodes.Algorithm 4Phase 1: construction of a parsimonious forest F,given a set S = s1; : : : ; sN of species.let Exp(S) bea set of OM experiments on triple species in S;let root(T ) bea function that returns the species at the root of the supernode T ;let derive(T1; T2) bea function that uses information from Exp(S) to test whethera supernode T1 derives from a supernode T2;we discuss this function in the next sectionlet addSon(T1; T2) bea function that returns a new supernode obtained by connectingthe root of supernode T2 to the root of the supernode T1;beginF := S;the forest F is composed of a one-node supernode, one for each species in S18



main looprepeatlooking for living-living connectionsfor each i 2 F dolet SonSet i bethe set fT=derive(T; i);8T 2 F � figg;for each SonSet i 6= ; dobeginF := F � fig;foreach T 2 SonSet i doi := addSon(T; i);F := F � SonSet i [ fig;end;until SonSet i = ;;8i;end.
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nFigure 7: Examples of connections of supernodes of living species Wi and Vusing addSon, when derive(Wi; V ) is true.Algorithm 5Phase 2. Reconstruction of a PP tree T ;let F befT1; : : : ; Thg the forest (of supernodes) from phase 1;let areBrth(T1; T2) bea function that uses information from Exp(S)to test whether the supernode T1 and the supernode T2 are brothers,that is whether they are descendants of a common dead ancestor;(we discuss this function in the next section)let mkNewSpNd(T ) bea function that returns a new supernode whose root r is a new node,and each supernode in T is connected to the root r;beginif F is a tree then return Felse 19



repeat(looking for root-root connections)for each i 2 F dolet SonSet i be the setfT=derive(T; i)8T 2 F � figg;(looking for connections to a new dead species)for each i 2 F dolet SiblSet i bethe set obtained by transitive closure onareBrth(i; T ), where T 2 F � i;(root-root connections have priority over those involving a new dead species)(in this way we introduce less dead species)if 9SonSet i 6= ;thenfor each SonSet i 6= ; dobeginF := F � fig;foreach a 2 SonSet i doi := addSon(a; i);F := F � SonSet i [ fig;endelsefor each SiblSet i 6= ; dobeginF := F � SiblSet i;s := mkNewSpNd(SiblSet i);F := F [ fsg;enduntil 8i (SonSeti = ;)and(SiblSeti = ;);return Fend.3.2.3 How to implement derive() and areBrth() functionsTo de�ne the boolean functions derive and areBrth between two supernodeswe use three binary relations on supernodes EQ, LT and GT .De�nition 3.25 Let V be a supernode.root(V ) is the root of V ;rep(V ) is the representative of V , is a node labelled with the closest livingspecies to the root;�(V ) is the distance in number of edges from root(V ) and rep(V ).20
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Figure 8: Examples of connections of supernodes Vi, by mkNewSpNdwhen areBrth is true, (a) and (b). Connection root-root by addSon whenderive(W;V ) is true, (c) and (d).De�nition 3.26 Let V1 and V2 be two supernodes and r1, r2 their repre-sentatives.LT (V1; V2) 2 LT if and only if there exists a node labelled with an livingspecies j, j 2 S � (V1; V2) such that in the OM experiment on triplej, r1, and r2 we have djr1 < djr2;EQ (V1; V2) 2 EQ if and only if there exists a node labelled with an livingspecies j, j 2 S � (V1; V2) such that in the OM experiment on triplej, r1, and r2 we have djr1 = djr2;GT (V1; V2) 2 GT if and only if there exists a node labelled with an livingspecies j, j 2 S � (V1; V2) such that in the OM experiment on triplej, r1, and r2 we have djr1 > djr2.We have:Lemma 3.27 ([16]) Let V1, V2 be two supernodes. It is possible to calculateareBrth(V1; V2) in O(N) time.The test consists in assuming that areBrth(V1; V2) is true, connecting V1 andV2 as in Figures 8 (a) and 8 (b), and looking for con�rmation or contra-diction in the results of available experiments. If an inconsistency is foundareBrth(V1; V2) becames false. 21



Lemma 3.28 LetW , V be two supernodes. If �(W ) = �(V ) then derive(W;V )if and only if (W;V ) 62 EQ [ LT .Proof. Assuming that W really derives from V ; then they are connectedby one edge in T (Figures 7 and 8 (c)). Thus every OM experiment on j,rep(W ), and rep(V ), with j 2 S � (W;V ) should give:djrep(W ) > drep(V )rep(W )djrep(V ) > drep(V )rep(W )djrep(V ) > djrep(W ):The opposite can be deduced by absurd assuming that (W;V ) 62 EQ [ LT ,and that W does not derive from V : it is always possible to �nd a speciesj, j 2 S � (W;V ) that makes (W;V ) 2 EQ [ LT .Lemma 3.29 LetW , V be two supernodes. If �(W ) > �(V ) then derive(W;V )can be tested in O(N) time.Proof. If (W;V ) 2 EQ [ LT then derive(W;V ) is false: in fact by absurdif W derives from V , they are connected by one edge in the tree, and thusfor every species j 2 S � (W [ V ) we have:djrep(W ) > djrep(V )that is (W;V ) 2 EQ[LT . If (W;V ) 2 EQ[LT we assume that derive(W;V )is true, and we connect their roots with an edge as in �gure 8 (d): we lookfor con�rmation or contradiction in the available experiments. Let be L thelength of path P from rep(W ) to rep(V ):� if L is an even number then let x be the node in the middle of P , andj be a species in the subtree with root x that does not contain rep(V ).Then derive(W;V ) is true if and only if: djrep(W ) = djrep(V ).� if L is an odd number then let (x; y) be the edge in the middle ofP , and j1, j2 be two leaves, in the subtree whose root is x that doesnot contain rep(V ), and in the subtree whose root is y that does notcontain rep(W ) respectively; then derive(W;V ) is true if and only ifdj1rep(W ) > dj1rep(V ) and dj2rep(W ) > dj2rep(V ).Because these tests consist in looking for a path in a tree of O(N) nodes theycan be done in O(N) time (the tree could be totally unbalanced).22



Finally we have:Theorem 3.30 Algorithm 6 has time complexity O(N4)Proof. From the list of algorithm 6 we can see that at each step the numberof tests using derive() or areBrth() is O(N2), that is as many tests as thereare couple of supernodes. Because each test can be performed in O(N) timethe resulting complexity is O(N3). We now estimate the number of steps inthe worst case, which occurs when the tree searched for is the following:
2

3

N-1

N

1

Figure 9: The tree whose reconstruction needs the greatest number of steps.In fact at each step (except for the last one) we add only one edge, thushaving O(N) steps. The resulting complexity is O(N4).4 ConclusionThe PP tree model represents a biologically signi�cant generalization of theusual phylogenetic tree, but similar NP-completeness results arise, whensequences and partial orders are used. Our results con�rm the hardness ofproblems related to phylogeny reconstruction.References[1] R. AGARWALA and D. FERNANDEZ-BACA. A polynomial-time al-gorithms for the perfect phylogeny problem when the number of charac-ter is �xed. In proc. of IEEE Symposium on Foundations of ComputerScience, pages 140{147, 1993. 23
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