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Abstract We illustrate an algorithm that starting from the image representation of a
strictly bounded-real system computes a minimal balanced state variable, from which
a minimal balanced state realization is readily obtained. The algorithm stems from
an iterative procedure to compute a storage function, based on a technique to solve a
generalization of the Nevanlinna interpolation problem.

Keywords Nevanlinna interpolation problem · Model reduction ·
Balanced state space representation · Quadratic differential forms ·
Two-variable polynomial matrices

1 Introduction

Computing a balanced state representation for a system constitutes the first step of
various model order reduction methods, see for example [5,12–14,16,19,21,22].
These model reduction procedures take as their starting point a given state-space
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232 P. Rapisarda et al.

representation; however, usually in engineering practice a state-space model is not
given a priori, but it is derived from the equations describing the dynamics of the
system. These are usually higher-order differential equations obtained from a tearing-
and-zooming modeling procedure (see [35]), which may include algebraic constraints
among the variables. Instrumental in the computation of a state-space model from such
a higher-order model is the concept of state map introduced in [28] and further studied
in [8,36]. A state map is a polynomial differential operator which, when applied to
the variables of a system, induces a state variable: if w is the system variable, and
X
( d

dt

)

is the state map, then x := X
(

d
dt

)

w is a state variable, to which corresponds,
for example an input-state-output representation

d

dt
x = Ax + Bu

y = Cx + Du, w =
[

u

y

]

.

(1)

When considering behavior representations involving latent variables ℓ besides the
external variables w (see Appendix A), it is possible (see section 7 of [28]) to define
state maps also as acting on the full trajectories (w, ℓ) to produce state variables for

the external behavior associated with the hybrid representation, i.e. x = X
( d

dt

)
[

w

ℓ

]

.

Algorithms for computing a state map from the equations describing a system
have been given in [28], where the problem of determining the matrices involved in a
description (1) is also considered (on this issue see also [7,30]).

In this paper, we illustrate a procedure to compute directly from the higher-order
equations describing a system a balanced state map, defined as one that induces an i/s/o
representation (1) such that the minimal and the maximal solutions of the associated
algebraic Riccati equation are diagonal and the inverse of each other. Our procedure
for the computation of a balanced state map is based on an iterative algorithm for the

spectral factorization of a polynomial matrix, which is of independent interest. This
algorithm is based on recursive computations to solve a Nevanlinna-type interpolation
problem associated with the spectral zeroes of the system and the associated directions
(see [18,23,29] for applications in other contexts). Since there is a one–one corre-
spondence between spectral factorizations and dissipation functions (see section 5 of
[37]), and also a one–one correspondence between dissipation functions and storage
functions, our algorithm leads in a straightforward manner to the computation of a stor-
age function. Exploiting the close relation between storage functions corresponding
to constant supply rates and state variables (see [33]), a balanced state map can then be
obtained using standard linear algebra computations. From this balanced state map, a
balanced state representation (1) is computed in a straightforward manner.

The results presented in this paper arise from previous work in different areas,
most prominently behavioral system theory, quadratic differential forms (QDFs) and
dissipativity theory; to make the paper more readable we have gathered the background
material necessary in order to follow the exposition in an Appendix A, to which we
frequently refer in the rest of the paper; Appendix A also contains a notation section.
We state the problem in Sect. 2; in Sect. 3.1, we introduce the Pick matrix associated
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Algorithms for polynomial spectral factorization 233

with a set of trajectories of a system; in Sect. 3.2, we illustrate the concept of �-unitary
kernel representation. In Sect. 4, we describe our interpolation-based procedure for
spectral factorization; we exploit this result in Sect. 5, where we state an algorithm to
compute a balanced state map.

2 Problem statement

We are given a controllable behavior B (see [25] for a definition) with external variable
w = col(u, y) with u an input and y an output variable with, respectively, u and y
components. B is bounded-real, i.e. half-line dissipative with respect to the supply
rate

Q�(u, y) :=
[

u⊤ y⊤]
[

Iu 0
0 −Iy

]

︸ ︷︷ ︸

=:�

[

u⊤ y⊤] = ‖u‖2 − ‖y‖2. (2)

Note that since the matrix � in (2) is constant, it follows from Proposition 9 of
Appendix A that if Q� is a storage function, then it is a quadratic function of the
state, in the following sense. For every X inducing a state map for B, for example one
acting on the external variables of the system, there exists a real symmetric matrix K

such that Q�(w) =
(

X
(

d
dt

)

w
)⊤

K
(

X
(

d
dt

)

w
)

. Moreover, since the number σ+(�)

of positive eigenvalues of the matrix � in (2) equals the number u = m(B) of input
variables of the system, it follows from Proposition 12 of Appendix A that all the
storage functions are positive, and consequently if X is minimal, then K > 0.

A balanced state map is defined as follows.

Definition 1 Let � be defined as in (2). Let B ∈ L
w
cont be �-dissipative on R

−.
A minimal state map X

(
d
dt

)

induced by X ∈ R
n(B)×•[ξ ] is balanced if the maximal

and minimal storage functions for B can be written as

�+(ζ, η) = X (ζ )⊤	X (η)

�−(ζ, η) = X (ζ )⊤	−1 X (η)

for some diagonal matrix 	 ∈ R
n(B)×n(B).

In Sect. 5, we prove that if X is a balanced state map then the corresponding i/s/o
representation (1) is balanced in the classical sense, i.e. the minimal and the maximal
solutions of the algebraic Riccati equation associated with the cost functional (2) are
diagonal and the inverse of each other.

In the following without loss of generality we work with an observable image repre-
sentation B = imM

( d
dt

)

, induced by a matrix M ∈ R
w×u[ξ ] such that rank M(λ) = u

for all λ ∈ C; moreover, we assume M = col(D, N ), with D ∈ R
u×u[ξ ] nonsingu-

lar, N ∈ R
y×u[ξ ], and N D−1 strictly proper. Note that in this case (see section 7 of

[28]) it can be shown that state maps act on the latent variable ℓ. The problem we
set ourselves to solve in the rest of this paper is to find a minimal balanced state map
X ∈ R

n(B)×u[ξ ] and a corresponding minimal balanced i/s/o representation (1).
To solve this problem, we use an approach based on an algorithm for the spectral

factorization of the polynomial matrix M(−ξ)⊤�M(ξ) associated with the image
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234 P. Rapisarda et al.

representation of B and the supply rate. A fundamental ingredient in our spectral
factorization algorithm is the modeling of vector-exponential time series associated
with the zeroes of det(M(−ξ)⊤�M(ξ)) and the associated directions, a topic which
we devote to the next section.

Remark 1 Several results presented in this paper hold also without any modification
for any supply rate induced by a matrix � = �⊤ such that �2 = I (i.e. � represents
an involution) and m(B) = σ+(�). For simplicity of exposition and because of the
importance of bounded-real systems, however, in the rest of this paper we only consider
this special case.

3 Pick matrices and �-unitary kernel representations

The purpose of this section is to introduce the notion of �-unitary model of a finite
set of vector-exponential trajectories; in order to do this, we need to define the Pick
matrix associated with such a set, and to discuss some of its properties.

3.1 Pick matrices

Pick matrices were introduced in [24] in the context of interpolation problems; they
also arise in many other areas of mathematics and engineering. It is unrealistic to try to
summarize all their applications here; we refer to the monograph [1] for an exhaustive
survey of rational interpolation theory, which is closer to the area considered here.
The definition of Pick matrix is the following.

Definition 2 Let � be as in (2). Let λi ∈ C, Vi ⊂ C
w be linear subspaces, i =

1, . . . ,k. Denote dim(Vi ) =: ni . Let Vi ∈ C
w×ni be full column rank matrices such

that im(Vi ) = Vi , i = 1, . . . ,k. Denote
∑k

i=1 ni =: n.
The Pick matrix associated with {(Vi , λi )}i=1,...,k is the n× n matrix

[

T{(Vi ,λi )}i=1,...,k

]

i, j=1,...,k
:=
[

V ∗
i �V j

λi + λ j

]

i, j=1,...,k

. (3)

Remark 2 Note that the Pick matrix is Hermitian. Note also that since the definition of
the basis matrices Vi for the subspaces Vi is not unique, T{(Vi ,λi )}i=1,...,k

also depends
on the particular choice of the Vi , i = 1, . . . ,k. However, since this nonuniqueness is
of no consequence for our uses of Pick matrices, we will continue to talk about “the”
Pick matrix, and denote it as T{(Vi ,λi )}i=1,...,k

.

Pick matrices arise also when considering trajectories of a behavior; this point of
view is especially important in this paper, and we now elaborate on it in detail. In order
to do this we must first introduce the notion of �-set of a para-Hermitian polynomial

matrix, i.e. a matrix Ŵ ∈ R
w×w[ξ ] such that Ŵ(−ξ)⊤ = Ŵ(ξ).

Definition 3 Let Ŵ ∈ R
w×w[ξ ] be para-Hermitian and such that det Ŵ(iω) �= 0 for all

ω ∈ R. A subset S ⊂ C is a �-set of Ŵ if:
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Algorithms for polynomial spectral factorization 235

1. there exists a factorization c · p(−ξ) · p(ξ) of det(Ŵ(ξ)) with c ∈ R and p ∈ R[ξ ]
such that the set of roots (counting multiplicities) of p equals S;

2. {λ ∈ S} �⇒ {−λ /∈ S}.

Remark 3 Notions analogous to that of �-set appear in the work of several authors
concerning (J )-spectral factorization, the mixed solutions of the algebraic Riccati
equation, etc. It is impossible to quote all of the relevant references here; we refer to
the work of Gohberg, Lancaster, and their collaborators, and to that of Callier, Dym,
and Faibusovich.

The determinant of a para-Hermitian matrix has always even degree, say 2n; it follows
from Definition 3 that every �-set has exactly n elements. The number of distinct
elements in a given �-set S is called the effective cardinality of S. Observe that if S

is a �-set, then also the set

S̄ := {λ ∈ C | det(Ŵ(λ)) = 0 and λ �∈ S}

is a �-set; we call S̄ the complementary �-set of S.
The following well-known result connects �-sets of a para-Hermitian matrix and

spectral factorizations.

Proposition 1 LetŴ ∈ R
w×w[ξ ] be a para-Hermitian matrix such that det(Ŵ(iω)) >0

for all ω ∈ R. Let S be a �-set for Ŵ. Then there exists F ∈ R
w×w[ξ ] such that

Ŵ(ξ) = F(−ξ)⊤F(ξ) and the set of roots of det(F) equals S.

Proof See [3]. ⊓⊔

In the following, a matrix F as in Proposition 1 will be called a S-spectral factor of Ŵ.
The para-Hermitian matrices Ŵ we work with in this paper arise from an observable

image representation of a behavior B induced by a matrix M ∈ R
w×m[ξ ], and the

matrix � in (2), as Ŵ(ξ) = M(−ξ)⊤�M(ξ). In the following, for simplicity of
exposition we only consider semisimple matrices Ŵ, defined as follows.

Definition 4 Let Ŵ ∈ R
w×w[ξ ]. Ŵ is semisimple if for every λ ∈ C, the multiplicity

of λ as a root of det(Ŵ) equals the dimension of the subspace ker Ŵ(λ) of C
w.

Thus, Ŵ is semisimple if the algebraic multiplicity of λ ∈ C, i.e. its multiplicity
as a zero of det(Ŵ), equals its geometric multiplicity, i.e. the dimension of ker Ŵ(λ).
Note that the property of semisimplicity is generic among para-Hermitian matrices.

In the semisimple case, the number of elements in every �-set for M(−ξ)⊤�M(ξ)

is directly related to the McMillan degree of B = im M
( d

dt

)

.

Proposition 2 Let B ∈ L
w
cont be strictly �-dissipative, with � defined as in (2).

Let M ∈ R
w×m(B)[ξ ] induce an observable image representation of B. Assume

that M(−ξ)⊤�M(ξ) is semisimple. Then every �-set has n(B) elements, counting

multiplicities.

Proof By Proposition 1 conclude that corresponding to each �-set S of M(−ξ)⊤�

M(ξ) there exists a factorization M(−ξ)⊤�M(ξ) = F(−ξ)⊤F(ξ) where S is the set
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236 P. Rapisarda et al.

consisting of all roots of det(F). Conclude from this that the cardinality of S equals
deg(det(M(−ξ)⊤�M(ξ)))

2 . Once we prove that deg(det(M(−ξ)⊤�M(ξ))) = 2n(B) the
claim of the Proposition follows. In order to do this, recall that B is strictly dissipative,
and consequently there exists ǫ > 0 such that for every ω ∈ R

M(−iω)⊤�M(iω) ≥ ǫM(−iω)⊤M(iω). (4)

Now let D ∈ R
m(B)×m(B)[ξ ] be a nonsingular submatrix of M of maximal determi-

nantal degree. Multiply the inequality (4) by D(−iω)−⊤ on the left and by D(iω)−1

on the right, obtaining

D(−iω)−⊤M(−iω)⊤�M(iω)D(iω)−1 ≥ ǫD(−iω)−⊤M(−iω)⊤M(iω)D(iω)−1.

Take the limit for ω → ∞, and observe that since D is a maximal determinantal
degree submatrix of M , limω→∞ M(iω)D(iω)−1 has full column rank, and that con-
sequently ǫD(−iω)−⊤M(−iω)⊤M(iω)D(iω)−1 is nonsingular. Conclude from this
that D(−iω)−⊤M(−iω)⊤�M(iω)D(iω)−1 is also nonsingular. It is easily seen that
this implies that D(−ξ)−⊤M(−ξ)⊤�M(ξ)D(ξ)−1 has a proper inverse. It follows
that deg(det(M(−ξ)⊤�M(ξ))) equals 2 deg(det(D)). Since D is a maximal determi-
nantal degree submatrix of M , it follows that deg(det(D)) = n(B). This proves the
claim. ⊓⊔

Now let � be as in (2), and let B = im M
(

d
dt

)

be an observable image repre-

sentation of B, with M ∈ R
w×m(B)[ξ ]. Assume that Ŵ(ξ) := M(−ξ)⊤�M(ξ) is

semisimple and that det(Ŵ) has no roots on the imaginary axis. Let S = {λi }i=1,...,n

be a �-set of Ŵ with effective cardinality k, and denote with λ1, . . . , λk the distinct
elements of S. Denote with ni the multiplicity of λi as a root of det(Ŵ). Let Vi ∈
C
m×ni , i = 1, . . . ,k, be full column rank matrices such that ker(Ŵ(λi )) = im(Vi ).

Then we can associate a Pick matrix to the �-set S and the subspaces im M(λi )Vi as

T{(im M(λi )Vi ,λi )}i=1,...,k
:=
[

V ∗
i M(λi )

⊤�M(λ j )V j

λi + λ j

]

i, j=1,...,k

.

It follows from Proposition 2 that the Pick matrix defined in this way has dimension
n(B) × n(B). Similar considerations as those made in Remark 2 hold; we will not
repeat them.

Remark 4 Assume that M(−ξ)⊤�M(ξ) has no singularities on the imaginary axis,
and consider the special important case of the two �-sets consisting of all open left
half-plane, respectively, open right half-plane zeroes of det M(−ξ)⊤�M(ξ). Then the
Pick matrix is the Gramian associated with the indefinite inner product 〈w1, w2〉+,� :=
∫ +∞

0 w1(t)
⊤�w2(t)dt , respectively, 〈w1, w2〉−,� :=

∫ 0
−∞ w1(t)

⊤�w2(t)dt on the
subspaces spanned by the trajectories in

⋃

i=1,...,k im M(λi )Vi expλi
, where if V ⊂ C

w

is a linear subspace and λ ∈ C, we define V expλ := {v expλ | v ∈ V}.
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Algorithms for polynomial spectral factorization 237

3.2 �-unitary kernel representations

Let � be as in (2); R ∈ C
w×w[ξ ] is �-unitary if there exists p ∈ C[ξ ], p �= 0, such

that

R�R∼ = R∼�R = pp∼�. (5)

Now let Vi ⊂ C
w be linear subspaces, Vi ∈ C

w be full column rank matrices such
that im(Vi ) = Vi , and λi be distinct complex numbers not lying on the imaginary axis,
i = 1, . . . ,k. Let B ⊂ C∞(R, C

w) be the autonomous complex behavior

B := span

⎛

⎝

⋃

i=1,...,k

Vi expλi
∪ V

⊥�

i exp−λi

⎞

⎠, (6)

where Vi expλi
:= {v expλi

| v ∈ Vi }, and V
⊥�

i := {v ∈ C
w | v∗�v′ = 0for all v′ ∈

Vi }. The following result shows that B has a �-unitary kernel representation.

Theorem 1 Assume that the Pick matrix T :=
[

V ∗
i �V j

λi +λ j

]

i, j=1,...,k
is nonsingular. Then

B defined in (6) admits a �-unitary kernel representation.

Proof We prove the claim by induction on i .
For i = 1, consider the w× w polynomial matrix with complex coefficients

R1(ξ) := (ξ + λ1)Iw − V1

(
V ∗

1 �V1

λ1 + λ1

)−1

V ∗
1 �. (7)

It is easily verified that ker(R1(
d
dt

)) ⊇ V1 expλ1
∪V

⊥
1 exp−λ1

. Since
V ∗

1 �V1

λ1+λ1
is nonsin-

gular, it holds that dim(V1) + dim(V
⊥�

1 ) = w and consequently

dim(span(V1 expλ1
∪ V

⊥
1 exp−λ1

)) = w.

Since deg(det(R1)) = w, it follows that ker(R1(
d
dt

)) is a kernel representation for

span (V1 expλ1
∪ V

⊥
1 exp−λ1

). It is a matter of straightforward verification to see that
R1 is �-unitary. This proves the case i = 1.

We now assume that the claim holds for i ≤ k − 1; we prove it for i = k. We
first show that the Pick matrix associated with �, the subspaces im R1(λi )Vi , and the
numbers λi , 2 ≤ i ≤ k, is nonsingular. Observe first that

V ′
i := R1(λi )Vi = (λi + λ1)Vi − V1

(

TV1,λ1

)−1
V ⊤

1 �Vi
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238 P. Rapisarda et al.

for i = 2, . . . ,k. In order to prove that the Pick matrix T ′ associated with im R1(λi )Vi ,
and the λi s, 2 ≤ i ≤ k, is nonsingular, first verify that the (i −1, j −1)-block of T ′ is

V ′T
i �V ′

j

λi + λ̄i

=
(λ1 + λ̄i )(λ j + λ1)

λ j + λ̄i

V T
i �V j − V T

i �V1
(

T{(V1,λ1)}
)−1

V ⊤
1 �V j

for i, j = 1, . . . ,k. Now write T =
[

T{(V1,λ1)} b⊤

b T ′′

]

, with b := col

(

V ⊤
i �V1

λi +λ1

)

. Let

	 := diag(λ̄i + λ1)i=2,...,k. Observe that

[
Idim(V1) 0

−	b
(

T{(V1,λ1)}
)−1

	

]

T

[

Idim(V1) −
(

T{(V1,λ1)}
)−1

b⊤	

0 	

]

=
[

T{(V1,λ1)} 0

0 	T ′′	 − 	b
(

T{(V1,λ1)}
)−1

b⊤	

]

.

It is a matter of straightforward verification to see that the (i, j)th block of 	T ′′	 −
	b

(

T{(V1,λ1)}
)−1

b⊤	 equals the (i −1, j −1)-block of T ′, 2 ≤ i, j ≤ k. This implies
that the matrix T ′ is nonsingular, since T is nonsingular by assumption.

Conclude from the induction hypothesis and from the nonsingularity of T ′′ that
there exists a �-unitary kernel representation for

span

⎛

⎝

⋃

2≤i≤k
V ′

i expλi
∪V

′⊥�

i exp−λi

⎞

⎠ .

Denote this kernel representation with R′. It is immediate to verify that a kernel repre-
sentation for the linear subspace span(

⋃

1≤i≤k Vi expλi
∪V

⊥�

i exp−λi
) of C∞(R, C

w)

is given by R′ R1. Observe that the �-unitariness of R1 and of R′ implies that R1 R′ is
also �-unitary. This concludes the proof of the claim. ⊓⊔

In general, the polynomial matrix R inducing a kernel representation of B defined
in (6) has complex coefficients; however, if the set S := {λi }i=1,...,k and the associated
subspaces Vi and basis matrices Vi are such that

[λi ∈ S] �⇒
[

λi ∈ S
]

[Vi is associated with λi ] �⇒
[

Vi is associated with λi

]

,
(8)

then there exists a kernel representation of B with real coefficients, as we presently
show; consequently, in that case p in (5) has real coefficients. Note for future reference
that (8) holds if S is a �-set of a para-Hermitian matrix Ŵ(ξ) = M(−ξ)⊤�M(ξ)

with M ∈ R
w×m[ξ ]; indeed, then det Ŵ(ξ) is a polynomial with real coefficients

and consequently if λ is a zero, then also λ is; moreover, the associated directions
satisfy the second relation in (8) since im M(λi ) = im M(λi ) = im M(λi ) and
ker Ŵ(λi )) = ker Ŵ(λi ) = ker Ŵ(λi ).
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Proposition 3 LetVi ⊂ C
w be linear subspaces, Vi ∈ C

w be full column rank matrices

such that im(Vi ) = Vi , and λi be distinct complex numbers not lying on the imaginary

axis, i = 1, . . . ,k. Assume that properties (8) hold for {(Vi , λi )}i=1,...,k, and that the

Pick matrix is nonsingular. Then the behavior B defined in (6) has a kernel repre-

sentation induced by a polynomial matrix R with real coefficients. Consequently, the

polynomial p in (5) has real coefficients.

Proof We examine the case of two pairs (V, λ) and (V, λ), with associated basis
matrices V and V , respectively; the general case follows in a straightforward manner.

We construct a �-unitary kernel representation for B as in the proof of Theorem 1,

by first constructing a kernel representation for V expλ and its orthogonal V
⊥� exp−λ,

and then one for V expλ and its orthogonal V⊥� exp−λ, as in (7). Denote with R

the polynomial matrix inducing the kernel representation computed in this way, and
with R the matrix obtained from R by conjugating its coefficients. We now show that
R = R.

Observe that R(λ)V = 0 since ker R
( d

dt

)

⊃ V expλ; and that R(λ)V = 0 since

ker R
( d

dt

)

⊃ V expλ; analogous results hold for the orthogonal trajectories. More-
over, it can be verified by taking conjugates on the left of the double implication
arrows that [R(λ)V = 0] ⇐⇒

[

R(λ)V = 0
]

,
[

R(λ)V = 0
]

⇐⇒
[

R(λ)V = 0
]

,

and moreover
[

R(−λ)V ⊥� = 0
]

⇐⇒
[

R(−λ)V
⊥� = 0

]

,
[

R(−λ)V
⊥� = 0

]

⇐⇒
[

R(−λ)V ⊥� = 0
]

. These implications show that also ker R
(

d
dt

)

contains V expλ,

V expλ, and their orthogonals. Since deg(det(R)) = deg(det(R)), we conclude that
ker R

(
d
dt

)

= ker R
(

d
dt

)

. Consequently, there exists a unimodular U ∈ C
w×w[ξ ] such

that R = U R. We now prove that U = Iw. From (7) we see that the highest order
term of R is ξ2 Iw; equating the two highest order terms on both sides of R = U R

yields that U is the identity. The claim on p follows straightforwardly. This proves
the claim. ⊓⊔

The concept of �-unitary kernel representation and the constructive proof of
Theorem 1 play an important role in our algorithm for spectral factorization which we
present in the next section.

4 An iterative algorithm for S-spectral factorization

In this section, we illustrate an iterative procedure for the computation of polynomial
spectral factors with zeroes in a pre-specified �-set S (in the following “S-spectral
factorization”). Our procedure is germane to that for J -spectral factorization presented
in [23], which in turn is related to the work of Georgiou and collaborators (see [9–11])
in the context of rational spectral factorization and the solution to the Riccati equation;
see also [2] for an interpolation approach to spectral factorization. The algorithm pre-
sented only involves operations on polynomial matrices, and does not require rational
matrices or realizations of these. It generates a polynomial spectral factor in finitely
many steps:
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Theorem 2 Let � be as in (2), and B ∈ L
w
cont be strictly �-dissipative. Let M =

col(D, N ) ∈ R
w×u[ξ ] induce an observable image representation of B. Assume that

M(−ξ)⊤�M(ξ) is semisimple, and that N D−1 is strictly proper. Let S be a �-set of

M(−ξ)⊤�M(ξ) with effective cardinalityk; denote with λi , i = 1, . . . ,k, the distinct

elements of S. Assume that the Pick matrix
[

M(λi )
⊤�M(λ j )

λi +λ j

]

i, j=1,...,k
is nonsingular.

Define K0(ξ) := M(ξ), and consider the following recursion for i = 1, . . . ,k:

1. Vi := full column-rank matrix such that im(Vi ) = im(Ki−1(λi ));

2. Ri (ξ) := (ξ + λi )Iw − Vi

(
V ∗

i �Vi

λi +λi

)−1
V ∗

i �;

3. Ki (ξ) := Ri (ξ)Ki−1(ξ)

ξ−λi
;

Then:

1.
V ∗

i �Vi

λi +λi
is nonsingular for i = 1, . . . ,k;

2. Ki (ξ) is a polynomial matrix for i = 0, . . . ,k;

3. Ki (−ξ)∗�Ki (ξ) = Ki−1(−ξ)∗�Ki−1(ξ) for i = 1, . . . ,k;

4. Kk(ξ) = col(H(ξ), 0), with H ∈ R
u×u[ξ ] such that M(−ξ)⊤�M(ξ) =

H(−ξ)⊤H(ξ) and the set of zeroes of det(H) is the complementary �-set S̄.

Observe that the recursions 1–3 in the statement of Theorem 2 involve matrices
with complex coefficients, since in general the S-spectral zeroes λi , i = 1, . . . ,k

have nonzero imaginary part, and consequently the matrices Ri and Ki in general have
complex coefficients. However, the S-spectral factor H obtained after k iterations is
a polynomial matrix with real coefficients.

Proof It follows from Theorem 1 that Ri (ξ) induces a �-unitary kernel representation
for span (Vi expλi

∪ V
⊥�

i exp−λi
).

1. The nonsingularity of the Pick matrix
V ∗

i �Vi

λi +λi
at the i th stage follows from the same

argument used in Theorem 1 for proving that the Pick matrix associated with �

and {(im R1(λi )Vi , λi )}i=2,...,k is nonsingular.
2. In order to prove that Ki , i = 0, . . . ,k, is polynomial, we use induction. The claim

is true for i = 0. Now assume that the claim is true for i , and observe that since at
the i th step ker Ri (λi ) = im Ki−1(λi ), (ξ −λi ) must be a factor of Ri (ξ)Ki−1(ξ).

This implies that the matrix Ri (ξ)Ki−1(ξ)

ξ−λi
= Ki (ξ) is polynomial.

3. Using (2) in this Theorem and the �-unitariness of Ri , it is easy to prove

that Ki (−ξ)∗�Ki (ξ) = Ki−1(−ξ)∗

−ξ−λi
Ri (−ξ)∗�Ri (ξ)

Ki−1(ξ)∗

ξ−λi
= Ki−1(−ξ)∗�

Ki−1(ξ).
4. The proof of the last statement is based on the following lemma, which uses the

notion of greatest right divisor (GRD) of a polynomial matrix. Let K ∈ C
•×•[ξ ]

be a full column rank polynomial matrix. Then F is a GRD of K if there exists
K ′ ∈ C

•×•[ξ ] such that K = K ′F , and moreover whenever F ′ ∈ C
•×•[ξ ] is such

that K = K ′′F ′ for some K ′′ ∈ C
•×•[ξ ], then there exists V ∈ C

•×•[ξ ] such that
F = V F ′. All GRD are nonsingular, and they differ by unimodular left factors
(see sect. 6.3 of [17]). ⊓⊔
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Lemma 1 Partition Ki := col(Gi , Fi ), i = 1, . . . ,k, with Gi ∈ C
u×u[ξ ] and Fi ∈

C
y×u[ξ ]. Then:

(i) Gi is nonsingular for i = 1, . . . ,k.

(ii) Fi G
−1
i is strictly proper for i = 1, . . . ,k.

(iii) deg(det(Gi )) = deg(det(Gi+1)) for i = 0, . . . ,k− 1.

(iv) Denote γi := dim ker M(λi )
∗�M(−λi ). Let U−i ∈ C

(u+y)×γi , i = 1, . . . ,k

with full column rank be such that im U−i = ker M(λi )
∗�M(−λi ). Then

Ki (−λ j )U− j = 0 for all j ≤ i .

(v) If Ki is partitioned as Ki =: col(G ′
i , F ′

i )Ei , with col(G ′
i , F ′

i ) ∈ R
(u+y)×u[ξ ]

right prime, and Ei ∈ R
u×u[ξ ]a greatest right divisor of Ki , then deg(det(Ei )) =

γ1 + · · · + γi and deg(det(G ′
i )) = n(B) − deg(det(Ei )) for i = 0, . . . ,k.

(vi) Let n(Ki ) be the McMillan degree of im Ki

(
d
dt

)

. Then,

n(Ki ) = deg(det(G ′
i )) = n(B) − (γ1 + · · · + γi ) i = 1, . . . ,k.

Proof (i) We prove the claim by induction. The statement is true by assumption for
j = 0. Assume it true for j < i ; we prove it for j = i . Partition the kernel represen-
tation at the i th iteration compatibly with the matrix � in (2) as

Ri :=
[

D∼
i N∼

i

Qi −Pi

]

. (9)

Gi can be expressed in terms of the block-elements of Ri and Ki−1 as

Gi =
D∼

i Gi−1 + N∼
i Fi−1

ξ − λi

= D∼
i [I + (Ni D−1

i )∼Fi−1G−1
i−1]Gi−1

1

ξ − λi

.

(10)

Observe that D∼
i is nonsingular, and that Gi−1 is nonsingular by inductive assumption.

We now prove that [I + (Ni D−1
i )∼Fi−1G−1

i−1] is also nonsingular. Note that from the

�-unitariness of Ri it follows that ‖Ni D−1
i ‖∞ < 1; from statement (3) of Theo-

rem 2 and the strict-dissipativeness of B it also follows that ‖Fi−1G−1
i−1‖∞ < 1.

Consequently, I +(Ni D−1
i )∼Fi−1G−1

i−1 is nonsingular on the imaginary axis and con-
sequently also as a polynomial matrix. Conclude from (10) that Gi is also nonsingular.

(ii) We prove the claim by induction. The statement is true by assumption for j = 0.
Assume that it true for j < i ; we prove it for j = i . Recall that

Ri

[

Gi−1

Fi−1

]

=
[

D∼
i N∼

i

Qi −Pi

] [

Gi−1

Fi−1

]

=
[

D∼
i Gi−1 + N∼

i Fi−1

Qi Gi−1 − Pi Fi−1

]

From the expression for Ri in Step 2 of the recursion of the Theorem it follows that
Di and Pi are nonsingular, and that their determinant has degree u, respectively, y.
Now observe that Fi G

−1
i = (Qi Gi−1 − Pi Fi−1)(D∼

i Gi−1 + N∼
i Fi−1)

−1. Write
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(Qi Gi−1 − Pi Fi−1)(D∼
i Gi−1 + N∼

i Fi−1)
−1

= Pi (P−1
i Qi − Fi−1G−1

i−1)Gi−1G−1
i−1(I + (Ni D−1

i )∼Fi−1G−1
i−1)

−1(D∼
i )−1

= Pi (P−1
i Qi − Fi−1G−1

i−1)(I + (Ni D−1
i )∼Fi−1G−1

i−1)
−1(D∼

i )−1.

D∼
i is column proper, and consequently (D∼)−1 is strictly proper; moreover, (I +

(Ni D−1
i )∼Fi−1G−1

i−1)
−1 is bi-proper. Conclude that

(I + (Ni D−1
i )∼Fi−1G−1

i−1)
−1(D∼

i )−1

is a strictly proper rational function. It follows from the expression for Ri that P−1
i Qi is

strictly proper; moreover, Fi−1G−1
i−1 is strictly proper by induction hypothesis. Conse-

quently, P−1
i Qi − Fi−1G−1

i−1 is a matrix of strictly proper rational functions. Conclude

that (P−1
i Qi − Fi−1G−1

i−1)(I +(Ni D−1
i )∼Fi−1G−1

i−1)
−1(D∼

i )−1 is also strictly proper.
Since every entry of Pi (ξ) has degree at most one, the claim is proved.

(iii) From (10) it follows that det(Gi )
det(Gi−1)

= det(D∼
i )

det((ξ−λi )Iu)
det([I + (Ni D−1

i )∼Fi−1

G−1
i−1]). It is easy to verify that deg(det(D∼

i )) = u = deg(det((ξ + λi )Iu), and

consequently
det(D∼

i−1)

det((ξ−λi )Iu)
is bi-proper. The same argument used in proving (i i) yields

that I +(Ni D−1
i )∼Fi−1G−1

i−1 is a matrix of bi-proper rational functions. Conclude that
det(Gi )

det(Gi−1)
is bi-proper. This concludes the proof of deg(det(Gi )) = deg(det(Gi−1)).

(iv) We proceed by induction. For i = 1, since im U−1 = ker M(λ1)
∗�M(−λ1),

and since M(λ1)
∗�M(−λ1) is Hermitian, it follows that U∗

−1 M(−λ1)
∗�M(λ1) = 0.

Consequently, im(M(−λ1)U−1) ⊆ (imV1)
⊥� . Now recall that kerR1

(
d
dt

)

contains

(imV1)
⊥� exp−λ1

, and consequently, K1(−λ1)U−1 = 1
−λ1−λ1

R1(−λ1)M(−λ1)U−1

= 0. Next, we prove the induction step. Again note that U∗
−i M(−λi )

∗�M(λi ) = 0.

Use statement (3) to obtain U∗
−i M(−λi )

∗�M(λi ) = U∗
−i Ki−1(−λi )

∗�Ki−1(λi ) =
0, from which conclude im(Ki−1(−λi )U−i ) ⊆ (imVi )

⊥� . Recall that ker Ri−1
(

d
dt

)

contains (imVi )
⊥� exp−λi

; consequently, Ki (−λi )U−i = 1
−λi −λi

Ri (−λi )Ki−1(−λi )

U−i = 0.
(v) The statement deg(det(Ei )) = γ1+· · ·+γi is an immediate consequence of (iv),

of the observability of M , and of the fact that the only zeroes of det(Ri ) are in λi and
−λi . In order to prove deg(det(G ′

i )) = n − deg(det(Ei )), we use item (iii) in this
Lemma to conclude that n(B) = deg det(G0) = deg(det(Gi )) = deg(det(G ′

i Ei )) =
deg(det(G ′

i )) + deg(det(Ei )). This yields the claim (v).
(vi) Follows from Propositions 3.5.1 and 3.3.5 in [27]. ⊓⊔
Statement (iv) of Lemma 1 has two important consequences. First, γi elements

of the complementary �-set S̄ “accumulate” at every iteration as singularities of every
greatest right factor of Ki . Secondly, that deg(det(G ′

k)) = 0, i.e. that G ′
k is unimodular.

Since FkG−1
k is strictly proper by item (i) of Lemma 1, it follows that Fk = 0y×u. This

proves that Kk = col(H, 0), and together with Ki (−ξ)∗�Ki (ξ) = M(−ξ)∗�M(ξ)

for i = 1, . . . ,k, implies that Kk(−ξ)∗�Kk(ξ) = Gk(−ξ)∗Gk(ξ) = M(−ξ)∗�
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M(ξ). Since Gk = G ′
k Ek with G ′

k unimodular and Ek having all its zeroes in S̄, Gk

is a S̄-spectral factor; we now show it is a real polynomial matrix. Now col(Gk, 0) =
Kk(ξ) = Rk(ξ) · · · R1(ξ)M(ξ) =: R(ξ)M(ξ), with R a kernel representation of the
trajectories in the span of the subspaces imM(λi ) and their orthogonals, i = 1, . . . ,k.
Argue as in Proposition 3 that there exists a kernel representation for these trajectories
induced by a real polynomial matrix R′. R differs from R′ by a unimodular left factor,
which again using the argument of Proposition 3 is shown to be the identity. ⊓⊔

5 An off-line algorithm for the computation of balanced state maps

It follows from the one–one correspondence between storage functions and dissipation
rates stated in Proposition 8 of Appendix A that once a S̄-spectral factor H is obtained
following the iterations 1–3 in Theorem 2, the storage function corresponding to S̄ (in
the following called the S-storage function) can be computed as:

�S̄(ζ, η) =
M(ζ )⊤�M(η) − H(ζ )⊤H(η)

ζ + η
. (11)

We now show how to compute a minimal diagonalizing state map for �S(ζ, η), i.e. a

polynomial matrix X ∈ R
n(B)×u[ξ ] such that

1. X
( d

dt

)

is a minimal state map acting on the latent variable of B = im M
( d

dt

)

;

2. �S(ζ, η) = X (ζ )⊤ X (η).

Note that minimal diagonalizing state maps are not unique: if X (ξ) is one such matrix
then T X (ξ) also is, for every unitary matrix T .

Computing a minimal diagonalizing state map can be accomplished by factorization
of the coefficient matrix of �S̄(ζ, η), as the following result shows.

Proposition 4 Let B = im M
(

d
dt

)

be �-strictly dissipative on R
−, with � defined

as in (2); assume M ∈ R
w×u[ξ ] observable. Let S be any �-set for M(−ξ)⊤�M(ξ).

Then:

1. The coefficient matrix mat(�S) of �S has rank n(B), the McMillan degree of B;

2. Let X̃ ∈ R
n(B)×∞ be such that mat(�S) = X̃⊤ X̃ ; then the polynomial matrix

X (ξ) := X̃col(Iu, Iuξ, . . .) induces a minimal diagonalizing state map for B.

Proof (1) It follows from Proposition 9 of Appendix A that for every state map X ∈
R

•×u[ξ ] there exists K = K ⊤ ∈ R
•×• such that �S(ζ, η) = X (ζ )⊤K X (η). Now let

X be minimal, and use the fact that in the bounded real case σ+(�) = m(B) = u and
Proposition 12 to conclude that K > 0. From �S(ζ, η) = X (ζ )⊤K X (η) now follows

that mat(�S) = X̃⊤K X̃ , with X̃ ∈ R
n(B)×∞ the coefficient matrix of X (ξ). From

this factorization and the positive-definiteness of K the claim follows immediately.
(2) Let X ′ ∈ R

n(B)×u[ξ ] be a minimal state map, and write �S(ζ, η) = X ′(ζ )⊤

K X ′(η) for some K = K ⊤ ∈ R
n(B)×n(B). Evidently, X ′′(ξ) := K

1
2 X ′(ξ) is such that

�S(ζ, η) = X ′′(ζ )⊤ X ′′(η), and consequently mat(�S) = X̃ ′′⊤ X̃ ′′ = X̃⊤ X̃ , with X̃ ′′,
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X̃ the coefficient matrices of X ′′ and X , respectively. Any two factorizations X̃ ′′⊤ X̃ ′′ =
X̃⊤ X̃ of mat(�S) differ by a unitary matrix, i.e. there exists T ∈ R

n(B)×n(B) such

that T ⊤T = In(B) and X̃ = T X̃ ′′. This implies the minimality of X (ξ); that X (ξ) is
diagonalizing is immediate. ⊓⊔

Example 1 Consider the system with one input (m(B) = u = 1) and 2 outputs
described in observable image form by

M(ξ) =

⎡

⎢
⎢
⎣

14
3 + 23

3 ξ + ξ2

2
√

2
3 (4 + ξ)

2
√

2
3 (−2 + 7ξ)

⎤

⎥
⎥
⎦

;

im M
(

d
dt

)

is strictly R−-dissipative with respect to the supply rate induced by � =
⎡

⎣

1 0 0
0 −1 0
0 0 −1

⎤

⎦. The spectral zeroes of M(−ξ)�M(ξ) = 4 − 5ξ2 + ξ4 in the right

half-plane are λ1 = 1 and λ2 = 2. A spectral factorization of M(−ξ)�M(ξ) can be
computed directly as M(−ξ)�M(ξ) = (ξ + 1)(ξ + 2)(ξ − 1)(ξ − 2). Let the �-set
S := {1,−2}; then the storage function for S is

�S(ζ, η) =
2

3
(64 + 10η + 10ζ + 13ηζ ) =

[

1 ζ ζ 2 . . .
]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

128
3

20
3 0 . . .

20
3

26
3 0 . . .

0 0 0 . . .

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1
η

η2

...

⎤

⎥
⎥
⎥
⎦

.

It is readily verified that the coefficient matrix mat(�S) can be factored as

⎡

⎢
⎢
⎢
⎢
⎢
⎣

128
3

20
3 0 . . .

20
3

26
3 0 . . .

0 0 0 . . .

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

8
√

2
3

5
2
√

6
0 . . .

0

√

61
2

2 0 . . .

⎤

⎥
⎦

⊤⎡

⎢
⎣

8
√

2
3

5
2
√

6
0 . . .

0

√

61
2

2 0 . . .

⎤

⎥
⎦ .

mat(�S) has rank 2, equal to the McMillan degree of B. Now define

X (ξ) :=

⎡

⎢
⎣

8
√

2
3

5
2
√

6
0 . . .

0

√

61
2

2 0 . . .

⎤

⎥
⎦

⎡

⎢
⎢
⎣

1

ξ

...

⎤

⎥
⎥
⎦

=

⎡

⎣

32+5ξ

2
√

6

1
2

√

61
2 ξ

⎤

⎦ ;

it is readily verified that �S(ζ, η) = X (ζ )⊤ X (η). ⊓⊔
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It follows from statement (2) of Proposition 4 that every symmetric factorization
of the coefficient matrix of (11) yields a minimal diagonalizing state map X . We now
show how to compute from such an X a balanced state map. In order to do this, we
need to introduce the definition of V -matrix.

Definition 5 Let M ∈ R
w×u[ξ ] be such that rank M(λ) = u for all λ ∈ C. Let

� = �⊤ be nonsingular. Assume that M(−ξ)⊤�M(ξ) is semisimple and that B =
im M( d

dt
) is strictly �-dissipative. Let X ∈ R

n(B)×m[ξ ] be a minimal state map for

B acting on the latent variable. Let S = {λi }i=1,...,n be a �-set of M(−ξ)⊤�M(ξ);
denote its effective cardinality with k. Let Vi ∈ C

w×ni , i = 1, . . . ,k, be full column
rank matrices such that ker M(−λi )

⊤�M(λi ) = im Vi . The V -matrix associated with
S and X is the n(B) × n(B) matrix

V :=
[

X (λ1)V1 . . . X (λk)Vk
]

.

It can be shown (see Theorem 7.1 of of [32]) that the V -matrix associated with S and
X is nonsingular.

The following result relates storage functions with Pick matrices and V -matrices.

Proposition 5 Let M ∈ R
w×u[ξ ] be such that rank M(λ) = u for all λ ∈ C.

Let � = �⊤ be nonsingular. Assume that M(−ξ)⊤�M(ξ) is semisimple and that

B = im M( d
dt

) is strictly �-dissipative. Let X ∈ R
n(B)×m[ξ ] be a minimal state

map for B acting on the latent variable. Let K ∈ R
n(B)×n(B) be symmetric, and let

S = {λi }i=1,...,n be a �-set for M(−ξ)⊤�M(ξ); denote its effective cardinality

with k. Let Vi ∈ C
w×ni , i = 1, . . . ,k, be full column rank matrices such that

ker M(−λi )
⊤�M(λi ) = im Vi . The following two statements are equivalent:

1. X⊤(ζ )K X (η) is the storage function of M(ζ )⊤�M(η) corresponding to the

dissipation rate F(ζ )⊤F(η), with F an S-spectral factor of M(−ξ)⊤�M(ξ);

2. K = (V ∗)−1T{(im Vi ,λi )}i=1,...,k
V −1, with V the V -matrix of (S, X) and with

T{(im Vi ,λi )}i=1,...,k
the Pick matrix of {(im Vi , λi )}i=1,...,k.

Proof See Theorem 7.1 of [32]. ⊓⊔

If u = m(B) = σ+(�), as happens for � defined in (2), then Proposition 12 of
Appendix A and Proposition 5 imply the following result.

Proposition 6 Let B = im M
( d

dt

)

, with M observable, and � = �⊤ ∈ R
w×w

be nonsingular. Assume that B is strictly �-dissipative, and that m(B) = σ+(�).

Assume that M(−ξ)⊤�M(ξ) is semisimple. Let S be any �-set. Then the Pick matrix

associated with S is positive definite.

In the rest of this section we work with the �-set consisting of all right half-plane
zeroes of M(−ξ)⊤�M(ξ):

S+ := {λ ∈ C+ | det M(−λ)�M(λ) = 0}.

The complementary �-set S+ consists of all left half-plane zeroes of det M(−ξ)⊤�M

(ξ); we denote it with S−. It follows from Proposition 11 of Appendix A that with this
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choice of spectral zeroes, the storage function �S+
equals �−, the smallest storage

function for B with respect to the supply rate �. Now consider the following algorithm.

The following result holds.

Proposition 7 The state map Xb returned by Algorithm 1 is balanced in the

sense of Definition 1; moreover, �−(ζ, η) = Xb(ζ )⊤S
− 1

2
3 Xb(η) and �+(ζ, η) =

Xb(ζ )⊤S
1
2
3 Xb(η).

Proof X is a minimal diagonalizing state map for the smallest storage function; con-
sequently the smallest and largest storage functions for B with respect to � can be
written as X (ζ )⊤ InX (η) and X (ζ )⊤K+ X (η), respectively (see Proposition 6), where
K+ is some symmetric matrix. Steps 4–6 of Algorithm 1 compute a diagonalizing
congruence transformation matrix T between K− = In and K+ following the algo-
rithm of [34]. Since T X (ξ) is also a minimal state map, the claim of the Proposition
follows. ⊓⊔

We now discuss how to obtain a realization from a balanced state map, and
moreover we also show that this realization is balanced in the classical sense. Let
B = im M

(
d
dt

)

, with M = col(D, N ) such that N D−1 is proper. It follows from

the material in [28] that if X is a state map for im
(

M
(

d
dt

))

, then there exist matrices
A, B, C, G ∈ R

•×• such that
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ξ X (ξ) = AX (ξ) + B D(ξ)

N (ξ) = C X (ξ) + G D(ξ).
(12)

The computation of the matrices A, B, C , G can be efficiently performed, see [4].
Now assume that X is a balanced state map; we show that the realization associated

with the matrices (A, B, C, G) satisfying (12) is balanced in the classical sense, i.e.
that the minimal and maximal solutions to the Riccati equation are diagonal and one
the inverse of the other.

Theorem 3 Let B ∈ L
w
cont, and let � = �⊤ be nonsingular. Assume that B is strictly

�-dissipative. Let X be a minimal balanced state map for B. Let A, B, C, G be such

that (12) holds. Then there exists a diagonal matrix 	 such that the minimal and

maximal solutions of the ARE satisfy

K− = K −1
+ = 	

Proof Use (12) and rewrite the supply rate Q�(w) =
[

u⊤ y⊤]�

[

u

y

]

as a function

of x = X
(

d
dt

)

ℓ and u = D
(

d
dt

)

ℓ, obtaining

[
(

X
(

d
dt

)

ℓ
)⊤ (

D
(

d
dt

)

ℓ
)⊤
]
[

Q S⊤

S R

]
[

X
(

d
dt

)

ℓ

D
(

d
dt

)

ℓ

]

,

where Q = Q⊤ ∈ R
n×n, S ∈ R

u×n, R = R⊤ ∈ R
u×u are suitable matrices. Now

define �(ζ, η) :=
[

X (ζ )⊤ D(ζ )⊤
]
[

Q S⊤

S R

] [

X (η)

D(η)

]

; from the fact that B is strictly

�-dissipative, it follows that the behavior represented in image form by

[

x

u

]

=
[

X
( d

dt

)

D
(

d
dt

)

]

ℓ (13)

is strictly �′-dissipative, with �′ defined by

�′ :=
[

Q S⊤

S R

]

. (14)

It is also easy to see that �(ζ, η) induces a storage function for the behavior (13) and
the supply rate defined by (14) if and only if it induces a storage function for B with
respect to the supply rate �. Multiply the equality

�(−ξ, ξ)= X (−ξ)⊤Q X (ξ)+X (−ξ)⊤S⊤ D(ξ)+D(−ξ)⊤SX (ξ)+D(−ξ)⊤ RD(ξ)

by D(−ξ)−⊤ on the left and D(ξ)−1 on the right, obtaining
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D(−ξ)−⊤�(−ξ, ξ)D(ξ)−1 = D(−ξ)−⊤ X (−ξ)⊤Q X (ξ)D(ξ)−1

+D(−ξ)−⊤ X (−ξ)⊤S⊤ + SX (ξ)D(ξ)−1 + R.

Substitute ξ = iω and use the strict dissipativity of B to conclude that R > 0.
In Theorem 11 of [31] it has been shown that there exists a bijection between

S-spectral factors (and corresponding storage functions) for the supply rate induced
by �′ defined in (14) on (13), and solutions of the algebraic Riccati equation asso-
ciated with (A, B, C, G) of (12) and the cost-functional induced by (14). Recall that
the minimal and maximal storage functions for B with respect to � can be written
as �−(ζ, η) = X (ζ )⊤K− X (η), �+(ζ, η) = X (ζ )⊤K+ X (η) for some symmetric
matrices K− and K+; from the previous discussion it follows that K− and K+ are
the minimal, respectively, maximal, solution of the ARE. Now use the fact that X is
balanced in the sense of Definition 1 in order to conclude that K− = K −1

+ = 	. This
implies that the realization associated with X is balanced in the classical sense. ⊓⊔

Example 2 We consider the system of Example 1 again. A minimal diagonalizing

state map corresponding to the smallest storage function is X (ξ) =

⎡

⎣

58+4ξ√
87

√

130
29 ξ

⎤

⎦ (notice

it is different from the one computed in Example 1). The V -matrix constructed as in
Step 2 of Algorithm 1 is

Z+ =

⎡

⎣

62√
87

22
√

3
29

√

130
29 2

√

130
29

⎤

⎦ .

The Pick matrix of Step 3 is T+ =
[

200
3 80

80 104

]

. We compute K+ as in Step 4, obtaining

K+ =
[

1.31034 −0.06286
−0.06286 2.35119

]

. An SVD of K+ is obtained with

S2 =
[

−0.99819 −0.06006
−0.06006 0.99819

]

and S3 =
[

0.76537 0
0 0.42463

]

.

The transformation matrix T is T =
[

−1.0672 −0.06422
−0.07441 1.23655

]

and the balanced state

map is Xb(ξ) =
[

−6.63615 − 0.59363ξ

−0.46269 + 2.58618ξ

]

.

Remark 5 Steps 1–4 of Algorithm 1 require first the computation of a Hurwitz spectral
factorization, and then the factorization of the coefficient matrix of the minimal storage
function, from which a diagonalizing state map is obtained. It can be shown that a
minimal diagonalizing state map can also be obtained iteratively and directly, i.e.
without computing the S̄-spectral factor H explicitly. This brings the computational
complexity down: while the factorization of Step 4 of Algorithm 1 requires O(n3)
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operations, the modified algorithm computes the diagonalizing state map with O(w2n)

ops. Details can be found in section 5.5 of [15].

6 Conclusions

We have illustrated an interpolation-based approach to the computation of storage
functions and of balanced state maps. Our main result is an algorithm that starting from
the image representation of a half-line bounded-real system computes a balanced state
map X , i.e. one such that the minimal and maximal storage functions can be written as
X (ζ )⊤	X (η) and X (ζ )⊤	−1 X (η), respectively, with 	 a constant diagonal matrix.
From this balanced state map an input-state-output realization balanced in the classical
sense can be obtained in a straightforward way.

Appendix A: Notation and background material

A.1 Notation

The space of n dimensional real, respectively, complex, vectors is denoted by R
n,

respectively, C
n, and the space of m × n real, respectively, complex, matrices, by

R
m×n, respectively, C

m×n. Whenever one of the two dimensions is not specified, a
bullet • is used; for example, R

•×w denotes the set of matrices with w columns and
with an arbitrary finite number of rows. Given two column vectors x and y, we denote
with col(x, y) the vector obtained by stacking x over y; a similar convention holds
for the stacking of matrices with the same number of columns. If A ∈ C

p×m, then
A∗ ∈ C

m×p denotes its complex conjugate transpose. If S = S⊤, then we denote with
σ+(S) the number of positive eigenvalues of S.

The ring of polynomials with real coefficients in the indeterminate ξ is denoted by
R[ξ ]; the ring of two-variable polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. The space of all n × m polynomial matrices in the
indeterminate ξ is denoted by R

n×m[ξ ], and that consisting of all n × m polynomial
matrices in the indeterminates ζ and η by R

n×m[ζ, η]. To a polynomial matrix P(ξ) =
∑

k∈Z+ Pkξ
k , we associate its coefficient matrix, defined as the block-column matrix

mat(P) :=
[

P0 P1 . . . PN . . .
]

. Observe that mat(P) has only a finite number of
nonzero entries; moreover, P(ξ) = mat(P)col(Iw, Iwξ, . . .). If F ∈ C

•×•[ξ ], we
define F∼(ξ) := F(−ξ)∗.

We denote with C∞(R, R
w) the set of infinitely often differentiable functions from

R to R
w. The set of infinitely differentiable functions with compact support is denoted

with D(R, R
w). The exponential function whose value at t is eλt is denoted with expλ.

A.2 Linear differential systems and their representations

A subspace B of C∞(R, R
w) is a linear differential behavior if it consists of the

solutions of a system of linear, constant-coefficient differential equations; equivalently,

123



250 P. Rapisarda et al.

if there exists a polynomial matrix R ∈ R
•×w[ξ ] such that

B =
{

w ∈ C
∞(R, R

w) | R

(
d

dt

)

w = 0

}

.

We denote with Lw the set of linear differential systems withw external variables. In this
paper, we also consider complex behaviors, i.e. subspaces of C∞(R, C

w) described by
polynomial matrices with complex coefficients; the definitions and results that follow
can be adapted with obvious modifications to this case.

The representation B = ker R
(

d
dt

)

is called a kernel representation of B. If B is
controllable (for a definition, see [25]) then it also admits an image representation, i.e.
B = im M

(
d
dt

)

, where M ∈ R
w×l[ξ ]; equivalently,

B =
{

w ∈ C
∞(R, R

w) | ∃ℓ ∈ C
∞(R, R

l) s.t. w = M(
d

dt
)ℓ

}

. (15)

The variable ℓ is called the latent variable of the system. In the following we denote
the set of controllable behaviors with w external variables by L

w
cont. Given an image

representation induced by a polynomial matrix M , there exists a permutation matrix
� such that �M = col(D, N ) with D nonsingular and N D−1 proper. The partition of
the external variables associated with the permutation � is then called an input–output

partition for B = im M
(

d
dt

)

(see [25]).
The representation (15) is a special case of a hybrid or latent variable representation

B =
{

w ∈ C
∞(R, R

w) | ∃ℓ ∈ C
∞(R, R

l) s.t. R

(
d

dt

)

w = M

(
d

dt

)

ℓ

}

(16)

where R ∈ R
•×w[ξ ], M ∈ R

•×l[ξ ]. We call the behavior

Bfull =
{

(w, ℓ) ∈ C
∞(R, R

w+l) | R

(
d

dt

)

w = M

(
d

dt

)

ℓ

}

the full behavior of the hybrid representation.
A state system is a special type of latent variable system, in which the latent variable,

typically denoted with x , satisfies the axiom of state, stated as follows. Given full
trajectories (wi , xi ), i = 1, 2, define their concatenation at zero as the trajectory

(w1, x1) ∧ (w2, x2)(t) :=
{

(w1, x1)(t) for t < 0
(w2, x2)(t) for t ≥ 0

.

Then x is a state variable (and Bfull a state system) if

[(wi , xi ) ∈ Bfull, i = 1, 2] and [x1, x2continuous at0] and [x1(0) = x2(0)]

�⇒
[

(w1, x1) ∧ (w2, x2) ∈ Bfull

]

with Bfull being the closure (in the topology of L
loc
1 ) of Bfull.
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A state system is said to be minimal if the state variable has minimal number of
components among all state representations that have the same manifest behavior.

In [28] it was shown that a state variable (and in particular, a minimal one)
for B can be obtained from the external- or full trajectories by applying to them
a state map, defined as follows. Let X ∈ R

n×w[ξ ] be such that the subspace
{

(w, X
(

d
dt

)

w) | w ∈ B
}

of C∞(R, R
w+n) is a state system; then X ( d

dt
) is called

a state map for B, and X
( d

dt

)

w is a state variable for B. In this paper, we consider
state maps for systems in image form; in this case it can be shown (see [28]) that a state
map can be chosen acting on the latent variable ℓ alone, and we consider state systems
w = M

( d
dt

)

ℓ, x = X
( d

dt

)

ℓ, with x a state variable. The definition of minimal state
map follows in a straightforward manner. In [28], algorithms are stated to construct a
state map from the equations describing the system.

There are a number of important integer invariants associated with a behavior
B ∈ Lw: the input cardinality denoted m(B); the output cardinality, denoted p(B);
and the dimension of any minimal state variable for B, also called the McMillan

degree of B, and denoted with n(B). Observe that the number of external variables
w equals m(B) + p(B). If m(B) = 0, the behavior is said to be autonomous; it can
be proved that in this case B is finite-dimensional, and consists of vector polynomial-
exponential trajectories, see [25]. Moreover, it can be shown that m(B) is the number
of columns of the matrix M in any observable image representation B = im M

( d
dt

)

,
i.e. one such that M(λ) has full column rank for all λ ∈ C. It can also be shown (see,
for example sections 8–9 of [28]) that if M = col(D, N ) with D nonsingular and
of maximal determinantal degree, then deg(det(D)) = n(B), the McMillan degree
of B.

A.3 Quadratic differential forms

Let � ∈ R
w×w[ζ, η], written out in terms of its coefficient matrices �k,ℓ as the

(finite) sum �(ζ, η) =
∑

k,ℓ∈Z+ �k,ℓζ
kηℓ. It induces the map Q� : C∞ (R, R

w) →
C∞ (R, R), defined by Q�(w) =

∑

k,ℓ∈Z+( dk

dtk w)⊤�k,ℓ(
dℓ

dtℓ
w). This map is called

the quadratic differential form (QDF) induced by �. When considering QDFs, we
can without loss of generality assume that � is symmetric, i.e. �(ζ, η) = �(η, ζ )⊤.
We denote the set of real symmetric w-dimensional two-variable polynomial matrices
with R

w×w
s [ζ, η].

We associate with �(ζ, η) =
∑

k,ℓ∈Z+ �k,ℓζ
kηℓ ∈ R

w×w[ζ, η] its coefficient

matrix, defined as the infinite block-matrix:

mat(�) :=

⎡

⎢
⎢
⎢
⎢
⎣

�0,0 · · · �0,N · · ·
...

...
...

...

�N ,0 · · · �N ,N · · ·
...

...
...

...

⎤

⎥
⎥
⎥
⎥
⎦

.

Observe that mat(�) has only a finite number of nonzero entries, and that �(ζ, η) =
col(Iw, Iwζ, . . . , Iwζ

k, . . .)⊤mat(�)col(Iw, Iwη, . . . , Iwη
k, . . .).
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It is easy to see that � is symmetric if and only if mat(�) = (mat(�))⊤; in this case,
we can factor mat(�) = M̃⊤��M̃ with M̃ a matrix having a finite number of rows,
full row rank, and an infinite number of columns; and �� a signature matrix. This
factorization leads to �(ζ, η) = M⊤(ζ )��M(η), where M(ξ) := M̃col(Iw, Iwξ, . . .)

and is called a canonical symmetric factorization of �. A canonical symmetric
factorization is not unique; they can all be obtained from a given one by replacing
M(ξ) with U M(ξ), with U ∈ R

•×• such that U⊤��U = ��.
Some features of the calculus of QDFs which will be used in this paper are the

following. The first one is that of derivative of a QDF. The functional d
dt

L� defined

by ( d
dt

Q�)(w) := d
dt

(Q�(w)) is again a QDF. It is easy to see that the two-variable
polynomial matrix inducing it is (ζ + η)�(ζ, η).

Next, we introduce the notion of integral of a QDF. In order to make sure that the
integral exists, we assume that the QDF acts on D(R, R

w). The integral of Q� maps
D(R, R

w) to R and is defined as
∫

Q�(w) :=
∫∞
−∞ Q�(w)dt .

Finally, we show how to associate a QDF with a behavior B ∈ L
w
cont. Let B =

im M
( d

dt

)

, and let � ∈ R
w×w
s [ζ, η]. Define �′ ∈ R

l×l
s [ζ, η] as

�′(ζ, η) := M⊤(ζ )�(ζ, η)M(η);

if w and ℓ satisfy w = M( d
dt

)ℓ, then Q�(w) = Q�′(ℓ). The introduction of the
two-variable matrix � allows to study the behavior Q� along B in terms of properties
of the QDF Q�′ acting on free trajectories of C∞(R, R

l).

A.4 Dissipative behaviors

Definition 6 Let B ∈ L
w
cont and � = �⊤ ∈ R

w×w. B is called �-dissipative if
∫

R
Q�(w)dt ≥ 0 for all w ∈ B ∩ D(R, R

w). B is called strictly �-dissipative if
there exists ε > 0 such that

∫

R
Q�(w)dt ≥ ε

∫

R
w⊤wdt for all w ∈ B ∩ D(R, R

w).
B is called strictly �-dissipative on R− if there exists ε > 0 such that

∫

R−
Q�(w)dt ≥

ε
∫

R−
w⊤wdt for all w ∈ B ∩ D(R−, R

w).

Note that (strict) half-line dissipativity implies (strict) dissipativity, which in turn
implies dissipativity. Dissipativity is related to the concept of storage function.

Definition 7 Let � = �⊤ ∈ R
w×w and B ∈ L

w
cont. Assume that B is �-dissipative;

then the QDF Q� is a storage function if for all w ∈ B
d
dt

Q�(w) ≤ Q�(w).
A QDF Q	 is a dissipation function if Q	(w) ≥ 0 for all w ∈ B, and for all
w ∈ B ∩ D(R, R

w) it holds that
∫

R
Q�(w) =

∫

R
Q	(w).

The following proposition gives a characterization of dissipativity in term of storage
and dissipation functions.

Proposition 8 The following conditions are equivalent

1. B is �-dissipative,

2. B admits a storage function,

3. B admits a dissipation function.
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Moreover, for every dissipation function Q	 there exists a unique storage function

Q� , and for every storage function Q� there exists a unique dissipation function Q	,

such that for all w ∈ B the dissipation equality d
dt

Q�(w) = Q�(w)− Q	(w) holds.

Proof See [37, Proposition 5.4]. ⊓⊔

Every storage function is a quadratic function of the state, in the following sense.

Proposition 9 Let � = �⊤ ∈ R
w×w and B ∈ L

w
cont be �-dissipative. Let Q� be

a storage function. Then Q� is a state function, i.e. for every polynomial matrix

X inducing a state map for B, there exists a real symmetric matrix K such that

Q�(w) =
(

X
(

d
dt

)

w
)⊤

K
(

X
(

d
dt

)

w
)

.

Proof See Theorem 5.5 of [37]. ⊓⊔

Now assume that B is represented in image form w = M
(

d
dt

)

ℓ and that it is
�-dissipative. Then it is easy to show that if Q� is a storage function, then for every
X ∈ R

n×l[ξ ] inducing a state map for B acting on the latent variable, there exists a

symmetric matrix K such that Q�(w) =
(

X
(

d
dt

)

ℓ
)⊤

K
(

X
(

d
dt

)

ℓ
)

for every w and ℓ

such that w = M
(

d
dt

)

ℓ.
In general, there exists an infinite number of storage functions; however, all of them

lie between two extremal ones.

Proposition 10 Let B be �-dissipative; then there exist storage functions �− and

�+ such that any storage function � satisfies Q�− ≤ Q� ≤ Q�+ along B.

Proof See [37, Theorem 5.7]. ⊓⊔

The extremal storage functions Q�+ and Q�− can be computed from anti-Hurwitz,
respectively, Hurwitz spectral factorizations.

Proposition 11 Let B = im M
(

d
dt

)

be �-dissipative, with M observable. Assume

that M(−iω)⊤�M(iω) > 0 for all ω ∈ R. Then the smallest and the largest storage

functions �− and �+ of B can be constructed as follows: let H and A be Hurwitz,

respectively, anti-Hurwitz polynomial spectral factors of M(−ξ)⊤�M(ξ). Then

�+(ζ, η) =
M(ζ )⊤�M(η) − AT (ζ )A(η)

ζ + η
and �−(ζ, η)

=
M(ζ )⊤�M(η) − H T (ζ )H(η)

ζ + η
.

Proof See [37, Theorem 5.7]. ⊓⊔

If m(B) = σ+(�), then the nonnegativity of all storage functions is equivalent with
the half-line �-dissipativity of B, as the following result shows.

Proposition 12 Let B ∈ L
w
cont and � = �⊤ ∈ R

w×w be nonsingular. Let X be a

minimal state map for B acting on the external variable w. Assume that m(B) =
σ+(�). Then the following statements are equivalent.
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1. B is �-dissipative on R−;

2. there exists a nonnegative storage function of B;

3. all storage functions of B are nonnegative;

4. there exists K = K ⊤ > 0 real such that QK (w) :=
(

X
(

d
dt

)

w
)⊤

K
(

X
(

d
dt

)

w
)

is

a storage function of B;

5. there exists a storage function of B, and every real symmetric matrix K > 0 such

that QK (w) :=
(

X
(

d
dt

)

w
)⊤

K
(

X
(

d
dt

)

w
)

is a storage function of B satisfies

K > 0.

Proof See [37, Proposition 6.4]. ⊓⊔

Appendix B

It was pointed out by an anonymous reviewer that the results of Sect. 4, in particular
Theorem 2, allow an alternative, somewhat shorter and more streamlined proof using
results from interpolation theory and the theory of reproducing kernel Hilbert spaces.
Essentially, as was indicated by the reviewer, the proof of Theorem 2 can be subdivided
into a number of steps that lead to a spectral factorization of the polynomial matrix
M(−ξ)T �M(ξ), even in the more general case that the transfer matrix N D−1 is proper
(instead of strictly proper). Some of these steps can be obtained in a straightforward
way from results published before in [6]. Important ingredients in the steps mentioned
above are well-known results on reproducing kernel Hilbert spaces, the notion of
Potapov factors (see also [26]) , and results from the theory on Schur and Nevanlinna
interpolation problems.
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