
Algorithms for Provisioning Virtual Private Networks in
the Hose Model

Amit Kumar�
Cornell University
Ithaca, NY 14853

amitk@cs.cornell.edu

Rajeev Rastogi
Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974
rastogi@bell-labs.com

Avi Silberschatz
Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974
avi@bell-labs.com

Bulent Yener
Bell Laboratories

600 Mountain Avenue
Murray Hill, NJ 07974
yener@bell-labs.com

ABSTRACT
Virtual Private Networks (VPNs) provide customers with
predictable and secure network connections over a shared
network. The recently proposed hose model for VPNs al-
lows for greater exibility since it permits tra�c to and
from a hose endpoint to be arbitrarily distributed to other
endpoints. In this paper, we develop novel algorithms for
provisioning VPNs in the hose model. We connect VPN end-
points using a tree structure and our algorithms attempt to
optimize the total bandwidth reserved on edges of the VPN
tree. We show that even for the simple scenario in which
network links are assumed to have in�nite capacity, the gen-
eral problem of computing the optimal VPN tree is NP-
hard. Fortunately, for the special case when the ingress and
egress bandwidths for each VPN endpoint are equal, we can
devise an algorithm for computing the optimal tree whose
time complexity is O(mn), where m and n are the number
of links and nodes in the network, respectively. We present a
novel integer programming formulation for the general VPN
tree computation problem (that is, when ingress and egress
bandwidths of VPN endpoints are arbitrary) and develop
an algorithm that is based on the primal-dual method. Our
experimental results with synthetic network graphs indicate
that the VPN trees constructed by our proposed algorithms
dramatically reduce bandwidth requirements (in many in-
stances, by more than a factor of 2) compared to scenarios
in which Steiner trees are employed to connect VPN end-
points.

1. INTRODUCTION
Virtual Private Networks (VPNs) are becoming an in-

creasingly important source of revenue for Internet Service
Providers (ISPs). Informally, a VPN establishes connectiv-
ity between a set of geographically dispersed endpoints over
a shared network infrastructure. The goal is to provide VPN
endpoints with a service comparable to a private dedicated

�Work done while visiting Bell Laboratories.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

network established with leased lines. Thus, providers of
VPN services need to address the QoS and security issues
associated with deploying a VPN over a shared IP network.
In recent years, substantial progress in the technologies for
IP security [7, 3] have enabled existing VPN service o�erings
to provide customers with a level of privacy comparable to
that o�ered by a dedicated line. However, ISPs have been
slow to o�er customers with guaranteed bandwidth VPN
services since IP networks in the past had little support for
enforcing QoS in the network. The recent emergence of IP
technologies like MPLS and RSVP, however, have made it
possible to realize IP-based VPNs that can provide end cus-
tomers with QoS guarantees. In this paper, we address the
problem of provisioning VPN services with QoS guarantees,
a problem which has received little attention from the re-
search community.

1.1 The Hose Model
There are two popular models for providing QoS in the

context of VPNs - the \pipe" model and the \hose" model
[3, 2]. In the pipe model, the VPN customer speci�es QoS
requirements between every pair of VPN endpoints. Thus,
the pipe model requires the customer to know the complete
tra�c matrix; that is, the load between every pair of end-
points. However, the number of endpoints per VPN is con-
stantly increasing and the communication patterns between
endpoints are becoming increasingly complex. As a result,
it is almost impossible to predict tra�c characteristics be-
tween pairs of endpoints required by the pipe model.
The hose model alleviates the above-mentioned shortcom-

ings of the pipe model. In the hose model, the VPN cus-
tomer speci�es QoS requirements per VPN endpoint and
not every pair of endpoints. Speci�cally, associated with
each endpoint, is a pair of bandwidths { an ingress band-
width and an egress bandwidth. The ingress bandwidth for
an endpoint speci�es the incoming tra�c from all the other
VPN endpoints into the endpoint, while the egress band-
width is the amount of tra�c the endpoint can send to the
other VPN endpoints. Thus, in the hose model, the VPN
service provider supplies the customer with certain guaran-
tees for the tra�c that each endpoint sends to and receives
from other endpoints of the same VPN. The customer does
not have to specify how this tra�c is distributed among the
other endpoints. As a result, in contrast to the pipe model,
the hose model does not require a customer to know its traf-
�c matrix, which in turn, places less burden on a customer
that wants to use the VPN service.
In summary, the hose model provides customers with the

135

following advantages over the pipe model [3]:

1. Ease of Speci�cation. Only one ingress and egress
bandwidth per hose endpoint needs to be speci�ed,
compared to bandwidth for each pipe between pairs of
hose endpoints.

2. Flexibility. Tra�c to and from a hose endpoint can
be distributed arbitrarily over other endpoints as long
as the ingress and egress bandwidths of each hose end-
point are not violated.

3. Multiplexing Gain. Due to statistical multiplexing
gain, hose ingress and egress bandwidths can be less
than the aggregate bandwidth required for a set of
point to point pipes.

4. Characterization. Hose requirements are easier of
characterize because the statistical variability in the
individual source-destination tra�c is smoothed by ag-
gregation into hoses.

From the above discussion, it follows that the hose model
provides VPN customers with a simple mechanism for spec-
ifying bandwidth requirements and enables VPN service
providers to utilize network bandwidth more e�ciently. How-
ever, in order to realize these bene�ts, e�cient algorithms
must be devised for provisioning hoses. These hose provi-
sioning algorithms need to set up paths between every pair
of VPN endpoints such that the aggregate bandwidth re-
served on the links traversed by the paths is minimum. A
naive algorithm that sets up independent shortest paths be-
tween every pair of endpoints, however, could lead to exces-
sive bandwidth being reserved. The reason for this is that
the hose model provides the exibility for tra�c from a hose
endpoint to be arbitrarily distributed to other endpoints.
Consequently, the distribution of tra�c between VPN end-
points is non-deterministic and the provisioning algorithms
need to reserve su�cient bandwidth to accommodate the
worst-case tra�c distribution among endpoints that meets
the ingress and egress bandwidth constraints of hose end-
points. Intuitively, in order to conserve bandwidth and re-
alize the multiplexing bene�ts of the hose model, paths en-
tering into and originating from each hose endpoint need to
share as many links as possible. Thus, sophisticated hose
provisioning algorithms need to be developed to ensure that
the amount of bandwidth reserved in order to meet the hose
tra�c requirements is minimum.

Example 1.1.: Consider the network graph in Figure 1(a).
The 3 VPN hose endpoints 1, 2 and 3 have bandwidth re-
quirements of 1, 2 and 2 units, respectively (each endpoint
has equal ingress and egress bandwidths). Figure 1(b) de-
picts the bandwidth reserved on relevant links of the net-
work when a naive independent shortest paths approach is
used to connect VPN endpoints. For instance, the shortest
path between 1 and 2 passes through A, while the shortest
path between endpoints 2 and 3 passes through C. Also, 1
unit of bandwidth needs to be reserved (in each direction) on
the two links incident on A and on the shortest path from
1 to 2 since endpoint 1 can send/receive at most 1 unit of
tra�c. Similarly, the bandwidth reserved on the two links
incident on C is 2 units, the minimum of the bandwidth re-
quirements of endpoints 2 and 3. Thus, the total reserved
bandwidth using independent shortest paths is 8 units (only
considering one direction for each link).

The reserved bandwidth can be reduced from 8 to 6 by ex-
ploiting link sharing among paths connecting the VPN end-
points as illustrated in Figure 1(c). Here, both paths from
endpoint 1 to the two other endpoints pass through C, thus
allowing the two links connecting 1 to C to be shared be-
tween them. (Note that the path from 1 to 2 passing through
C is longer than the path from 1 to 2 through A). Further,
since endpoint 1 cannot receive or send more than 1 unit of
tra�c, the bandwidth reserved on each of the two links is 1
unit (in each direction) and is shared between the two paths.
Thus, the total bandwidth reserved decreases from 8 to 6 as
a result of link sharing between paths.

Note that provisioning pipes between each pair of VPN
endpoints in the pipe model is somewhat simpler since the
tra�c between every pair of endpoints is �xed and is input
to the provisioning algorithm. Thus, the VPN provisioning
problem simply reduces to that of computing a set of �xed
bandwidth paths between VPN endpoint pairs, which is an
instance of the well-studied multicommodity ow problem
[1, 6]. However, as mentioned earlier, the drawback of the
pipe model is the di�culty of capturing and specifying band-
width requirements between each pair of VPN endpoints.
Thus, the hose model trades o� provisioning simplicity for
ease of speci�cation and multiplexing gains.

1.2 Our Contributions
In this paper, we develop novel algorithms for provision-

ing VPNs in the hose model. In order to take advantage
of the multiplexing gain possible due to hoses, we connect
VPN endpoints using a tree structure (instead of indepen-
dent point-to-point paths between VPN endpoints). A VPN
tree has several bene�ts which include scalability, sharing
of bandwidth reservation, simplicity of routing and ease of
restoration.
We develop algorithms for computing optimal VPN trees;

that is, trees for which the amount of total bandwidth re-
served on edges of the tree is minimum. Initially, we assume
that network links have in�nite capacity, and show that even
for this simple scenario, the general problem of computing
the optimal VPN tree is NP-hard. However, for the spe-
cial case when the ingress and egress bandwidths for each
VPN endpoint are equal, we are able to devise a breadth
�rst search algorithm for computing the optimal tree whose
time complexity is O(mn), where m and n are the number
of links and nodes in the network, respectively. We present a
novel integer programming formulation for the general VPN
tree computation problem (that is, when ingress and egress
bandwidths of VPN endpoints are arbitrary) and develop
an algorithm that is based on the primal-dual method [6].
In [8], we also extend our proposed algorithms for comput-
ing VPN trees to the case when network links have capacity
constraints. We show that in the presence of link capacity
constraints, computing the optimal VPN tree is NP-hard
even when ingress and egress bandwidths of each endpoint
are equal. Further, we also show that computing an ap-
proximate solution that is within a constant factor of the
optimum is as di�cult as computing the optimal VPN tree
itself.
In [3], the authors suggest that a Steiner tree can be em-

ployed to connect VPN endpoints. However, our experi-
mental results with synthetic network graphs indicate that
the VPN trees constructed by our proposed algorithms re-
quire dramatically less bandwidth to be reserved (in many

136

1 (1)

2 (2) 3 (2)

(a) Graph (b) Independent Shortest Paths (c) Link Sharing Among Paths

1 (1)

2 (2) 3 (2)

1 (1)

2 (2) 3 (2)

1

2 2

1

1 1

1

1

2 2

A B

C

A B

C

A

C

Figure 1: Link Sharing Among Paths to Reduce Reserved Bandwidth

instances, by more than a factor of 2) compared to Steiner
trees. Further, among the three algorithms, the primal-dual
algorithm performs the best, reserving less bandwidth than
both the breadth �rst search and Steiner tree algorithms
over a wide range of parameter values.

2. SYSTEM MODEL AND PROBLEM FOR-
MULATION

We model the network as a graph G = (V;E) where V is
a set of nodes and E is a set of bidirectional links between
the nodes. Each link (i; j) has associated capacities in the
two directions { we denote the capacity from node i to j by
Lij and the capacity (in the opposite direction) from node
j to i by Lji.
In the hose model, each VPN speci�cation consists of the

following two components: (1) A set of nodes P � V cor-
responding to the VPN endpoints, and (2) For each node
i 2 P , the hose ingress and egress bandwidths Bin

i and
Bout
i , respectively. Without loss of generality, we assume

that each node i 2 P is a leaf, that is, there is a single
(bidirectional) link incident on i1. As mentioned earlier, we
consider tree structures to connect the VPN endpoints in
P since trees are scalable, simplify routing and restoration.
Further, trees allow the bandwidth reserved on a link to
be shared by the tra�c between the two sets of VPN end-
points connected by the link. Thus, the bandwidth reserved
on a link must be equal to the maximum possible aggregate
tra�c between the two sets of endpoints connected by the
link.
Before we can compute the exact bandwidth to be re-

served on each link of VPN tree T whose leaves are nodes
from P , we need to develop some notation. For a link (i; j)

in tree T , we denote by T
(i;j)
i =T

(i;j)
j the connected compo-

nent of T containing node i=j when link (i; j) is deleted from

T . Also, let P
(i;j)
i and P

(i;j)
j denote the set of VPN end-

points in T
(i;j)
i and T

(i;j)
j , respectively. Table 1 describes

the notation used in the remainder of the paper.
Observe that all tra�c from one VPN endpoint to an-

other traverses the unique path in the VPN tree T between
the two endpoints. Now consider link (i; j) that connects the

1In case there is a VPN endpoint i 2 P that is not a leaf,
then we simply introduce a new node j in G and a new link
(i; j) with very large capacity, and replace node i in P with
node j.

Symbol Description
G = (V;E) Graph with nodes V and bidirectional

edges E
m Number of links in graph G (jEj)
n Number of nodes in graph G (jV j)
Lij Capacity of link (i; j) in the direction from

node i to j
i; j; l; u; v; w Generic symbols for nodes in G

P Set of VPN endpoints
T Generic notation for VPN tree
Tv VPN tree rooted at node v
Bin
i Ingress bandwidth for node i

Bout
i Egress bandwidth for node i

T
(i;j)
i Component of tree T containing i when

link (i; j) is deleted from T

P
(i;j)
i VPN endpoints contained in T

(i;j)
i

CT (i; j) Bandwidth reserved on link (i; j) of VPN
tree T

CT Sum of bpandwidths reserved on all links
of VPN tree T

dT (i; j) Distance (in number of links) between
nodes i and j in tree T

dG(i; j) Length of the shortest path (in number of
links) between nodes i and j in graph G

Table 1: Notation Used in the Paper

two sets of VPN endpoints P
(i;j)
i and P

(i;j)
j . The tra�c from

node i to j cannot exceed minf
P

l2P
(i;j)
i

Bout
l ;
P

l2P
(i;j)
j

Bin
l g,

that is, the minimum of the cumulative egress bandwidths

of endpoints in P
(i;j)
i and the sum of ingress bandwidths

of endpoints in P
(i;j)
j . This is because the only tra�c that

traverses link (i; j) from i to j is the tra�c originating from

endpoints in P
(i;j)
i and directed towards endpoints in P

(i;j)
j .

The bound on the former is
P

l2P
(i;j)
i

Bout
l , while the lat-

ter is bounded by
P

l2P
(i;j)
j

Bin
l . Thus, the bandwidth to

be reserved on link (i; j) of T in the direction from i to
j is given by CT (i; j) = minf

P
l2P

(i;j)
i

Bout
l ;
P

l2P
(i;j)
j

Bin
l g.

Similarly, the bandwidth that must be reserved on link (j; i)
in the direction from j to i can be shown to be CT (j; i) =
minf
P

l2P
(i;j)
i

Bin
l ;
P

l2P
(i;j)
j

Bout
l g. Note that CT (i; j) may

not be equal to CT (j; i).
Thus, the total bandwidth reserved for tree T is given by

137

CT =
P

(i;j)2T CT (i; j) (note that (i; j) and (j; i) are con-

sidered as two distinct links in T). Further, since we are
interested in minimizing the reserved bandwidth for tree T ,
the problem of computing the optimal VPN tree becomes
the following:

Problem Statement: Given a set of VPN endpoints P ,
and their ingress and egress bandwidths, compute a VPN
tree T whose leaves are nodes in P and for which CT is
minimum.

In [3], it has been suggested that a Steiner tree can be
used to connect the VPN endpoints. However, even though
a Steiner tree has the smallest number of links, it may be
suboptimal, as illustrated by the following example.

Example 2.1. : Consider the network graph shown in
Figure 2(a). Nodes 1; 2; : : : ; 6 are the VPN endpoints and
Bin
1 = Bout

1 = Bin
6 = Bout

6 = 1000 while Bin
i = Bout

i = 1
for i = 2; : : : ; 5. Figure 2(b) shows the Steiner tree connect-
ing the VPN endpoints in P and containing 16 edges. The
total bandwidth reserved on the edges of the Steiner tree (in
a single direction) is given by 1000 � 2 + 1001 � 2 + 1002 �
2+1001 � 2+1000 � 2 = 10008 (this excludes the 2006 units
that need to be reserved on the links incident on the VPN
endpoints in P). The reason for this is that 1000 units need
to be reserved on the two links connecting endpoints 1 and
2, 1001 units need to be reserved on the two links connecting
endpoints 2 and 3, and so on. However, the optimal VPN
tree containing 17 links is shown in Figure 2(c). The cumu-
lative bandwidth reserved on all the links of the optimal tree
is 1000�2+1000�2+4+2�2+1�2+1�2 = 4012 (again, in
a single direction per link and excluding the 2006 units that
need to be reserved on the links incident on the VPN end-
points in P). This is because the bandwidth reserved on the
two links connecting endpoints 1 and 0 is 1000, the band-
width for the two links between endpoints 6 and 0 is 1000,
the bandwidth for the link connecting 0 to endpoints 2; : : : ; 5
is 4 units, and for the two links connecting endpoints 3 and
4 is 2 units, and so on.

Thus, in the above example, the bandwidth reserved for
the Steiner tree is more than twice the optimum bandwidth.
Further, note that, in the example, the performance of the
Steiner tree can be made arbitrarily worse compared to the
optimum (by increasing the number of VPN endpoints be-
tween endpoints 1 and 6).
In the remainder of the paper, we will refer to CT (i; j) as

the cost of link (i; j) in tree T and CT as the cost of tree T .
In the following two sections (Sections 3 and 4), we develop
algorithms to compute the optimal VPN tree ignoring link
capacity constraints. Due to space constraints, we defer
the presentation of how the algorithms can be extended to
handle link capacity constraints to [8].

3. SYMMETRIC INGRESS AND EGRESS
BANDWIDTHS

For symmetric ingress and egress bandwidths, that is,
when Bin

i = Bout
i for each VPN endpoint i, one can de-

vise e�cient algorithms for computing the minimum cost
VPN tree if links do not have capacity constraints. In this
section, we present a polynomial time algorithm for com-
puting the optimal VPN tree for the symmetric bandwidth

case under the assumption that the residual capacity of each
edge is large. Since the ingress and egress bandwidths are
equal, in the following, we simply drop the superscripts in
and out, and denote the bandwidth for endpoint i simply
by Bi.
Before presenting our algorithm for computing the opti-

mal tree (that is, tree with minimum cost), we �rst develop
some intuition for the cost CT of a tree T . Recall (from
the previous section) that CT =

P
(i;j)2T CT (i; j). For a

set of leaves L � P , we de�ne B(L) as
P

l2LBl. Thus,

CT (i; j) = minfB(P
(i;j)
i); B(P

(i;j)
j)g. It is straightforward

to observe that CT (i; j) = CT (j; i), that is, the bandwidth
reserved on link (i; j) in the two directions is equal. Now
suppose that for a tree T and a node v in T , we de�ne the
quantity Q(T; v) to be 2�

P
l2P Bl �dT (v; l), where the sum

is over all leaves l, and dT (v; l) denotes the length of the
unique v to l path in T . Then, for any tree T whose leaves
are nodes in P , we can show that CT satis�es the following
two properties:

� Property 1. There exists a node w 2 T such that
CT = Q(T;w).

� Property 2. For all nodes v 2 T , CT � Q(T; v).

In order to show the above two properties for tree T , we
construct a directed tree Tdir from T by giving a direction
to each edge e = (i; j) of T as follows:

� if B(P
(i;j)
i) < B(P

(i;j)
j), then direct the edge towards

i.

� if B(P
(i;j)
j) < B(P

(i;j)
i), then direct the edge towards

j.

� if B(P
(i;j)
i) = B(P

(i;j)
j), then direct the edge towards

the component which contains a particular leaf, say, l̂.

Clearly, Tdir must contain a node whose indegree is 0 | we
denote this node in Tdir with no incoming edges by a(T). We
show that a(T) is indeed unique and CT = Q(T; a(T)). For
this, we prove some properties about Tdir in the following
lemma.

Lemma 3.1.: Every edge e in Tdir is directed away from
a(T).

Proof: Let e = (i; j) be an edge in tree T such that i is
closer to a(T) than j in T . We show that e is directed from i
to j in Tdir. Consider the path in T from a(T) to i. We know
that the �rst edge (u; v) along the path is directed away

from u = a(T). So, B(P
(u;v)
v) � B(P

(u;v)
u). Since (u; v) is

the �rst edge of the path from a(T) to i, P
(u;v)
u � P

(i;j)
i and

also, P
(i;j)
j � P

(u;v)
v . Thus, we get, B(P

(i;j)
j) � B(P

(u;v)
v) �

B(P
(u;v)
u) � B(P

(i;j)
i). If B(P

(i;j)
j) < B(P

(i;j)
i), then edge

e is directed from i to j and we are done. The only other

possibility is B(P
(i;j)
j) = B(P

(i;j)
i). But then, it must be the

case that P
(u;v)
u = P

(i;j)
i , P

(u;v)
v = P

(i;j)
j and B(P

(u;v)
u) =

B(P
(u;v)
v). As a result, it follows that u = i and v = j, and

since edge (u; v) is directed from u to v, edge (i; j) must also
be directed from i to j.

Note that from the above lemma, one can easily show that
a(T) is unique since every other node in Tdir has an edge

138

0

2 3 4 5 61
(1000) (1000)(1) (1) (1)(1)

2 3 4 5 61
(1000) (1000)(1) (1) (1)(1)

0

2 3 4 5 61
(1000) (1000)(1) (1) (1)(1)

(a) Graph (b) Steiner Tree (c) Optimal VPN Tree

Figure 2: Example of Suboptimal Steiner Tree

directed into it (and consequently, an indegree of 1). In the
following lemma, we prove that Property 1 mentioned above
holds for w = a(T).

Lemma 3.2.: The cost of tree T , CT = Q(T; a(T)).

Proof: Let l be a leaf and e = (i; j) be an edge on the path
from a(T) to l (node i being closer to a(T)) | note that
Bl contributes to both CT (i; j) and CT (j; i). The reason for

this is that CT (i; j) is B(P
(i;j)
j) since due to Lemma 3.1,

the edge is directed from i to j in Tdir and so B(P
(i;j)
j) �

B(P
(i;j)
i). Thus, since l 2 P

(i;j)
j , Bl contributes to each

edge on the path from a(T) to l, and to no other edge. This
proves the lemma.

Property 2 is a straightforward corollary of the following
lemma (since CT = Q(T; a(T)) due to Lemma 3.2).

Lemma 3.3.: Let v be any node in T . Then, Q(T; a(T)) �
Q(T; v).

Proof: We �rst show the following result: suppose e =
(i; j) is an edge that is directed from i to j in Tdir. Then,

Q(T; i) � Q(T; j). We know that B(P
(i;j)
j) � B(P

(i;j)
i).

Now,

Q(T; i)�Q(T; j) = 2 �
X

l2P
(i;j)
i

Bl � (dT (i; l)� dT (j; l)) +

2 �
X

l2P
(i;j)
j

Bl � (dT (i; l)� dT (j; l))

= �2 �
X

l2P
(i;j)
i

Bl + 2 �
X

l2P
(i;j)
j

Bl

= 2 � B(P
(i;j)
j)� 2 �B(P

(i;j)
i) � 0

Now, we can prove the lemma. Consider the path from
a(T) to v in Tdir. By Lemma 3.1, all edges along the path
are directed away from a(T). So, repeated application of the
result proved above (for each edge along the path) proves
the lemma.

From Properties 1 and 2, it follows that for the optimal
tree Topt, CTopt = Q(Topt; a(Topt)). Thus, if we could com-
pute, for each node v, the tree Tv such that Q(Tv; v) is
minimum, then the optimal tree is simply the tree Tv with
the minimum Q(Tv; v). Figure 3 contains the procedure for
computing the optimal tree Topt. For each node v in G,

procedure ComputeTreeSymmetric(G, P)
1. Topt := ;
2. for each node v in G f
3. Tv := v
4. openQ := fvg
5. while (openQ 6= ;)f
6. dequeue �rst node u from openQ
7. for each edge (u;w) in G such that w is not in Tv f
8. add edge (u;w) to Tv
9. append node w to end of openQ
10. g
11. prune leaves of Tv that do not correspond to VPN

endpoints (that is, do not belong to P)
12. if CTv < CTopt
13. Topt := Tv
14. g
15. return Topt

Figure 3: Algorithm for Computing Optimal Tree
for Symmetric Bandwidths

Procedure ComputeTreeSymmetric computes a breadth
�rst spanning tree rooted at v | we show in Lemma 3.4 be-
low that this tree Tv minimizes the value of Q(Tv; v) among
possible trees rooted at v. The procedure then outputs the
tree Tv for which Q(Tv; v) is minimum| let Tv̂ be this tree.
In the following, we show that CTv̂ = CTopt where Topt is

the optimal tree. First note the following important fact for
the breadth �rst tree Tv rooted at node v.

Lemma 3.4.: Let T be any tree and v be a node in G.
Then, Q(Tv; v) � Q(T; v).

In the next lemma, we show the following important re-
lationship between Tv̂ and Topt that enables us to subse-
quently show that their costs are equal. Note that due to
Lemma 3.2, CTopt = Q(Topt; a(Topt)).

Lemma 3.5.: Q(Tv̂; v̂) � Q(Topt; a(Topt)) = CTopt :

Theorem 3.6.: CTv̂ = CTopt :

It is straightforward to observe that the time complexity
of Procedure ComputeTreeSymmetric is O(mn), where
n = jV j is the number of nodes andm = jEj is the number of
edges in G. This is because the outermost for loop iterates
over every node in G, and the body of the for loop, in the
worst case, considers every edge in G.

139

0

1

2

3

4

5

6

7

(3/6)

(3/6)

(3/4)

(3/4)

3

6

3

6

9

6

6

8

3

4

3

4

(3/4)

Figure 4: Example of Tree Cost for Asymmetric
Bandwidths

4. ASYMMETRIC INGRESS AND EGRESS
BANDWIDTHS

In this section, we address the case when VPN endpoint
bandwidth requirements are asymmetric, that is, for a VPN
endpoint j, Bin

j and Bout
j may be unequal. Asymmetric

ingress and egress bandwidths complicate the VPN tree
computation problem since for a VPN tree T connecting the
VPN endpoints, the bandwidth reserved along edge (i; j)
of T may not be identical in the two directions { that is,
CT (i; j) may not be equal to CT (j; i). This is because for an
edge (i; j), CT (i; j) = minf

P
l2P

(i;j)
i

Bout
l ;
P

l2P
(i;j)
j

Bin
l g

and CT (j; i) = minf
P

l2P
(i;j)
i

Bin
l ;
P

l2P
(i;j)
j

Bout
l g. Thus,

in the asymmetric case, since Bin
l and Bout

l may not be
equal, CT (i; j) and CT (j; i) may not be equal. Note that this
is di�erent from the symmetric bandwidths case in which the
bandwidths reserved in both directions along an edge (i; j)
of a tree T were equal.

Example 4.1.: Consider the VPN tree shown in Figure 4
connecting the VPN endpoints in P = f0; 1; : : : ; 4g. The
bandwidth requirements for the endpoints are as follows: for
endpoints 0 and 1, Bin = 3 and Bout = 6, and for endpoints
2, 3 and 4, Bin = 3 and Bout = 4. The bandwidths reserved
in the two directions for the various edges of the tree are
shown adjacent to the edges in the �gure. Thus, for instance,
for edge (5; 6), CT (5; 6) = 9 (since

P
l2P

(5;6)
5

Bout
l = 12 is

greater than
P

l2P
(5;6)
6

Bin
l = 9) and CT (6; 5) = 6 (since

P
l2P

(5;6)
6

Bout
l = 12 is greater than

P
l2P

(5;6)
5

Bin
l = 6).

Similarly, one can show that for edge (6; 7), CT (6; 7) = 6
(since

P
l2P

(6;7)
6

Bout
l = 16 is greater than

P
l2P

(6;7)
7

Bin
l =

6) and CT (7; 6) = 8 (since
P

l2P
(6;7)
7

Bout
l = 8 is less than

P
l2P

(6;7)
6

Bin
l = 9).

For the asymmetric bandwidths case, the problem of com-
puting the VPN tree with the minimum cost can be shown
to be at least as di�cult as that of computing a Steiner tree
connecting the VPN endpoints. Since the Steiner tree com-
putation problem for a set of VPN endpoints is NP-hard
[6, 5], it follows that the problem of computing the optimal
VPN tree is also NP-hard.

Theorem 4.2.: For the asymmetric bandwidths case, the
problem of computing the optimal VPN tree connecting the
set of VPN endpoints in P is NP-hard.

4.1 Integer Programming Formulation
In this section, we show that the problem of computing

the optimal tree can be formulated as an integer program-
ming problem. For this, we �rst need to examine the prop-
erties of VPN trees connecting endpoints with asymmetric
bandwidths.
For an edge (i; j) of VPN tree T , we say that it is biased

towards i if the following two conditions hold:

1. (
P

l2P
(i;j)
i

Bin
l <
P

l2P
(i;j)
j

Bout
l) or (

P
l2P

(i;j)
i

Bin
l =

P
l2P

(i;j)
j

Bout
l and P

(i;j)
i contains a special node, say

l̂), and

2. (
P

l2P
(i;j)
i

Bout
l <

P
l2P

(i;j)
j

Bin
l) or (

P
l2P

(i;j)
i

Bout
l =

P
l2P

(i;j)
j

Bin
l and P

(i;j)
i contains a special node, say

l̂).

An edge (i; j) is said to be biased if it is biased towards either
i or j. An edge that is not biased is said to be balanced. Also,
we refer to a node of T as a core node if a balanced edge is
incident on it.
Going back to Example 4.1, edge (5; 6) is a balanced edge

(since
P

l2P
(5;6)
5

Bin
l = 6 is less than

P
l2P

(5;6)
6

Bout
l = 12

and
P

l2P
(5;6)
6

Bin
l = 9 is less than

P
l2P

(5;6)
5

Bout
l = 12).

Thus, nodes 5 and 6 are core nodes. However, edge (6; 7)
is biased towards 7 since

P
l2P

(6;7)
7

Bin
l = 6 is less than

P
l2P

(6;7)
6

Bout
l = 16 and

P
l2P

(6;7)
7

Bout
l = 8 is less than

P
l2P

(6;7)
6

Bin
l = 9.

In the following, we state certain properties of balanced
edges. Let M = minf

P
l2P Bin

l ;
P

l2P Bout
l g.

Lemma 4.3.: The sum of the bandwidths reserved on a
balanced edge (i; j) of a VPN tree T in both directions is M
(that is, CT (i; j) + CT (j; i) =M).

Revisiting Example 4.1, the total bandwidth reserved on
balanced edge (5; 6) is M =

P
l2P B

in
l = 15.

Lemma 4.4.: The restriction of T to only balanced edges
forms a connected component.

Note that, from the above lemma, it follows that the core
nodes are connected by a tree consisting entirely of balanced
edges. Thus, if we delete the balanced edges from T , then
in each of the resulting connected components, there is a
single core node. We refer to the component containing
core node v by Cv. Of course, if T contains no balanced
edges, then there is only one component. Since all edges in
the component are biased, one can show that there exists
a unique node v in T such that every edge incident on v is
biased away from it. This node v is then considered to be
the core node for the component.

Lemma 4.5.: Consider the component Cv corresponding
to core node v. Every edge (i; j) in Cv is biased towards j
(assuming j is further from node v than i).

Lemma 4.6.: The cost of component Cv is
P

l2(Cv\P)
dT (v; l)�

(Bin
l +Bout

l).

140

Thus, a VPN tree T consists of a set of core nodes con-
nected by balanced edges, and connected components Cv

for each core node containing only biased edges. Suppose
that core(T) denotes the set of core nodes in T and bal(T)
is the set of balanced edges in T . Then, from the above
lemmas, we can infer that the cost of T , CT , is equal to
M � jbal(T)j+

P
v2core(T)

P
l2(Cv\P)

dT (v; l)� (B
in
l +Bout

l).

From the above discussion, it follows that each VPN tree,
for the most part, can be completely characterized by its
set of core nodes. Consider a set of nodes S. We de�ne
the cost of the set of nodes S, denoted by CS, as M � b +P

l2P minv2SfdG(v; l)g�(B
in
l +Bout

l). Here, b is the number
of edges in the Steiner tree connecting the nodes in S. Next,
we show how to construct the tree T (S) for a set of nodes
S such that CT (S) � CS. First, connect the nodes in S by
a Steiner tree and add all the Steiner tree edges to T (S).
Next, coalesce all the nodes in S into one supernode, and
construct a breadth �rst tree rooted at the supernode and
connecting all the VPN endpoints in P (as the leaves). Add
the edges of the breadth �rst tree to T (S).
In the following, we show that the problem of computing

the optimal VPN tree is equivalent to that of computing a
set of nodes S for whom CS is minimum. Speci�cally, we
show that if Topt is the optimal tree, then for the minimum
CS , CS � CTopt . Thus, once we determine S, we can always
construct the tree T (S) whose cost is optimal due to the
following lemma.

Lemma 4.7.: Let S be a set of nodes. Then CT (S) � CS.

The following lemma enables us to prove that comput-
ing the set of nodes S for which CS is minimum yields the
optimal VPN tree for the asymmetric case.

Lemma 4.8.: For a VPN tree T , Ccore(T) � CT .

Theorem 4.9.: Let S be a set of nodes for whom CS is
minimum. Then T (S) is the optimal VPN tree.

Thus, we have shown that, for the asymmetric case, to
compute the optimal VPN tree, we simply need to compute
a set of nodes S whose cost CS is minimum; that is, a set S of
nodes for whom the quantity b�M+

P
l2P minv2SfdG(v; l)g�

(Bout
l + Bin

l) is minimum, where b is the number of edges
in the Steiner tree connecting the nodes in S.
The problem of computing the set of nodes S with the

minimum cost can be formulated as an integer program if
we know the identity of one of the nodes in S. Let xij , yi
and ze be 0-1 variables, where yi is 1 if node i belongs to S,
xij is 1 if VPN endpoint j is assigned to node i and ze is 1
if edge e belongs to the Steiner tree connecting the nodes in
S. Also, let �(V̂) denote the set of edges crossing sets V̂ and

V � V̂ in G and Bj = Bin
j +Bout

j . Suppose we know apriori
that node v 2 S. Then, the solution to the following integer
program yields the optimal set of nodes S containing v.

minimize
X

i2V;j2P

dG(i; j) �Bj � xij +M �
X

e2E

ze (1)

subject to the following constraints

8j 2 P :
X

i2V

xij � 1

8i 2 V; j 2 P : yi � xij � 0

8V̂ � V; v 62 V̂ ; j 2 P :
X

e2�(V̂)

ze �
X

i2V̂

xij � 0

xij ; yi; ze 2 f0; 1g

The �rst two constraints state that each VPN endpoint j
must be assigned to at least one node in S. The third con-
straint ensures that nodes in S are connected by a Steiner
tree. It achieves this by requiring that if a VPN endpoint
j is assigned to a node i (causing node i to belong to S),
then i is connected to v by Steiner tree edges. The objective
function that we minimize is the cost of the set of nodes S.
Thus, since we know that S must contain a node from V ,

we can compute the optimal tree by performing the following
steps:

1. For each node v 2 V , solve the integer program to
compute Sv, the optimal set of nodes containing v (Sv
consists of those nodes i for which yi = 1 in the integer
programming solution).

2. Return the tree T (Sv) whose cost is minimum.

Note that while the minimum cost nodes computation
problem has some similarities to the well-known facility lo-
cation problem (FLP) [11], there is one signi�cant di�erence.
If we view the nodes in V as facilities, then in our case, the
cost of each individual facility is 0. However, the chosen
facilities as a whole have an associated cost since they need
to be connected by a Steiner tree, the cost of each of whose
edge is M . Thus, the cost of each individual facility is re-
placed by the cost of the Steiner tree connecting all the
chosen facilities.

4.2 Rounding Based Approximation Algorithm
Solving integer program (1) to compute Sv is known to

be computationally intractable [6]. In this subsection, we
present an approximation algorithm that is based on solv-
ing the linear relaxation of the integer program, and then
rounding the fractional solution to an integer solution that
increases the cost of the fractional solution by a relatively
small constant factor. The rounding algorithm consists of
the following two phases: �rst we apply the �ltering and
rounding technique of Lin & Vitter [9] to obtain a new frac-
tional solution, where the new solution has the property that
whenever an endpoint j is fractionally assigned to a (par-
tially chosen) node i, the distance dG(i; j) associated with
that assignment is not too big. We then show how a frac-
tional solution with this closeness property can be rounded
to a near-optimal integer solution.
The relaxation of the integer program results in the fol-

lowing LP.

minimize
X

i2V;j2P

dG(i; j) �Bj � xij +M �
X

e2E

ze (2)

subject to the following constraints

8j 2 P :
X

i2V

xij � 1

8i 2 V; j 2 P : yi � xij � 0

141

8V̂ � V; v 62 V̂ ; j 2 P :
X

e2�(V̂)

ze �
X

i2V̂

xij � 0

xij ; yi; ze � 0

It can be shown that using the ellipsoid algorithm [10],
we can solve the above LP in polynomial time. Let x; y; z
be an optimal fractional solution to this LP. We show how
to round this to an integer solution.
Let 0 < c < 1 be a constant (we �x its value later). We

use the �ltering technique of Lin and Vitter from [9] (that
was also employed in [11]) to derive a new fractional solution
as follows. For each VPN endpoint j, we de�ne a quantity
�j as follows: suppose � is a permutation of nodes such that
dG(�(1); j) � dG(�(2); j) � � � � � dG(�(n); j). De�ne i� =

minfi0 :
Pi0

i=1 x�(i)j � cg. Now, de�ne �j = dG(�(i
�); j).

We will use the following later to prove our approximation
result.

(1 � c) � �j �
X

i�i�

x�(i)j � dG(�(i); j) �
X

i2V

dG(i; j) � xij (3)

We de�ne a new feasible fractional solution (�x; �y; �z) for the
LP as follows: for each endpoint j, de�ne cj =

P
i:dG(i;j)��j

xij .

Note that cj � c. De�ne �xij = xij=cj , if dG(i; j) � �j ,
and 0 otherwise. For each i, de�ne �yi = minf1; yi=cg. Fi-
nally, for each edge e, de�ne �ze = minf1; ze=cg. It is easy
to verify that this new solution is feasible to the LP. We
next show how to round the new fractional solution to a
near-optimal integer solution such that each endpoint j is
assigned to some node i such that �xij > 0. We denote by
Fj = fi : �xij > 0g the set of eligible nodes for endpoint j.
Procedure ComputeTreeRounding shown in Figure 5

computes a feasible integer solution (x̂; ŷ; ẑ) that is within a
constant factor of the fractional solution (�x; �y; �z). The pro-
cedure begins by clustering the VPN endpoints in Steps 6{
16. Each cluster has a VPN endpoint j that is the seed of
the cluster. The set of seed endpoints are stored in seedSet
and Sj is the cluster with endpoint j as the seed. Every
endpoint l 2 Sj has the following properties: (1) �j � �l,
(2) for some node i 2 Fl, dG(i; j) � c0�j or for some node
i 2 Fj , dG(i; l) � c0�l (here c0 > 1 is a constant that we
de�ne later). We will assign each endpoint in Sj to some
node in Fj , and the following lemma states that this will
not increase the overall cost by much.

Lemma 4.10. : For each l 2 Sj and i 2 Fj, dG(i; l) �
(c0 + 2) � �l.

Proof: Consider an i 2 Fj . Due to the de�nition of Fj , it
follows that dG(i; j) � �j . We consider the following two
cases, one of which must hold because l 2 Sj .

1. For some node i0 2 Fl, dG(i
0; j) � c0�j . Since i

0 2 Fl,
it must be the case that dG(i

0; l) � �l. Thus, due to
the triangle inequality, dG(i; l) � dG(i; j) + dG(i

0; j) +
dG(i

0; l) = (c0 + 1)�j + �l. Since �j � �l, the lemma
follows.

2. For some node i0 2 Fj , dG(i
0; l) � c0�l. Since i

0 2 Fj ,
it must be the case that dG(i

0; j) � �j . Thus, due to
the triangle inequality, dG(i; l) � dG(i; j) + dG(i

0; j) +
dG(i

0; l) = c0�l + 2 � �j . Since �j � �l, the lemma
holds.

procedure ComputeTreeRounding(F , �, G, P , v)
1. Tv := ;
2. activeSet:= P
3. seedSet:= ;
4. for each VPN endpoint l in P
5. let F 0l be the set of nodes i for which dG(i; l) � c0�l
6. while activeSet 6= ; f
7. let j be a VPN endpoint in activeSet with the minimum

value of �j
8. seedSet := seedSet [fjg
9. Sj := fjg
10. for each endpoint l in activeSet f
11. if F 0j \ Fl 6= ; or Fj \ F 0l 6= ; f
12. delete l from activeSet
13. add l to Sj
14. g
15. g
16. g
17. let G0 be the graph obtained from G as a result of coalescing

all nodes in Fj into a supernode for each j in seedSet
18. construct a Steiner tree T connecting the supernodes in G0

/* v, if not coalesced, is considered a supernode */
19. add edges in T to Tv
20. let Tdir denote the tree T with edges in T directed to form an

outgoing arborescence from v in G0

21. for each j in seedSet f
22. let u 2 Fj denote the node with an incoming arc in Tdir
23. for each w 2 Fj with an outgoing arc in Tdir
24. add edges in the shortest path from u to w in G, to Tv
25. g
26. delete edges from Tv until it contains no loops
27. return Tv

Figure 5: Algorithm for Computing VPN Tree from
Fractional LP Solution

In order to maintain feasibility of the solution once end-
points in Sj are assigned to some node in Fj , we need to
construct a Steiner tree T that connects v to at least one
node from Fj for each j belonging to seedSet. To accom-
plish this, in the graph G, for each endpoint j in seedSet, we
contract the nodes in each Fj to a new supernode. We then
connect the supernodes by a Steiner tree T , thus ensuring
that each supernode is connected to v (Step 18). However,
note that although T connects the supernodes (and v) in
G0, it may happen that T does not form a single connected
subgraph in G. The reason for this is that edges of T may
be incident on di�erent nodes in an Fj . Thus, in order to
ensure that T forms a connected subgraph even in G, in
Steps 22{24, we select a node u in Fj and connect it to
every other node of Fj on which an edge of T is incident.
In the following lemma, we show that the number of edges

in Tv is within a constant factor of
P

e2E �ze.

Lemma 4.11.: The number of edges in Tv is less than or

equal to 2(c0+1)

c0�1
�
P

e2E �ze.

Proof: We �rst show that the number of edges in the
Steiner tree T that connects the supernodes in G0 = (V 0; E0)
is at most 2

P
e �ze. Consider any set S � V 0 containing a

proper subset of the set of supernodes. Without loss of gen-
erality, we assume that S does not contain v (if S contains
v, then we replace S by V 0 � S). Let S contain the supern-
ode corresponding to endpoint j (resulting due to collapsing

142

nodes in Fj). Since (�x; �y; �z) is a feasible solution for LP (2),P
e2�(S) �ze �

P
i2S �xij �

P
i2Fj

�xij = 1. So, if we consider

an instance of the Steiner tree problem with the set of su-
pernodes as the set of nodes to be connected in G0, then
�ze is a feasible fractional solution to this problem. Thus,
it is possible to construct a Steiner tree T connecting the
supernodes containing at most 2

P
e �ze edges [6].

We next show that for every j in seedSet, connecting node
u 2 Fj to every other node w in Fj with an outgoing arc
in Tdir (in Steps 22-24) increases the number of edges in T

by a factor of at most c0+1
c0�1

. First, observe that the length
of the shortest path between u and w is at most 2 � �j
(since endpoint j is at a distance of at most �j from both
u and w). Also, in T , there must be a path from w to
a node i belonging to Fl for some other l 6= j in seedSet.
Furthermore, dG(i; j) > c0�j , since otherwise j and l would
belong to the same cluster. Thus, the length of the path
from w to i is at least (c0 � 1)�j . We charge the cost of
2�j of connecting u to w to this segment of T { it is easy
to show that disjoint segments of T will be charged in this
manner. So, the number of edges in T increases by a factor
of at most (c0 + 1)=(c0 � 1). This proves the lemma.

We are now in a position to show the near-optimality of
the �nal rounded integer solution (x̂; ŷ; ẑ). In this solution,
in addition to setting ŷv = 1, for every j in seedSet, for
node u 2 Fj that has an incoming arc in Tdir, ŷu is set to 1,
otherwise ŷu is set to 0. Further, for every endpoint l 2 Sj ,
l is assigned to node u 2 Fj with the incoming arc, that is,
x̂ul = 1. Finally, for every edge e in Tv, ẑe = 1 and ẑe = 0
for all other edges. The integer solution is clearly feasible
since Tv connects every u 2 Fj (that has an incoming arc in
Tdir) to v.

Theorem 4.12.: The cost of integer solution (x̂; ŷ; ẑ) is
within a factor of 10 of the cost of the optimal LP solution
(x; y; z).

Proof: The cost of the integer solution (x̂; ŷ; ẑ) is given
by
P

i2V;j2P dG(i; j) � Bj � x̂ij + M �
P

e2E ẑe. Due to

Lemma 4.10,
P

i2V;j2P dG(i; j)�Bj�x̂ij � (c0+2)
P

j2P Bj�

�j . Also, due to Lemma 4.11, M �
P

e2E ẑe � M � 2(c0+1)
c0�1P

e2E �ze. Combining this with Equation (3) and since �ze �

ze=c, we get that the cost of (x̂; ŷ; ẑ) is at most c0+2
1�c

P
i2V;j2P

dG(i; j) � Bj � xij +
2(c0+1)
c(c0�1)

M �
P

e2E ze. Thus, (x̂; ŷ; ẑ) is

within a constant factor of the optimal fractional solution

(to the LP). This constant turns out to be maxf c
0+2
1�c

; 2(c
0+1)

c(c0�1)
g.

Choosing c = 3
5
and c0 = 2, we get a value of 10 for the con-

stant.

Time Complexity. The time complexity of Procedure Com-
puteTreeRounding can be shown to be O(n2(log n+ p)),
where p = jP j and n = jV j. The �rst term n2 log n is the
time complexity of constructing a Steiner tree in Step 18
[6], while the second term n2p is due to the overhead of
computing shortest paths for at most p (u;w) node pairs in
Steps 21{25.

4.3 Primal-Dual Algorithm
While the rounding based algorithm gives a constant fac-

tor performance guarantee on the cost of the computed VPN
tree (with respect to the cost of the optimal tree), it requires

solving the LP relaxation of the integer program. This LP
relaxation has a small number of variables, but an expo-
nential number of constraints. Even though the ellipsoid
method can be used to solve the LP in polynomial time
[10], it may not be computationally e�cient and thus im-
practical.
In this section, we propose an algorithm that employs the

primal-dual method in order to �nd a feasible solution to
the integer program (1). The dual for the LP relaxation (2)
is as follows.

maximize
X

j2P

�j (4)

8i 2 V; j 2 P : �j �
X

V̂�V;i2V̂ ;v 62V̂

V̂ j � Bj � dG(i; j)

8e 2 E :
X

V̂�V;e2�(V̂);v 62V̂

V̂ j �M

8j 2 P : �j � 0

8j 2 P; V � V̂ ; v 62 V̂ : V̂ j � 0

The dual is employed to guide in the selection of the set
Fj of potential nodes for each VPN endpoint j. The primal
complementary slackness conditions imply the following:

� If endpoint j is assigned to node i 2 V , then �j �P
i2V̂ ;v 62V̂ V̂ j = Bj � dG(i; j).

� If edge e is a Steiner tree edge, then
P

e2�(V̂);v 62V̂ V̂ j =
M .

Thus, Fj consists of all nodes i for which �j�
P

i2V̂ ;v 62V̂ V̂ j =

Bj � dG(i; j), while edges e for which
P

e2�(V̂);v 62V̂ V̂ j =

M constitute potential Steiner tree edges. Once Fj for
each endpoint j has been computed, Procedure Compute-
TreeRounding (see Figure 5) is used to compute the �nal
set of nodes S to which VPN endpoints are to be assigned,
and the Steiner tree connecting the nodes.
The overall procedure for computing the optimal VPN

tree is shown in Figure 6. Procedure ComputeTreeP-

rimalDual uses the primal-dual method to compute a set
of nodes S containing a speci�c node v 2 V and the Steiner
tree edges connecting the nodes in S. This is done in the
body of the for loop spanning Steps 2{38 for each node v 2 V
and the tree with the smallest cost is returned. The primal-
dual algorithm is an iterative algorithm { during each iter-
ation, �j for the VPN endpoint j with the smallest �j is
increased and in order to preserve dual feasibility, the V̂ js
are appropriately adjusted. When �j for a VPN endpoint j
becomes equal to dG(i; j) �Bj for a node i 2 V , node i be-
comes a potential node for assigning endpoint j and is added
to Fj . Further, when for an edge e, the sum of V̂ js (for

which e 2 �(V̂)) becomes equal to M , the edge is added to
the set of potential Steiner tree edges connecting the nodes
that are chosen for VPN endpoints. The �j for a VPN end-
point j is not increased once one of the potential nodes for
it (in Fj) becomes connected to v via potential Steiner tree
edges. This is because, as explained below, when �j is in-
creased, dual feasibility cannot be maintained by increasing
V̂ j , where v 62 V̂ .

143

procedure ComputeTreePrimalDual(G, P)
1. T := ;
2. for each v 2 V f
3. for each i 2 V , Ci := fig
4. for each e 2 E, we := 0
5. for each j 2 P , Fj := fjg, Sj := fjg; �j := 0
6. activeSet := P
7. while activeSet 6= ; f
8. select VPN endpoint j with minimum �j=Bj from

activeSet
9. let k be the node in V � Fj such that dG(k; j) is

minimum
10. let e = (u;w) 2 �(Sj) such that M �we is minimum
11. let �1 := dG(k; j) � Bj � �j
12. let �2 :=M � we
13. if �1 � �2 f
14. �j := �j + �1
15. for each e0 2 �(Sj), we0 := we0 + �1
16. Fj := Fj [fkg
17. Sj := Sj [Ck
18. if v 2 Sj , delete j from activeSet
19. g
20. elsef
21. �j := �j + �2
22. for each e0 2 �(Sj), we0 := we0 + �2
23. for each l 2 Cu, Cl := Cl [Cw
24. for each l 2 Cw, Cl := Cl [Cu
25. for each l 2 P f
26. if w 2 Sl, Sl := Sl [Cu
27. if u 2 Sl, Sl := Sl [Cw
28. if v 2 Sl, delete l from activeSet
29. g
30. g
31. g
32. Tv := computeTreeRounding(F; �=B;G;P; v)
33. let G0 be the graph obtained from G as a result of

coalescing all nodes in Tv into a supernode v0

34. construct breadth �rst tree T 0 rooted at v0 and whose
leaves are the VPN endpoints in P

35. add edges in T 0 to Tv
36. delete leaves from Tv that do not correspond to VPN

endpoints
37. if CTv < CT , T := Tv
38. g
39. return T

Figure 6: Primal-Dual Algorithm for Computing
VPN Tree

Data Structures. The algorithm collects the potential
nodes for a VPN endpoint j in Fj . These are the nodes
i for which �j � Bj � dG(i; j). Also, for each edge e, we

stores the sum of all the V̂ js that contribute to e { here

V̂ does not contain v and e 2 �(V̂). Thus, when we = M ,
e becomes a potential Steiner tree edge. Also note that for
any potential Steiner tree edge e, if e 2 �(V̂), then V̂ j can-
not be increased since this would result in a violation of dual
feasibility. In the procedure, Cu is used to store the nodes
connected to u via potential Steiner tree edges. Finally, Sj
is used to store the set of all nodes connected to nodes in
Fj via potential Steiner tree edges (thus Fj � Sj). As men-
tioned earlier, once Sj contains v, then �j for endpoint j
cannot be increased any further.

Algorithm. The complete primal-dual algorithm for com-
puting the VPN tree with low cost is illustrated in Figure 6.
For each v 2 V (in the outermost for loop), the algorithm

�rst employs the primal-dual method to compute a set of
potential nodes Fj for each VPN endpoint j and a set of po-
tential Steiner tree edges that connect each Fj to v (Steps 3{
30). It then invokes Procedure ComputeTreeRounding
to compute the Steiner tree containing v and connecting
the nodes to which VPN endpoints are assigned. This tree
is then extended to connect the VPN endpoints in P in
Steps 32{35.
The variable activeSet stores the VPN endpoints j for

which �j can still be incremented. The set Sj denotes the

smallest set V̂ of nodes for which V̂ j needs to be increased
when �j for a VPN endpoint j is increased. The reason for
this is that for every i 2 Fj , �j � Bj � dG(i; j). Thus, in
order to ensure that the dual equation �j�

P
i2V̂ ;v 62V̂ V̂ j �

Bj�dG(i; j) stays feasible when �j is incremented, V̂ j where

i 2 V̂ must also be incremented. Note also that V̂ j can be

incremented only if �(V̂) contains no potential Steiner tree
edges. This is because for a potential Steiner tree edge e,P

e2�(V̂);v 62V̂ V̂ j = M . As a result, increasing V̂ j if e 2

�(V̂) could cause the dual equation
P

e2�(V̂);v 62V̂ V̂ j � M

to be violated. Thus, if V̂ j is the variable that is increased
to maintain dual feasibility when �j for a VPN endpoint j

is increased, then V̂ must contain all the nodes in Ci for
every i 2 Fj , or alternately Sj � V̂ .
From the above discussion, it follows that if Sj for a VPN

endpoint j contains v, then �j cannot be increased any fur-

ther. This is because there are no V̂ j variables for sets V̂
that contain node v. As a result, it is not possible to increase
V̂ j to ensure that the dual equation �j �

P
i2V̂ ;v 62V̂ V̂ j �

Bj � dG(i; j) stays feasible when �j is incremented. Thus,
activeSet only contains VPN endpoints j for whom Sj does
not contain v.
In each iteration of the while loop spanning Steps 7{30,

�j for a single VPN endpoint j belonging to activeSet is
incremented by minf�1; �2g, where j, �1 and �2 are as de�ned
in Steps 8{12. Note that increasing �j causes one of the
following to happen { (1) k to be added to Fj since �j =
dG(j; k) (if �1 � �2), or (2) edge e to become a potential
Steiner tree edge since M = we (if �2 < �1). For the latter
case, the connected components for nodes connected to u
and v need to be adjusted (Steps 23 and 24). In addition,
Sjs for VPN endpoints j that contain either u or v need to
be expanded as described in Steps 26 and 27.
Finally, note that in order to maintain feasibility of equa-

tions �j �
P

i2V̂ ;v 62V̂ V̂ j � Bj � dG(i; j) for endpoints i in

Fj , Sjj is increased by �1=�2 when �j is increased by �1=�2.
This, in turn, contributes �1=�2 to we0 for all edges e

0 2 �(Sj)
(Steps 15 and 22).

Time Complexity. The time complexity of Procedure Com-
puteTreePrimalDual can be shown to be O(n(m2p +
mnp+n2 log n)), where p = jP j, m = jEj and n = jV j. The
outermost for loop performs n iterations, one for each node
v 2 V . Further, for each iteration of the outermost loop,
the body of the if condition (Steps 14{18) can be executed
at most np times, once for each VPN endpoint node pair,
while the body of the else condition (Steps 21{28) can be ex-
ecuted at most m times, once for each edge in E. Assuming
that unions involving Sj can be performed in O(n) steps and
lookups of Sj can be carried out in constant time, the com-
plexity of Steps 14-18 can be shown to be O(m+n), while the

144

complexity of Steps 21{28 can be shown to be O(mp+ np).
Finally, as shown earlier, the time complexity of Procedure
ComputeTreeRounding is O(n2 log n + n2p). Thus, the
Procedure ComputeTreePrimalDual has an overall time
complexity of O(n(m2p+mnp+ n2 log n)).

4.4 Breadth First Search Based Algorithm
The breadth �rst search algorithm presented in Section 3

can also be used to compute the VPN tree for the asymmet-
ric bandwidth case (see Procedure ComputeTreeSymmet-
ric in Figure 3). However, since the VPN tree computation
problem for the asymmetric case is NP-hard, the algorithm
may not return the optimal VPN tree. Nevertheless, one
can show that cost of the tree computed by the procedure is

within a factor of
P

l2P Bin
l +Bout

l

M
of the cost of the optimal

VPN tree.

Theorem 4.13.: The cost of the tree returned by Proce-
dure ComputeTreeSymmetric is within a factor of
P

l2P Bin
l +Bout

l

M
of the cost of the optimal VPN tree.

5. EXPERIMENTAL STUDY
We conducted an extensive empirical study to measure

the performance of our breadth �rst search (BFS) and primal-
dual algorithms, and compared them with the approach of
using a Steiner tree to connect VPN endpoints [3]. The
major �ndings of our study can be summarized as follows:

� The primal-dual algorithm generates VPN trees with
the smallest cost for a wide range of ingress/egress
bandwidth ratios. It outperforms both the BFS and
the Steiner tree algorithms for medium to large band-
width ratios.

� For low ingress/egress bandwidth ratios, the BFS and
primal-dual algorithms consistently outperform the Steiner
tree algorithm. In many cases, they construct VPN
trees that reserve half the bandwidth reserved by Steiner
trees.

� The BFS algorithm scales well for large networks con-
taining several thousand nodes.

In our implementation of Steiner trees, we used the
2-approximation primal-dual algorithm from [6].

5.1 Network Generation Models
In our experiments, we used two di�erent network gen-

erators, to generate random networks with di�erent char-
acteristics. One generator was based on work by Waxman
[12], the other on work by Faloutsos et al. [4]. We gen-
erated random and symmetric networks consisting of 50 to
5000 nodes connected by links with large residual capacities.
The generation algorithms use the following models.
�Waxman model [12]. In this model, nodes are placed

on a plane, and the probability for two nodes to be con-
nected by a link decreases exponentially with the Euclidean
distance between them. In our experiments, we used the
Waxman model to generate networks of size less than 1000
nodes. We set the value for the parameter that controls the
density of short edges in the network to 0.9 and the value
of the parameter for the average node degree to 0.1.
� Power-Law model [4]. In this model, the node con-

nectivity follows a power-law rule: very few nodes have high

connectivity, and the number of nodes with lower connec-
tivity increases exponentially as the connectivity decreases.
This model is based on Internet measurements, where a node
is an autonomous system (AS). In our experiments, we used
the Power-Law model to generate large networks containing
1000 or more nodes.
A subset of the nodes in each network is chosen randomly

and uniformly as the VPN endpoints. For the symmetric
bandwidth case, each VPN endpoint is assigned bandwidth
uniformly chosen from an interval of 2-100 Mbps. Further,
to model asymmetric endpoint bandwidths, we introduce a
new parameter, the asymmetry ratio r, which is essentially
the ingress/egress bandwidth ratio for each VPN endpoint.
The same ratio is also maintained for

P
lB

l
in and

P
lB

l
out,

the sums of ingress and egress bandwidths over all VPN
endpoints.

2000

5000

10000

15000

20000

25000

30000

40000

100 200 300 400 500 600 700 800 900

C
os

t

Number of Nodes

Waxman Network Model

BFS
Steiner Tree

15000

40000

60000

140000

180000

190000

1000 2000 3000 4000

C
os

t

Number of Nodes

Power Law Network Model

BFS
Steiner Tree

Figure 7: E�ect of Number of Network Nodes on Per-

formance of Algorithms.

5.2 Experimental Results
We compare the provisioning cost (that is, the total band-

width reserved on links of the VPN tree) of the algorithms
for the symmetric as well as the asymmetric bandwidth
models. In the study, we examined the e�ect of varying
the following three parameters on provisioning cost: (i) net-
work size, (ii) number of VPN nodes, and (ii) asymmetry
ratio.

Network Size. Figure 7 depicts the provisioning cost of the
BFS and Steiner tree algorithms as the number of network
nodes is increased from 100 to 4000. VPN endpoints are
assigned equal ingress/egress bandwidths and the number
of VPN endpoints is set to 10% of the network size. Recall

145

8000

20000

30000

40000

50000

60000

80000

100000

160000

200000

50 100 200 300 400 500

C
os

t

Number of VPN Nodes

1000 Node Network Based on Power Law Model

BFS
Steiner Tree

Figure 8: E�ect of Number of VPN Nodes.

3000

6000

10000

13000

16000

48 16 32 64 128 256

C
os

t

Bandwidth Asymmetry

100 Node Network Based on Waxman Model with 18 VPN Nodes

BFS
Primal Dual

Steiner Tree

Figure 9: E�ect of Asymmetry Ratio.

that the BFS algorithm is provably optimal for the symmet-
ric case. Further, unlike the Steiner tree algorithm which is
oblivious to the bandwidths of endpoints, the BFS algo-
rithm does take into account the bandwidth requirements
for VPN endpoints. As a result, it outperforms Steiner tree
algorithm by almost a factor of 2 for a wide range of node
values.

Number of VPN Nodes. Similar results are obtained
for the BFS and Steiner tree approaches for a wide range
of VPN node values (see Figure 8). In the experiment, the
number of nodes in the network were �xed at 1000 and VPN
endpoints were assigned symmetric bandwidths.

Asymmetry Ratio. In Figure 9, we plot the provision-
ing costs for the three algorithms as the asymmetry ratio is
increased from 2 to 256. The network size and number of
VPN nodes are �xed at 100 and 18, respectively. Interest-
ingly, the primal-dual algorithm performs the best for the
entire range of asymmetry ratios. For small values of the
asymmetry ratio (� 8), the primal-dual algorithm behaves
similar to the BFS algorithm which we showed to be op-
timal for a ratio of 1. Thus, both algorithms reserve less
bandwidth than the Steiner tree algorithm for small ratio
values.
As we increase the asymmetry ratio, the size of the steiner

tree connecting the core nodes of the VPN tree also in-
creases. Consequently, the cost of the VPN tree computed
by the Steiner tree algorithm becomes smaller than the cost

due to the BFS algorithm. However, the primal-dual algo-
rithm performs the best since it estimates the cost of the
VPN tree most accurately as consisting of a central core
steiner tree component with multiple breadth �rst trees con-
necting the core to the VPN endpoints.

6. CONCLUDING REMARKS
In this paper, we developed novel algorithms for provi-

sioning VPNs in the hose model. We connected VPN end-
points using a tree structure and our algorithms attempted
to optimize the total bandwidth reserved on edges of the
VPN tree. We showed that even for the simple scenario in
which network links are assumed to have in�nite capacity,
the general problem of computing the optimal VPN tree is
NP-hard. However, for the special case when the ingress
and egress bandwidths for each VPN endpoint are equal,
we proposed a breadth �rst search (BFS) algorithm for com-
puting the optimal tree whose time complexity is O(mn),
where m and n are the number of links and nodes in the
network, respectively. We presented a novel integer pro-
gramming formulation for the general VPN tree computa-
tion problem (that is, when ingress and egress bandwidths
of VPN endpoints are arbitrary) and devised an algorithm
that is based on the primal-dual method.
Our experimental results indicate that the primal-dual al-

gorithm performs the best over a wide range of parameter
values, reserving less bandwidth than both the BFS and
Steiner tree algorithms for large ingress/egress bandwidth
ratios. For small bandwidth ratios, the BFS and primal-
dual algorithms consistently outperform the Steiner tree al-
gorithm. In many cases, they construct VPN trees that
reserve half the bandwidth reserved by Steiner trees.

7. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. \Network

Flows". Prentice Hall, 1993.
[2] B. Davie and Y. Rekhter. \MPLS Technology and

Applications". Morgan Kaufmann Publishers, 2000.
[3] N. G. Du�eld, P. Goyal, A. Greenberg, P. Mishra, K. K.

Ramakrishnan, and J. E. van der Merwe. A exible model
for resource management in virtual private networks. In
Proceedings ACM SIGCOMM, 1998.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In Proceedings ACM
SIGCOMM, 1999.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, 1979.

[6] D. S. Hochbaum. \Approximation Algorithms for NP-Hard
Problems". PWS Publishing Company, 1997.

[7] S. Kent and R. Atkinson. Security architecture for the
internet protocol. RFC 2401, Nov. 1998.

[8] A. Kumar, R. Rastogi, B. Yener, and A. Silberschatz.
Algorithms for provisioning virtual private networks in the
hose model. Technical Report 0112380-001023-23, Bell
Laboratories, Murray Hill, 2000.

[9] J. H. Lin and J. H. Vitter. �-approximations with minimum
packing constraint violation. In Proceedings ACM
Symposium on Theory of Computing, 1992.

[10] M. Queyranne. Structure of a simple scheduling
polyhedron. Mathematical Programming, 58:163{185, 1993.

[11] D. Shmoys, E. Tardos, and K. Aardal. Approximation
algorithms for facility location problems. In Proceedings
ACM Symposium on Theory of Computing, 1997.

[12] B. M. Waxman. Routing of multipoint connections. IEEE
Journal on Selected Areas in Communications,
6(9):1617{1622, Dec. 1988.

146

