
Algorithms for Querying by Spatial Structure

Dimitris Papadias1, Nikos Mamoulis1 and Vasilis Delis2

1Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
 {dimitris, mamoulis}@cs.ust.hk

2Computer Engineering and Informatics Department
and Computer Technology Institute

University of Patras, Greece
delis@cti.gr

Abstract: Structural queries constitute a special form of
content-based retrieval where the user specifies a set of spatial
constraints among query variables and asks for all
configurations of actual objects that (totally or partially) match
these constraints. Processing such queries can be thought of as
a general form of spatial joins, i.e., instead of pairs, the result
consists of n-tuples of objects, where n is the number of query
variables. In this paper we describe a flexible framework which
permits the representation of configurations in different
resolution levels and supports the automatic derivation of
similarity measures. We subsequently propose three algorithms
for structural query processing which integrate constraint
satisfaction with spatial indexing (R-trees). For each algorithm
we apply several optimization techniques and experimentally
evaluate performance using real data.

1. Introduction
Several types of spatial queries have been the focus of
active research in the database community: window
queries [G84], nearest neighbors [RKV95], relation-
based queries [PTSE95] etc. The above types retrieve all
objects in the database that satisfy some spatial property
with respect to a fixed reference object or window.
Recently the focus has shifted towards spatial joins [R91]
[G93] [BKS93], which involve the retrieval of pairs of
objects that satisfy some spatial predicate (most often
overlap).

This work examines an alternative form of spatial
information processing, namely, queries involving the
retrieval of n-tuples (n>2) of objects that satisfy some
spatial structure. Structure is described as a set of spatial
constraints between query variables which can be
expressed either by a "verbal" (e.g., select X, Y, Z, from
Roadmap, where overlaps(X,Y) and north(Y,Z)) or
pictorial language (e.g., by drawing a prototype
configuration on a sketch-board). This type of queries
can be thought of as the generalization of spatial joins (if

the relation between variables is overlap, it corresponds
to common multi-way spatial join). From a different
perspective, structural queries constitute a special class of
image similarity retrieval, where the query specifies an
input configuration to be matched with stored images.
Similarity is based on relative locations and not on visual
characteristics (e.g., colour, shape).

Let n be the query size (number of variables) and N be
the data size (number of image objects): in the worst case
(exhaustive search), all n-permutations of N objects have
to be searched in order to find solutions (i.e., N!/(N-n)!).
In real DBMSs where N>>n, this number is O(Nn),
meaning that the retrieval of structural queries can be
exponential to the query size. Query processing becomes
more expensive if inexact matches are to be retrieved, a
situation which arises very often in practical applications.

In order to avoid this problem, most related previous
techniques (e.g., [GR95] [NNS96]) have focused on a
specific instance where images consist of known
(labelled) objects and queries express spatial constraints
among a subset of these objects. [PF97] employ R-trees to
solve structural queries for images that contain a constant
number of labelled objects (e.g., lungs) and a small
number of unlabelled ones (e.g., tumours). Although
their method is efficient for domains involving numerous
small images with few unlabelled objects (e.g., medical
databases of X-rays) it is not applicable to large images
of unlabelled objects.

In this paper we deal with the general problem where
large images contain arbitrary numbers of unlabelled
objects. In order to provide a general solution, we present
a unified framework for structural similarity, which can
represent various resolution levels and automates the
derivation of similarity measures. We then propose
algorithms that can solve the problem for considerable
data and query sizes. These algorithms utilize ideas from
related work in spatial databases (spatial join processing)
and AI (constraint satisfaction algorithms).

Although the problem of querying by structure is not
a new one (it has been around since the early stages of
computer vision [BB84]), to the best of our knowledge
this is the first approach to provide a solution which
combines search algorithms with spatial indexing and
can be applied for secondary memory retrieval. Our

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.
Proceedings of the 24th VLDB Conference, New York,
USA, 1998

techniques have a wide range of potential applications in
various areas (e.g., GIS, Multimedia Databases, VLSI).

The rest of the paper is organized as follows: Section
2 describes a binary string encoding for the
representation of structure in multiple resolutions and
dimensions. Sections 3 outlines the problem and provides
examples of spatial queries and their processing. Sections
4, 5 and 6 describe three algorithms for structural query
processing: the first one extends traditional spatial join
methods for R-trees to multi-way (nested) joins. The
second algorithm uses a search heuristic to prune the
windows where query variables can be instantiated from,
while the third one combines ideas from the first two
algorithms. Section 7 compares the performance of the
algorithms under several conditions. Finally, Section 8
concludes with future research directions.

2. A Framework for Structural Similarity
We will initially confine our discussion to one dimension
and address the most common types of relations proposed
and mathematically defined so far in the spatial domain
[PS94], namely topological (e.g., inside, overlaps),
directional (e.g., north, northeast) and qualitative
distance relations (e.g., near, far). Figure 1 illustrates the
three types of 1D relations assuming that the lower
interval is the reference object and the upper interval is
the primary one.

Our goal is to provide a unified and adjustable
framework which permits the definition of any type of
spatial relation and the automatic generation of
similarities between them. Assume that in a particular
application the only relations of interest are the ones in
Figure 1, and we are given a (reference) interval [a,b].
Then we identify nine potential regions of interest:
1.(-∞,a-δ) 2.[a-δ,a-δ] 3.(a-δ,a) 4.[a,a] 5.(a,b) 6.[b,b] 7.(b,

b+δ) 8.[b+δ, b+δ] 9.(b+δ,+∞)
For each of the above regions we associate a binary

variable, r, s, t, u, v, w, x, y, z, respectively (see Figure 2).
Given a primary interval [c,d], the value of every variable
indicates the result of the intersection between [c,d] and

the variable's associated region ("0" corresponds to an
empty intersection while "1" corresponds to a non-empty
one). Thus, we can define 1D relations to be 9-tuples
(Rrstuvwxyz : r, s, t, u, v, w, x, y, z ∈ {0,1}).

Such a consecutive partitioning of space constitutes a
resolution scheme. There are several possible schemes;
the particular choice is affected by the users' expectations
or the application's requirements, as every scheme can
refine or generalize a particular relation class. For
example, when distance relations are not needed we can
apply a scheme with only five bits (two corresponding to
the points of the reference interval) which defines the 13
relations between intervals proposed by Allen [A83].

The feasible relations at a particular resolution
scheme are called primitive relations. In general, the less
the binary variables, the coarser the resolution, and vice
versa. If b is the number of bits used by the resolution
scheme, the number of primitive relations in 1D is
b(b+1)/2 - k, where k is the number of point variables,
i.e. intervals of the form [a,a]. For b=9, k=4 we get 41
relations (see Figure 2), while for b=5, k=2, there exist
13 (Allen's) relations.

Each spatial relation is mapped onto a set of primitive
relations. For instance, left can be mapped onto
{R100000000, R110000000, R111000000, R011000000, R001000000} and
near onto {R001000000, R000000100}. Disjunction of spatial
relations (e.g., left or near) are represented by the unions
of the corresponding sets, and conjunctions by their
intersection (e.g., {R001000000} corresponds to left-near).

The next step is to provide a mechanism for
representing similarities among relations independently
of the resolution scheme. [F92] defined the concept of
conceptual neighborhood as a cognitively plausible way
to measure similarity among Allen's interval relations. A
neighborhood is represented as a graph whose nodes
denote relations that are linked through an edge, if they
can be directly transformed to each other by continuous
interval deformations. Depending on the allowed
deformation (e.g., movement, enlargement), several
graphs may be obtained.

disjointmeets overlaps equalcovers covered by contains contained by

left

� �

� �

far

left-near

topological relations

directional relations distance relations

� � � � �

Figure 1 Categorization of 1D relations

Figure 2 represents the neighborhood graph for a
distance-enhanced resolution scheme, assuming that a
minimal deformation is a movement of a single interval
endpoint. Starting from relation R100000000 and extending
the upper interval to the right, we derive relation
R110000000. With a similar extension we can get the
transition from R110000000 to R111000000 and so on. R100000000

and R111000000 are called 1st degree neighbors of R110000000.
The distance d between two relations is equal to the
length of the shortest path connecting them in the
neighborhood graph.

The binary string representation enables automatic
calculation of distances using the pseudo-code of Figure
3, which counts the minimal number of “0”s that have to
be replaced with "1"s in order to make the two strings
identical. For example d(R000110000, R010000000) = 5 and
d(R000110000, R110000000) = 6 (the underlined 0s are the ones
counted during the calculation of distance). The distance
between a relation R and a relation set {R1,…,Ri} equals
the minimum distance between R and any of R1,…,Ri

(e.g., d(R000110000, {R010000000, R110000000})= 5).

INT distance(relation R1, relation R2)

R = R1 OR R2; /*bitwise OR */

d = 0;
FOR i:= R.leftmost_1 to R.rightmost_1 DO

IF R1[i]=0 THEN d ++;

IF R2[i]=0 THEN d ++;

RETURN (d);

Figure 3 Distance calculation

The encoding and distance calculation can be
extended accordingly to multi-dimensional spaces. A D-
dimensional relation is defined as a D-tuple of 1D
projections, e.g. R110000000-111000000 = (R110000000,
R111000000). In order to derive a neighboring relation we
have to replace one of the constituent 1D projections with
its neighbors. As a result, computing D-relation distances
is reduced to the already solved problem of computing
1D distances. In this paper we calculate the distance
between two multi-dimensional relations by summing up
the distances in each dimension (other metrics, such as
Euclidean [NNS96], can also be applied).

The advantages of the proposed framework are i) the
expressiveness of the encoding in the sense that given a
binary string, the corresponding spatial configuration can
be easily inferred, and vice versa, ii) efficient automatic
calculation of neighborhoods and relation distance, and
iii) the uniform representation of all three types of
relations (topological, directional, distance) in various
resolution levels. For the sake of clarity, in the rest of the
paper we use the distance enhanced resolution scheme of
Figure 2. However for more realistic applications,
sufficiently fine schemes (large encoding strings) can be
used, while retaining the model's properties. The
algorithms of the following sections are independent of
the resolution and can be applied with any set of spatio-
temporal relations. For a number of alternative resolution
schemes and a more detailed description of the
framework see [DPM98].

R100000000 R110000000 R111000000

R011000000

R001000000

R111100000

R011100000

R111110000

R001100000

R011110000

R001110000 R001111000

R011111000

R111111000 R111111100 R111111110 R111111111

R011111111

R001111111R001111110

R011111110R011111100

R001111100

R000111100R000111000R000110000

R000010000 R000011000 R000011100

R000001100

R000000100 R000000110 R000000111

R000000011

R000000001

R000001111R000001110

R000011110 R000011111

R000111111R000111110

a b

r s t u v w x y z

-∞ ∞δ δ

δ δ δ δ δ δ δ δ δ δδ δ

δ δ

δδ

δδδδ

δ

δδδδ

δ

δδδδ

δδ

δδδ

δ δ

δ

δ δ

δ

δ

δ δ

δ

δ

0 1 2 3 4 5 6 7 8bit:

Figure 2 1D Conceptual neighborhood including distances

3. Structural Queries
The projection-based definitions of relations and
similarity measures of Section 2 are particularly suitable
for structural similarity retrieval, because spatial
databases often utilize minimum bounding rectangles
(i.e., projection-based approximations) as a fast filter step
to exclude the objects that could not possibly satisfy a
query [O86]. Furthermore, structural queries do not
always have exact matches and crisp results. Rather, the
output should have an associated "score" to indicate its
similarity to the query. By adoption, this score is
inversely proportional to the degree of neighborhood.

A structural query can be formalised as a binary
constraint satisfaction problem [N89] (CSP) which
consists of:
• A set of n variables, V0,V1,…,Vn-1 that appear in the

query.
• For each variable Vi a finite domain Di ={u0,…, uN-1} of

N potential values which correspond to image objects.
In this paper we assume that all domains are identical,
i.e., each variable can be instantiated to any image
object.

• For each pair of variables Vi,Vj a binary spatial
constraint Cij which is a set of primitive relations.

Consider, for example, the query of Figure 4(a) which is
a spatial arrangement of n=4 variables, expressed using a
query-by-sketch language. Assuming the distance-
enhanced resolution scheme of Figure 2, the set of query
constraints between all variable pairs is illustrated in
Figure 4(b). The domain of each variable is the set of
objects in the image to be searched. Figure 4(c) illustrates
a solution where variable V0 is instantiated to object 143,
V1 to object 207 and so on. Although the particular
language specifies relations between all pairs of
variables, in some cases (e.g., verbal languages), queries
may be incomplete (some Cij may be left unspecified) or

indefinite (Cij may be disjunctions of relations).
A binary instantiation {Vi←uk, Vj←ul} is consistent,

if R(uk,ul) ⊆ Cij. For instance, the constraint between V0

and V3 is R100000000-111000000, which is also the relation
between their corresponding instantiations (143,42) in
Figure 4(c); therefore, {V0←143, V3←42} is consistent.
We define the binary degree of inconsistency τ of {Vi←
uk, Vj ←ul} as the distance between Cij and R(uk,ul).
Although the constraint between V0 and V1 is R001111000-

001111100, the relation between objects 143 and 207 is
R001111000-001111000; hence, τ =1 for {V0←143, V1←207}.
The degree of inconsistency T of a solution {V0← up, …,
Vn-1 ← ur} is the sum of all binary inconsistency degrees:

T= ∑
<≤∀ njiij

lkij uuRCd
,0,

)),(,(where {Vi ← uk, Vj ← ul}

Degrees of inconsistency are used for the retrieval of
configurations that match the input structure closely, but
not perfectly. The maximum allowed T and τ are
submitted with a query in order to adjust the trade-off
between the level of approximation and the cost of query
processing. For instance, if T=6 and τ=2, only solutions
that produce total relation difference ≤ 6 and pair-wise
difference ≤ 2 will be retrieved. Obviously as T and τ
increase, so does the number of solutions, but also the
cost of query processing.

3.1 Forward Checking with Dynamic Value Ordering

A number of algorithms have been proposed for solving
CSPs [N89]. One of the most effective, is forward
checking (FC) [HE80] [BG95] which has been shown to
outperform the rest for a wide range of problems
involving "crisp" constraints [BvR95]. FC must be
modified for structural queries in order to handle soft
constraint processing using T and τ.

(a) Query (b) Constraints (c) Solution

Figure 4 Example query

The adjusted version works as follows: when a
variable Vi is assigned a value uk, the domain of each
future (un-instantiated) variable Vj is pruned according
to uk and the constraint Cij, for all j>i. That is, all values
ul that produce a distance d(Cij,R(uk,ul))>τ are removed
from the domain of Vj. The same happens for values that
produce global inconsistency degree > T, taking into
account the constraints between Vj and all instantiated
variables1. Consequently, when we reach instantiation
level i (variables up to Vi have been instantiated), the
values of variables V0,…,Vi will constitute a partial
solution, and the domains of future variables will contain
only values that may lead to a (complete) solution given
the instantiations so far.

The procedure of pruning the domains of the future
variables is called check forward. If, after a check
forward the whole domain of a future variable is
eliminated, the algorithm un-assigns the current
variable’s value, and restores the values of future
variables, which were eliminated due to the current
instantiation. When the domain of the current variable is
exhausted the algorithm backtracks to the previous one
and assigns a new value to it. FC outputs a solution
whenever the last variable is given a value, and
terminates when it backtracks from the first variable.

 In order to keep track of the allowable values for
each variable at every instantiation level, FC uses a
nxnxN domain table. Each element of domain[i][j] is an
array of N values that Vj can take at different levels.
Before FC starts, domain[0][j] is initialized to D for all
variables. When V0 is assigned a value up, domain[1][j]
is computed for each remaining Vj, by including only
values ul ∈ domain[0][j] such that d(C0j,R(up,ul))≤τ. In
general if uk is the current value of Vi, domain[i+1][j] is
the subset of domain[i][j] which is valid w.r.t. Cij and uk.
In this way, at each instantiation level the domain[i][j]
of Vj continuously shrinks; when we reach level j, Vj gets
instantiated from domain[j][j] which contains only
values compatible with the instantiations of previous
variables. If a value of Vi results in the domain of some
Vj to become empty, a new value is chosen and
domain[i+1][j] is re-initialized to domain[i][j].

Dynamic Variable Ordering (DVO) [BvR95] is a
technique employed by several CSP algorithms to
improve efficiency. The key idea behind FC-DVO is to
reorder the future variables according to their domain
size after “checking forward” at the current instantiation
level. The variable with the minimum domain size
becomes the next variable to be tested. In this way the
number of search paths is minimized, because the
variable with the smallest domain is the most likely to be

1
 The inverse constraints Cji are also considered but, for the sake of

simplicity, we omit these tests in the rest of the paper.

pruned out; the algorithm will backtrack faster in the
case that there is no valid assignment after the current
partial solution. DVO is responsible for changing the
order of V1 and V2 in Figure 4(c).

The pseudo-code of a non-recursive version of FC
with DVO which can be applied for structural query
processing is given in Figure 5. FC-DVO has two
drawbacks for the current application. First it is
inapplicable for large spatial databases, because the 3D
domain table cannot fit in main memory. The second
drawback is the fact that it does not utilize the existing
spatial indices which may exist for spatial relations. The
incorporation of R-trees [G84] and appropriate query
processing techniques can solve both these problems.

3.2 Multi-Relation Spatial Join

Structural queries can be viewed as multi-way spatial
self-joins, where structural constraints correspond to join
predicates. For example, a pair-wise spatial join is
equivalent to a structural query with two variables related
by a spatial constraint. The most influential technique for
efficiently computing pair-wise, intersection joins using
R-trees is presented in [BKS93]. It is based on the
enclosure property: if two intermediate R-tree nodes do
not intersect, there can be no MBRs below them that
intersect. The algorithm first joins the high level nodes
and then follows the links in order to find qualifying
pairs below them (Figure 6).

FC-DVO(Query q, int τ,T)

FOR j = 0 TO n-1 DO domain[0,j] = D /*initialize all domains to D */

i = 0; /* index to the current variable */

WHILE (TRUE) {

 new_value := chooseNextValue(domain[i][i]);

 IF new_value = NULL THEN /* end of domain */

 IF i=0 THEN RETURN;

 ELSE i:=i-1; CONTINUE; /*Backtrack*/

 ELSE instantiations[i] := new_value; /*store instantiation*/

 IF i = n-1 THEN /*last variable instantiated*/

 output_solution(instantiations);

 ELSE /* intermediate variable instantiated */

 IF check_forward(i) THEN /* successful instantiation*/

 DVO(i+1,n-1); /*var. with the smallest domain as next*/

 i := i+1; /* successful instantiation: go forward */

 }

BOOLEAN check_forward(int i)

 FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/

 domain[i+1][j]= domain[i][j];

 FOR all values ul ∈ domain[i+1][j]

 IF d(Cij,R(instantiations[i],ul)) > τ OR T exceeded

 THEN domain[i+1][j]= domain[i+1][j]-{ul};

 IF domain[i+1][j]=∅ THEN RETURN FALSE;
 RETURN TRUE;

Figure 5 Soft forward checking with dynamic value ordering

SpatialJoin(Rtree_Node N[i], N[j])

FOR all Nl ∈ N[j] DO

 FOR all Nk ∈ N[i] with Nk ∩ Nl ≠ ∅ DO
 IF N[i] is a leaf page THEN
 output (Nk, Nl)
 ELSE
 ReadPage(Nk.ref); ReadPage(Nl.ref);
 SpatialJoin(N[k], N[l])

Figure 6 R-tree SpatialJoin

In the pseudo-code of Figure 6, as well as in the rest
of the paper, we make the distinction between an R-tree
node N[i] and its entries Nk, which correspond to MBRs
included in N[i]. Nk.ref points to the corresponding node
N[k] at the next (lower) level. Although SpatialJoin
assumes that the nodes to be joined are of equal height,
the extension to different heights is straightforward.

Two local optimization techniques are used to
improve the CPU speed of the above algorithm. The first,
search space restriction, reduces the quadratic number of
pairs to be evaluated when two nodes N[i], N[j] are
joined. If an entry Nk ∈ N[i] does not intersect the MBR
of N[j] (that is the MBR of all entries contained in N[j]),
then there can be no entry Nl ∈ N[j], such that Nk and Nl

overlap. Using this observation, space restriction
performs two linear scans in the entries of both nodes
before starting the SpatialJoin procedure, and prunes out
from each node the entries that do not intersect the MBR
of the other node. The second technique, based on the
plane sweep paradigm [PS88], applies sorting in one
dimension in order to reduce the computation time of the
overlapping pairs between the nodes to be joined.

In addition, [BKS93] apply a technique that uses
pinning (or page fixing), a well known I/O buffer
management method, to force page fetching according to
the optimal order. In [HJR97], SpatialJoin was extended
by introducing an on-the-fly indexing mechanism to
optimize the execution order of matchings at
intermediate levels. [BKSS94] study the multi-step
processing of spatial joins using several approximations,
while [BKS96] employ parallel execution.

In order to use an arbitrary relation as the join
condition in SpatialJoin, we need a mapping from
relations, to bounding conditions between intermediate
node entries that should be recursively joined. Table 1
shows the bounding condition BCij for Ni given Nj. This
condition is based solely on the positions of the leftmost
and rightmost 1's in Cij. In particular, the leftmost 1,
determines the position of Ni.l with respect to Nj.u, while
the rightmost 1 of Ni.u with respect to Nj.l (l and u
represent the lower and upper node-MBR points
respectively). Entries that do not satisfy these conditions
can be excluded during search.

R1XXXXXXXX Ni.l < Nj.u - δ
R01XXXXXXX Ni.l ≤ Nj.u - δ
R001XXXXXX Ni.l < Nj.u

R0001XXXXX Ni.l ≤ Nj.u

R00001XXXX Ni.l ≤ Nj.u

R000001XXX Ni.l ≤ Nj.u

R0000001XX Ni.l < Nj.u + δ
R00000001X Ni.l ≤ Nj.u + δ
R000000001 Ni.l unlimited

RXXXXXXXX1 Ni.u > Nj.l + δ
RXXXXXXX10 Ni.u ≥ Nj.l + δ
RXXXXXX100 Ni.u > Nj.l

RXXXXX1000 Ni.u ≥ Nj.l

RXXXX10000 Ni.u ≥ Nj.l

RXXX100000 Ni.u ≥ Nj.l

RXX1000000 Ni.u > Nj.l - δ
RX10000000 Ni.u ≥ Nj.l - δ
R100000000 Ni.u unlimited

(a) leftmost bit (a) rightmost bit

Table 1 Bounding condition BCij for Ni

Assume, for instance, the query "find all pairs (V2,
V3) related by R000000001-001100000". An entry N2 is bounded
with respect to N3 by the following conditions: (N2.u >
N3.l + δ) on the x dimension, and by (N2.l < N3.u), (N2.u
≥ N3.l) on the y dimension. Figure 4.3 illustrates an
example for axis x: if N3 is the intermediate node entry
containing an object assigned to V3, then the upper point
of candidate entries for N2 (N2.u) should lie in the grey
area. Entries, like N'2, not satisfying this constraint,
cannot contain consistent instantiations of V2. For
approximate retrieval, bounding conditions are adapted
to include τ.

V3
δ

V2

N3

N2

δ

bounding condition for N 2.u

N'2

Figure 7 Example of bounding condition for intermediate
nodes

Using the above transformation, SpatialJoin is
extended to handle multiple relations. Figure 8 illustrates
the code for multi-relation spatial join (MJS). In this
case, the desired relation Cij, as well as τ, are passed as
parameters. Each BCij is computed using Cij, τ and Table
1 (inverse conditions are also computed, but omitted for
clarity). Leaf nodes constitute solutions, if they are
related by a relation whose distance from Cij is ≤ τ.
Intermediate nodes are recursively searched if they satisfy
BCij.

MSJ(Rtree_Node N[i], N[j], RelationSet Cij, int τ)

BCij = computeNodeBC(Cij,τ);

FOR all Nl ∈ N[j] DO

 FOR all Nk ∈ N[i] DO
 IF N[i] is a leaf page THEN

IF d(Cij,R(Nk, Nl)) ≤ τ THEN output (Nk, Nk, d)
 ELSE

IF BCij(Nk, Nl) THEN
 ReadPage(Nk.ref); ReadPage(Nl.ref);

 MSJ(N[k], N[l], Cij, τ)

Figure 8 Multi-relation spatial join

Structural queries could be processed by executing
MSJ for all pairs of variables and combining the binary
solutions. The main problem with this approach is the

large number of pair-wise joins (six for the query of
Figure 4) and the complexity of combining their results
(which may be too large to fit in main memory). In the
rest of the paper we propose three algorithms that avoid
calculating intermediate results by incorporating ideas
from forward checking and traditional spatial join
processing.

4. A Multilevel Forward Checking Algorithm
The first algorithm, multilevel forward checking (MFC),
extends MSJ to deal with n-tuples instead of pairs. MFC
finds all n-combinations of intermediate nodes (at each
level of the R-tree) that may contain some solution
objects and follows the references to the next level, until
it reaches the leaves, where it outputs solutions. As an
example consider the rectangles of Figure 9(a) which are
organized in the R-tree of Figure 9(b) assuming a bucket
size equal to three. The path to solution (d,e,a,k) of the
example query is: (1,1,1,2) at the top, (B,B,A,D) at level
1 and (d,e,a,k) at level 0.

1

2

A

B

C

D

a
b

c

e
d

f

g

i

jk
l

δ

(a) Image

A B

a b f c d e

D

k j g i

1 2

C

llevel 0

level 1

level 2

(a) R-tree

Figure 9 Image and corresponding R-tree

The calculation of combinations of the qualifying
nodes at each level (e.g., (1,1,1,1), (1,1,1,2), ….,
(2,2,2,2) for the top) is expensive, as their number can be
as high as Cn, where C is the capacity of an R-tree
bucket. Although the search space is not prohibitively
large (usually n≤10 and C≤200), the computational
burden is due to numerous appearances of the problem
during query processing. Finding the subset of node
combinations which is consistent with the input query
can be treated as a local CSP at each level. In particular
the problem consists of:
• A set of n variables, V0,V1,…,Vn-1.
• For each variable Vi a domain Di={N0,…,NI-1} of I (I≤

C) potential values which correspond to entries in R-
tree node N[i].

• For each pair of variables Vi,Vj a binary constraint
which: i] for intermediate nodes is a bounding
condition BCij derived from Table 1 using the
corresponding Cij and τ, ii] for leaf nodes is a constraint
Cij (disjunction of primitive relations).

The CSP in the case of the top level of the tree in Figure
9 has four variables V0,V1,V2,V3, which can be
instantiated to entries 1 or 2 of the root. As we saw in the
example of Figure 7, BC23 is: (N2.u > N3.l + δ) on the x
dimension, and (N2.l < N3.u) ∧ (N2.u ≥ N3.l) on the y
dimension. The binary instantiation {V2←2, V3←1}
cannot lead to a solution at the lower levels because (1.u
< 2.l + δ). Therefore, all combinations (x,x,2,1) can be
pruned out during search.

MFC (Figure 10) applies forward checking to solve
the CSP at each R-tree level: every time a variable Vi is
instantiated to an entry Nk, the algorithm eliminates all
Nl that do not satisfy BCij(Nk,Nl) from the domains of
each un-instantiated variable Vj. Initially N[] is set to an

MFC(Query q, Rtree_Nodes N[], int τ,T)

FOR j = 0 TO n-1 DO

 domain[0][j] = {Nl| Nl ∈ N[j]} /*Nl is an entry of Nj*/

i = 0; /* index to the current variable */

WHILE (TRUE) {

 new_value := chooseNextValue(domain[i][i]);

 IF new_value = NULL THEN /* end of domain */

 IF i=0 THEN RETURN;

 ELSE i:=i-1; CONTINUE; /*Backtrack*/

 ELSE instantiations[i] := new_value; /*store instantiation*/

 IF i = n-1 THEN /*last variable instantiated*/

 IF (N[i] is a leaf page) THEN
 output_solution(instantiations);
 ELSE

MFC(q, instantiations.ref, τ, T) /*go to lower tree level */

 ELSE /* intermediate variable instantiated */

 IF check_forward(N[i].level,i) THEN /*valid instantiation*/

 DVO(i+1,n-1); /*var. with the smallest domain as next*/

 i := i+1; /*go to the next variable */

 }

BOOLEAN check_forward(int level, int i)

 FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/

 domain[i+1][j]= domain[i][j];

 FOR all values ul ∈ domain[i+1][j]

 IF (level = 0) /*leaf nodes*/

 IF d(Cij,R(instantiations[i],ul)) > τ OR T exceeded

 THEN domain[i+1][j]= domain[i+1][j]-{ul};
 ELSE /*intermediate nodes*/
 IF NOT (BCij(instantiations[i],ul))

 THEN domain[i+1][j]= domain[i+1][j]-{ul};

 IF domain[i+1][j]=∅ THEN RETURN FALSE;
 RETURN TRUE;

Figure 10 Multilevel FC

n-tuple that points to the tree root for all variables, i.e.
N[i]=root, for i=0…n-1. A solution for the current tree
level is found when the last variable is instantiated. The
algorithm is then recursively invoked for the lower level,
taking as parameter the n-tuple of the solution's
references. Solutions are output if they refer to actual
objects. MFC returns to the previous tree level when it
backtracks from the first variable at the current level.

In the example of Figure 9, when the first valid
combination (1,1,1,1) is found at the top, MFC will be
called for the next level, trying to find a combination of
entries inside node 1 that satisfy all BCij (the domain of
all variables is now D={A,B}). If such a combination
does not exist, as is the case here, it will backtrack to the
top level and attempt to find another solution - assume
(1,1,1,2). The new domains for the next call of MFC
become: D0=D1=D2={A,B} and D3={C,D}. A solution at
this level is {V0←B, V1←B, V2←A, V1←C}. At the
next call of MFC for level 0, the domains become
D0=D1={c,d,e}, D2={a,b,f}, D3={l,k,j} and the solution
(d,e,a,k) is found.

In order to enhance the performance of MFC we have
implemented a variation of the space restriction
heuristic. Assume the qualifying 4-tuple (1,2,2,2) for the
top level of the tree. Although, candidate values for V0

are {A,B}, due to the relative positions of B and
intermediate node 2 (disjoint), there can't be any
instantiations of V1 below node 2 that lead to solutions
for {V0←B} (valid instantiations for V0 and V1 should be
inside intersecting nodes). Therefore, we can safely prune
value B from V0's domain and avoid useless
instantiations. The following Space_Restriction routine
takes the entries (e.g., A, B) of a node (e.g., 1) one by one
and tests them against the rest of the nodes (e.g., 2),
eliminating the ones that do not satisfy the corresponding
bounding conditions.

Space_Restriction(Query q, Rtree_Nodes N[]){

FOR i=0 TO n-1 DO

 FOR all Nk ∈ N[i] DO

 FOR j=0 TO n-1, i≠j DO
 IF N[i] is a leaf page THEN

 IF NOT (LBCij(Nk, N[j]))

 THEN domain[0][i]= domain[0][i]-{Nk};

 ELSE /* N[i] is a intermediate node */

 IF NOT (BCij(Nk, N[j]))

 THEN domain[0][i]= domain[0][i]-{Nk};

Figure 11 Multi-relation space restriction

The bounding conditions of Table 1 are used when
N[i] is at an intermediate level. On the other hand, when
N[i] is a leaf node (its entries are object MBRs) a more
restrictive bounding condition can be applied. Consider
that in Figure 12, we want to join objects in N[2] with all
objects in N[3] w.r.t. R000000001 (in Figure 7 we showed

that N[2] satisfies the corresponding BC). Once we know
the locations of each MBR in N[2] we can determine that
some objects, such as N'2, can be excluded. N'2 cannot be
related by R000000001 with any MBR in N[3] because N'2.l
< N[3].l+δ. If only the bounding conditions of Table 1
were used, N'2 would pass the space restriction test.

N3
δ

N2

N[3]
δ

bounding condition for N2 .l

N'2

N[2]

Figure 12 Example of leaf bounding conditions
Table 2 illustrates the complete set of leaf bounding

conditions LBCij between object MBRs and intermediate
nodes. The bounding condition for the previous example
is at the bottom row of the first table (the corresponding
condition was unlimited in Table 1).

R1XXXXXXXX Nk.l < N .u - δ
R01XXXXXXX Nk.l < N[j].u - δ, Nk.l ≥ N[j].l - δ
R001XXXXXX Nk.l < N[j].u, Nk.l > N[j].l - δ
R0001XXXXX Nk.l < N[j].u, Nk.l > N[j].l

R00001XXXX Nk.l < N[j].u, Nk.l > N[j].l

R000001XXX Nk.l < N[j].u, Nk.l > N[j].l

R0000001XX Nk.l < N[j].u + δ, Nk.l > N[j].l

R00000001X Nk.l ≤ N[j].u + δ, Nk.l > N[j].l + δ
R000000001 Nk.l > N[j].l + δ

 [j] RXXXXXXXX1 Nk.u > N[j].l + δ
RXXXXXXX10 Nk.u > N[j].l + δ, Nk.u ≤ N[j] .u + δ
RXXXXXX100 Nk.u > N[j].l, Nk.u < N[j].u + δ
RXXXXX1000 Nk.u > N[j].l, Nk.u < N[j].u

RXXXX10000 Nk.u > N[j].l, Nk.u < N[j].u

RXXX100000 Nk.u > Nj[j].l, Nk.u < N[j].u

RXX1000000 Nk.u > N[j].l - δ, Nk.u < N[j].u

RX10000000 Nk.u ≥ N[j] .l - δ, Nk.u < N[j].u - δ
R100000000 Nk.u < N[j].u - δ

(a) leftmost bit (a) rightmost bit

Table 2 LBC that Nk must satisfy to pass space restriction

5. A Window-Reduction Algorithm
Usually, constraints between intermediate nodes are in
general too loose even for tight queries. As a result, a
large number of qualifying intermediate nodes are visited
by MFC, and this does not pay off in most cases, where
the number of solutions is small and a large percentage
of qualifying intermediate nodes are false hits. An
alternative approach that overcomes this problem is to
use the data MBRs for the instantiation of query variables
and employ forward checking with R-trees to efficiently
prune the domains. As mentioned in Section 3.1, the
problem with this method is that it cannot be applied for
large images because of the domain table size (O(n2N)).
In this section we propose another FC-based algorithm,
window reduction (WR), which avoids this problem.

WR maintains a 2D domain window (instead of the
3D domain set used by FC) that encloses all potential
values for each variable (and possibly some false hits).
When Vi takes a new value Nk, a new window Wj is
computed for every un-istantiated variable Vj taking into
account Nk and Cji. The intersection of Wj with (existing)
domainWindow [i][j] is stored at domainWindow
[i+1][j]. Figure 13(a) illustrates the domain windows for
V2 and V3, assuming that the first two variables of the
example query have been instantiated to d and e
respectively.

e
d

δ

δ
domainWindow[2][3]

domainWindow[2][2]

δ

e
d

δ

δ

domainWindow[2][3]
a

δ W3

domainWindow[3][3]

δ

(a) {V0←d, V1←e} (a) {V0←d, V1←e, V2←a}

Figure 13 Example of WR
When V2 is instantiated to a (Figure 13(b)), the

constraint C32 specifies that valid instantiations for V3

should lie in W3. The new domainWindow[3][3] for V3 is
the intersection of domainWindow[2][3] and W3, i.e., it
corresponds to the only area that may contain values
consistent with both {V0←d, V1←e} and V2←a. Table
3 illustrates bounding windows used for the computation
of Wj, given Cji and {Vi← Nk}

R1XXXXXXXX Wj.l = -∞
R01XXXXXXX, R001XXXXXX Wj.l=Nk.l-δ
R0001XXXXX, R00001XXXX Wj.l = Nk.l

R000001XXX, R0000001XX Wj.l = Nk.u

R00000001X, R000000001 Wj.l=Nk.u+δ

RXXXXXXXX1 Wj.u = +∞
RXXXXXXX10, RXXXXXX100 Wj.u=Nk.u+δ
RXXXXX1000, RXXXX10000 Wj.u = Nk.u

RXXX100000, RXX1000000 Wj.u = Nk.l

RX10000000, R100000000 Wj.u = Nk-δ
(a) leftmost bit (a) rightmost bit

Table 3 Domain window bounds

If some domain window becomes null (empty
intersection), the current instantiation is invalid and the
algorithm proceeds to the next value for Vi. WR can be
thought of as a "lazy" version of forward checking
because the domain windows are calculated but no values
are retrieved until the variable gets instantiated. A
drawback of this method is the fact that a possibly empty
domain of Vj cannot be detected until WR reaches
instantiation level j and performs the window search.
However, this disadvantage is counterbalanced by the
smaller number of R-tree searches. WR is illustrated in
Figure 14.

WR(Query q, int τ,T)

FOR j=0 TO n-1 DO domainWindow[0][j] = U; /*Universal Space*/

i=0; /* index to the current variable */

WHILE (TRUE) {

 new_value := getNextValue(domainWindow[i][i]);

 IF new_value = NULL THEN /* end of domain */

 IF i=0 THEN RETURN;

 ELSE i:=i-1; CONTINUE; /*Backtrack*/

 IF d(Cij,R(instantiations[i],ul)) > τ OR T exceeded

 THEN CONTINUE /* invalid value inside domain window */

 ELSE instantiations[i] := new_value; /*store instantiation*/

 IF i = n-1 THEN output_solution(instantiations);

 ELSE /* intermediate variable instantiated */

 IF window_reduction(i) THEN /* successful instantiation*/

 Window_DVO(i+1,n-1); /*var. with smallest window next*/

 i := i+1; /* successful instantiation: go forward */

 }

BOOLEAN window_reduction(int i)

 FOR j = i+1 TO n-1 DO /*for all uninstantiated variables*/

 Wj = computeWindow(instantiations[i],Cji,τ);

 domainWindow[i+1][j]= domainWindow[i][j]∩Wj;

 IF domain[i+1][j]=∅ THEN RETURN FALSE;
 RETURN TRUE;

Figure 14 Window-reduction algorithm

The next value for a variable Vi is retrieved via
getNextValue(), which uses domainWindow[i][i] as the
query window for Vi. GetNextValue() does not perform a
window query every time it is invoked, but the whole
search path for each variable is maintained in memory.
The overhead for this path-holding technique is pinning
n⋅h pages - a small number for most applications. After a
value is retrieved for Vi, the algorithm checks whether it
is consistent with the previous instantiations since not all
values that fall inside the domain window of Vi are
necessarily legal.

In addition to domain windows and path maintenance
techniques, WR uses DVO: when the domain windows of
the future variables are calculated after an instantiation,
the variable with the smallest domain window becomes
the next to be examined. This is lead by the intuition that
a small window is more likely to contain the least
number of instantiations and minimize redundant
consistency checks.

WR can be seen as a special form of indexed nested
loop join. All blocks of first variable are scanned and
directed index search finds the qualifying instantiations
of the rest of the variables. The difference of this
approach, is that its input is a graph of relations instead
of a chain, and that it applies FC to take advantage of all
constraints.

6. A Join Window-Reduction Algorithm
WR essentially searches the whole space in order to
instantiate the first variable, but after doing so it
performs only window queries which are cheap
operations in R-trees. The disadvantage of blindly
instantiating the first variable in the whole universe
could be avoided by an algorithm that combines
properties of multi-relation spatial join and window
reduction. The third algorithm (JWR) first applies a
pairwise spatial join to retrieve instantiations for the first
pair of variables and then uses window reduction to
instantiate the rest of the variables. The subsequent
variables are instantiated in the same way as WR (Figure
15).

Function getNextPair() assigns the next pair that
satisfies the relations between the first two variables
using MSJ, search space restriction (like MFC) and
plane sweep. We apply a multi-relation plane sweep
(MPS), which can deal with the whole set of relations of

the current resolution scheme. MPS finds intersections of
rectangles belonging to nodes N[i], N[j] in two steps:
a] first transforms the x-projection of each rectangle Nl

∈ N[j] to a new one N'l, according to Cij. This
transformation is done so that: if N'l does not
intersect on the x-axis with some entry Nk ∈ N[i],
then the original rectangle Nl will not be consistent
w.r.t. Nk and Cij.

b] then it applies spatial sorting and plane-sweep to
find all pairs (Nk.x, N'l) that intersect. For each such
pair it checks whether the corresponding pair (Nk,Nl)
is consistent according to Cij and Cji.

In order to perform the transformation, MPS chooses a
bit whose value is 1 on the x projection of Cij. Bits that
refer to points (i.e. odd bits), rather than intervals, are
preferred, because they restrict the resulting intervals N'l
into single points. For instance, consider that Cij=
R000000011. We transform the reference interval Nl∈ N[j] to
N'l as shown in Figure 16. If N'l, (which is a single point)
does not intersect some Nk then the original intervals
cannot satisfy R000000011.

a bδ δ

Nk

Nl

R000000011

N'l

Figure 16 An example transformation

We call guide bit, the bit according to which the
above transformation is performed. For our resolution
scheme, the preference order for guide bits is
{3,5,1,7,4,2,6,0,8}. The transformation is then performed
for intermediate and leaf-level entries as illustrated in
Table 4, where the first column illustrates the guide bit.
The transformation to leaf node entries corresponds to
the binary variables presented in Figure 2.

0 N'l.l=-∞, N'l.u=Nl.u

1 N'l.l=Nl.l-δ, N'l.u=Nl.u-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.u

3,4,5 N'l.l=Nl.l, N'l.u=Nl.u

6 N'l.l=Nl.l, N'l.u=Nl.u+δ
7 N'l.l=Nl.l+δ, N'l.u=Nl.u+δ
8 N'l.l=Nl.l, N'l.u=+∞

0 N'l.l=-∞, N'l.u=Nl.l-δ
1 N'l.l=N'l.u=Nl.l-δ
2 N'l.l=Nl.l-δ, N'l.u=Nl.l

3 N'l.l=N'l.u=Nl.l

4 N'l.l=Nl.l, N'l.u=Nl.u

5 N'l.l=N'l.u=Nl.u

6 N'l.l=Nl.u, N'l.u=Nl.u+δ
7 N'l.l=N'l.u=Nl.u+δ
8 N'l.l=Nl.u+δ, N'l.u=+∞

(a) Intermediate nodes (a) leaf nodes

Table 4 Transformation of x-axis projections

For calculating the first pair of variables to be joined
we use statistical information about the number of
occurrences of each relation in the data files. Relations
that occur rarely prune search space more effectively than
frequent ones. For instance, the constraint R001111000-

001111100 between V0 and V1 is more restrictive than the
other relations, because only a few pairs of objects satisfy
it in normal data distributions.

7. Experiments
In order to compare the performance of the three
algorithms presented above, we implemented and tested
them under several conditions. For our experiments we
used LB data-file [T94] which contains 53,145 rectangles
representing road segments of Long Beach county. The
maximum distance of the rectangles in each axis is
10000, and the data density 0.25. From the above file we
built several R*-trees [BKSS90] of different block sizes,
i.e. 512 bytes, 1K, 2K, and 4K. The LRU buffer size of
the R*-trees during the experiments was set to 128. We
constructed 5 artificial sets of 30 queries: the number of
variables in the queries of each set was fixed to 3, 4, …,
7. In order to avoid trivial queries, each variable was set
to intersect with some other variable on at least one axis.
The distance between two variables on each axis did not
exceed δ, which was set to 100. The number of solutions
ranged from 0 to 6,366. The implementation language
was C++, and all experiments were run on a SUN
UltraSparc2 (200MHz) workstation with 256 MB of
RAM.

Figure 17(a) shows the mean CPU-time and 17(b) the
I/O page accesses averaged over all query-sets on the R*-
tree with 1KB block size. WR and JWR clearly
outperform MFC by orders of magnitude in terms of
CPU-time. The performance gap widens with the query
size because the domain windows in WR and JWR are
continuously decreasing as new variables are
instantiated. Moreover, empty window domains of the
latter variables are detected early using the window
reduction policy. On the other hand, the relaxed
constraints between intermediate nodes do not permit
MFC to prune the search space at the higher levels of the
tree; thus, MFC cannot avoid the combinatorial explosion

JWR(Query q, int τ,T)

FOR j=0 TO n-1 DO domainWindow[1][j] = U; /*Universal Space*/

i=1; /* index to the current variable. Initially 1 (means both 0 and 1)*/

WHILE (TRUE) {

 IF i=1 THEN /* values for first pair of variables (0,1)*/

IF getNextPair(instantiations,q)=NULL THEN RETURN;

 ELSE /* values of subsequent variables */

 new_value := getNextValue(domainWindow[i][i]);

 IF new_value = NULL THEN /* end of domain */

 i:=i-1; CONTINUE; /*Backtrack*/

 IF d(Cij,R(instantiations[i],ul)) > τ OR T exceeded

 THEN CONTINUE /* invalid value inside domain window */

 ELSE instantiations[i] := new_value; /*store instantiation*/

 IF i = n-1 THEN output_solution(instantiations);

 ELSE /* intermediate variable instantiated */

 IF window_reduction(i) THEN /* successful instantiation*/

 Window_DVO(i+1,n-1); /*var. with smallest window next*/

 i := i+1; /* successful instantiation: go forward */

 }

Figure 15 Join window-reduction algorithm

of possible instantiations as the number of variables
increases. It is interesting to notice that MFC is better
than WR in terms of page faults and this is due to the fact
that WR instantiates the first variable in the whole space.

 Another important observation from our experiments
(not obvious in these diagrams) was the expected
behaviour of MFC for almost all queries; the CPU-time
was at the same levels depending only on the query size.
On the other hand, the performance of WR and JWR was
unpredictable: for instance the CPU time of WR may
differ an order of magnitude for two different queries of
the same size. This unstable behaviour is due to the fact
that the resolution scheme may facilitate large reduction
of the domain windows for some queries (e.g. inside),
and not for others (e.g. disjoint).

Although MFC is not an appropriate algorithm for
the current resolution scheme, it is still useful in other
applications; we found that it outperforms the other
algorithms in some cases of multiway intersection joins
involving high density data. Improving the CPU-time of
MFC is an issue for future work, as now the algorithm
applies plain FC at a specific level, without taking
advantage of the spatial locations of the objects.

Figure 17(c) illustrates the relative CPU-time
performance of WR and JWR (also for block size of 1K).
JWR maintains a significant performance gain over WR.
The performance gap is not affected by query size,
because the only difference of the algorithms is the
instantiation method for the first pair of variables.

In order to evaluate the algorithms for various block
sizes we executed the 4-variable query set using R*-trees
of 512, 1K, 2K, and 4K bucket sizes. CPU-time and page
accesses are shown in Figure 17(d) and (e), respectively.
Figure 17(f) shows the overall cost for WR and JWR,
which was estimated by charging 10ms for each page

access (a typical value [HJR97]). The algorithms perform
better for page size of 2K, while for larger sizes (4K) the
degeneration of the tree affects the speed of the search.

Finally, we tested the performance of JWR over
queries with non-zero degrees of inconsistency. In all
experiments the T was set to 10. Figure 18 illustrates the
overall cost of JWR for the 2K page size R*-tree. Each
line corresponds to a different value of local tolerance τ.
Because approximate retrieval is equivalent to exact
retrieval using a larger window, the domain windows of
JWR get larger as τ increases. Larger windows imply
more potential legal values and more consistency checks.

0

100

200

300

400

500

600

700

800

3 4 5

0

2

4

Figure 18 Overall cost of JWR for partial retrieval

7. Conclusion
There has been significant progress recently on image
and video content retrieval [M98]; research focused
mainly on visual content, i.e. properties like colour,
shape, texture, etc. Here, we shift our interest on a rather
neglected type of content retrieval, namely structural
retrieval. This paper addresses the issue of spatial
structural queries, i.e., queries that ask for all n-tuples of
objects that satisfy some spatial constraints.

We first described a framework for encoding 1D
relations in a way that allows efficient generation of
similarity measures. We subsequently extended the model

0

2000

4000

6000

8000

10000

12000

3 4 5 6 7

MFC

WR

JWR

2000

2200

2400

2600

2800

3000

3 4 5 6 7

MFC WR JWR

0

50

100

150

200

250

300

350

400

3 4 5 6 7

WR

JWR

(a) CPU-time as a function of n (block=1K) (b) Page accesses as a function of n (block=1K) (c) CPU-time for WR - JWR as a function of n

0

500

1000

1500

2000

2500

512 1K 2K 4K

MFC

WR

JWR

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

512 1K 2K 4K

MFC

WR

JWR

0

100

200

300

400

500

512 1K 2K 4K

WR

JWR

(d) CPU-time as a function of block size (n=4) (e) Accesses as a function of block size (n=4) (f) Overall cost of WR and JWR (n=4)

Figure 17 Experimental evaluation

in a uniform way to arbitrary dimensions and multiple
resolution levels. Then we presented three algorithms for
structural query processing:
− MFC which applies hierarchical constraint

satisfaction to eliminate tuples of intermediate nodes
that cannot lead to solutions.

− WR which gradually reduces the domain windows of
uninstantiated variables based on the values of
instantiated ones.

− JWR which performs a pairwise join to instantiate
the first pair of variables and then applies the same
window reduction technique as WR.

Finally we experimentally evaluated their
performance and found that JWR clearly outperforms the
rest for the current application. All algorithms are
independent of the resolution scheme so they can be used
to process any type of spatial predicates.

Acknowledgements
We would like to thank Dimitris Meretakis and Eleanna
Kafeza for their insightful comments.

References

[A83] Allen, J., "Maintaining Knowledge About
Temporal Intervals", CACM, 26(11), 1983.

[BG95] Bacchus, F., Grove, A. "On the Forward
Checking Algorithm", Principles and Practice
of Constraint Programming, 1995.

[BB84] Ballard, D., Brown, C. "Computer Vision".
Prentice Hall, 1984.

[BKSS90]Beckmann, N., Kriegel, H.P., Schneider, R.,
Seeger, B. "The R*-tree: an Efficient and
Robust Access Method for Points and
Rectangles". ACM SIGMOD, 1990.

[BKS93] Brinkhoff, T., Kriegel, H.-P., Seeger, B.,
"Efficient processing of spatial joins using R-
trees". ACM SIGMOD, 1993.

[BKSS94]Brinkhoff, T., H.-P. Kriegel, R. Schneider, and
B. Seeger "Multi-step Processing of Spatial
Joins". ACM SIGMOD, 1994.

[BKS96] Brinkhoff, T., Kriegel, H.-P., Seeger B.
"Parallel Processing of Spatial Joins Using R-
trees". IEEE ICDE, 1996.

[BvR95] Bacchus, F., van Run, P. "Dynamic Variable
Ordering in CSPs", Principles and Practice of
Constraint Programming, 1995.

[DPM98]Delis, V, Papadias, D., Mamoulis, N.
"Assessing Multimedia Similarity: A
Framework for Structure and Motion", ACM
SIGMM, 1998.

[F92] Freksa, C., "Temporal Reasoning based on
Semi Intervals", Artificial Intelligence, Vol 54,
pp. 199-227, 1992.

[GR95] Gudivada, V., Raghavan, V. “Design and
evaluation of algorithms for image retrieval by
spatial similarity”. ACM Transactions on
Information Systems, 13(1):115-144, 1995.

[G93] Guenther, O. "Efficient computation of spatial
joins". IEEE ICDE, 1993.

[G84] Guttman, A. "R-trees: A Dynamic Index
Structure for Spatial Searching". ACM
SIGMOD, 1984.

[HE80] Haralick, R.M., Elliott, G.L., "Increasing tree
search efficiency for constraint satisfaction
problems". Artificial Intelligence Vol 14, pp
263-313, 1980.

[HJR97] Huang, Y-W, Jing, N, Rundensteiner, E.
"Spatial Joins using R-trees: Breadth First
Travesral with Global Optimizations". VLDB,
1997.

[M98] Maybury M. (ed.), Intelligent Multimedia
Information Retrieval, AAAI Press/MIT Press,
1998.

[NNS96] Nabil, M., Ngu, A., Shepherd, J., "Picture
Similarity Retrieval using 2d Projection
Interval Representation", IEEE TKDE, 8(4),
1996.

[N89] Nadel, B. "Constraint Satisfaction Algorithms".
Computational Intelligence, 5, pp. 188-224,
1989.

[O86] Orenstein, J. A. "Spatial Query Processing in
an Object-Oriented Database System. ACM
SIGMOD, 1986.

[PS94] Papadias, D., Sellis, T., "Qualitative
Representation of Spatial Knowledge in Two-
Dimensional Space", VLDB Journal, Vol. 3(4),
pp. 479-516, 1994.

[PTSE95]Papadias, D., Theodoridis, Y., Sellis, T.,
Egenhofer, M. "Topological Relations in the
World of Minimum Bounding Rectangles: A
study with R-trees". ACM SIGMOD, 1995.

 [PF97] Petrakis, E., Faloutsos, C. "Similarity
Searching in Medical Image Databases". IEEE
TKDE, 9 (3) 435-447, 1997.

[PS88] Preparata F, Shamos, M. "Computational
Geometry". Springer, 1988.

[R91] Rotem, D. "Spatial Join Indices". ICDE, 1991.
[RKV95] Roussopoulos, N., Kelley, F., Vincent, F.,

“Nearest Neighbor Queries”, ACM SIGMOD,
1995.

