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ALGORITHMS FOR ROUTING*
IN PLANAR GRAPHS
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5§5tract:

We present algorithms for solving routing problems for two-
terminal nets 1in planar graphs. Our algorithms run in time
O(nz) tor gencral planar graphs and in time O(bn) for grid
graphs where n 1s the number of vertices and b is the number

of vertices on the boundary of the infinite face.
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I. Introduction

A planar routing problem is given by

a) a planar undirected graph G = (V,E) with a fixed embedding

into the plane

b) a set Ne of two-terminal nets where a net N € Ne is an

unordered pair of vertices on the boundary of the infinite face.

A solution to a planar routing problem (V,E,Ne) is given by a
set of pairwise edge-disjoint paths PN’ N € Ne, such that PN

connects the two terminals of net N.

For sets X,Y< V we define

cap(X,Y) = | {(x,y) € E; x € X, y € Y}I
cap (X) = cap(X,V-X)

d(X,Y) = 1{(x, 1) € Nejy 8 € X, £ '€ ¥}
d(X) = d(X,V-X)

fcap(X) = cap(X) - d(X)

We call fcap(X) the free capacity of cut X. If x is a vertex
we write fcap(x), cap(x), d(x) instead of fcap({x}), cap({x})
and d({x}). Note that cap(x) is the degree of vertex x. The

following theorem was shown by OKamura/Segmour.

Theorem (OKamura/Segmour): Let (V,E,Ne) be a planar routing
problem. I[f fcap(X) is non-negative and even for every Xc V

then the routing problem has a solution. o

In this paper we will present algorithms for solving routing
problems in planar graphs. We use the following notation.



Definition: Let P = (V,E,Ne) be a planar routing problem,

n = |Vl. Let b be the number of vertices on the boundary of the
infinite face. The problem P is solvable if it has a solution.
It is even if fcap(x) is even for all x € V. It is half-even if
fcap(x) = cap(x) is even for all nodes X which do not lie on
the boundary of the infinite face. o

We prove in this paper the following

Theorem: Let P = (V,E,Ne) be a half-even routing problem.
a) It can be tested in time O(bn) whether P is solvable.
b) A solution can be constructed in time O(nz].

c) If (V,E) is a grid graph, i.e. a subgraph of the planar in-
teger grid, then a solution can be found in time O(bn). If P

3/2) suffices.

is even then time O(n
A proof of parts a), b) and c) for even problems can be found
in section 2. The extension to half-even problems is made in
section 3. In section 4, a weak generalization of the theorems
above to multi-terminal nets is made. If 2d(X) < cap(X) for all
cuts X then a solution exists and can be found in time 0(n2).

We close the introduction with a comparison to other work.
Hassim and Matsumoto/Nishizeki/Saito consider the problem of
multi-commodity flows in planar networks, i.e. edges have real
capacities and nets have real demands. The goal is to con-
struct flow functions which realize the demands and obey the
capacity constraints. Our problem differs from the multi-
commodity flow problem in two respects



a) it is simpler since all capacities and demands are equal

to one 1n our case.

D) it is harder since we insist that a solution consists of
edge-disjoint paths. Figure 1 shows a problem which has a solu-
tion as a flow problem (all edges carry flow 1/2 for both

commodities) but not as a routing problem.

Hassim and Matsumoto/Nishizeki/Saito describe algorithms which
solve multi-commodity flow problems in planar graphs in time
O(n4) and time O(kn + nz/log n) respectively where k = |Nel.

If all capacities and demands are integral and the problem is
even then the flow functions constructed by their algorithms

are integral. In particular, even routing problems can be solved
in time O(nz/log n) by their algorithms; note that k < |El = 0O(n)
in planar routing problems. Matsumoto/Nishizeki/Saito also show
how to test solvability in time O(min(n2 log*n, bn(log n)T/ZJ).
Our improvement to their results for even problems is trivial;

we only show how to drop the various factors involving log n.
However, our algorithm for even problems differs considerably
from theirs. It has the advantage that it can be made to run in
time 0(n3/2) on grid graphs while their algorithm will always
run in time O(nz). The other major contribution of the present

paper is the extension of the theory to half-even problems.

Grid graphs are particularly relevant for VLSI routing problems.
Special cases of grid graph routing problems were considered
previously by Rivest/Baratz/Miller, Preparata/Lipski, Frank,
Mehlhorn/Preparata, Kaufmann/Mehlhorn. They show how to solve
problems for channels, rectangles and grid graphs without holes

respectively.



II. Even Routing Problems

Throughout this section P = (V,E,Ne) is an even routing prob-
lem. We will show how to construct a solution (if there is

one) in time O(nz). For grid graphs time O(n3/2

) suffices.
Our algorithm is an almost direct implementation of Okamura/
Seymour's constructive proof of their theorem and hence

correctness can be shown using their methods.

Theorem 1: Let P = (V,E,Ne) be an even routing problem. Then

it can be tested in time O(bn) whether P has a solution. If

P has a solution then a solution can be constructed in time
2

o(n").

Proof: We will first show how to comnstruct a solution in time
0(n2). The test for solvability will be a corollary.

We need one additional definition. A cut X is simple if there

are at most two edges e e, on the boundary of the infinite

'] H
face having exactly one endpoint in X. We are now ready for

the algorithm.

(1) while E # @

(2) do let e = (a,b) be an edge on the boundary of the in-

finite face;

(3) let e ,eq,...,e 4 be the edges on the boundary of
the infinite face in clockwise order with e = €t
(4) if there is a simple cut X with a € X, b € X with
fcap(X) < O

then halt and declare the problem unsolvable
fiy



(5) if there is a simple cut X with a £ X, b € X and
fcap(X) = O
(6) then let X be such a simple cut which contains as few

vertices of the boundary as possible;

let N = (s,t) be a net with s € X, t € X and s

as close to a as possible, i.e. there is no net
(s',t') with s' € X, t' € X and s' lying on that
piece of the boundary between s (exclusive) and

a (inclusive) not containing b (cf. Figure 3);
delete edge e, reserve edge e for net N and re-
place net N by nets N1 = (s,a) and N2 = (b,t).
delete edge e and add an additional net N = (a,b).

[¢]
frest
n
@

£i

od
The correctness of this algorithm is almost immediate from the
work of Okamura/Seymour. We give a short correctness proof to

make the paper self-contained.

Let as assume that P is solvable. Then clearly fcap(X) € ZINO
for every simple cut X initially. It suffices to show that
fcap(X) € 2 INg for every simple cut X is an invariant of the
algorithm because then line (4) is never eXxecuted and the
algorithm will construct a solution.

Consider an execution of the while-loop which removes edge e
from the current graph GC. Note first fcap(Y) is even for all
cuts Y iff fcap(v) 1is even for every vertex v. This can be
seen as follows. Let Y < V be arbitrary. Then

fcap(Y)

cap(Y) - d(Y)

z cap(v) - 2cap(Y,Y) - zx d(v) + 2d4(Y¥Y,Y)
veyY veyY

1



and hence fcap(Y) is even if fcap(v) is even for all v € V.
It is now easy to see that all problems constructed by the

algorithm are even.

Let Y be a simple cut in GC - e. Then Y is also a simple cut
in G_. and fcap(Y) 2 fcap(Y) - 2 where Tcap is the free
capacity in the modified problem. If fcap(Y) 2 2 or fcap(Y)

= fcap(Y) then clearly fcap(Y) € 2 IN,. Recall that we have
already shown that the modified problem is even. The only

case to consider is therefore that fcap(Y) = 0 and Tcap(Y)

= fcap(Y) - 2. We may assume w.l.o.g. that t € Y; consider

V - Y otherwise. If fcap(Y) = fcap(Y) - 2 then either (case A)
IY n {a,b}l = 1 and s £ Y or (case B) a,b € Y and s £ Y. We
can restrict case A further. If a £ Y, b € Y then Y contains
fewer boundary nodes than X, a contradiction to the choice of
X. We may therefore assume a € Y, b £ Y in case A. The follow-

ing lemma was shown in Okamura/Seymour.
Lemma 1: For all cuts X and Y

d(X) + d(Y) =d(X UY) +dXnY) +2d(X-Y, Y- X)
cap(X) + cap(Y) = cap(X U Y) + cap(X n Y) + 2cap(X - Y,Y =-X).
o

We will apply lemma 1 in both cases. The following observation
is also used in both cases. The boundary nodes in Y - X lie
between s (exclusive) and a (inclusive) and hence d(X - Y,Y - X)
= 0 by choice of net N = (s,t). We consider cuts X U Y and

XN Y. We have

d(X U Y) + d(X nY)

H

d(X) + d(Y) , by lemma 1 and the

observation above

cap(X) + cap(Y) , since X and Y are
saturated



= cap(XUY) + capX nY) + 2capX -Y,Y - X)
, by lemma 1

Case A: In case A we have a € Y - X, b € X - Y and hence
Cap(X = ¥5 Y - X) >0 snd thus d(X 0 ¥) # d{X n ¥Y) 5 caplX ¥ Y)
+ cap(X n Y. Thus one of the simple cuts X U Y or X n Y is

oversaturated, a contradiction.

Case B: In case B we conclude d(X U Y) + d(X n Y) = cap(X v Y)
+ cap(X n Y). Thus fcap(X U Y) = 0 = fcap(X U Y). Next note
that b € X N Y and that simple cut X n Y contains fewer
boundary nodes than X. This contradicts the choice of X.

This completes the correctness proof. Note that the correct-
ness proof also shows that P is solvable iff fcap(X) = 0 for
every simple cut in the initial problem. This observation will

lead to the efficient test for solvability.

We turn to the implementation next. The main task is to deter-
mine the existence of a saturated cut through edge e = (a,b).
As in Hassim and Matsumoto/Nishizeki/Saito we solve this task
by means of the multiple source dual graph (cf. Figure 4). In
the dual graph there is a dual edge for every edge of the
original graph. The dual edge connects vertices which are lo-
cated in the faces separated by the edge. In every face

(exept the infinite face) we position one dual vertex but in
the infinite face we have a dual vertex for every edge on the
boundary of the infinite face.

Let eyr - - be the edges on the boundary of the infinite
face in clockwise order and let e = C Let

— -



cap(e,ei) min{cap(X); X is a simple cut which cuts

boundary edges e and e;}

d[e,ei) = {d(X); X is a simple cut which cuts
boundary edges e and ei} , and
fcap[e,ei) = cap(e,ei)

Let Vi be the dual vertex in the infinite face corresponding
to edge e, - Then cap(e,ei) is equal to the length of a

shortest path from v_ to e, in the dual graph and hence

0
cap(e,ei), 1 <1i<m-1, can be computed in time O(n) by
breadth first search. It is also easy to see that d(e,ei),

1 <i<m-=1, can be computed in time O(n) by a simple walk

around the boundary of the infinite face. We summarize in

Lemma 2: fcap(e,ei), 1 <1i<m- 1, can be computed in time
O(n).

The remainder of the loop body can clearly also be done in
time O(n). Thus a single execution of the loop body takes
time O(n) and hence total running time is O(nz).

For the test of solvability we only have to compute
fcap(ei,ej) for all i and j. For every fixed i this take time
O(n). Thus total running time is O(bn) where b is the number
of edges on the boundary of the infinite face in the initial

graph.

We will next show how to improve upon theorem 1 for planar
graphs with small C-connected edge separators.

Definition: a) Let G = (V,E) be a planar graph. A set E' < E

of edges is a C-connected edge separater if



1) removal of E' splits G into subgraphs (V1,E1) and
(Vz,Ez) with IVTI < 2/3 |V] and Vo1 < 2/3 |V

2) E' can be ordered, say E' = {e1,...,ek} such that edge
e. is on the boundary of the infinite face of graph
G ~ {e1,...,ei_1}.

b) A family F of planar graphs has C-connected edge separa-

tors of size f(u) if every G = (V,E) € F has a C-connected

edge separator E' of size |E'|l s f£(IVI) and if the subgraphs

(V1,E1} and (V,,E,) obtained by removing E' again belong to F.
o

C-connected edge separators are a very restrictive notion of
separator which is particularly suitable for our application.
However, not all planar graphs have small C-connected edge
separators as Figure 5 shows. The graph shown in Figure 5
consists of n nested triangles. All C-connected edge separa-
tors have size fi(n). Fortunately, there is a family of graphs
having small C-connected separators, namely grid graphs.

Definition: A grid graph is a subgraph of the two-dimensional

integer grid. o
Figure 1o shows a grid graph.

Lemma 3: Let G be a grid graph with n vertices. Then G has a
C-connected edge separator of size < 4v/n + 2. Moreover, the

separator can be found in time O(n).

Proof (adapted from Lengauer/Mehlhorn, theorem 1): Let integers
a and b be minimal such that a rectangle of side lengths a and
b encloses the grid graph. Assume w.l.o.g. that a £ b and

that the side of length a is horizontal. Let Li, - 1=<1i¢<hb,



be the number of edges intersected by a horizontal line
which runs in distance i + 1/2 from the bottom side of the

rectangle. Then L_, = L, =0 and Z L, < n. Let 1  be mini-

1

i
mal such that at least n/2 nodes lie below line Li » Al

o
< n/2 nodes lie below line L. 4 and £ n/2 nodes lie above
)
line Li . Let 1, < io and i2 > io be such that (cf. figure 7)

0

1

1A

1) i, 21_-1 - +n and L. vn

1T 7 7o 1,

vn

IA

2 i2 < i0 + ¥n and Liz

Note that 1, exists because r L. = n;, 1, exists
1 g = s 1 2
1T =1=-vVn<i<i -1
for a similar reason. Let A b& the set 8f vertices above
line Li , B be the set of vertices below line Li and C be
2 1
the set ol vertices between the two lines. Let L be a
vertical line with maybe one horizontal segment of length

one running between L. and Li and dividing C 1nto two
1 2

parts C, and C, of size _ICI/2, and FICI/2" respectively.

Then |Ai = 'n/2%, IBI s "n/2", ICqI = "n/2" and IC, 1 < M1l 22

and hence the set of edges intersected by lines Li " Li and
1 2

L formsa C-connected edge separator. This set has size

< 4/n + 2.

Theorem 2: Let P = (V,E,Ne) be an even routing problem with
(V,E) & grid graph. Then a solution can be constructed (if

3/2).

there is one) in time O(n

Proof: Let L' = E be a C-connected edge separator of size
|[E'] = 0(V/n); E' exists by Lemma 3. Let E' = {e],...,ek}
where e is on the boundary of the infinite face of graph

G - [e],...,ei_i}. We use the algorithm described in the
proof of theorem 1 and let e run through edges €15€55 00,8



in the first k = O( n) iterations of the loop. This takes
time 0[n3/2) and splits the graph into subgraphs with n, and
n, vertices respectively, where max(n1,n2) < 2n/3. We there-
fore have the following recurrence for the running time

T(n) < 0(n°/?) + max{T(n,;) + T(n,); n; + n, = n

max(n],nz) < 2n/3}
3/2 .
Thus T(n) O(n ) as claimed (cf. Mehlhorn, Vol. 2, page
121 where a similar recurrence is solved).

III. Half-even Problems

A routing problem P = (V,E,Ne) is half-even if fcap(v)

= cap(v) = deg(v) 1is even for all nodes not on the boundary
of the infinite face. Figure 1 shows a half-even routing
problem. In this section we extend our results to half-even
routing problems. We proceed in three steps. In the first
step (Lemma 4a) we show that a solvable half-even problem

P (V,E,Ne) always has a solvable even extension

p (V,E,Ne U Ne'), in the second step (Lemma 4b), we develop
one particular strategy for computing such an extension and
in the third step (Theorem 3) we show how to make the strate-

gy run in time O(bn).

Our reduction is based on the concepts of U-minimal cut and
canonical extension. Let U = {v; fcap(v) is odd} be the
vertices with odd free capacity. Then U has even cardinality
and all vertices in U lie on the boundary of the infinite
face (recall that we deal with half-even problems). Let X be
a saturated cut. Then X N U has even cardinality (this can




be seen as follows: O = cap(X) - d(X) = I (cap(x) - d(x))
xXeX
-2cap(X,X) + 2d(X,X). Thus the number of vertices in X with

odd free capacity is even). Let Ugyene,Uop be the vertices

in X n U in clockwise order on the boundary of the infinite
face. Cut X is U-minimal if X n U # @ and there is no simple
saturated cut Y with Y n U = {u-,...,uj} where 1 < 1 < j < Z2k.

i
The canonical extension of P= (V,E,Ne) with respect to X is
given by P' = (V,E,Ne U {(uZi—l’uziJ; 1 <1 =< k}). Note that

all vertices of X have even free capacity imn P'.

Lemma 4: Let P = (V,E,Ne) be a solvable half-even routing prob-

lem.

a) There is a solvable even extension (V,E,Ne U Ne') where
Ne' is a pairing of U = {v; fcap(v) is odd}

b) If X is a U-minimal cut then the canonical extension of P

with respect to X is a half-even solvable routing problem.

Proof: a) Let PN’ N € Ne, be a solution for P. Consider graph
G'=(V,E') with E' = E - {Py; N € Ne} which is obtained from

G = (V,E) by removing all edges which are used in the solution
paths. We have

a) if v is a vertex on the boundary of G then v has odd degree
in G' iff v € U

b) if v is a vertex in the interior of G then v has even de-

gree in G'.

We conclude that G' decomposes into paths connecting vertices
in U and cycles. The paths connecting vertices in U induce
the desired pairing Ne'. This proves a).



b) Let Po = (V,E,Ne U Pa) be a solvable even extension of
the half-even problem P = (V,E,Ne) and let X be a U-minimal

cut. We have argued above that U N X is even. Let
Pa' = {(s,t) € Pa; s £ X, t £ X}

Let P' = (V,E,Ne U Pa'). Then P' is a half-even solvable prob-
lem with U n X as its set of vertices of odd free capacity.
Let P" be the canonical extension of P' with respect to X.
Then P" is an even problem which extends the canonical exten-
sion of P with respect to X. It therefore suffices to show
that P" is solvable.

Let Y be a simple cut. Then d"(Y) 2 d'(Y) - 2 where 4" (Y)

(d' (Y)) denotes the density of Y with respect to problem

P"(P'). Also d'(Y) =< cap'(Y) since P' is solvable. Assume

first that 4" (Y] & 4'(¥) - 1. Then €ap"(¥) — d"(Y¥]

> cap'"(Y) - d'(Y) - 1 2 - 1. Since P" is even conclude

cap"(Y) - d"(¥) =2 0. This leaves the case that d"(Y)- d'(Y) - 2.
Then Y n U = {ui,...,u.} for some i,j with 1 < 1 < j < 2k where
Ugy e, Usy is the clockwise ordering of the vertices in U n X.
Thus Y is not saturated in P since X is a U-minimal cut. Also
the nets in Pa' pair only vertices outside Y. Thus Y is not sat-
urated in problem P' and therefore cap'"(Y) - d'(Y)

2 cap'(¥Y) ~a'(¥} -~ 221~ 2=="1,; Since P" is even this im-
plies cap"(¥Y) = d"{X¥) 2 0.

We conclude that there are no oversaturated simple cuts in P",

Hence P'" is solvable. o

Lemma 4b leads to the following algorithm for turning half-

even problems into even problems.



(1) U <« {v; fcap(v) is odd}

(2) while U % @

(3) do if there is an oversaturated cut

(4) then terminate and declare that the problem has no

integer-valued solution

(5) £

(6) let X be a U-minimal cut (X = V is possible);
(7) construct the canonical extension;

(8) Us0=X

(9) od

The correctness of this algorithm is immediate from lemma 4b.
Note that U N X has always even dardinality and hence line (7)
1s always executapble. Figure 8 illustrates the extension

algorithm.

It remains to discuss an efficient implementation. The most
difficult design decision is how to handle U-minimum cuts. We
start with the observation that if X and X' are cuts with
UnX=1Un X" and fcap(X) < fcap(X') then only cut X has to
be considered because of the following two trivial facts.:

1) if net (s,t) is added in line (7) then fcap(X) goes down
by one iff fcap(X') does.

2) if X' is U-minimal then X is U-minimal.

The observation above suggests the following strategy for
finding U-minimal cuts. Let the vertices on the boundary of
the exterior face be labelled 0,1,...,%-1 in clockwise order
and let U = {uo,u1,...,u2k_1}. For 0 < p,q £ 2k-1 let X(p,q)
be a simple cut with



cSu

1) X(p,q) N U = {u q

prUps1r e
2) X(p,q) has the smallest free capacity among all cuts
satisfying 1). Ties are broken arbitrarily.

Note that we may assume w.l.o.g. that X(p,q) = X(q+1,p-1).
We represent cut X(p,q) by the triple (p,q,d) where
d = dens(X(p,q)). We store the cuts X(p,q) as follows.

For every p we have the linked list of (representatives of)

cuts X(p,q) 1n clockwise order of q.

In addition, we have a pointer min(p) pointing to the first
q such that X(p,q) is saturated. Furthermore, we link the
two occurrences of a cut (namely as X(p,q) and as X(q+1,p-1)).

We have

Lemma 5: a) The family X(p,q) of cuts can be constructed in
time O(bn)

b) A U-minimum cut X can be found in time O(|U|) given the

data structure described above

¢) The data structure can be updated in time O(|U|) after

adding net [ui,ui+]) for some i.
Proof: a) Immediate from the proof of Theorem 1.

b) If there is no p such that min(p) 1s defined then X =V
is the only saturated cut and hence the only U-minimum cut.
Assume now that min(p) is defined for some p, say p = Py -
Then the following algorithm find a U-minimal cut in time

o(CIul).



P~ P, 1 -- indices are mod 2K
while p lies between p, and min(p,)
do if min(p) is defined and min(p) lies between p and
min(p) in the clockwise ordering
then p_ + min(p)
£i;
p+p#® 1
od

c) Suppose that we add net (ui,ui+]) for some i and hence

delete vertices ug and us, from U. Three actions are required.

1

1) Reduce fcap(i+1,q) and fcap(q,i) by one for all q. Update
the min-pointers min(q) for all q. This takes time O(IUI).

2) Among the cuts X(i,q), X(i+1,q) and X(i+1,q) select the
one with smallest free capacity for all q. This defines the
new linked list for vertex Ui 4o and takes time O(IUI).

3) For every q keep only one of the cuts X(q,i-1), X(q,i), and
X(q,i*1). This reduces the length of the list for vertex uq by
2 and takes time O(IUI|).

Theorem 3: Let P = (V,E,Ne) be a half-even routing problem.

Then in time O(bn) one can

a) decide whether P is solvable and
b) extend P to a solvable even routing problem P' if P is

solvable.

Proof: By the algorithm and lemma 5 above. Note that |U| < b
and that the while-loop is executed at most b times. =



1V. Multi-terminal Nets

Let G = (V,E) be a planar graph. A multi-terminal net N is
4 subset (of size 2 2) of the vertices of the boundary
of the infinite face. A routing for a multi-terminal net is

at
.

a tree T(N) < E connecting the points in N. A routing prob-
lem for multi-terminal nets is given by a planar graph

G = (V,E) and a set Ne = {Nq,...,Ny} of multi-terminal nets.
A solution is given by routings T(N1)"'°’T(NM) such that
T(Ni) is a routing for Ni and T(Ni) and T(Nj) are edge-

disjoint for i #* j.

The density of a cut X is defined in complete analogy to the
case of two-terminal nets, i.e. d(X) is the number of nets
having one but not all terminals in X

d(X) = | {N € Ne; @ # X n N # N} |

As before, we call a problem (V,E,Ne) half-even if cap(v)
= | fw € V;, (v,w) € E}| is even for all interior nodes v.
We have:

Theorem 4: Let P = (V,E,Ne) be a half-even routing problem
with multi-terminal nets. If

2 dens (X) < cap(X)

for every cut X then P has a solution. Moreover a solution
3/2)

can be found in time O(nz). For grid graphs time O(n
suffices.

Proof: Let Ne = {NT""’NM}’ Consider a net Ni' Let
VisVoseessVy be the terminals of Ni as they appear in clock-
wise order on the boundary of the infinite face. Replace Ni



by the set of k-1 two-terminal nets Ni = (vj,v.+1);

1 £ j <k. Let Ne' be the new set of nets and let dens'(X)
be the density of a cut X with respect to family Ne' of
nets. Then dens'(X) < 2 dens(X) < cap(X). The problem
(V,E,Ne') is half-even and has no saturated non-trivial cut.
Therefore, X = V is the only U-minimal cut and hence
(V,E,Ne') can be turend into an even problem in time O(n)

by the algorithm of section III. The algorithms of section
Il can then be used to solve the even problem. o

Figure 9 illustrates the proof of theorem 4.

V. Conclusion

We presented efficient algorithms for routing problems in
planar graphs. The algorithms are guaranteed to find a so-
lution if there is one. A weak generalization to multi-ter-
ninal nets was made. Multi-terminal nets deserve further in-

vestigation.

Acknoledgement: We thank M. Kaufmann and F. Preparata for
many inspiring discussions about routing problems.
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Figure 1: A problem which is solvable as a flow problem
but not as a routing problem; the two nets are
(51,t1) and (sz,tz).
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Figure 3: fcap(e,ei) = fcap(X) = 0



Figure 4: A planar graph G and its multiple-source dual.

Dual edges are shown as wiggled lines.

Figure 5: A planar graph all of whose C-connectes edge

separators have size Q(n).

Figure 6: A grid graph
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Figure 8: The extension algorithm; odd nodes are shown solid.
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Figure 9:

A routing problem with multi-terminal nets, a re-

lated problem with two-terminal nets, the even

problem obtained from theorem 6, and the solution
obtained by theorem 4 (the path for the artificial
net 3 is shown dashed).
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