
1

Algorithms for Reticulate Networks of Multiple
Phylogenetic Trees

Zhi-Zhong Chen and Lusheng Wang Member, IEEE

Abstract—A reticulate network N of multiple phylogenetic trees may have nodes with two or more parents (called reticulation nodes).
There are two ways to define the reticulation number of N . One way is to define it as the number of reticulation nodes in N [13]; in this
case, a reticulate network with the smallest reticulation number is called an optimal type-I reticulate network of the trees. The better way
is to define it as the total number of parents of reticulation nodes in N minus the number of reticulation nodes in N [18]; in this case, a
reticulate network with the smallest reticulation number is called an optimal type-II reticulate network of the trees. In this paper, we first
present a fast fixed-parameter algorithm for constructing one or all optimal type-I reticulate networks of multiple phylogenetic trees. We
then use the algorithm together with other ideas to obtain an algorithm for estimating a lower bound on the reticulation number of an
optimal type-II reticulate network of the input trees. To our knowledge, these are the first fixed-parameter algorithms for the problems.
We have implemented the algorithms in ANSI C, obtaining programs CMPT and MaafB. Our experimental data shows that CMPT can
construct optimal type-I reticulate networks rapidly and MaafB can compute better lower bounds for optimal type-II reticulate networks
within shorter time than the previously best program PIRN designed by Wu [18].

Index Terms—Phylogenetic trees, reticulate networks, lower bounds of reticulate numbers.

F

1 INTRODUCTION

When studying the evolutionary history of a set of
existing species, one can obtain a phylogenetic tree of
the species with high confidence by looking at a segment
of sequences or a set of genes. When looking at another
segment of sequences, a different phylogenetic tree can
be obtained with high confidence, too. This indicates that
reticulation events may occur. When reticulation events
occur, the evolutionary history of a set of existing species
can be represented by a reticulate network in which
there may exist nodes with two or more parents (called
reticulation nodes).

Thus, we have the following problem: Given a set of
rooted phylogenetic trees on a set of species that cor-
rectly represent the evolution of different parts of their
genomes, we want to construct a reticulate network with
the smallest number of reticulation events needed to
explain the evolution of the species under consideration.

There are two ways to define the reticulation number
of a reticulate network N . One way is to define it as the
number of reticulation nodes in N [13]; in this case, a
reticulate network with the smallest reticulation number
is called an optimal type-I reticulate network. The other is
to define it as the total number of parents of reticulation
nodes in N minus the number of reticulation nodes in
N [18]; in this case, a reticulate network with the smallest
reticulation number is called an optimal type-II reticulate
network. The two definitions coincide in the special case

• Z.-Z. Chen is with the Division of Information System Design, Tokyo
Denki University, Ishizaka, Hatoyama, Hiki, Saitama 359-0394, Japan.
Email: zzchen@mail.dendai.ac.jp

• L. Wang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. Email: cswangl@cityu.edu.hk.

when the number of given phylogenetic trees is two.
This special case has been studied extensively in the
literature [5], [6], [9], [15], [17]. It is known that even
this special case is NP-hard [2], [3], [8].

It is worth mentioning that optimal type-II reticulate
networks are obviously a much better model for explain-
ing reticulation events than optimal type-I reticulate net-
works. Nevertheless, optimal type-I reticulate networks
are interesting to us because, as will be shown in this
paper, it is much easier to construct them and their
reticulation numbers can be used to obtain lower bounds
on those of optimal type-II reticulate networks.

In this paper, we design fast fixed-parameter algo-
rithms for constructing optimal type-I reticulate net-
works of multiple phylogenetic trees and for estimat-
ing lower bounds on the reticulation numbers of opti-
mal type-II reticulate networks of multiple phylogenetic
trees. It is widely known that reticulate networks are
closely related to acyclic agreement forests. Indeed, one
can obtain an acyclic agreement forest (AAF) of a set of
phylogenetic trees from a reticulate network of the trees
by deleting all the edges entering the reticulation nodes
in the network. Moreover, a maximum acyclic agreement
forest (MAAF) of a set of phylogenetic trees corresponds
to an optimal type-I reticulate network of the trees. So,
we first design a fixed-parameter algorithm for comput-
ing an MAAF of two or more given phylogenetic trees.
The algorithm runs very fast in practice. After finding an
MAAF of the given trees, our algorithm can then easily
construct an optimal type-I reticulate network. Within
the same time bound, our algorithm can also enumerate
all MAAFs of the given trees and construct one optimal
type-I reticulate network for each MAAF. To our knowl-
edge, this is the first fixed-parameter algorithm for the

2

problem. We have implemented the algorithm in ANSI
C, obtaining a program (called CMPT) that can construct
optimal type-I reticulate networks rapidly.

We further use our algorithm (for enumerating all
MAAFs of a set of given phylogenetic trees) together
with other ideas to obtain an algorithm for estimating a
lower bound on the reticulation number of an optimal
type-II reticulate network of the given trees. We have
implemented the algorithm in ANSI C, obtaining a
program (called MaafB) that can compute better lower
bounds within shorter time than the previously best
program PIRN by Wu [18].

The programs CMPT and MaafB are available for non-
commercial use, at http://rnc.r.dendai.ac.jp/∼chen/
mtree/mtree.html or http://www.cs.cityu.edu.hk/
∼lwang/software/mtree/mtree.html.

2 PRELIMINARIES
Throughout this paper, a rooted forest always means a
directed acyclic graph in which every node has in-degree
at most 1 and out-degree at most 2.

Let F be a rooted forest. F is a rooted tree if it has only
one root. F is a rooted binary tree if it is a rooted tree
and the out-degree of every non-leaf node in F is 2. For
convenience, we view each node u of F as an ancestor
and descendant of u itself. A node u is lower than another
node v 6= u in F if u is a descendant of v in F . The lowest
common ancestor (LCA) of a set U of nodes in F is the
lowest node v in F such that for every node u ∈ U , v is
an ancestor of u in F .

A node v of F is unifurcate if it has only one child in
F . If a root v of F is unifurcate, then contracting v in F is
the operation that modifies F by deleting v. If a non-root
node v of F is unifurcate, then contracting v in F is the
operation that modifies F by first adding an edge from
the parent of v to the child of v and then deleting v.

For a node v of F , the subtree of F rooted at v is the
subgraph of F whose nodes are the descendants of v
in F and whose edges are those edges connecting two
descendants of v in F . If v is a root of F , then the subtree
of F rooted at v is a component tree of F . If v is a non-root
node of F with parent p and sibling u, then detaching the
subtree of F rooted at v is the operation that modifies F
by first deleting the edge (p, v) and then contracting p.
A detaching operation on F is the operation of detaching
the subtree of F rooted at a non-root node.

The disconnectivity of F , denoted by |F |, is the number
of component trees in F minus 1. For convenience, we
use L(F) to denote the family of all sets S such that S
is the leaf set of a component tree of F .

Hereafter, we will use F (subscripted or not) to denote
a rooted forest, use Γ (subscripted or not) to denote a
component tree of a rooted forest, and use T (subscripted
or not) to denote a rooted binary tree.

2.1 Phylogenetic Trees
Let X be a set of existing species. A phylogenetic tree on
X is a rooted binary tree whose leaf set is X . Let T be

a phylogenetic tree on X . For a subset Y of X , let TY
denote the smallest subtree of T whose leaf set is Y ,
and TY be the phylogenetic tree on Y obtained from TY
by repeatedly contracting a unifurcate node until none
exists. If we start with T and apply a sequence of m
detaching operations on T , we obtain a forest F with
|F | = m. Note that L(F) is a partition of X . Moreover,
for each set Y in L(F), TY is a component tree of F . Thus,
we can identify F with L(F). The next fact is trivial.

Fact 1: For every forest F obtained by performing zero
or more detaching operations on T , every two sets Y and
Z in L(F) satisfy that TY and TZ are node-disjoint.

We say that a partition P of X is valid for T if we
can perform zero or more detaching operations on T
to obtain a forest F such that P is the same as L(F).
Roughly speaking, the next fact states that the reverse
of Fact 1 is also true.

Fact 2: Suppose that P is a partition of X such that
for every two sets Y and Z in P , TY and TZ are node-
disjoint. Then, P is valid for T .

Let F1 and F2 be two forests each obtained by per-
forming zero or more detaching operations on T . If
F1 6= F2 and for every set Y1 ∈ L(F1), there is a set
Y2 ∈ L(F2) with Y1 ⊆ Y2, then we say that F1 is finer
than F2 and F2 is coarser than F1. From Facts 1 and 2,
one can easily see the next fact.

Fact 3: Suppose that F1 and F2 are two rooted forests
such that (1) each of F1 and F2 is obtained by performing
zero or more detaching operations on T and (2) F2

is finer than F1. Then, we can obtain F2 from F1 by
performing |F2| − |F1| detaching operations.

Roughly speaking, Fact 3 states that if a forest F is
obtained from T by performing two or more detaching
operations, then the order of performing the operations
is not important.

2.2 Reticulate Networks

Let X be a set of existing species. A reticulate network
on X is a directed acyclic graph N in which the set
of nodes of out-degree 0 (still called the leaves) is X ,
each non-leaf node has out-degree 2, there is exactly
one node of in-degree 0 (called the root), and each non-
root node has in-degree larger than 0. Note that the in-
degree of a non-root node in N may be larger than 1.
A node of in-degree larger than 1 in N is called a
reticulation node of N . Intuitively speaking, a reticulation
node corresponds to a reticulation event. The reticulation
number of a reticulation node in N is its in-degree in N
minus one. There are two ways to define the reticulation
number of N . One way is to define it as the number of
reticulation nodes in N and the other way is to define
it as the total reticulation number of reticulation nodes
in N . For convenience, we use R1(N) (resp., R2(N)) to
denote the reticulation number of N defined in the first
(resp., second) way.

A reticulate network N on X displays a phylogenetic
tree T on X if N has a subgraph M such that M is

3

a rooted tree, the root of M has exactly two children
in M , and modifying M by contracting its unifurcate
nodes yields T . We refer to M as an embedding of T in
N . For example, the network N in Figure 4 displays the
tree T4 in Figure 1. A reticulate network of two or more
phylogenetic trees T1, . . . , Tk on X is a reticulate network
N on X such that N displays all of T1, . . . , Tk. For exam-
ple, the network N in Figure 4 is a reticulate network of
the four trees T1, . . . , T4 in Figure 1. For convenience,
we hereafter use R1(T1, . . . , Tk) (resp., R2(T1, . . . , Tk))
to denote minN R1(N) (resp., minN R2(N)), where N
ranges over all reticulate networks of T1, . . . , Tk. An
optimal type-I (resp., type-II) reticulate network of T1, . . . ,
Tk is a reticulate network N of T1, . . . , Tk such that
R1(N) = R1(T1, . . . , Tk) (resp., R2(N) = R2(T1, . . . , Tk)).

We are now ready to define the general minimum type-I
(resp., type-II) reticulate network problem:
• Input: Two or more phylogenetic trees T1, . . . , Tk on

the same set X of species.
• Output: An optimal type-I (resp., type-II) reticulate

network of T1, . . . , Tk.
As in [18], when we consider the general minimum

type-I or II reticulate network problem, we always as-
sume that each given phylogenetic tree has been modi-
fied by first introducing a new root and a dummy leaf
and then letting the old root and the dummy leaf be the
children of the new root.

2.3 Agreement Forests
Throughout this subsection, let T1, . . ., Tk be two or more
phylogenetic trees on the same set X of species. If we
can apply a sequence of m detaching operations on each
of T1, . . . , Tk so that they become the same forest F , then
we refer to F as an agreement forest (AF) of T1, . . . , Tk.
A maximum agreement forest (MAF) of T1, . . . , Tk is an
agreement forest of T1, . . . , Tk whose disconnectivity is
minimized over all agreement forests of T1, . . . , Tk.

Let F be an agreement forest of T1, . . . , Tk. Obviously,
for each i ∈ {1, . . . , k}, the leaves of Ti one-to-one
correspond to the leaves of F . For convenience, we
hereafter identify each leaf v of F with the leaf of Ti
corresponding to v. Similarly, for each i ∈ {1, . . . , k},
the non-leaf nodes of F correspond to distinct non-leaf
nodes of Ti. More precisely, a non-leaf node u of F
corresponds to the LCA of {v1, . . . , v`} in Ti, where v1,
. . ., v` are the leaf descendants of u in F . Again for
convenience, we hereafter identify each non-leaf node
u of F with the non-leaf node of Ti corresponding to u.
With these correspondences, we can use F , T1, . . . , Tk to
construct a directed graph GF as follows:
• The nodes of GF are the roots of F .
• For every two roots r1 and r2 of F , there is an edge

from r1 to r2 in GF if and only if there is an i ∈
{1, . . . , k} such that r1 is an ancestor of r2 in Ti.

We refer to GF as the decision graph associated with F . If
GF is acyclic, then F is an acyclic agreement forest (AAF)
of T1, . . . , Tk; otherwise, F is a cyclic agreement forest

3 4 7 9510 1 2 6 8

dummy

3 4 7 9 5 101 2 6 8

dummy

3 47 910

5

1 28 6

dummy

3 4 7 910

5

1 2 86

dummy

5 10

dummy

8 1 2 6 3 47 9

T1 T2 T3

T4 Fe1

e3

e5

e7 e8

e6

e4

e2

e9 e10 e12
e11

Γ5

4 3

2 1

12

13

15
16
17
19 20

18

14

12
13

14 17

11
15

16
19 20

13

12
15

14

16

18

17
19 20

12

11
15

16

18 13
14

19
20

11 18
11

17

Γ Γ

Γ Γ

Fig. 1. Four phylogenetic trees T1, . . . , T4 and their
MAAF F , where preserved nodes that are roots of F are
emphasized with hollow circles, other preserved nodes
are emphasized with rectangles, contracted nodes are
emphasized with diamonds, and dangling nodes are em-
phasized with small filled circles.

(CAF) of T1, . . . , Tk. If F is an AAF of T1, . . . , Tk and
its disconnectivity is minimized over all AAFs of T1, . . . ,
Tk, then F is a maximum acyclic agreement forest (MAAF)
of T1, . . . , Tk. Note that our definition of an AAF is the
same as those in [4], [18] but is different from that in [16].

Figure 1 depicts four example phylogenetic trees T1,
. . . , T4 and an MAAF F of the trees. The component trees
of F are Γ1, . . . , Γ5.

With respect to an AF F of T1, . . . , Tk, we classify the
nodes of each Ti with 1 ≤ i ≤ k into three types: preserved
nodes, contracted nodes, and dangling nodes. A node of Ti
is preserved with respect to F if it is also a node in F . A
node y of Ti is contracted with respect to F , if it is not
preserved with respect to F and there is an edge (u, v)
in F such that the path from u to v in Ti contains y. For
convenience, we refer to (u, v) as the supporting edge of y
in F . For example, in Figure 1, if y is the contracted node
14 in T1, then its supporting edge in F is e5. A node of Ti
is dangling with respect to F if it is neither preserved nor
contracted with respect to F . For example, in Figure 1,
nodes 12 and 14 of T2 are dangling with respect to F ,
and so are nodes 14 and 17 of T4.

Lemma 4: Suppose that C is a cycle of GF and r1, . . . ,
r` are the nodes of C. Then, each rj ∈ {r1, . . . , r`} has
two children uj and u′j in F . Moreover, for every non-
root node v of F not contained in {u1, u′1, . . . , u`, u′`},
C remains to be a cycle in GF after F is modified by
detaching the subtree of F rooted at v.

Proof: The lemma is almost obvious and its proof is
given in Section 1 of the supplementary material.

Lemma 5: The dummy leaf alone does not form a
component tree of an MAAF of T1, . . . , Tk.

Proof: Roughly speaking, if the dummy leaf alone
formed a component tree of an MAAF F of T1, . . . , Tk,
then we would be able to merge this component with
another component to obtain an AAF F ′ of T1, . . . , Tk
with |F ′| < |F |. The details are given in Section 1 of the

4

supplementary material.
By Lemma 5, the root of each Ti is a preserved node

with respect to every AAF of T1, . . . , Tk.

3 COMPUTING MAFS, MAAFS, AND OPTI-
MAL TYPE-I NETWORKS

In this section, we first describe how to compute all
MAAFs of two or more given phylogenetic trees. We
then explain how to contruct an optimal type-I network
of two or more given phylogenetic trees from an MAAF
of the trees. We omit the details of computing one MAAF,
one MAF, or all MAFs, because they are similar to the
computation of all MAAFs.

Whidden et al. [16] give an algorithm for computing
an MAF of two given phylogenetic trees T1 and T2 on
the same set X of species in O(3d

′ |X|) time, where d′ is
the disconnectivity of an MAF of T1 and T2. The basic
idea behind their algorithm is as follows. Initially, we
set F1 = T1 and F2 = T2. We then repeatedly modify
F1 and F2 (until F1 becomes an AF of T1 and T2) as
follows. We find two arbitrary sibling leaves u and v in
F2. If u and v are also siblings in F1, then we modify
F1 and F2 by introducing a new species x and replacing
the identical subtrees of F1 and F2 rooted at the parent
of u and v each with a single leaf labeled x. The point
is that a detaching operation on the modified F1 (resp.,
F2) naturally corresponds to a detaching operation on
the original F1 (resp., F2). On the other hand, if u and v
are not siblings in F1, then we have two cases depending
on whether u and v are in the same component tree of
F1 or not. First, consider the case when u and v are in
different component trees of F1. In this case, in order to
transform F1 and F2 into an AF of T1 and T2, we have
two choices to modify them. One choice is to detach u
from both F1 and F2 and the other is to detach v from
both F1 and F2. Next, consider the case when u and v
are in the same component trees of F1. In this case, in
order to transform F1 and F2 into an AF of T1 and T2,
we have three choices to modify them. The first choice
is to detach u from both F1 and F2. The second choice is
to detach v from both F1 and F2. The third choice is to
detach all those subtrees H from F1 such that the root
w of H does not appear in the (not necessarily directed)
path between u and v in F1 but the parent of w in F1

does. Note that we always have |F1| ≥ |F2|.
It is easy to modify the algorithm so that instead of

computing only one MAF, it enumerates all MAFs of T1
and T2 within the same time bound. The idea is to simply
let the algorithm continue to find other MAFs of T1 and
T2 even after it finds an MAF of T1 and T2. Indeed, Chen
and Wang [5] have implemented the algorithm in C to
obtain a program (called HybridNet) that can enumerate
all MAFs of T1 and T2 rapidly.

Obviously, an MAAF of T1 and T2 is an AF of T1 and
T2 but is not necesarily an MAF of T1 and T2. So, in
order to enumerate all MAAFs of T1 and T2, it is not
sufficient to enumerate all MAFs of T1 and T2 and test

if each enumerated MAF is cyclic or not. To obtain an
algorithm for enumerating all MAAFs of two (or more)
phylogenetic trees, our idea is to first extend Whidden et
al.’s algorithm so that it solves the following generalized
agreement forest (GAF) problem:
• Input: (T1, T2, F1, b), where T1 and T2 are two phy-

logenetic trees on the same set X , F1 is a forest
obtained from T1 by performing zero or more de-
taching operations on T1, and b is a nonnegative
integer.

• Output: A sequence of AFs of T1 and T2 including
all AFs F of T1 and T2 such that (1) F can be ob-
tained by performing at most b detaching operations
on F1 (or equivalently, at most |F1| + b detaching
operations on T2) and (2) no AF of T1 and T2 is
finer than F1 and coarser than F .

Lemma 6: There is an algorithm for the GAF problem
which on input (T1, T2, F1, b), runs in O(3b|X|) time and
outputs at most 3h AFs F of T1 and T2 with |F | = |F1|+h
for every integer 0 ≤ h ≤ b.

Proof: The algorithm and its analysis are detailed in
Section 2 of the supplementary material.

For convenience, we refer to the algorithm for the GAF
problem guaranteed by Lemma 6 as the GAF algorithm.

We note that if we change the output of the GAF
problem to be all AFs F of T1 and T2 such that F can be
obtained by performing at most b detaching operations
on F1, then we cannot have an O(3b|X|)-time algorithm
for the GAF problem. To see this, suppose that we have
performed b′ < b detaching operations on F1 so that it
is already an AF of T1 and T2. Then, F1 remains to be
an AF of T1 and T2 even if we further perform one or
more detaching operations on it. However, since F1 has
2(|X|−|F1|−1) non-root nodes, there are 2(|X|−|F1|−1)
ways to perform just one more detaching operation on
F1. So, there can exist O(|X|b−b′) ways to perform b− b′
more detaching operations on F1.

Obviously, to enumerate all MAAFs of T1 and T2, it
suffices to first set b = 0 and then proceed as follows.

1) Simulate the GAF algorithm on input (T1, T2, T1, b).
During the simulation, whenever an AF F of T1
and T2 is enumerated, perform one of the following
steps depending on whether F is acyclic or not:

a) If F is acyclic, output it.
b) If F is cyclic, then output all AAFs F ′ of T1

and T2 such that F ′ can be obtained from F
by performing b−|F | detaching operations on
F .

2) If at least one AAF of T1 and T2 was outputted in
Step 1a or 1b, then stop; otherwise, increase b by 1
and go to Step 1.

Note that Step 1b is nontrivial. We here do not detail
how to perform Step 1b, because later in Lemma 12,
we will show how to solve the following more general
problem: Given a CAF F of two or more phylogenetic
trees T1, . . . , Tk together with a positive integer b less
than or equal to the disconnectivity of an MAAF of T1,

5

. . . , Tk, enumerate all AAFs F ′ of T1, . . . , Tk such that F ′

can be obtained from F by performing b−|F | detaching
operations on F .

We next extend the above approach so that it works
for multiple phylogenetic trees. Let T1, . . . , Tk be two or
more phylogenetic trees on the same set X of species. To
compute all MAAFs of T1, . . . , Tk, our idea is roughly
as follows. Since we do not know how large the discon-
nectivity d of an MAAF of T1, . . . , Tk is, we try d = 0,
1, 2, . . . (in this order). When trying d = b, we want to
compute a sequence S of AFs of T1, . . . , Tk including all
AFs F of T1, . . . , Tk such that

• F can be obtained by performing at most b de-
taching operations on T1 (or equivalently, at most
b detaching operations on each Ti with 2 ≤ i ≤ k)
and

• no AF of T1, . . . , Tk is coarser than F .

Roughly speaking, we can compute S as follows. First,
we simulate the GAF algorithm on input (T1, T2, T1, b)
to obtain a sequence S1 of AFs of T1 and T2. For each
F1 ∈ S1, we then simulate the GAF algorithm on input
(T1, T3, F1, b − |F1|) to obtain a sequence S2(F1) of AFs
of T1 and T3. Let S2 =

⋃
F1∈S1 S2(F1). Note that each

F ∈ S2 is an AF of T1, . . . , T3 with |F | ≤ b. Proceeding
in this way for i = 3, 4, . . . , k, we simulate the GAF
algorithm on input (T1, Ti+1, F1, b − |F1|) for each F1 ∈
Si−1 to obtain a sequence Si(F1) of AFs of T1 and Ti+1.
Let Si =

⋃
F1∈Si−1

Si(F1). Note that each F ∈ Si is an
AF of T1, . . . , Ti+1 with |F | ≤ b. The crucial point is that
Sk−1 is the required S.

To make the above rough idea precise, we first modify
the GAF algorithm into the subroutine in Figure 2.
Basically, S can be obtained by calling the subroutine
on input (T1, 2, b).

Lemma 7: The subroutine in Figure 2 is correct.
Proof: We prove the lemma by induction on k − i.

Basis: In the base case, k = i and in turn the subroutine
is correct by Lemma 6.

Inductive step: Assume that k > i. Obviously, each
output of the subroutine is an AF of T1, Ti, . . . , Tk.
Suppose that F is an AF of T1, Ti, . . . , Tk such that
(1) F can be obtained by performing at most b detaching
operations on F1 and (2) no AF of T1, Ti, . . . , Tk is
finer than F1 and coarser than F . If F1 is an AF of T1
and Ti, then no AF of T1, Ti+1, . . . , Tk is finer than F1

and coarser than F and the output of the subroutine on
input (F1, i, b) is the same as the output of the subroutine
on input (F1, i + 1, b), implying that the subroutine can
output F by the inductive hypothesis. So, assume that F1

is not an AF of T1 and Ti. There are two cases depending
on whether T1 and Ti have an AF that is finer than F1

and coarser than F .
First consider the case where no AF of T1 and Ti

is finer than F1 and coarser than F . In this case, by
Lemma 6, the GAF algorithm on input (T1, Ti, F1, b) can
enumerate F and hence there is a recursive call on input
(F, i + 1, b − h) in Step 7.2 of the subroutine, where

Input: (F1, i, b), where F1 is a forest obtained by
performing zero or more detaching oper-
ations on T1, i ∈ {2, . . . , k}, and b is a
nonnegative integer.

Output:A sequence of AFs of T1, Ti, . . . , Tk in-
cluding all AFs F of T1, Ti, . . . , Tk such
that (1) F can be obtained by performing
at most b detaching operations on F1 (or
equivalently, at most |F1| + b detaching
operations on each of Ti, . . . , Tk) and (2) no
AF of T1, Ti, . . . , Tk is finer than F1 and
coarser than F .

1. Initialize j = i.
2. While j ≤ k and F1 is an AF of T1 and Tj ,

increase j by 1.
3. If j > k, then output F1 and return.
4. If b = 0, then return.
5. Simulate the GAF algorithm on input

(T1, Tj , F1, b) until it finds an AF F ′ of T1
and Tj or returns.

6. If the GAF algorithm returns, then return.
7. If the GAF algorithm finds an AF F ′ of T1 and

Tj , then perform Step 7.1 or 7.2 depending on
the value of j:

7.1. If j = k, then output F ′.
7.2. If j < k, then recursively call the algorithm on

input (F ′, j+ 1, b−h), where h is the number
of detaching operations performed on F1 to
obtain F ′.

8. Continue to simulate the GAF algorithm on
input (T1, Tj , F1, b) until it finds the next AF
F ′ of T1 and Tj or returns.

9. Go to Step 6.

Fig. 2. A subroutine for enumerating AFs of T1, . . . , Tk.

h = |F |− |F1|. The recursive call on input (F, i+ 1, b−h)
will output F in Step 3.

Next consider the case where T1 and Ti have an AF
that is finer than F1 and coarser than F . Let A be the
set of all AFs of T1 and Ti that are finer than F1 and
coarser than F . Among the AFs in A, we can choose an
F ′ such that for every F ′′ ∈ A − {F ′}, F ′ is not finer
than F ′′. By the choice of F ′, no AF of T1 and Ti is finer
than F1 and coarser than F ′. So, by Fact 3, F ′ can be
obtained from F1 by performing |F ′| − |F1| detaching
operations. Thus, by Lemma 6, the GAF algorithm can
enumerate F ′ on input (T1, Ti, F1, b) and hence there is a
recursive call on input (F ′, i+ 1, b− h) in Step 7.2 of the
subroutine, where h = |F ′| − |F1|. Again, by Fact 3, F
can be obtained from F ′ by performing |F |−|F ′| ≤ b−h
detaching operations. Moreover, no AF of T1, Ti+1, . . . ,
Tk is finer than F ′ and coarser than F , because no AF of
T1, Ti, . . . , Tk is finer than F1 and coarser than F . Thus,
by the inductive hypothesis, the recursive call on input
(F ′, i+ 1, b−h) in Step 7.2 of the subroutine will output
F . Therefore, the subroutine is correct.

Lemma 8: Given an input (F1, i, b), the subroutine in

6

Figure 2 outputs at most 6h AFs F of T1, Ti, . . . , Tk with
|F | = |F1|+ h for every 0 ≤ h ≤ b.

Proof: By induction on b. The details are given in
Section 1 of the supplementary material.

Lemma 9: Given an input (F1, 2, b), the subroutine in
Figure 2 outputs at most 6h21−d

′
1,2 AFs F of T1, . . . , Tk

with |F | = h for every d′1,2 ≤ h ≤ b, where d′1,2 is the
disconnectivity of an MAF of T1 and T2.

Proof: The point is that the analysis in the proof of
Lemma 8 can be tightened when i = 2. The details are
given in Section 1 of the supplementary material.

Lemma 10: Given an input (F1, i, b), the subroutine in
Figure 2 takes O((k − i+ 1)6b|X|) time.

Proof: By induction on b. The details are given in
Section 1 of the supplementary material.

Lemma 11: Given an input (F1, 2, b), the subroutine in
Figure 2 takes O(k6b2−d

′
1,2 |X|) time.

Proof: The point is that the analysis in the proof of
Lemma 10 can be tightened when i = 2. The details are
given in Section 1 of the supplementary material.

We next use the subroutine in Figure 2 to solve
the following generalized acyclic agreement forest (GAAF)
problem:
• Input: (T1, . . . , Tk, b), where T1, . . . , Tk are two or

more phylogenetic trees on the same set X and b is
a lower bound on the disconnectivity of an MAAF
of T1, . . . , Tk.

• Output: All AAFs F of T1, . . . , Tk with |F | = b.
Roughly speaking, we can solve the GAAF problem

as follows. Given an input (T1, . . . , Tk, b), we simulate
the subroutine in Figure 2 on input (T1, 2, b). During
the simulation, whenever an AF F of T1, . . . , Tk is
enumerated, we check if F is acyclic or not. If F is
acyclic, then we can simply output it. Otherwise, we
check if the dummy leaf is a root of F or not. If the
dummy leaf is a root of F , then by Lemma 5, we can
simply discard F . Otherwise, we output all AAFs F ′

of T1, . . . , Tk such that F ′ can be obtained from F by
performing b− |F | detaching operations on F .

Based on the above rough idea, we present an al-
gorithm for the GAAF problem in Figure 3. We refer
to this algorithm as the GAAF algorithm. Note that in
Step 3.3, we need to output all AAFs F ′′ of T1, . . . , Tk
with |F ′′| = b such that F ′′ is finer than F ′. Lemma 12
shows that we can do this in O(bb−|F

′|+2) time.
Lemma 12: Suppose that for every node v of F ′ and

every i ∈ {1, . . . , k}, we have precomputed the node of
Ti corresponding to v. Further assume that for every i ∈
{1, . . . , k}, we have preprocessed Ti so that given a pair
(u, v) of nodes of Ti, we can compute the LCA of {u, v}
in Ti in O(1) time. Then, Step 3.3 of the GAAF algorithm
takes O((b− 1)b−|F

′|+2) time.
Proof: The idea is to use Lemma 4. The details are

given in Section 1 of the supplementary material.
Lemma 13: The GAAF algorithm is correct.

Proof: Clearly, each output of the algorithm on input
(T1, . . . , Tk, b) is an AAF of T1, . . . , Tk with disconnec-
tivity b. Let F be an arbitrary AAF of T1, . . . , Tk with

Input: An instance (T1, . . . , Tk, b) of the GAAF
problem.

Output:All AAFs F of T1, . . . , Tk with |F | = b.
1. Simulate the subroutine in Figure 2 on input

(T1, 2, b) until it finds an AF F ′ of T1, . . . , Tk or
returns.

2. If the subroutine returns, then return.
3. If the subroutine finds an AF F ′ of T1, . . . , Tk

such that |F ′| ≤ b and the dummy leaf is not a
root in F ′, then perform the following steps:

3.1. Construct the decision graph GF ′ associated
with F ′.

3.2. If GF ′ is acyclic, then output F ′.
3.3. If GF ′ is cyclic and |F ′| < b, then output all

AAFs F ′′ of T1, . . . , Tk with |F ′′| = b such
that F ′′ is finer than F ′.

4. Continue to simulate the subroutine on input
(T1, 2, b) until it finds the next AF F ′ of T1, . . . ,
Tk or returns.

5. Go to Step 2.

Fig. 3. An algorithm for the GAAF problem.

|F | = b. If no AF of T1, . . . , Tk is coarser than F , then the
subroutine in Figure 2 on input (T1, 2, b) can find F and
so the algorithm can output F in Step 3.2. So, assume
that some AF of T1, . . . , Tk is coarser than F . Then, there
must exist an AF F ′ of T1, . . . , Tk such that F ′ is coarser
than F and no AF of T1, . . . , Tk is coarser than F ′. Now,
the subroutine in Figure 2 on input (T1, 2, b) can find F ′

and output F in Step 3.3. Thus, the algorithm is correct.

Lemma 14: Let (T1, . . . , Tk, b) be an input to the GAAF
algorithm. Suppose that for every i ∈ {1, . . . , k}, we have
preprocessed Ti so that given a pair (u, v) of nodes of Ti,
we can compute the LCA of {u, v} in Ti in O(1) time.
Then, the GAAF algorithm on input (T1, . . . , Tk, b) takes
O(k|X|6b2−d

′
1,2 + (b− 1)b−d

′+26d
′
2−d

′
1,2) time, where d′ is

the disconnectivity of an MAF of T1, . . . , Tk and d′1,2 is
the disconnectivity of an MAF of T1 and T2.

Proof: The proof employs Lemmas 11 and 9. The
details are given in Section 1 of the supplementary
material.

Now, to compute all MAAFs of T1, . . . , Tk, it suffices
to perform the following steps (a) through (d):

(a) Rearrange T1, . . . , Tk so that the disconnectivity of
an MAF of T1 and T2 is the maximum disconnec-
tivity of an MAF of two trees among T1, . . . , Tk.

(b) For every i ∈ {1, . . . , k}, preprocess Ti so that given
a pair (u, v) of nodes of Ti, we can compute the
LCA of {u, v} in Ti in O(1) time.

(c) Call the GAAF algorithm on input (T1, . . . , Tk, d
′),

where d′ is the disconnectivity of an MAF of T1
and T2.

(d) If at least one AAF is output in Step (c), then return;
otherwise, increase d′ by 1 and go to Step (c).

We are now ready to prove the following theorem:
Theorem 1: Given two or more phylogenetic trees T1,

7

. . . , Tk on the same set X of species, we can compute
all MAAFs of T1, . . . , Tk in O(k2|X|3d′′ + k|X|6d2−d

′′
+

(d − 1)d−d
′+26d

′
2−d

′′
) time, where d (resp., d′) is the

disconnectivity of an MAAF (resp., MAF) of T1, . . . , Tk
and d′′ is the maximum disconnectivity of an MAF of
two trees among T1, . . . , Tk.

Proof: By Lemma 13, performing Steps (a)
through (d) in the above give us all MAAFs of T1,
. . . , Tk. We next estimate the time needed to perform the
steps. Using Whidden et al.’s algorithm for computing
an MAF of two given phylogenetic trees, we can perform
Step (a) in O(k23d

′′ |X|) time. For each i ∈ {1, . . . , k},
we can use the algorithm in [12] to preprocess Ti in
O(|X|) time so that given a pair (u, v) of nodes in
Ti, we can compute the LCA of {u, v} in Ti in O(1)
time. Thus, Step (b) takes O(k|X|) total time for T1,
. . . , Tk. Therefore, by Lemma 14, the four steps take
O(k2|X|3d′′ + k|X|6d2−d

′′
+ (d − 1)d−d

′+26d
′
2−d

′′
) total

time.
Let F be an MAAF of T1, . . . , Tk. We want to use F

to construct a reticulate network N of T1, . . . , Tk with
R1(N) = |F |. In the special case where k = 2, there are
known algorithms for this purpose [5], [14]. It is quite
easy to modify these algorithms so that they work for
our purpose even in the general case (i.e., the case where
k ≥ 2). In particular, Section 3 of the supplementary
material describes how to modify the algorithm detailed
in the supplementary material of [5]. If one wants to
compute the extended Newick representation of N from
F , Section 4 of the supplementary material details how
to do this.

It remains to show that a reticulate network N of
T1, . . . , Tk with R1(N) = |F | is an optimal type-I
reticulate network of T1, . . . , Tk. To this end, it suffices
to claim that for every reticulate network M of T1, . . . ,
Tk, R1(M) ≥ |F |. This claim is easy to prove. Indeed,
it follows from the last inequality in Statement 2 in
Lemma 15 immediately.

4 BETTER LOWER BOUND ON R2(T1, . . . , Tk)

Throughout this section, fix two or more phylogenetic
trees T1, . . . , Tk on the same set X of species. Our goal
is to compute a lower bound on R2(T1, . . . , Tk).

Previously, a lower bound, called the RH bound, on
R2(T1, . . . , Tk) was given by Wu [18]. Given R2(Ti, Tj)
for all pairs (i, j) with 1 ≤ i < j ≤ k, the RH
bound on R2(T1, . . . , Tk) is inferred via integer linear
programming. In this section, we will use our algorithm
for enumerating all MAAFs of T1, . . . , Tk to compute a
lower bound on R2(T1, . . . , Tk) that is better than the RH
bound in a significant number of cases.

Consider a reticulate network N of T1, . . . , Tk. Let F be
the forest obtained from N by removing all edges enter-
ing the reticulation nodes of N . We refer to F as the forest
associated with N and use F(N) to denote it. For each
root v of F(N) that is not the root of N , the reticulation
number of v in N is at least 1. Thus, R2(N) ≥ |F(N)|,

3 4

510
1 2

6
8

dummy

N

7 9

11

12

13

14

15

16

19

20

21
26

17

18

22
23

25

24

3 41 2

6
8

dummy

F(N)

11

12

13

14

15

16
19

20

21
26

17

18

22
23

24

5 107 9

25

A(N)

3 4
5 10

1 2
6

8

dummy

7 9

12

14

15

16

26

25

Fig. 4. A reticulate network N of the four trees T1, . . . , T4
in Figure 1, F(N), and A(N), where the broken edges in
N show an embedding of T4 in N .

where we recall that |F(N)| denotes the disconnectivity
of F(N). For an example, see Figure 4.

Suppose that we obtain a forest F ′ by modifying F(N)
by performing the next two steps:

Step 1. Delete those nodes v such that neither v nor
its descendants in F(N) are in X .

Step 2. Contract all unifurcate nodes in F(N).

Obviously, F ′ is an AAF of T1, . . . , Tk. We refer to F ′

as the AAF associated with N and use A(N) to denote it.
Each component tree Γ of A(N) is a modification of a
component tree Γ′ of F(N). We call Γ′ the tree in F(N)
corresponding to Γ. Figure 4 shows an example, where the
component tree of F(N) rooted at node 26 corresponds
to the component tree of A(N) rooted at node 26.
|A(N)| may be smaller than |F(N)|. This can happen

only when at least one node is deleted in Step 1 in the
above. If |A(N)| < |F(N)|, we say that N is unusual;
otherwise, we say that N is usual. For example, the
network N in Figure 4 is unusual.

Lemma 15: For every reticulate network N of T1, . . . ,
Tk, the following statements hold:

1) The roots of F(N) are exactly the reticulation nodes
in N plus the root of N .

2) R2(N) ≥ |F(N)| = R1(N) ≥ |A(N)|.
3) Let u, u′, and v be three distinct nodes of F(N)

such that u′ is an ancestor of v in F(N) but u is

8

not. Then, u′ is a node of every path from u to v
in N .

4) Let v be a node of a component tree Γ of F(N)
and u be a node of N outside Γ. If there is a path
P from u to v in N , then every ancestor u′ of v in
F(N) is a node of P .

5) Let u and v be two distinct nodes of F(N). If there
is a path P from u to v in F(N), then P is the
unique path from u to v in N .

6) Let u and v be two distinct nodes of a component
tree Γ in F(N). If there is a path P from u to v in
N , then u is an ancestor of v in Γ.

Proof: Statement 1, the equality R1(N) = |F(N)|,
and the inequality |F(N)| ≥ |A(N)| are clearly true.
Inequality R2(N) ≥ |F(N)| holds because all roots of
F(N) except one have in-degree at least 2 in N . Roughly
speaking, Statements 3 through 6 hold because every
path of N from a node outside a component tree Γ
of F(N) to a node of Γ has to pass through the root
of Γ. The detailed proofs are given in Section 1 of the
supplementary material.

By Statement 2 in Lemma 15, the disconnectivity of an
MAAF of T1, . . . , Tk is a lower bound on R2(T1, . . . , Tk).
We refer to this bound as the MAAF bound. In the
sequel, we show how to improve the MAAF bound
by 1, obtaining a new bound called the revised MAAF
(rMAAF) bound. Although the rMAAF bound can be
larger than the MAAF bound by only 1, we are interested
in computing it for several reasons. First, the rMAAF
bound can be computed almost as fast as the MAAF
bound. Secondly, our experimental data shows that the
rMAAF bound is usually larger than the MAAF bound
(see Tables 1 and 2). Thirdly, our experimental data also
shows that the rMAAF bound is better than the RH
bound in a significant number of cases (see Table 1
and 2). Fourthly, unlike the MAAF bound, the rMAAF
bound is nontrivial and studying it gives us some insight
into optimal type-II reticulate networks and hence may
eventually lead to better lower bounds in the future.

Throughout the remainder of this section, let m be the
MAAF bound on R2(T1, . . . , Tk). We want to figure out
when R2(T1, . . . , Tk) ≥ m+ 1.

There are two simple cases where R2(T1, . . . , Tk) ≥
m + 1. In the case where at least one optimal type-
II reticulate network N of T1, . . . , Tk is unusual, we
have R2(T1, . . . , Tk) ≥ m + 1. This is true because
R2(T1, . . . , Tk) = R2(N) > |A(N)| ≥ m, where the first
inequality holds because N is unusual. Moreover, in the
case where there is an optimal type-II reticulate network
N of T1, . . . , Tk such that A(N) is not an MAAF of T1, . . . ,
Tk, we have R2(T1, . . . , Tk) ≥ m+ 1. This is true because
R2(T1, . . . , Tk) = R2(N) ≥ |A(N)| > m. Thus, to figure
out when R2(T1, . . . , Tk) ≥ m+ 1, we can concentrate on
those optimal type-II reticulate networks N of T1, . . . , Tk
such that N is usual and A(N) is an MAAF of T1, . . . ,
Tk. We refer to such an N as a doubly optimal reticulate
network of T1, . . . , Tk. The next fact justifies this naming.

Fact 16: Suppose that N is a reticulation network of

T1, . . . , Tk. Then, N is an optimal type-I reticulate
network of T1, . . . , Tk if and only if N is usual and A(N)
is an MAAF of T1, . . . , Tk.

Proof: The proof is quite easy and is detailed in
Section 1 of the supplementary material.

Lemma 17: For every optimal type-II reticulate net-
work N of T1, . . . , Tk such that F(N) has at most m+ 1
component trees, the following statements hold:

1) F(N) has m+1 component trees and so does A(N).
2) A(N) is an MAAF of T1, . . . , Tk.
3) N is doubly optimal.

Proof: The lemma is almost obvious from State-
ment 2 in Lemma 15. The proof is detailed in Section 1
of the supplementary material.

We say that an MAAF F of T1, . . . , Tk is good if for
every doubly optimal reticulate network N of T1, . . . , Tk
such that A(N) is the same as F , R2(N) ≥ m+ 1.

Theorem 2: Assume that every MAAF of T1, . . . , Tk is
good. Then, R2(T1, . . . , Tk) ≥ m+ 1.

Proof: If there is an optimal type-II reticulate network
N of T1, . . . , Tk such that F(N) has at least m + 2
component trees, then R2(T1, . . . , Tk) ≥ m+1. Otherwise,
we can use Statements 2 and 3 in Lemma 17 to show that
R2(T1, . . . , Tk) ≥ m+1. The details are given in Section 1
of the supplementary material.

Based on Theorem 2, we will design an algorithm that
enumerates all MAAFs of T1, . . . , Tk and checks if each
of them is good. Moreover, if the algorithm finds out
that each MAAF of T1, . . . , Tk is good, then it outputs
m+ 1 as a lower bound on R2(T1, . . . , Tk); otherwise, it
outputs m as a lower bound.

Throughout the remainder of this section, fix an
MAAF F of T1, . . . , Tk. See Figure 1 for an example.
Based on F , we define the following notations:
• Let Γ1, . . . , Γm+1 denote the component trees of F .

Without loss of generality, we assume that Γm+1

contains the dummy leaf.
• For each j ∈ {1, . . . ,m+ 1}, let rj denote the root of

Γj . By Lemma 5, rm+1 is also the root of Ti for each
i ∈ {1, . . . , k}.

• For each 1 ≤ j ≤ m and each 1 ≤ i ≤ k, let
pj,i denote the lowest ancestor of rj in Ti that is a
contracted node, and let ej,i denote the supporting
edge of pj,i in F . For example, in Figure 1, p1,1 = 12,
e1,1 = e5, p3,2 = 17, and e3,2 = e4. Note that each
inner node of the path from pj,i to rj in Ti is a
dangling node.

We want an easily checkable necessary-and-sufficient
condition for F to be good. Unfortunately, we are unable
to find such a condition. In the following, we give easily
checkable sufficient conditions for F to be good.

By a reticulate F -network, we mean a reticulate net-
work N of T1, . . . , Tk such that A(N) is the same as
F . Consider an arbitrary doubly optimal reticulate F -
network N . Since N is usual, F(N) has exactly m + 1
roots. One root of F(N) has in-degree 0 in N , while
each other root of F(N) has in-degree at least 2 in N .

9

rj

r’j

r’
h

p
j,i

r
h

Q
j,i

x

P’

P

t

rj

r’j

p

s

Qj,i1

j,i1

p
j,i2

Q
j,i2

(1) (2)

Fig. 5. (1) The paths P , P ′, and Qj,i (shown in zig-zag
lines or curves) in the proof of Lemma 19. (2) The paths
Qj,i1 and Qj,i2 (shown in zig-zag lines or curves) in the
proof of Lemma 20.

So, if F(N) has a root whose in-degree in N is at least 3,
then R2(N) ≥ m + 1, as desired. Thus, to find easily
checkable sufficient conditions for F to be good, we will
instead find easily checkable sufficient conditions which
guarantee that for every doubly optimal reticulate F -
network N , some root of F(N) has in-degree at least 3
in N .

Lemma 18: For every doubly optimal reticulate F -
network N , rm+1 is the root of both N and the tree in
F(N) corresponding to Γm+1.

Proof: Roughly speaking, if rm+1 were not the root
of N , then we would be able to decrease R2(N) by
modifying N by deleting all nodes from which we can
reach rm+1. The details are given in Section 1 of the
supplementary material.

Lemma 19: Consider some j ∈ {1, . . . ,m} and i ∈
{1, . . . , k} such that pj,i is the parent of rj in Ti. Then,
for every doubly optimal reticulate F -network N and
for every embedding Ei of Ti in N , no inner node of the
path from pj,i to r′j in Ei is a root in F(N), where r′j is
the root of the tree in F(N) corresponding to Γj .

Proof: Figure 5(1) helps understand the proof. For
each h ∈ {1, . . . ,m}, let r′h be the root of the tree in F(N)
corresponding to Γh. Let Qj,i be the path from pj,i to r′j
in Ei. Since rm+1 is the root of N (by Lemma 18), rm+1

cannot be an inner node of Qj,i. Towards a contradiction,
assume that there is an integer h ∈ {1, . . . ,m} such that
r′h is an inner node of Qj,i. Let x ∈ X be a leaf descendant
of r′h in F(N). Since N is doubly optimal, x must exist.
By Statement 4 in Lemma 15, the path from rm+1 to x in
Ei must contain the path P from r′h to x in F(N). Let P ′

be the subpath of Qj,i from r′h to r′j . Since P cannot pass
through r′j , P and P ′ must share a node t such that the
edge leaving t in P is different from the edge leaving t
in P ′. So, t is an inner node of Qj,i and its out-degree in
Ei is 2. On the other hand, since (pj,i, rj) is an edge of
Ti and Ei is an embedding of Ti in N , every inner node
of Qj,i must have out-degree 1 in Ei. Therefore, we have
a contradiction. This completes the proof.

Lemma 20: Consider some j ∈ {1, . . . ,m}, i1 ∈
{1, . . . , k}, and i2 ∈ {1, . . . , k} such that i1 6= i2, ej,i1 6=
ej,i2 , pj,i1 is the parent of rj in Ti1 . Then, for every doubly

optimal reticulate F -network N , for every embedding
Ei1 of Ti1 in N , and for every embedding Ei2 of Ti2 in
N , r′j is the only node shared by the path from pj,i1 to
r′j in Ei1 and the path from pj,i2 to r′j in Ei2 (and hence
the edge entering r′j in Ei1 is different from the edge
entering r′j in Ei2), where r′j is the root of the tree in
F(N) corresponding to Γj .

Proof: Figure 5(2) helps understand the proof. Let r′j
be the root of the tree in F(N) corresponding to Γj . Let
Qj,i1 (resp., Qj,i2) be the path from pj,i1 (resp., pj,i2) to r′j
in Ei1 (resp., Ei2). Note that r′j is a node shared by Qj,i1

and Qj,i2 . We claim that no node of N other than r′j can
be shared by Qj,i1 and Qj,i2 . Towards a contradiction,
assume that the claim is false. Then, starting at pj,i1 and
walking along Qj,i1 towards r′j , we can find the first node
s 6= r′j shared by Qj,i1 and Qj,i2 . Since ej,i1 6= ej,i2 , pj,i1
and pj,i2 are different nodes in N . Thus, s cannot be pj,i1
or pj,i2 . Hence, s is an inner node of both Qj,i1 and Qj,i2 .
Consequently, by Lemma 19, s is not a root in F(N).
Therefore, the in-degree of s in N is 1. However, by the
choice of s, the edge of Qj,i1 entering s and the edge of
Qj,i2 entering s must be different, implying that the in-
degree of s in N is at least 2. So, we have a contradiction.
This finishes the proof.

For each j ∈ {1, . . . ,m}, we define two sets as follows:
• Let Ij denote the set of integers i ∈ {1, . . . , k} such

that pj,i is the parent of rj in Ti.
• Let Sj = {ej,i | i ∈ Ij}.

For example, in Figure 1, I1 = {1, 3}, S1 = {e5, e4}, I2 =
{1, 2, 3}, S2 = {e1}, I3 = {1, 3}, S3 = {e1}, and I4 =
{1, 3}, S4 = {e5}.

By Lemma 20, the in-degree of r′j in every doubly
optimal reticulate F -network N is at least |Sj |, where r′j
is the root of the tree in F(N) corresponding to Γj . Thus,
if there is a j ∈ {1, . . . ,m} with |Sj | ≥ 3, then F is good.
This gives us an easily checkable sufficient condition for
F to be good. Unfortunately, this condition is too strong
that not so many MAAFs F satisfy it. For example, the
MAAF F in Figure 1 does not satisfy the condition. So,
we next proceed to find a weaker sufficient condition.
The idea is to expand the sets S1, . . . , Sm based on the
following sets:
• For each j ∈ {1, . . . ,m}, let Ij be the set of all i ∈
{1, . . . , k} − Ij with ej,i 6∈ Sj .

• For each j ∈ {1, . . . ,m} and each i ∈ Ij , let Hj,i

denote the set of all h ∈ {1, . . . ,m} − {j} such that
rh is a descendant of some inner node u of the path
from pj,i to rj in Ti and every inner node of the
path from u to rh in Ti is a dangling node in Ti. See
Figure 6(1) for an illustration.

For example, in Figure 1, I1 = ∅, I2 = {4}, I3 = {2},
I4 = {2, 4}, H2,4 = {1}, H3,2 = {1, 4}, H4,2 = {1, 3}, and
H4,4 = {3}.

The intuition behind each Ij is as follows. We have
used the trees Ti with i ∈ Ij and the edges in Sj to
obtain a lower bound (namely, |Sj |) on the in-degree of r′j
in every doubly optimal reticulate F -network N , where

10

rj

p
j,i

r
h rj

r’j

p

u Qj,i1

j,i1

p
j,i2

Q
j,i2

(1) (2)

Γj Γh

u
dangling
vertices only

r
h

s=r’
h

2u1

P’2

P’1

x

P

Fig. 6. (1) A portion of Ti witnessing that h ∈ Hj,i. (2) The
paths Qj,i1 , Qj,i2 , P , P ′1, and P ′2 (shown in zig-zag lines
or curves) in the proof of Lemma 21.

r′j is the root of the tree in F(N) corresponding to Γj .
In order to increase this lower bound by expanding Sj ,
we have to exclude the trees Tj with i ∈ Ij and the
edges in Sj from further consideration (to avoid double
counting).

Lemma 21: Consider some j ∈ {1, . . . ,m}, i1 ∈
{1, . . . , k}, and i2 ∈ {1, . . . , k} such that i1 6= i2,
Hj,i1 ∩Hj,i2 = ∅, and ej,i1 6= ej,i2 . Then, for every doubly
optimal reticulate F -network N , for every embedding
Ei1 of Ti1 in N , and for every embedding Ei2 of Ti2 in
N , r′j is the only node shared by the path from pj,i1 to
r′j in Ei1 and the path from pj,i2 to r′j in Ei2 (and hence
the edge entering r′j in Ei1 is different from the edge
entering r′j in Ei2), where r′j is the root of the tree in
F(N) corresponding to Γj .

Proof: Figure 6(2) helps understand the proof. For
each h ∈ {1, . . . ,m}, let r′h be the root of the tree in
F(N) corresponding to Γh. Note that r′1, . . . , r′m are the
reticulation nodes of N . Let Qj,i1 (resp., Qj,i2) be the path
from pj,i1 (resp., pj,i2) to r′j in Ei1 (resp., Ei2). Obviously,
r′j is a node shared by Qj,i1 and Qj,i2 . We claim that no
node of N other than r′j can be shared by Qj,i1 and Qj,i2 .
Towards a contradiction, assume that the claim is false.
Then, starting at pj,i1 and walking along Qj,i1 towards
r′j , we can find the first node s 6= r′j shared by Qj,i1 and
Qj,i2 . Since ej,i1 6= ej,i2 , pj,i1 and pj,i2 are different nodes
in N . Thus, s cannot be pj,i1 or pj,i2 . Hence, s is an inner
node of both Qj,i1 and Qj,i2 . By the choice of s, the edge
of Qj,i1 entering s and the edge of Qj,i2 entering s must
be different, implying that the in-degree of s in N is at
least 2. Thus, s = r′h for some h ∈ {1, . . . ,m} − {j}.

Let x ∈ X be a leaf descendant of r′h in F(N). Since
N is doubly optimal, x must exist. By Statement 4 in
Lemma 15, the path from rm+1 to x in Ei1 (resp., Ei2)
must contain the path P from r′h to x in F(N). For each
` ∈ {1, 2}, let u` be the node closest to rh in P that
is shared by Qj,i` and P . Since P cannot pass through
r′j , u` is an inner node of the path from pj,i` to rj in
Ti` . Consider the subpath P ′` of P from u` to rh. Every
node of P ′` with out-degree 2 in Ei` is a dangling node
in Ti` because Ei` is an embedding of Ti` in N . Hence,

h ∈ Hj,i1∩Hj,i2 , contradicting the assumption that Hj,i1∩
Hj,i2 = ∅. This finishes the proof.

Based on Lemma 21, we can expand Sj by first initial-
izing Jj = ∅ and then performing the following step for
h = 1, 2, . . . , |Ij |:
• Let ih be the h-th integer in Ij . If ej,ih 6∈ Sj and
Hj,ih ∩ Jj = ∅, then add ej,ih to Sj and also add the
elements of Hj,ih to Jj .

The size of the final Sj depends on the ordering of
the integers in Ij . We want an ordering that maximizes
the size of the final Sj . When |Ij | is small, we can try
all possible orderings and find the best among them.
Otherwise, we may just try a small number of random
orderings and find the best among them. We make this
rough idea more precise below.

For each j ∈ {1, . . . ,m} and each bijection
f : {1, . . . , |Ij |} → Ij , we compute a set Sj,f of edges
in F and a subset Jj,f of {1, . . . ,m} as follows. Initially,
Sj,f = Sj and Jj,f = ∅. We then expand Sj,f and Jj,f by
performing the following step:
• For h = 1, 2, . . . , |Ij | (in this order),

if Hj,f(h)∩Jj,f = ∅ and Sj,f does not contain ej,f(h),
then add ej,f(h) to Sj,f and add the elements of
Hj,f(h) to Jj,f .

Here, if Ij = ∅, there is a unique bijection
f : {1, . . . , |Ij |} → Ij (namely, the empty mapping).

For example, in Figure 1, if f1 is the identity function,
then S1,f1 = {e5, e4}, J1,f1 = ∅, S2,f1 = {e1, e4}, J2,f1 =
{1}, S3,f1 = {e1, e4}, J3,f1 = {1, 4}, S4,f1 = {e5, e4}, and
J4,f1 = {1, 3}. In the same example, if f2 is the function
with f2(1) = 4, f2(2) = 3, f2(3) = 2, and f2(4) = 1,
then S1,f2 = {e5, e4}, J1,f2 = ∅, S2,f2 = {e1, e4}, J2,f2 =
{1}, S3,f2 = {e1, e4}, J3,f2 = {1, 4}, S4,f2 = {e5, e1}, and
J4,f2 = {3}.

By Lemmas 20 and 21 and the construction of Sj,f ,
the in-degree of r′j in every doubly optimal reticulate
F -network N is at least |Sj,f |, where r′j is the root of
the tree in F(N) corresponding to Γj . So, if there are
j ∈ {1, . . . ,m} and bijection f : {1, . . . , |Ij |} → Ij such
that |Sj,f | ≥ 3, then F is good. This gives us a weaker
sufficient condition for F to be good. As an example, the
MAAF F in Figure 1 still does not satisfy this weaker
condition.

If j is an integer in {1, . . . ,m} such that |Ij | is small,
then we can afford to compute Sj,f for all bijections
f : {1, . . . , |Ij |} → Ij . However, for each j ∈ {1, . . . ,m}
such that |Ij | is large, it is too time-consuming to com-
pute Sj,f for all bijections f : {1, . . . , |Ij |} → Ij . So, the
above sufficient condition may not be polynomial-time
checkable. A simple idea to get around this problem is
to predetermine two small numbers b1 (say, 5) and b2
(say, 200). For each j ∈ {1, . . . ,m} with |Ij | ≤ b1, we
compute Sj,f for all bijections f : {1, . . . , |Ij |} → Ij . On
the other hand, for each j ∈ {1, . . . ,m} with |Ij | > b1, we
compute Sj,f for b2 random bijections f : {1, . . . , |Ij |} →
Ij . In this way, if we find a j ∈ {1, . . . ,m} and an
f : {1, . . . , |Ij |} → Ij such that |Sj,f | ≥ 3, then F is good.

11

rj

u

(1) (2)

p
j ,i

v
1

1 2

p
j ,i2 2

rj
2

rj

u

p
j ,i

v
2

2 1

p
j ,i1 1

rj
1

Fig. 7. (1) A portion of Ti1 , where (u, v) is an edge of F .
(2) A portion of Ti2 , where (u, v) is the same edge of F as
in (1).

This gives us an easily checkable sufficient condition for
F to be good.

Suppose that after checking the above easily checkable
sufficient condition, we have not found an integer j ∈
{1, . . . ,m} and a bijection f : {1, . . . , |Ij |} → Ij such
that |Sj,f | ≥ 3. Then, we cannot conclude that F is good.
However, it is too early to give up. Our idea is to look
at the set J of those integers j ∈ {1, . . . ,m} such that we
have found at least one bijection f : {1, . . . , |Ij |} → Ij
with |Sj,f | = 2.

Lemma 22: Suppose that j1 and j2 are two integers in
J and i1 and i2 are two integers in {1, . . . , k} satisfying
the following condition C1 (see Figure 7):
C1: ej1,i1 = ej2,i1 = ej1,i2 = ej2,i2 , pj1,i1 and pj2,i1

are the parents of rj1 and rj2 in Ti1 respectively,
pj1,i2 and pj2,i2 are the parents of rj1 and rj2 in Ti2
respectively, pj1,i1 is an ancestor of pj2,i1 in Ti1 , and
pj2,i2 is an ancestor of pj1,i2 in Ti2 .

Then, for every doubly optimal reticulate F -network N ,
the in-degree of the root of Γ′j1 in N is at least 3 or the
in-degree of the root of Γ′j2 in N is at least 3, where
Γ′j1 (resp., Γ′j2) is the tree in F(N) corresponding to Γj1

(resp., Γj2).
Proof: Let Ei1 (resp., Ei2) be an arbitrary embedding

of Ti1 (resp., Ti2) in N . We claim that at least one of the
following statements holds:

1) pj1,i1 in Ei1 and pj1,i2 in Ei2 are distinct nodes of
N .

2) pj2,i1 in Ei1 and pj2,i2 in Ei2 are distinct nodes of
N .

Towards a contradiction, assume that neither of the
statements holds. Then, since pj2,i2 is an ancestor of
pj1,i2 in Ti2 , there is a path P1 from pj2,i1 = pj2,i2 to
pj1,i1 = pj1,i2 in Ei2 . Moreover, since pj1,i1 is an ancestor
of pj2,i1 in Ti1 , there is a path P2 from pj1,i1 to pj2,i1 in
Ei1 . Note that P1 and P2 are paths in N . However, the
existence of P1 and P2 implies that there is a cycle in N ,
a contradiction. So, the claim holds.

By the claim, Statement 1 or 2 holds. We assume that
Statement 1 holds; the other case is similar. Let Qj1,i1

(resp., Qj1,i2) be the path from pj1,i1 (resp., pj1,i2) to r′j1 in
Ei1 (resp., Ei2), where r′j1 is the root of Γ′j1 . An argument
similar to the proof of Lemma 20 shows that r′j1 is the

only node shared by Qj1,i1 and Qj1,i2 . Thus, the edge
e1 of Qj1,i1 entering r′j1 is different from the edge e2 of
Qj1,i2 entering r′j1 .

Since j1 ∈ J , we have already found a bijection
f : {1, . . . , |Ij1 |} → Ij1 with |Sj1,f | = 2. By Lemmas 20
and 21 and the construction of Sj1,f , there are two
distinct edges e3 and e4 entering r′j1 in N . It is possible
that {e3, e4} ∩ {e1, e2} 6= ∅. However, at most one of e1
and e2 belongs to {e3, e4}, because ej1,i1 = ej1,i2 but Sj1,f

contains two different supporting edges. Hence, the in-
degree of r′j1 in N is at least 3.

If there are two integers j1 and j2 in J and two
integers i1 and i2 in {1, . . . , k} satisfying Condition C1 in
Lemma 22, then F is good by Lemma 22. For example,
in Figure 1, if we predetermine b1 = 5 and b2 = 100,
then J = {1, 2, 3, 4}. Moreover, the two integers j1 = 2
and j2 = 3 in J and the two integers i1 = 1 and i2 = 3
in {1, . . . , 4} satisfy Condition C1. Thus, the MAAF F in
Figure 1 is good.

Since it is easy to check whether there are two integers
j1 and j2 in J and two integers i1 and i2 in {1, . . . , k}
satisfying Condition C1 in Lemma 22, we have another
easily checkable sufficient condition for F to be good.

By the above discussions, we now have an algorithm
for deciding if a given MAAF F of T1, . . . , Tk is good.
It is depicted in Figure 8.

5 IMPLEMENTATION

We have implemented our algorithms in ANSI C, obtain-
ing programs CMPT and MaafB for comparing multiple
phylogenetic trees and computing a lower bound on
the reticulation number of an optimal type-II reticulate
network of multiple phylogenetic trees, respectively. The
programs are available at the website, where one can
download executables that can run on a Windows XP
(x86), Windows 7 (x64), Macintosh, or Linux machine.
Section 4 of the supplementary material details how to
run the programs.

When running MaafB, the user can choose to com-
pute the RH bound or not. If the user chooses not to
compute the RH bound, then MaafB will output the
rMAAF bound only. Otherwise, it will output the larger
bound between the two, implying that MaafB does not
output a lower bound smaller than PIRN. To compute
the RH bound, MaafB tests if the RH bound is larger
than i for i = `, ` + 1, . . . (in this order), where ` is
the rMAAF bound. Note that PIRN computes the RH
bound by testing if the RH bound is larger than i for
i = b, b + 1, . . . (in this order), where b is the maximum
disconnectivity of an MAAF of two of the input trees.
Obviously, ` is at least as large as b. Indeed, ` is often
larger than b. Thus, MaafB can often compute the RH
bound faster than PIRN. It is worth noting that the
downloadable version of MaafB uses the GLPK library
to compute the RH bound and hence can be slow.

12

Input: T1, . . . , Tk and their MAAF F =
{Γ1, . . . ,Γm+1}, where Γm+1 is the com-
ponent tree of F containing the dummy
leaf.

Output:“Yes” if F is good, “no” otherwise.
1. Select two small integers b1 (say, 5) and b2 (say,

200).
2. For each 1 ≤ i ≤ k, use F to classify the nodes

of Ti into preserved nodes, contracted nodes,
and dangling nodes.

3. For each 1 ≤ j ≤ m and each 1 ≤ i ≤ k,
perform Steps 3.1 through 3.3:

3.1. Find the lowest ancestor pj,i of the root rj of
Γj in Ti that is a contracted node.

3.2. Find the edge ej,i = (u, v) in F such that the
path from u to v in Ti contains pj,i.

3.3. Compute the set Hj,i of all h ∈ {1, . . . ,m} −
{j} such that the root rh of Γh is a descendant
of some inner node u of the path from pj,i to
rj in Ti and every inner node of the path from
u to rh in Ti is a dangling node.

4. For each j ∈ {1, . . . ,m}, compute Ij = {i ∈
{1, . . . , k} | pj,i is the parent of rj in Ti},
Sj = {ej,i | i ∈ Ij}, and Ij = {i ∈ {1, . . . , k} −
Ij | ej,i 6∈ Sj}.

5. Initialize J = ∅.
6. For every j ∈ {1, . . . ,m} with |Ij | ≤ b1 and for

every bijection f : {1, . . . , |Ij |} → Ij , perform
Steps 6.1∼6.4:

6.1. Initialize Sj,f = Sj and Jj,f = ∅.
6.2. For h = 1, 2, . . . , |Ij | (in this order),

if Hj,f(h) ∩ Jj,f = ∅ and ej,f(h) 6∈ Sj,f , then
add ej,f(h) to Sj,f and add the elements of
Hj,f(h) to Jj,f .

6.3. If |Sj,f | ≥ 3, then output “yes” and halt.
6.4. If |Sj,f | = 2 and j 6∈ J , then add j to J .
7. For every j ∈ {1, . . . ,m} with |Ij | > b1, gener-

ate b2 random bijections f : {1, . . . , |Ij |} → Ij ,
and perform Steps 6.1 through 6.4 for each
generated bijection f .

8. If there are integers j1 and j2 in J and integers
i1 and i2 in {1, . . . , k} satisfying Condition C1,
then output “yes” and halt.

9. Output “no” and halt.

Fig. 8. The algorithm for deciding if an MAAF is good.

6 EXPERIMENTAL RESULTS

To test the performance of MaafB, we have compared it
with PIRN on both simulated data and biological data on
a 2.66 GHz Mac-OS-X PC. To compute the RH bound, we
use CPLEX (a commercial ILP solver that is now freely
available from IBM for academic research).

6.1 Simulated Data

We use the same datasets as in [18] whose author gener-
ates a dataset using a two-stage approach: first simulate a

TABLE 1
Comparing the rMAAF and the RH bounds on simulated
datasets from [18]. Column “|X|” shows the number of leaves

in one input tree, column “r” shows the reticulation level,
column “k” shows the number of trees, column “avg Maaf”
shows the average MAAF bound, column “+2” (respetively,

“+1”, “=”,“−1”, or “−2”) shows the percentage of datasets for
which the rMAAF bound is larger than the RH bound by 2

(respectively, 1, 0, −1, or −2), column “rMaaf>Maaf” shows the
percentage of datasets for which the rMAAF bound is larger

than the MAAF bound.
dataset avg rMaaf

|X| r k Maaf +2 +1 = −1 −2 >Maaf
10 1 4 1.47 0% 3% 96% 1% 0% 17%
10 1 5 1.7 0% 4% 93% 3% 0% 23%
20 1 4 2.84 0% 7% 91% 2% 0% 30%
20 1 5 2.97 0% 6% 91% 3% 0% 32%
30 1 4 3.12 0% 3% 96% 1% 0% 19%
30 1 5 3.36 0% 4% 94% 2% 0% 28%
40 1 4 3.37 0% 5% 95% 0% 0% 33%
40 1 5 3.86 1% 4% 93% 2% 0% 37%
10 3 4 3.31 0% 8% 90% 2% 0% 64%
10 3 5 3.63 0% 13% 80% 7% 0% 63%
20 3 4 5.42 0% 16% 73% 11% 0% 64%
20 3 5 5.72 1% 18% 67% 14% 0% 72%
30 3 4 7.6 2% 23% 69% 5% 1% 65%
30 3 5 7.87 1% 20% 66% 13% 0% 84%
40 3 4 8.1 3% 29% 60% 8% 0% 73%
40 3 5 9.1 3% 23% 64% 10% 0% 76%
10 5 4 4.1 0% 13% 75% 12% 0% 65%
10 5 5 4.23 0% 8% 76% 16% 0% 66%
20 5 4 7.28 0% 20% 68% 12% 0% 85%
20 5 5 7.91 0% 20% 62% 18% 0% 86%
30 5 4 9.84 4% 26% 49% 20% 1% 88%
30 5 5 10.5 4% 28% 56% 11% 1% 92%
40 5 4 11.55 4% 29% 43% 22% 2% 87%
40 5 5 12.16 3% 25% 50% 20% 2% 96%

reticulate network N , and then generate a fixed number
of trees from N by deleting all but one randomly chosen
edge entering each reticulation node in N . To simulate
a reticulate network, Wu [18] uses a scheme similar to
the coalescent simulation implemented in program ms
due to Hudson [10] as follows. For a given number t
of taxa, we start with t isolated lineages and simulate
reticulation backwards in time. At each step, there are
two possible events: (a) lineage merging, which occurs
at rate 1; (b) lineage splitting, which occurs at rate r. We
choose the next event according to relative probabilities
of all feasible events. Lineage merging generates specia-
tion events, while lineage splitting generates reticulation
events. The parameter r dictates the level of reticulation
in the simulated network: larger r will lead to more
reticulation events in simulation.

Table 1 summarizes our experimental results on es-
timating a lower bound on the reticulation number of
an optimal type-II reticulate network of multiple (four
or five) trees. For each triple (t, r, k), 100 datasets are
tested and the average running time for computing the
rMAAF bound for one dataset is shorter than 22 seconds
and is less than half the average running time of PIRN
for the same dataset. The experimental results in Table 1

13

indicate that the rMAAF bound is often larger than the
MAAF bound and is also larger than the RH bound for
a significant fraction of datasets. This is particularly true
when the disconnectivity of MAAFs of the trees becomes
large.

6.2 Other simulated Data
An rSPR operation on a phylogenetic tree T first detaches
the subtree of T rooted at a non-root node v and then re-
attaches the subtree to an edge (u,w) of T (by introduc-
ing a new node v′, splitting edge (u,w) into two edges
(u, v′) and (v′, w), and adding a new edge (v′, v)). Beiko
and Hamilton [1] have written a program for performing
a given number of random rSPR operations on a given
phylogenetic tree. They have also written a program
for generating a random phylogenetic tree with a given
number of leaves. Using their programs, we can generate
multiple phylogenetic trees in several ways. To compare
the rMAAF and the RH bounds, we generate multiple
phylogenetic trees in two ways. In the first way, we
generate a random phylognetic tree T0 with 20 leaves
and then use it to obtain k other trees by performing the
following step:
• For i = 1, 2, . . . , k, perform 3 random rSPR opera-

tions on T0 to obtain Ti.
In the second way, we generate a random phylognetic
tree T1 with 20 leaves and then use it to obtain k − 1
other trees by performing the following step:
• For i = 2, 3, . . . , k, perform 3 random rSPR opera-

tions on Ti−1 to obtain Ti.
Roughly speaking, two of the trees T1, . . . , Tk obtained

in the first way are not so different while two of the
trees T1, . . . , Tk obtained in the second way can be quite
different. For each k ∈ {7, 10, 15} and each j ∈ {1, 2},
we generate 20 sets of multiple phylogenetic trees in the
j-th way and compare the rMAAF and the RH bounds
on the sets. Table 2 summarizes the experimental results.
As can be seen from the table, the rMAAF bounds are
significantly larger than the RH bounds for the sets of
multiple phylogenetic trees generated in the first way
while the rMAAF bounds are usually not better than the
RH bounds for the sets of multiple phylogenetic trees
generated in the second way. Section 6 in the supple-
mentary material contains more detailed comparison of
the rMAAF and the RH bounds. Moreover, the datasets
are available at the website.

6.3 Biological Data
We use the Poaceae dataset from the Grass Phylogeny
Working Group [7]. The dataset contains sequences for
six loci: internal transcribed spacer of ribosomal DNA
(ITS); NADH dehydrogenase, subunit F (ndhF); phy-
tochrome B (phyB); ribulose 1,5-biphosphate carboxy-
lase/oxygenase, large subunit (rbcL); RNA polymerase
II, subunit β′′ (rpoC2); and granule bound starch syn-
thase I (waxy). The Poaceae dataset was previously

TABLE 2
Comparing the rMAAF and the RH bounds on other

simulated datasets. Column “k” shows the number of trees,
column “m” shows the method used to generate the trees,

column “avg rMaaf” shows the average rMAAF bound, column
“avg RH” shows the average RH bound outputted by PIRN

within 1 hour, column “+” (respectively, “=” or “−”) shows the
percentage of datasets for which the rMAAF bound is larger
than (respectively, equal to or smaller than) the RH bound,
column “max gap” shows the maximum gap between the

rMAAF bound and the RH bound found by PIRN within 1 hour.

dataset avg avg max rMaaf
k m rMaaf RH + = − gap >Maaf
7 1 13.65 10.35 100% 0% 0% 5 100%
7 2 12.95 12.8 15% 60% 25% 1 100%
10 1 15.35 10.1 100% 0% 0% 6 100%
10 2 16.25 16.15 10% 35% 55% 1 100%
15 1 16.6 10.1 100% 0% 0% 8 100%
15 2 16.7 16.9 30.5% 20% 49.5% 2 100%

TABLE 3
Comparing the rMAAF and the RH bounds on the

Poaceae datasets. Column “|X|” shows the number of leaves
in one input tree, and column “Maaf” (respectively, “rMaaf” or
“RH”) shows the MAAF (resp., rMAAF or RH) bound of each

set of trees.
dataset |X| Maaf rMaaf RH

rpoC2, waxy, ITS 11 6 6 7
ndhF, phyB, rbcL 22 9 10 10
ndhF, phyB, rbcL,

rpoC2, ITS 14 9 10 11

analyzed by Schmidt [11], who generated the inferred
rooted binary trees for these loci.

Table 3 summarizes our experimental results on es-
timating a lower bound on the reticulation number of
an optimal type-II reticulate network of multiple (three
to five) trees. As can be seen from the table, the lower
bounds outputted by MaafB are the same as those out-
putted by PIRN, but the rMAAF bound is not better than
the RH bound because each dataset contains very few
trees or very small trees.

ACKNOWLEDGMENTS

The authors thank Y. Wu for the simulated datasets
and the referees for very helpful comments. Zhi-Zhong
Chen was supported in part by the Grant-in-Aid for
Scientific Research of the Ministry of Education, Science,
Sports and Culture of Japan, under Grant No. 20500021.
Lusheng Wang was fully supported by a grant from the
Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China [Project No. CityU 121207].

REFERENCES
[1] Beiko, R.G., and Hamilton, N. (2006) Phylogenetic identification

of lateral genetic transfer events. BMC Evol. Biol., 6, 159-169.
[2] Bordewich, M., and Semple, C. (2005) On the computational

complexity of the rooted subtree prune and regraft distance.
Annals of Combinatorics, 8, 409-423.

14

[3] Bordewich, M., and Semple, C. (2007) Computing the minimum
number of hybridization events for a consistent evolutionary
history. Discrete Applied Mathematics, 155, 914-928.

[4] Bordewich, M., and Semple, C. (2007) Computing the hy-
bridization number of two phylogenetic trees is fixed-parameter
tractable. IEEE/ACM Trans. on Computational Biology and Bioinfor-
matics, 4, 458-466.

[5] Chen, Z.-Z., and Wang, L. (2010) HybridNet: A
Tool for Constructing Hybridization Networks.
Bioinformatics, 26, 2912-2913. (Supplementary mate-
rial: http://rnc.r.dendai.ac.jp/∼chen/notess2.pdf or
http://www.cs.cityu.edu.hk/∼lwang/software/Hn/notess2.pdf)

[6] Collins, L., Linz, S., and Semple, C. (2009)
Quantifying hybridization in realistic time.
[http://www.math.canterbury.ac.nz/˜c.semple/software.shtml]

[7] Grass Phylogeny Working Group (2001) Phylogeny and subfamil-
ial classification of the grasses (poaceae). Ann. Mo. Bot. Gard., 88,
373-457.

[8] Hein, J., Jing, T., Wang, L., and Zhang, K. (1996) On the complexity
of comparing evolutionary trees. Discrete Appl. Math., 71, 153C169.

[9] Hill, T., Nordström, K. J., Thollesson, M., Säfström, T. M., Vern-
ersson, A. K., Fredriksson, R., and Schiöth, H. B. (2010) SPRIT:
Identifying horizontal gene transfer in rooted phylogenetic trees.
BMC Evolutionary Biology, 10:42.

[10] Hudson, R. (2002) Generating samples under the Wright-Fisher
neutral model of genetic variation. Bioinformatics. 18, 337-338.

[11] Schmidt, H.A. (2003) Phylogenetic trees from large datasets. Ph.D.
thesis, Heinrich-Heine-Universitat, Dusseldorf.

[12] Schieber, B. and Vishkin, U. (1988) On finding lowest common
ancestors: simplification and parallelization. SIAM J. Comput., 17,
1253-1262.

[13] Semple, C. (2005) Reticulate Evolution.
http://www.lirmm.fr/MEP05/talk/20 Semple.pdf.

[14] Semple, C. (2007). Hybridization networks. In Reconstructing
Evolution: New Mathematical and Computational Advances (eds O.
Gascuel and M. Steel), Oxford University Press, pp. 277-314.

[15] Wang, J., and Wu, Y. (2010) Fast computation of the exact
hybridization number of two phylogenetic trees. Proceedings of
ISBRA 2010, 203-214.

[16] Whidden, C., Beiko, R. G., and Zeh N. (2010) Fast FPT algorithms
for computing rooted agreement forest: theory and experiments,
LNCS, 6049, 141-153.

[17] Wu, Y. (2009) A practical method for exact computation of subtree
prune and regraft distance. Bioinformatics, 25, 190-196.

[18] Wu, Y. (2010) Close lower and upper bounds for the minimum
reticulate network of multiple phylogenetic trees. Bioinformatics
[ISMB], 26, 140-148.

Zhi-Zhong Chen received the PhD degree
from the University of Electro-Communications,
Tokyo, Japan in 1992. Currently, he is a profes-
sor in the Division of Information System Design,
Tokyo Denki University. His research interests
include algorithms, computational biology, and
graph theory.

Lusheng Wang received the PhD degree
from McMaster University, Hamilton, Ontario,
Canada, in 1995. Currently, he is a professor
in the Department of Computer Science, City
University of Hong Kong. His research interests
include algorithms, bioinformatics, and computa-
tional biology. He is a member of the IEEE.

