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Abstract

The evolutionary history of a set of species is represented by a tree,
called a phylogenetic tree or phylogeny, whose structure depends on
precise biological assumptions about the evolution of species. Problems
related to phylogeny reconstruction (i.e., finding a tree representation
of information regarding a set of items) are widely studied in computer
science. Most of these problems have been found to be NP-hard, but
they can sometimes be solved polynomially if appropriate restrictions
on the structure of the tree are fixed. The aim of this paper is to
summarize the most recent problems and results in phylogeny recon-
struction, and to introduce an innovative tree model, the Phylogenetic
Parsimonious tree (PP tree), which is justified by a biologically sig-
nificant hypothesis. Using the PP tree, two problems are studied: the
existence and the reconstruction of a tree both when sequences of char-
acters and partial order on interspecies distances, are given. We prove
complexity results that confirm the hardness of this class of problems.



1 Introduction to phylogenetic problems

The evolutionary history of a set of species is usually described by a rooted
tree called a phylogenetic tree, or phylogeny, formally defined as follows:

Definition 1.1 Let S be a set of species. A phylogenetic tree T is a tree
(V, E) where:

o Vs a set{1,...,m} of nodes, such that V.2 S; S are at least the
leaves of T, and nodes in V — S stand for extinct species.

o F is a set {(i,j) : i,j € V} of edges, and the presence of an edge
(i,7) € E means that j directly descends from i.

Finding a tree-representation of information about a set S of items is an
important algorithmical problem. It has been related to phylogeny recon-
struction since the 1960s when, for the first time, computers were used to
infer phylogenetic relationships in numerical tazonomy [25]. Many different
instances of this problem have been defined and studied, and this experience
has shown that:

1. most of them are NP-complete or NP-hard;
2. sometimes the existence of polynomial algorithms depends on restric-
tions imposed upon the structure of the tree.

1.1 Biological data models

Data can came directly from both DNA and protein analysis [21]; for this
reason a species set can be mathematically described as

e a set of character sequences;
e a matrix of distances.

A character is a bit of information that assume a finite number of states.
For example in a DNA sequence, a character is a single nucleotide: it has
four possible states A, G, C', T. Each species is identified by a sequence
(i.e., a vector) of characters.

Definition 1.2 A species is a vector (c1, ..., ci) where ¢; is one of the m+1
states of the i-th character; we can assume that ¢; € A = {0,...,m},

Vie {1,...,k}.



Note: if the evolutionary age of each state, the polarity, is known the oldest
of the state is associated with 0, the next with the 1, and so on up to the
youngest.

An interspecies distance d;; is a non-negative real number expressing a
measure either of a genetic similarity or a genetic distance between 4 and j
[21]. Distances are usually given by a square, species X species, symmetric
matrix M, such that M[i,j] = d;;, Vi, j. ' As any species i has always
null distance from itself, we assume M[i,i] = 0.

1.2 Evolutionary hypotheses

Phylogenetic problems are usually based on biological hypotheses. Two of
the most common ones are:

e irreversibility of acquired characters hypothesis: for each character,
state i evolves only into the next (7 4+ 1), and it cannot change back;

e parsimony hypothesis: the most reliable (i.e., likely) phylogenetic tree,
called parsimonious trees, is that which has a minimum number of
extinct species.

Usually the choice of a tree model is justified by the assumption that a
certain hypothesis is true.

2 Background in phylogeny reconstruction

We now summarize same recent problems and results in the phylogeny re-
construction. A distinction can be made in terms of the data model used.

2.1 Character sequences

As we saw in Section 1.1, a species can be a vector (cy,...,cx) such that
Vi € {1,...,k},¢; € A = {0,...,m}. Two classes of problem can be
defined:

e character compatibility problems (or perfect phylogeny problems);
e parsimony problems.

In the character compatibility class we find the following problem:

'We indicate with d;; the single distance between i and j, while (d);; indicates the
class of distances d;;, V i, j.



Definition 2.1 ([29]) A set S of species is compatible if it is possible to
find a tree T = (V, E), named perfect phylogeny, such that:

1. 8§ C V C A*, that is each node in V is labelled with a vector of k
character states;

2. species in S lie on the leaves of T;

3. Ye; and NYa € A, the set of nodes n = (c1,...,cx) such that ¢; = a,
induces a connected sub-graph of T (see Figure 1).

Condition 2 in definition 2.1 describes a widely used model of a phylogenetic
tree, but others are possible; condition 3 expresses the irreversibility of the
acquired characters hypothesis.
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Figure 1: A perfect phylogeny for species A = (11000), B = (00100),
C = (01010) and D = (00101). In the example only binary characters
are used, and on the edges the indix of the character is reported that has
evolved from 0 to 1.

Definition 2.2 (Perfect Phylogeny problem) Given a set S of N species
decide whether or not S is compatible.

The Perfect Phylogeny problem is NP-complete ( [2, 26]). An

O(m*! (k + 1)¥ + NE?) algorithm exists ([22]), which is polynomial when
the number £ of characters is bounded by a constant; in particular a linear-
time algorithm is known when only three characters are used ( [14, 13]). In
the case of binary characters (m = 2), there exists an optimal O(kN) time
algorithm ( [12]). An O(Nk?) time algorithm is known for trinary (m = 3)
characters in [6], and an O(N?k) time algorithm for quaternary (m = 4)
characters was found in [15].



The problems defined in the parsimony class differently use the parsi-
mony hypothesis: the general target is finding a parsimonious tree (Sec-
tion 1.2). In order to define the class of parsimony problems more easily,
we assume that a species is identified by one single character ¢ instead of a
vector.

Definition 2.3 (Parsimony problem) Let S be a species set. The most
parsimonious tree, is a tree T = (V, E) such that:

1. V. C A, that is every node of T is labelled with a character state;
2. species in S lie on the leaves of T';

3. it minimizes the following quantity:

> L(i,j)

(i,))eEE

where L(i, j) is the function “length of the edge (i,7)”, and usually expresses
the cost of evolution from state i to state j. If this evolution is not biologically
possible L(i,7) is set to oo.

Note: in order to minimize only the number of dead species, just set
L(i,j) = 1Vi,j.

Different instances of the parsimony problem arise when varying the
function L ([28]). In general, if k characters are used, we can easily extend
the definition, but a further condition is needed:

4. V(i j) € E, with i = (¢1,...,¢x) and j = (dy,...,dy), 1 and j differ
exactly in one position.

All problems in this class are known to be NP-complete ([5]).

2.2 Distances

The target in this class is to find an edge-weighted tree which exactly, or
approximately, realizes a given distance matrix.

Definition 2.4 Let T = (V. E) an edge-weighted tree. The tree-distance
diTj between two nodes i and j in V' is the length of the path P;; from i to j,
calculated as the sum of edge-lengths on P;;.



Definition 2.5 (Phylogeny reconstruction from distances) Let M be
a square n X n matriz of non negative reals, and S a set of n species.
Determine an edge-weighted phylogenetic tree T = (V, E) for S, such that
Vi, j €8, dg; = M[i,j]. If such a T exists, we say that it realizes M.

Given a matrix M, the existence of a tree T' that realizes M is a property
of the matrix M itself, known as additivity; in other words if the matrix is
additive then there exists (a unique [30]) T such that diTj = Mii,j]. It is
known that, given an n x n matrix M, it is possible to verify whether it
is additive, and build the tree in O(n?) time [4]. The problem, as defined
in definition 2.5, is far from describing a real situation. In fact, biological
distances are rarely additive and a tree T that realizes a matrix distance
does not exist. For this reason it is usually requested that the tree-distance
dg; best approxzimates MTi, j].

Definition 2.6 (Phylogeny approximated reconstruction) Let M be
a square n X n matrixz of non negative reals, and S a set of n species.
Determine an edge-weighted phylogenetic tree T = (V, E) for S, such that
Vi, j €8, dg; ~ MT[i, j].

Various mathematical definitions for &~ have been proposed, and most of the
related optimal problems are shown NP-hard (for a good survey see [7]).

In [16] a new data model has recently been proposed related with dis-
tances, where only a partial order on distances is known. Since the set
of tree-distances (dT)ij is totally ordered, a new class of problem can be
defined.

Definition 2.7 (Phylogeny reconstruction from partial order) Given
a set S of species, and a partial order <, on (d);; distances, find an edge
weighted phylogeny T for S, such that the total order <; on (dT)ij s a
topological sort of <p, that is Vi, j, h, k : dij <, dpp, = dg;- <y d{k.

If T exists we say that T is consistent with the partial order. In [16]
the partial order is described by a set of experiments, and an experiment is
conducted in the following model:

Definition 2.8 ( [16]) Given a triple species i, j and k an Ordering Model
(OM) experiment is a partial or total order on the triple of distances d;j,
diy and djj, with =, < and > explicitly indicated.

For example an OM ezperiment on i, j and k can give the result d;; < d;;, =
dji. In [16] the following tree models were defined:



e unweighted edge tree T (i. e., with edges of length 1), such that
a species in S lies only on the leaves of T', and without internal nodes
of degree 2 (except for the root).

e weighted edge tree T, such that species in S lies only on the leaves
of T.

The choice of bounding the degree of nodes (those corresponding to dead
species) is justified in [30], and its goal is to avoid paths of nodes of degree
2 which are the same as a weighted edge. The existence problem for this
model is:

Definition 2.9 (Existence from partial orders [16]) Given a set S of
species, and a partial order Ezp(S) on (d);; distances, decide whether exists
an unweighted phylogeny T for S, consistent with Exp(S), such that species
in S lies only on the leaves of T, and without internal nodes of degree 2
(except for the root).

Fact 2.10 ([16]) The problem existence from partial orders of an unweighted
tree is NP-complete.

The reconstruction can be performed by an algorithm of time complexity
O(N?), supposing that existence problem has affirmative answer.

Fact 2.11 ([16]) The existence of a weigthed tree problem is NP-complete,
while the relative reconstruction problem is still open.

3 A new tree model

In this section we introduce a new tree model based on a hypothesis many
biologists agree upon. This hypothesis, which we call the natural death (ND)
hypothesis, is the following:

Hypothesis of natural death. A dead species cannot have a living an-
cestor, that is the oldest species must disappear first.

The concept of living species, versus dead species, refers to the present or
past existence of a known species; on the other hand dead species are un-
known a priori. The ND hypothesis justifies a new general tree model where
living species can lie on internal nodes too; these nodes must also induct a
forest of subtrees (Figure 2). On the basis of the ND hypothesis we define
the following models of parsimonious phylogenetic forest and parsimonious
phylogenetic tree.
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Figure 2: (a)A tree that agrees with the ND hypothesis; subtrees are shown
in circles. (b) A tree that does not agree with the ND hypothesis (b).

Definition 3.1 A parsimonious forest is a forest of living species with the
minimum number of trees, that is where any species at the root of a tree can
not have a living ancestor.

Definition 3.2 A phylogenetic forest is a forest of living species such that
there exists a path of only dead species from each root to a particular species,
called Root.

Definition 3.3 A parsimonious-phylogenetic forest (in short PP forest) is
a phylogenetic and parsimonious forest.

Figure 3 shows an example of each type of forest. Finally:

Definition 3.4 A parsimonious-phylogenetic tree (in short PP tree) is a
phylogenetic tree such that the set of nodes labelled with living species inducts
a PP forest.

By using the PP tree we stipulate the parsimony hypothesis as follows:
before considering dead species to justify a descent, we look for a living
ancestor. In addition, we are also interested in the Optimal PP tree, the
one with the minimum number of dead species. Two fundamental problems
arise:

Definition 3.5 (Existence of a PP tree) Given a species set S, decide
whether there exists a PP tree for S.
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Figure 3: (a) Parsimony and (b) non parsimony forest. (c) Phylogenetic
and (d) non phylogenetic forest.

Definition 3.6 (Reconstruction of a PP tree) Supposing that the ex-
istence problem has an affirmative answer, give to give an algorithm that
builds the PP tree.

Note: deciding the existence of a PP tree is the same as deciding the
existence of a PP forest for S.

Our models have general properties that are independent of the data
that describes a species.

Proposition 3.7 Let be S a species set. If there exists a phylogenetic forest
F for S, then there exists a PP forest for S.

Proof. Let F' be a phylogenetic forest for S. If F' is parsimonious then F' is
a PP forest; otherwise there is at least one root r in F' which can be directly
derived from a living species. Suppose F' is composed of trees Ti,...,T}
whose roots are respectively rq,...,r,. Let

L = {i/riderives from a living species}

we modify F' by executing the following command:
for each i € L do connect the root r; to its living father

This modification has no effect on the phylogenetic part of F. The forest F’

we obtain is a PP forest, since F' is both phylogenetic (by hypothesis) and
parsimonious (by construction). |

Proposition 3.8 Let S be a species set. If there exists a PP forest F' for
S, then every parsimonious forest is also a phylogenetic forest (i.e., it is a
PP forest).
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Figure 4: F = {T},T>} and F, = {T{,T;} are equally parsimonious: the
species s may derive from two different living fathers.

Proof. Let F be a PP forest for S, and F; be a parsimonious forest for
S, such that F; # F. F and F; must have the same number of trees. In
addition a species in F' is a root if and only if it is a root in Fy. In fact, a
parsimonious forest has the minimum number of trees, which is equal to the
number of those living species that have no living ancestors. In other words
Fy differs from F only in terms of those species that are internal nodes and
can be derived from more than one living species (see Figure 4). Lastly, if F
is a phylogeny forest then F} is phylogenetic too, and so F} is a PP forest.

]

Proposition 3.8 ensures that the choice of a living father, from a set of
equally possible ones, has no influence on the next search for a path of dead
species.

Proposition 3.9 If there exists a phylogenetic forest for S, then every par-
simonious forest is a phylogenetic forest (i.e., it is a PP forest).

Proof. Let F' be a phylogenetic forest for S. From F we can obtain a PP
forest F (proposition 3.7), and because a PP forest exists, every parsimo-
nious forest is a PP forest (proposition 3.8). ]

Proposition 3.9 suggests a general algorithm to solve the existence problem.
First we construct a parsimonious forest F' by joining all couples of species s
and ¢, where s derives directly from ¢; afterwards, when no more connections
between living species are possible, we test whether there exists a path of
dead species. F' is a PP forest only if the test is successful.
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3.1 Existence and reconstruction from characters

In this section, we study existence and reconstruction problems when species
are vectors of k integers belonging to {0,1,...,m}. We assume that the
irreversibility of acquired characters hypothesis is true, that is character
states are ordered by age, from 0 (the oldest), till m (the youngest). We call
that model {0 — 1 — ... — m}, and we start our analysis in the simpler
model {0 — 1}.

3.1.1 Model {0 — 1}

The biological interpretation of this model is easy: each character can as-
sume only two states 0 and 1, of which 0 is the older. Species are identified
with vectors of k binary digits. As a Consequently we can represent at most
2 different species, but the number N of living species (those from set S)
is much less than 2%, in real cases. All the 2¥ possible species are considered
as vertexes on a k-cube in a k-dimensional space, and they can be grouped
into levels.

Definition 3.10 Given a species s = (c1,...,¢;) the level of s, lev(s), is

k
22:1 (&

This k-cube is the supporting structure on which to build our PP tree. The
vertex r = (0,...,0) at level 0 is the known a priori Root. To completely
characterise a PP tree in this model we should define when one species
derives from another.

Definition 3.11 A species s derives from a species t if and only if lev(s) =
lev(t) +1

The existence problem is defined as follows:

Definition 3.12 (Problem P;) Let be H = {1,0}* a k-cube, S a set of
N species such that S C {1,0}%. Decide whether there is a subtree T =
(Vr, E7) of H, such that T is a PP tree for S.

We have:
Theorem 3.13 Problem Py can be solved in O(kN?) time, when N € O(2F).

Proof. The proof is given by the following algorithm. It is divided into two
phases: the construction of a parsimonious forest and a test for the ezxistence
of a path of dead species. [
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Algorithm 1

Phase 1: Construction of a parsimonious forest F'
given a set S = {sy,...,sn} of species.
let ro0t(T) be
a function that returns the species at the root of tree T';
let addSon(Ty,T>) be
a function that returns a tree obtained by connecting
the root of the tree Ty to the root of tree T;
begin
F =8,
(F is composed of N one—node trees, one for each species in S)
let maxL, minL be
the maximum, minimum level of species in S;
for L := mazL downto minL + 1 do
for each species s in S at level L do
if there exists a species t at level L — 1 such
that s derives from ¢ then
begin
let Ty, T> be
the tree in F' such that root(T>) = s and root(Ty) = t;
F.=F — {Tl,T2};
T1 := addSon(Ty,T>);
F:=FUTy;
end
else skip
(s is a root of some tree in F');
end

Proposition 3.14 The time complezity of phase 1 is O(kN?)

Algorithm 2

Phase 2: Determination of the existence of a subset of dead species
that connects each root of F' to r = (0,...,0).
begin
let S’ be
the set of roots of forest F' built in phase 1;
(basic cases)
case F of
(F is a phylogeny forest)
e is composed of only one tree,
or all the roots are at the same level,success;
e is composed of more than one tree and
the species 7 = (0,...,0) is in S,

12



there does not exist any phylogeny forest; fail;
otherwise
(looking for dead species connections)
begin
[1] <built the k-cube from level 0 to
the level of the root at maximum level in F' >
if there exist a path that connect each root to r = (0,...,0)
then (F is a phylogeny forest) success;
else (F' is not a phylogeny forest) fail;
end;
endcase;
end.

Proposition 3.15 Time complezity of phase 2 is O(k2F). The 2 factor is
due to instruction [1]; only if N € O(2F) is the cost of phase 2 polynomial
in N.

If phase 2 is successful then F is a PP forest, that is a PP tree exists. Of all
possible PP trees, we are interested in the one with the minimum number
of dead species, the Optimal PP tree, because it satisfies the parsimony
hypothesis (Section 1.2). Let us define the related decisional problem:

Definition 3.16 (Problem P,) Let be H = {1,0}* a k-cube, S a set of N
species such that S C 1,0%, and b a positive integer. There exists a subtree
T = (Vp, E7) of H, such that T is a PP tree for S, and |Vp — S| < b?

We now demonstrate that the problem is NP-complete by building a poly-
nomial reduction from the following problem known as Vertex Cover, and
shown NP-complete in [10].

Definition 3.17 (Vertex Cover (VC)) Let G = (Vg, Eg) a graph, d < |Vg|
an integer value. There exists a subset V of Vg, such that |V| < d, and for
each (i,7) € Eg, we have i €V or j € V?

We have:
Theorem 3.18 P, is NP-complete.

Proof. First of all P, is in NP. In fact suppose that T = (Vp,E) is a
solution of the P, problem. We can easily test if it is a solution by visiting
the tree T' and verifying that every living node has living children. This test
can obviously be performed in O(N?) time. Let z = [G = (Vg, Eg),d] an
instance of the VC problem; let us construct an instance f(z) = [S,k,b] of
P, as follows (Figure 5):

13



*|V|=6- K=6

e nodes- vectors
1 - (4,0,0,0,0,0

1 5 ~(0,0,0,0,1,0 0

] 2 6 - (0,0,0,0,0,11) Q\
; A\’ALA‘ \&

* edges- vectors

4 3 (1,2) 41,1,0,0,0,0)
(1,3) «1,0,1,0,0,0) 6
G = (VG, EG) (1,6) «1,0,0,0,0,1) H={0, 1}
© vertex cover (5 6) <0,0,0,0,1,1) ® dead species in the tree

Figure 5: Reduction from an instance of the VC problem to an instance of
the P, problem.

o k=|Vgl;

o S={he{0,1}"/
V(i,j) € Eg, h has 1’s in position ¢ and position j, and 0’s elsewhere};

e b=d+1;

The function f can obviously be computed in polynomial time. Suppose
now that x was a yes instance for the VC problem, and let V' be the vertex
cover of G, such that |V| < k. The PP Optimal tree T' = (Vr, ET) can be
constructed from f(z) as follows:

(Vr) First Vp = S; then for each vertex v € V, add to Vp the vector h
at level 1 with a 1 in the position ». Finally add to Vr the root
r=(0,...,0);

(Er) Er ={(i,j)/j € S and i = (c1,...,cx) is a vector at level 1 such that
it has 1 in the same position as j has (if more than one choice for i
is possible, choose arbitrarily)}. Finally add to Er the edges which
connect each considered vector at level 1 to the root r = (0,...,0).

The obtained tree T' = (Vr, Er) is a PP tree such that |[Vp—S| < d+1=
b; f(z) is thus a yes instance of the P, problem. Suppose now that f(x)
was a yes instance of P, problem, and T' = (Vp, Ep) was the PP tree such
that |V — S| < b. Since every vector in S at level 2, their fathers should
lie at level 1, and they are, in turn, connected to the root r = (0,...,0).
These vectors at level 1 are at most d. Defining V' as the set of vertexes

14



corresponding to these vectors, V' is a vertex cover of G such that |V| < d,
and z is a yes instance of VC. ]

Corollary 3.19 Reconstructing a PP Optimal tree is an NP-hard problem.

Corollary 3.19 conjectures that any algorithm to reconstruct a PP Opti-
mal tree has an exponential time complexity unless P = NP. This confirms
the difficulty of phylogeny problems: even in the simple model {0 — 1},
the reconstruction problem is intractable. Even if we relax the target of
finding an optimal solution, we still have to resort to heuristics. We now
describe an algorithm which uses a heuristic function of local search, which
tries to minimize the overall number of dead species, by minimizing the
insertion of dead species at each step. The PP tree is constructed bottom-
up and, at each step, a couple of species is connected to the common an-
cestor selected by the heuristic. Phase 1 of the algorithm is the same as
algorithm 2; we report only Phase 2 assuming that F' is a PP forest and
S" = {all the species at root of trees in F'} of cardinality r.

Algorithm 3

Phase 2: reconstruction of a PP tree.
let S’ be {s1,...,s:};
begin
initialisation
h:=1; S, :=8' NmDeadSp :=0, N :=r;
while N, > 1 do
begin
determining the common ancestor
for i, j :=1to N}, do
let D;; be the common ancestor of s;, s;
obtained as follows: D;;[r] := s;[r] V s;[r], Vr =1,... k;
let D, be the ancestor D, at maximum level among those in D;;;
updating variables
Sp = 8Sp — {su,sv} UDy ;
calculating the number of dead species inserted depending on Dy,
case Dy, of
oDy € {sy,vj} : N :=Nj, — 1;
NmDeadSp := NmDeadSp + max{lev(sy), lev(sy)} — lev(Dp) — 1,
oDy € Sy : Ny := Np, — 2;
NmDeadSp := NmDeadSp + (lev(sy) — lev(Dy) — 1)
+(lev(sy) — lev(Dy) — 1);
oDh QSh:Nh ::Nh—l;
NmDeadSp := NmDeadSp + 1
+(lev(sy) — lev(Dp) — 1) + (lev(sy) — lev(Dy) — 1);

15



endcase;
endwhile;
end.

Fact 3.20 The algorithm has O(kr3) time complezity.

The error committed by algorithm 4 was studied in [19], but with no de-
finitive results. An interesting test was done using that algorithm with
sequences obtained from a PCR analysis of DNA on Primates [3]. the cor-
rect relationship was inferred, and this encouraging practical result made us
decide to report the algorithm.

3.1.2 Model {0 >1—... > m}

This model is the natural extention of the previous {0 — 1}. Each character
can assume m + 1 different states of which 0 is the oldest. Both consistence
and reconstruction problems can be defined in this model using a general-
ization of k-cube ( [19]). We also reached similar NP-complete results with
similar methods, which we omit.

3.2 Existence and reconstruction from partial orders

We now perform the same analysis as in Section 3.1 using a partial order
on distances. We recall from Section 2.2 that a partial order on distances is
given by a set Ezp(S) of OM experiments on triple species in S. Let N = |S|;
although the input size is O(N?) we refer to N as the main parameter.

3.2.1 Existence of a PP tree

We now consider the PP tree model introduced in Section 3. As was done
in [16], we bound the degree of internal nodes standing for dead species to
be greater than 2. We define the following existence problem of a PP tree:

Definition 3.21 (Problem P3;) Given a set S of species, and a partial or-
der Ezp(S) on (d)i; distances, decide whether exists an unweighted PP tree
T for S, consistent with Exp(S), such that T has no nodes standing for dead
species of degree 2 (except for the root).

We have:

Theorem 3.22 Problem P; is NP-complete
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Proof. The reduction is from the problem P which was shown to be NP-
complete in [16]. First we prove that the problem is in NP. We can test
whether a tree T' = (V, E) is a solution for the problem. We can test in
O(|V|) whether T is a PP tree visiting T, and in O(N*) whether T is
consistent with Fzp(S). In fact, for each i, j and k& we calculate, in O(N),
the length of paths P, Pj , P;; and compare their order with the OM
experiment on triple i, j and k& which are at most N(N — 1)(N — 2). Let
x = [S, Ezp(S)] be an instance of P. We construct an instance f(z) =
[S’, Exp'(S")] of P3 as follows:

e 8'=SU{z1,...,zn}, where z; are new living species;

o Exp/(S") = Exp(S) U (UX, A;), where A; are new OM Experiments
on species z;, s; and y, Yy € S'—{z;, s;}, with the result d,,, < ds,y <
dy,.

Function f(z) can obviously be calculated in polynomial time. Suppose
that = is a yes instance for P, and T' = (V, E) the phylogeny that satisfies
Ezp(S). The tree T = (V', E') solution of f(z) is the following (Figure 6):

o V' =V U{x1,...2n}; i.e. we add the species z; as new leaves;
e B'=FEU(UY, A4); i.e. we connect each z; to s;.

T’ is consistent with Ezp’(S’). In fact distances (df);; concerning the new
leaves x; are consistent with the new experiment A;, while the remaining
(d7)i; concerns only species in S, which are consistent with experiments in
Ezp(S) by hypothesis.

x=[S={sy, sy b Exp (S]] | ————— 7 1(x)=[S'= SO{xq, -, x y}, Exp *(S)]

S1s s Sjreees Sy

Figure 6: Example of reduction from an instance of problem P; to problem
P.

Suppose now that f(z) is a yes instance for P;, and T' = (V', E') the
phylogeny that satisfies Exp’(S’). T’ has all z; at leaves, and each z; is
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connected to the node s;. The tree T'= (V, E) solution of z is the following
(see Figure 6): V = V' — {z,...,zn}; that is we cut off the z; leaves;
E = E' — U(UY, 4;); we cut off all edges (s;, #;) which are redundant.
T is consistent with Ezp(S): in fact the distances (dp);;, concerning the
remaining species (those in S), are consistent with experiments in Ezp(S)
by hypothesis. [

3.2.2 Reconstruction of a PP tree

We now study the reconstruction problem of a PP tree by assuming that
the related consistency problem has an affirmative answer. We have:

Theorem 3.23 Assuming that the consistency problem has an affirmative
answer, the reconstruction problem for a PP tree T - such that it has no
nodes (except for the root) standing for dead species has degree 2 — can be
solved with an algorithm of O(N*) time complezity .

The proof is given by the following algorithm. The frame of the algorithm
is the same as algorithm 2 in Section 3.1. It is divided into two phases: first
we construct a parsimonious forest F', and then we connect each root of F'
to Root, thus obtaining a PP tree. We have:

Definition 3.24 A supernode V is either a tree, or a single node. We refer
to a supernode both as a tree and as the set of species on its nodes.

Algorithm 4

Phase 1: construction of a parsimonious forest F,
given a set S = sy1,...,syN of species.
let Exp(S) be
a set of OM experiments on triple species in S;
let root(T) be
a function that returns the species at the root of the supernode T';
let derive(Ty,T>) be
a function that uses information from Exzp(S) to test whether
a supernode T derives from a supernode T5;
we discuss this function in the next section
let addSon(Ty,T>) be
a function that returns a new supernode obtained by connecting
the root of supernode T5 to the root of the supernode Ti;
begin
F:=S;
the forest F is composed of a one-node supernode, one for each species in S
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main loop
repeat
looking for living-living connections
for each i € F do
let SonSet; be
the set {T'/derive(T,i),VT € F — {i}};
for each SonSet; # () do
begin
F:=F - {i};
foreach T € SonSet; do
i := addSon(T,1i);
F:=F — SonSet; U {i},
end;
until SonSet; = 0, Vi;
end.

(@)

Figure 7: Examples of connections of supernodes of living species W; and V
using addSon, when derive(W;, V) is true.

Algorithm 5

Phase 2. Reconstruction of a PP tree T';
let F' be
{Ty,..., Ty} the forest (of supernodes) from phase 1;
let areBrth(Ty,T>) be
a function that uses information from Exp(S)
to test whether the supernode T} and the supernode T, are brothers,
that is whether they are descendants of a common dead ancestor;
(we discuss this function in the next section)
let mkNewSpNd(T) be
a function that returns a new supernode whose root r is a new node,
and each supernode in T is connected to the root r;
begin
if F is a tree then return F'
else
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repeat
(looking for root-root connections)
for each i € F do
let SonSet; be the set
{T/derive(T,i)VT € F — {i}};
(looking for connections to a new dead species)
for each i € F do
let SiblSet; be
the set obtained by transitive closure on
areBrth(i,T), where T € F — i,
(root-root connections have priority over those involving a new dead species)
(in this way we introduce less dead species)
if 3SonSet; #£

then
for each SonSet; # () do
begin
F:=F — {i};
foreach a € SonSet; do
i := addSon(a,i);
F :=F — SonSet; U {i};
end
else
for each SiblSet; # () do
begin
F = F — SiblSet;;
s := mkNewSpNd(SiblSet;);
F:=FuU{s}
end
until Vi (SonSet; = 0)and(SiblSet; = 0);
return F'

end.

3.2.3 How to implement derive() and areBrth() functions

To define the boolean functions derive and areBrth between two supernodes
we use three binary relations on supernodes EQ, LT and GT.

Definition 3.25 Let V be a supernode.
root(V') is the root of V;

rep(V') is the representative of V, is a node labelled with the closest living
species to the root;

d(V') is the distance in number of edges from root(V') and rep(V).
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O living species

@ (ead species

© (d

Figure 8: Examples of connections of supernodes V;, by mkNewSpNd
when areBrth is true, (a) and (b). Connection root-root by addSon when
derive(W, V') is true, (c) and (d).

Definition 3.26 Let Vi and Vy be two supernodes and 71, ro their repre-
sentatives.

LT (V4, Vo) € LT if and only if there exists a node labelled with an living
species j, j € S — (V1,Va) such that in the OM experiment on triple
J, r1, and ro we have djr, < djp,;

EQ (V1,V5) € EQ if and only if there exists a node labelled with an living
species j, j € S — (V1,Va) such that in the OM experiment on triple
J, r1, and ro we have djr, = djp,;

GT (V1,V,) € GT if and only if there exists a node labelled with an living
species j, 7 € S — (Vq,Va) such that in the OM experiment on triple
J, m1, and r9 we have dj,, > dj;,.

We have:

Lemma 3.27 ([16]) Let Vi, V; be two supernodes. It is possible to calculate
areBrth(Vy, V2) in O(N) time.

The test consists in assuming that areBrth(V7, V3) is true, connecting V4 and
Vo as in Figures 8 (a) and 8 (b), and looking for confirmation or contra-
diction in the results of available experiments. If an inconsistency is found
areBrth(V7, V2) becames false.
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Lemma 3.28 Let W, V be two supernodes. If 6(W) = 6(V') then derive(W, V)
if and only if (W, V) & EQU LT.

Proof. Assuming that W really derives from V; then they are connected
by one edge in T' (Figures 7 and 8 (c¢)). Thus every OM experiment on j,
rep(W), and rep(V), with j € S — (W, V) should give:

djrep(W) > drep(V)rep(W)

Ajrep(v) > rep(V)rep(W)

djrep(vy > djrep(w)-

The opposite can be deduced by absurd assuming that (W, V) ¢ EQ U LT,
and that W does not derive from V: it is always possible to find a species
7,3 € S— (W,V) that makes (W,V) e EQULT . ]

Lemma 3.29 Let W, V be two supernodes. If 6(W) > 6(V') then derive(W, V)
can be tested in O(N) time.

Proof. If (W,V) € EQ U LT then derive(W,V) is false: in fact by absurd
if W derives from V', they are connected by one edge in the tree, and thus
for every species j € S — (W UV) we have:

djrep(w) > djrep(v)

that is (W, V) € EQULT. If (W, V) € EQULT we assume that derive(W, V)
is true, and we connect their roots with an edge as in figure 8 (d): we look
for confirmation or contradiction in the available experiments. Let be L the
length of path P from rep(W) to rep(V):

e if I is an even number then let 2 be the node in the middle of P, and
j be a species in the subtree with root z that does not contain rep(V).
Then derive(W, V') is true if and only if: djrep(v) = djrep(v)-

e if L is an odd number then let (x,y) be the edge in the middle of
P, and j1, jo be two leaves, in the subtree whose root is x that does
not contain rep(V'), and in the subtree whose root is y that does not
contain rep(W) respectively; then derive(W, V) is true if and only if

djyrep(w) > djirep(v) A0d djyrep(w) > djyrep(v)-

Because these tests consist in looking for a path in a tree of O(N) nodes they
can be done in O(N) time (the tree could be totally unbalanced). ]
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Finally we have:
Theorem 3.30 Algorithm 6 has time complexity O(N*)

Proof. From the list of algorithm 6 we can see that at each step the number
of tests using derive() or areBrth() is O(N?), that is as many tests as there
are couple of supernodes. Because each test can be performed in O(N) time
the resulting complexity is O(N?). We now estimate the number of steps in
the worst case, which occurs when the tree searched for is the following:

WAN

3 O
N-1 9
N ©

Figure 9: The tree whose reconstruction needs the greatest number of steps.

In fact at each step (except for the last one) we add only one edge, thus
having O(N) steps. The resulting complexity is O(N*). ]

4 Conclusion

The PP tree model represents a biologically significant generalization of the
usual phylogenetic tree, but similar NP-completeness results arise, when
sequences and partial orders are used. Our results confirm the hardness of
problems related to phylogeny reconstruction.
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