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Abstract

Boolean Satisfiability is a ubiquitous modeling tool in Elgic Design Automation (EDA). It finds application in
test pattern generation, delay-fault testing, combinational equivalence checking anil dé&lay computation,
among many other pblems. Moeovey Boolean Satisfiability is also in the eoof algorithms for solving Binate
Covering Poblems. This paper starts by describing how Boolean Satisfiability algorithms can takestiuctue
into account when solving instances derivearfrcombinational couits. Afterwads, it shows howecursive learn-
ing techniques can be incorporated into Boolean Satisfiability algorithms. ©peged algorithmic framework has
several natural applications in EDA. Mewvey potential advantages include smaller run times, the utilization of cir-
cuit-specific seath pruning techniques, avoiding the overspecificatimblem that characterizes Boolean Satisfi-
ability testers, andeducing the time for iteratively generating instances of 88m circuits. The experimental
results obtained on a lge number of benchmark examples in diffépoblem domains display dramatieductions
in the run times of the algorithms, andopide clear evidence that computed solutions can have significantly less

specified variable assignments than those obtained with comnioal@#ithms.
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1 Intr oduction

Boolean Satisfiability (SR is intrinsic to many problems in Electronic Design Automation (EDA). Originally
motivated by the work of .TLarrabee in test pattern generatji2®], SAT models and techniques have since been
applied to delay-fault testing, combinational equivalence checking, circuit delay computation, logic synthesis and
functional vector generation, among other applications. (See [7, 9, 10, 22, 24, 26, 29] for an overview of applications
of SAT to EDA.) Moreover SAT can also play a central role in solving instances of binate covering problems (BCP)
[8, 11, 12, 14, 15], in particular for those in which the constraints are hard to,satisfyy computing minimum size
test patterngl2]. SAT also plays a key role in other domains, including for example Atrtificial Intellig@n&€] and
Operations Resear¢B]. Recent years have seen dramatic improvements Tha®rithms, which have been thor-
oughly validated in df€rent application areas [3, 23, 30].

With respect to applications of $An EDA, in most cases the original problem formulation starts from a circuit
description, for which a given (circuit) property needs to be validated for at least one primary inpuihectesult-
ing circuit formulation, which may only be implicitly specified, is then mapped into an instancé,ah®#ost cases
using Conjunctive Normal Form (CNF) formulas.

The utilization of CNF models and $Algorithms has important advantages:

1. Existing, and extensively validated BAlgorithms, can be used instead of dedicated algorithms.

2. New improvements and new BAlgorithms can be easily applied to eacheaapplication.

In contrast, the utilization of CNF formulas and associatel @gorithms is also characterized by several draw-
backs:
1. As observed in [29], the structural information of the circuit, often of crucial importance, is lost.

2. In many EDA problems, a lge number of instances of Aas to be solved for each circuit. Hence, mapping
a given problem description into $4&an represent a significant percentage of the overall running time [22].

3. Computed input patterns are in general overspecified. Overspecification can be a serious drawberehin dif
applications, including circuit testing and binate constraint solving.

4. Powerful circuit-based reasoning techniques, e.g. recursive learning [19-21], cannot easily be applied.
With the purpose of addressing these problems, in [29] a new dynamic data structure, i.e. an extended implication
graph, is proposed for solving instances off S\combinational circuits. Despite the promising results of [29], uti-

lizing a new data structure requires dedicated algorithms. Hence new search pruning techniques, developed for exam-
ple in the context of SAalgorithms, will have to be adapted to the circuit graph data structure.

In this paper we show how to utilize structural information iif @yorithms. © a generic SR algorithm we add
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Figure 1: Integrating circuit structure and recursive learning into Boolean satisfiability algorithms

a layer that maintains circuit-related information, e.g. fanin/fanout information as well as value justification relations.
The proposed approach allows using any @lyorithm to which this layer can be added. The main advantages of the
proposed approach is that some of the previously mentioned drawbacks, i.e. inaccessibility to structural information
and overspecification of input patterns, are eliminated. The main contribution over the work of [29] is that data struc-
tures used for SAneed not be modified, and so existing algorithmic solutions forcaA naturally be augmented

with the proposed layer for handling structural information. Moredkierapproach proposed in this paper is signifi-
cantly simpler than the one in [29], since only minor modifications T &dorithms are required.

Another contribution of this paper is describing how to extend recursive learning to solving Boolean Satisfiability
One practical consequence is that the resultinf &gorithms can be competitive with existing solutions for solving
equivalence checking [5, 17, 18, 20, 27,229]hereas existing SAalgorithms are not. Another consequence is that
recursive learning becomes applicable to other problem domainshd\ld also note that the recursive learning pro-
cedure proposed in this paper is strictly stronger than the original algorithm [21], since it learns andleacegs
in contrast with the original recursive learning procedure, which is oggttd at learningecessary assignments
recursive learning is used in the context of search, the ability to record clauses can become a significant advantage.
Moreover we show how the proposed extended recursive learning procedure can take into account circuit structure
information in order for reducing the amount of reasonifgrieind consequently the CPU time.

The proposed approach for solvingTSid combinational circuits is graphically illustrated in Figure 1. Basically
by adding new layers to an existingTSalgorithm, we can exploit circuit structure and can incorporate search tech-
niques specifically tgeted for combinational circuits.

The paper is ganized as follows. Sectidhintroduces basic definitions associated witfl &Ad combinational
circuits. Next we briefly survey SAalgorithms, giving particular emphasis to those that have been shown to be
effective in solving EDA problems. Afterwards, in Sectigrwe detail the proposed approach for taking into consid-
eration structural information while solving $ASections shows how to extend recursive learning to CNF formulas

1. See for example [16] for a survey offdifent approaches for solving combinational equivalence checking.
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Figure 2: Example circuit and CNF formula

and how to then exploit the available circuit structure. Seétianalyzes preliminary results on two EDA applica-
tions. The paper concludes in Sectibby reviewing the contributions and providing some perspective on future
research work.

2 Definitions

The CNF formula of a combinational circuit is the conjunction of the CNF formulas for each gate output, where
the CNF formula of each gate denotes the valid input-output assignments to the gate. An example of a circuit, associ-
ated CNF formula and the specification of an objective is shown in Figure 2. (The derivation of the CNF formulas for
simple gates can be found for example in [PB]we view a CNF formula for a gate as a set of clauses, the CNF for-
mula¢ for the circuit is defined by the set union (or conjunction) of the CNF formulas of each gate. Hence, given a
combinational circuit it is straightforward to create the CNF formula for the circuit as well as the CNF for proving a
given property of the circuit.

SAT algorithms operate on CNF formulas, and consequently can readily be applied to solving instanges of SA

associated with combinational circuits. Examples include the CNF formulas for test pattern generation [22] and cir-
cuit delay computation expressions [26].

3 Boolean Satisfiability Algorithms

The overall oganization of a generic JAalgorithm is shown in Figure Jhis generic SA algorithm captures
the oganization of several of the most competitive algoritfBn23, 30].

The algorithm conducts a search through the space of the possible assignments to the problem instance variables.
At each stage of the search, a variable assignment is selected vt itie () function. A decision level is asso-
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/I I nput arg: Current decision level d

/[ Qut put arg: Backtrack decision |evel B

/Il Return val ue: SATI SFI ABLE or UNSATI SFI ABLE
I

SAT (d, &B)

{

if (Decide (d) != DECI SI ON)
return SATI SFI ABLE;
while (TRUE) {
if (Deduce (d) != CONFLICT) {
if (SAT (d + 1, B) == SATI SFI ABLE)
return SATI SFI ABLE;
elseif (B '=d|] d==20) {
Erase (d); return UNSATI SFI ABLE;
}
}
if (Diagnose (d, B) == CONFLICT) {
return UNSATI SFI ABLE;
}

Figure 3: Generic backtrack search SAT algorithm

ciated with each selection of an assignment. Implied necessary assignments are identifiecDadtinct@ func-
tion, which in most cases corresponds to straightforward derivation of implici8jo#8]. Whenever a clause
becomes unsatisfied timeduce() function returns a conflict indication which is then analyzed usingithg-
nose() function. The diagnosis of a given conflict returns a backtracking decisionBleveiich denotes the deci-
sion level to which the search process is required to backtrack t&r &ke() function clears implied assignments
that result from each assignment selectionfeléint oganizations of SA algorithms can be modeled by this generic
algorithm. Currentlyall of the most ditient SA algorithms [3, 23, 30] are characterized by several of the following

key properties:

1. The analysis of conflicts can be used for implemenhiiog-chonological Backtrackingsearch strategies.
Hence, assignment selections deemed irrelevant can be skipped over during the search [3, 23, 30].

2. The analysis of conflicts can also be used for identifying and recording new implicates of the Boolean function
associated with the CNF formul@lause Recaling plays a key role in recent $Algorithms, but in most cases

large recorded clauses are eventually deleted [3, 23].

3. Other techniques have been develoftglevance-Based Learnifig] extends the life-span of ige recorded
clauses that will eventually be deletéZbnflict-induced Necessary Assignmdf8] denote assignments to
variables which are necessary for preventing a given conflict from occurring again during the search.
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Gate V(X v,(%)
x = AND(W;, ..., W,) 1 [FI(X)|
x = NAND(wy, ..., W,) [FI(X)| 1
x = NOR(W,, ..., W,) 1 [FI(X)|
x = XOR(Wj, ..., W,) [FI(X)| [FI1(X)]

Table 1: Threshold values on assigned inputs

Before running the SRalgorithm, diferent forms of preprocessing can be applied [23]. This in general is denoted
by aPr eprocess() function.

4 Satisfiability in Combinational Cir cuits

4.1 Additional Data Structur es

Let C_ denote a property of a combinational circ@ivhich is to be satisfied to an objective vatud his satisfi-
ability problem is denoted byC , oC and can be mapped into an instance of, A The following information is
associated with each variabef ¢, that also represents a circuit nodef C:

1. FI(X) denotes the fanin nodesof
2. FO(X) denotes the set of fanout nodes.of

3. uv(x) denotes the threshold value on the number of suitable assigned inpx}stiaf are necessary for
justifying valuev on nodex.

4. IV(X) denotes the actual counter of assigned inputs) ghiat are involved in justifying the valweon nodex.

Note that the value assigned to each varialifedenoted by(x) . Moreover observe that each circuit noge
with assigned value becomes justified Whenevg)(x) > UV(X) .

Tablel contains a few examples of threshold values on the number of assigned inputs required for justifying a
given node. For example, for an AND gate at least one input assigned value 0 justifies the assignment ofxyalue 0 to
whereas for value 1 all inputs must be assigned value 1. H@S(o&; 1 andul(x) = |FI(X)| . As another exam-
ple, observe that for an XOR gate justification of any assigned value requires assignments to all gate inputs; hence
uo(x) = Ul(X) = |FI(x)| . For other simple gates this information can also be easily derived, and in all cases we have
V¥, V() O {1, [FI(X)|} .

For any simple gate with outpytwe can associate with each fanin naedéhe counters that must be updated as
the result of assigning a valudo w. For example, for an AND gate an assignment of 0 to a faninmatzements
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Gate w, =0 |w=1
X = AND(w,, ..., wW,) L) L)
X = NAND(wy, ..., w,) | 1;(%) L)
X = NORWy, .. wp)  [1,00 |14
= xoRw, gy ||
1,09 1,09

Table 2: Justification counters associated with gate inputs

IO(X) by 1, and an assignment of 1 to fanin nadiecrements 1(x) by 1. These relations are illustrated able2
for a few example gates. Note that for the XOR gates, both counters are updated when an input node becomes
assigned.

As with standard search algorithms in combinational circuits [Jlistification fontier is maintained, which
denotes the sets of variables/nodes that require justification. Observe that the condition that indicates the need for
node justification is(v(x) = v) O (1,(x) <v, (X)), wherev 0 {0, 1} .

4.2 Modifications to the SAT Algorithm

Given the previous definitions, a BAlgorithm can be adapted so that the information regarding justification can
be properly maintained. Moreovéhe fanin information can be used for implementing structure-based heuristic deci-
sion making procedures, esimple or multiple backtracinfi]. With respect to the algorithm of Figure 3, functions
Deduce() andDi agnose() have to invoke dedicated procedures for updating node justification information. Addi-
tionally, theDeci de() function now tests for satisfiability by checking for an empty justification frontier instead of
checking whether all clauses are satisfied. These are the only required modifications to the geadgaligin. In
addition, theDeci de() function can optionally be modified to perform backtracing given the fanin information asso-
ciated with each variable.

We should note that the data structures described above operate in much the same way as justification works in
combinational circuits [1]. The main t&fence is that in our approach justification and value consistency are for-
mally dissociated; value consistency is handled by the&dorithm and justification by the new added layer

5 Implementing Recursive Learning in SA” Algorithms

In this section we describe how to extend recursive learning [21] for CNF formwdastawby briefly reviewing
the basic reasoning principle supporting recursive learning and illustrate how it can be applied in solving instances of
SAT. We then describe the changes to the basic backtrack seafchl@hithm so that it incorporates recursive
learning.
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Figure 4: Example circuit

Assignments: {z=1,u =0} W, = (Utx+-w)
W, = (X+-y)
Wy = (W+y+-2)

Figure 5: Recursive learning on clauses

Let us consider the example circuit of Figure 4. Furtlegrus assume that our goal is to justify the objective
z = 0. As a result, it is immediate to conclude that the assignm@nts1) [0 (u=1) O (y =1) are required.
Assuming that andu are primary inputs we only need to consistently justify the assignment ty.riadeder to do
this we resort to recursive learning with depf22].

Fory = 1 the first justification to be consideredds= 0. The possible justifications for this assignment are
eithera = 0 or b = 0. Considering the justificatioa = 0, the assignmemnt = 1 is implied. The same implica-
tion results when considering the justificatibn= 0. Hence, we can conclude that the assignneentO implies
the assignmernt = 1. From the initial recursion, the remaining justificationyo= 1 is f = 0. The possible jus-
tifications forf = 0 are eitherd = 0 or e = 0. Considering each justification individually yields once more the
assignmeni = 1. Since this assignment is implied for any justificatioryof 1, we can then conclude that the
assignmeny = 1 implies the assignment = 1 if consistent assignments are to be identified for the circuit nodes.

The same reasoning that is used for implementing recursive learning in combinational circuits can naturally be
extended to clauses in CNF formulas. Indeed, for any clause to be satisfied at least one of the yet unassigned literals
mustbe assigned value 1. Recursive learning on CNF formulas consists of studyinetieatdifays of satisfying a
given selected clause and identifying common assignments, which are then demmeshryfor the clause to
become satisfied and consequently for the instance bft&Ae satisfiable. Clearlgand because conflict diagnosis
can also be implemented, each identified assignment needs to be adexpdeted Consequentlywith each iden-
tified assignment a clause that describbhgthe assignment is necessary is created. Let us consider the example CNF
formula of Figure 5. In order to satisfy clausg eitherw = 1 ory = 1. Considering each assignment separately
leads to the implied assignmext= 1; for w = 1 due tow, and fory = 1 due tow,. Hence, the assignment
x = 1 is necessary if the CNF formula is to be satisfied. Orfeciunt explanation for this implied assignment is
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given by the logical implication(z=1) O(u=0) O (x=1), which can be represented in clausal form as
(=z+u+Xx). Consequentthis clause represents a nigaplicateof the Boolean function associated with the CNF
formula and so it can be added to the CNF formula. This new clause also implies the assiganieiass long as

z =1 andu = 0, as intended. As with recursive learning for combinational circuits, recursive learning for CNF
formulas can be generalized to any recursion depth.

In backtrack search SAalgorithms, recursive learning can be implemented as part &f 8 ocess() func-
tion or as part of theeduce() function. First, during preprocessing, each variable is assigned both logic values and
implied assignments are identified each time. Second, either during the search or as part of preprocessing, clauses
with literals set to 0 are analyzed by evaluating the consequences of each assignment that satisfies the clause. Assign-
ments common to all clause justifications are deemed neceEkarprocedure is iteratively applied to clauses with
literals assigned value 0 as a result of the most recent implication sequence, fein&ither preprocessing or
deduction, this process is repeated at each recursion depth. Observe that at each step, each identified necessary
assignment is associated with a newly created clause, that correspondditieat®xplanationfor the assignment
to be necessary

Observe that our proposed recursive learning procedure derivescams implicates of the function associated
with the CNF formula. Clear)\these implicates prevent repeated derivation of the same assignments during the sub-
sequent search. In contrast, the recursive learning procedure developed for combinational circuits only records neces-
sary assignmenf{g1]. Hence, when used as part of a search algorithm, recursive learning may eventually re-derive
some of the already derived necessary assignments. Marégweaking into account the circuit structure informa-
tion, the recursive learning procedure can be made sinsplee only clause justifications of nodes in the fanin of a
given unjustified node need to be considered.

6 Experimental Results

In this section we evaluate the practical usefulness of the circuit structure-avwlar@geAthm described in
Sectiond. For this purpose, we used a state of the art public-domdimi§arithm, GRASH23], and built on top of
this algorithm a new SRalgorithm that takes structural information into account, CGRMgPeover the extended
recursive learning procedure can also be utilized, either in GRASP or in CGRABR situation we refer to the
SAT algorithms as, respectivelRL_GRASP and RL_CGRASP

Three EDA applications are considered for evaluating CGRREPGRASP and RL_CGRAS$SRamely test pat-
tern generation [22], circuit delay computation (CDC)Z8], and combinational equivalence checking. Statistics for
the ISCAS’85 benchmark circuits [6], regarding TPG and circuit delay computation, are shabteid. #PI, #PO,
#G, #FK #D, #R, TP andA denote, respectivelyhe number of primary inputs, the number of primary outputs, the
number of gates, the number of stuck-at faults, the number of detectable faults, the number of redundant faults, the
longest topological delay and the critical circuit delay under floating-mode opdg@jtidrne miter instances for
combinational equivalence checking are described in Se&®orAll the experimental results shown below were
obtained on a P-Il 266 MHz Linux workstation with 128 MByte of physical memory
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Circuit #PI #PO #G PG cbe
#F #D #R LTP A
C432 36 7 160 524 520 4 17 17
C499 41 32 202 758 750 8 1 1
C880 60 26 383 942 942 0 24 24
C1355 41 32 546| 1574| 1566 8 24 24
C1908 33 25 880| 1879 1870 9 40 37
C2670 233 140 1193| 2747 2630 117 32 30
C3540 50 22| 1669 3428 3291 137 a7 46
C5315 178 123| 2307| 5350 5291 59 49 47
C6288 32 32| 2406 7744 7710 34 124 123
C7552 207 108| 3512 7550 7419 131 43 42

Table 3: Statistics for ISCAS’85 circuits

L GRASP CGRASP
Circuit | CNF(s)
#B | #NCB | %S SAT(s) #B | #NCB | %S SAT(s)
C432 3.2| 2,855 115 100 7.5 167 8 75 2.2
C499 5.1 1,254 1,110 100 13.0 24 24 82 3.0
C880 49 2,690 968 99 30.2 55 31 33 3.1
C1355 279| 5,464 644 100 77.4 73 40 89 18.9
C1908 27.6| 3,505 2,224 100 108.0, 1,353 946 80 33.6
C2670 14.0| 12,949 6,997 85 437.2| 5,132 1296 26 34.2
C3540 66.4| 33,049 12,568 99 839.0 692 199 66 83.6
C5315 32.8/ 5,081 3,138 98 2,728 1,671 631 22 80.2
C6288 362.0| 149,374 5,360 100 4,215 16,314 398 77 467.2
C7552 65.2| 70,958 35,322 98 12,641 4,811 1704 44 248.0

Table 4: Results for test pattern generation

6.1 Test Pattern Generation

The first experiment consists in evaluating CGRASP for TPG. For this purpose, both GRASP and CGRASP were
run on the ISCAS’85 benchmark circuits. The results are showabile4. For each algorithm, CNF(s), #B, #NCB,
%S and SA(s) denote, respectively the total CNF formula build time, the total number of backtracks, the total num-
ber of non-chronological backtracks, the average percentage of specified variable assignments over all solved
instances and the $Asearch time. As can be readily concluded, the search times become drastically reduced when
structural information is taken into account, and a justification frontier is used TopiBposes. Indeed, for some of
the benchmark circuits the search times can be reduced by almost two orders of magnitude.

Besides the reduction in CPU times from GRASP to CGRMA®Ran also observe similar reductions in the total
number of backtracks. Nevertheless, the pruning techniques of GRASP are still used in C&RRERPuUmMber of
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Circuit #PI #PO #G LTP A
csa.32.16 65 33 170 69 66
csa.32.8 65 33 180 73 38
csa.32.4 65 33 200 81 30
csa.64.16 129 65 340 137 70
csa.64.8 129 65 360 145 46
csa.64.4 129 65 400 161 46
csa.128.16 257 129 680 273 78
csa.128.8 257 129 720 289 62
csa.128.4 257 129 800 321 78

Table 5: Statistics for carry-skip adders

non-chronological backtracks clearly illustrates. Morep@&RASP computes test patterns that are significantly less
specified than the test patterns computed by GRASP @ae4). Hence, by taking structural information into
account we can ffctively handle the overspecification problem, and compute test patterns that can be as specified as
those obtained with purely structural methods [1].

6.2 Circuit Delay Computation

Another potential application is $Aased circuit delay computation [26]. Experimental results comparing
GRASP and CGRASP for circuit delay computation are showalite®. For these experiments, the model of [26] is
used, and unit gate delays are assumed. In addition to the ISCAS’85 circuits, we generated several carry%kip adders
to evaluate how each algorithm performs with increasing circuit size and complexitan be concluded once
more, utilizing to the structural information of the circuit proves crucial in reducing the CPU times spent searching.
Similarly to TPG, the reduction in run times can be dramatic, in some cases two orders of magnitude reductions are
observed. Once more, despite the very significant reductions in the run times, we can still observe the pruning tech-
nigues of GRASP being used. As shown, the number of non-chronological backtracks still represents a significant
percentage of the overall number of backtracks. More@semwas noted for TPG, the advantages of CGRASP
become patent with increasing circuit sizes, especially for the carry-skip §#slers

6.3 Combinational Equivalence Checking

In this section we study the application of existingr @#gorithms for solving combinational equivalence check-
ing (CEC). In addition we utilize two JAalgorithms that incorporate recursive learning and are aware of circuit
structure. The first RL_GRASRtilizes recursive learning but does not exploit circuit structure information. The sec-
ond one, RL_CGRASRitilizes both recursive learning and the circuit structure information to reduce the number of
clauses that have to be analyzed during the application of recursive learning. Both algorithms were run with the fol-
lowing options for all benchmark instances:

2. See Bbles for statistics regarding these circuits.
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o GRASP CGRASP
Circuit CNF(s)
#B | #NCB | SAT(s) #B | #NCB | SAT(s)
C432 0.0 66 3 0.1 0 0 0.0
C499 0.0 0 0 0.5 0 0 0.0
C880 0.0 20 12 0.3 0 0 0.0
C1355 0.1 1,540 397 9.0 1 1 0.1
C1908 0.1 93 67 9.3 56 42 1.3
C2670 0.1 558 231 21.9 422 177 2.2
C3540 0.1 41 30 3.9 3 3 0.5
C5315 0.1 35 28 9.0 17 2 0.2
C6288 0.1 1,216 223 37.3] 1,725 208 34.0
C7552 0.1 8 8 23.8 1 1 0.5
csa.32.16 0.0 0 0 0.2 0 0 0.0
csa.32.8 0.2 44 19 1.4 0 0 0.2
csa.32.4 1.3 431 240 7.4 210 33 0.8
csa.64.16 1.2 104 47 10.7 0 0 1.0
csa.64.8 6.0 1,745 425 80.0 694 57 4.7
csa.64.4 17.8| 7,994 3,058 414.8/ 3,510 1,713 19.5
csa.128.16 36.2| 15,110/ 2,500 1,447 2,526 105 314
csa.128.8 89.5| 56,570 15,122 5,853 11,053 3,665 93.2
csa.128.4 199.2| 108,098 44,309 24,725 33,190 23,238 399.6

Table 6: Results for circuit delay computation

1. Preprocess the CNF formula using depth 1 recursive learning for CNF formulas.

2. Search for a solution using recursive learning of depth Deithuce() (See Figure 3), i.e. apply recursive
learning akeachlevel in the decision tree. Furthermore, clauses of size no greater than 80 can be recorded.

In order to evaluate the tifent SA algorithms the ISCAS’85 mitef20] are used. The results are shown in
Table7. For each algorithm and for each instance, the allowed CPU time was 3,000 seconds. A first conclusion is that
the most dicient SAT algorithms, including REL_SR[3], SATO [30] and GRASH23] are in general inadequate
for solving instances of CEC. In contrast, by including recursive learning, RL_GRASP and RL_CGRASP are able to

solveall instances in reasonable amounts of CPU time. RL_GRASP can in general hbdastelso experiences

larger variations in the run times, hence being less robust. Another interesting result is that the other fedtures of ef
cient SA algorithms, including non-chronological backtracking, actually occur while solving instances of CEC, for
both RL_GRASP and RL_CGRASRs can be observed, the number of non-chronological backtracks (#NCB) can

be a significant percentage of the overall number of backtracks (#B). Mqorém/galue of théargest backjumjn

the decision tree (LJ) can be significant, thus justifying using conflict diagnosis techniques in combinational equiva-

lence checking.
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o RL_GRASP RL_CGRASP
Class Circuit | REL-SAT SATO GRASP - = - —
time | #B |#NCB| LJ time | #B |#NCB| LJ

C432 14 1.7 21 14 8 1 2 1.8 1 0 1
C499 19.5| >3,0000 >176.00 34 0 — — 4.4 0 — —
g o |C1355 >3,0000 >3,0000 >3,000 9.0 0 — —| 137 0 — —
€ _§ C1908 >3,0000 > 3,000 394.2| 474 5 1 76.5 7 1 4
E -% C2670 >3,0000 >3,000 991.9] 28.2 19 13 8| 37.3 14 10 23
§ g C3540 > 3,000 631.3| >3,000 2,003 3,727 961 22| 1,280 1,916/ 568 14
N~ | Cc5315 >3,0000 >3,0000 >493.8 222.7| 618 352| 109| 238.3] 505/ 248 64
C6288 >3,0000 >3,0000 >346.4 54.8 0 — —| 21.8 0 — —
C7552 >3,0000 >3,0000 >2400 1,062 592| 290 62| 1,434 321 94 66
g __|C1908 > 3,000 0.34 258.9| 47.5 0 — —| 784 7 2 3
E % C2670 0.2| >3,000 11.9] 29.3 0 — —| 38.8 0 — —
§ ‘Z C3540 24.8 N/A?| >2,013] 317.8) 761] 205 10| 464.9] 682| 147 7
§ @ C5315 >3,0000 > 3,000 35.5| 135.1] 413 210 35| 155.7| 203 63 62
= C7552 2,409 >3,000 95.7| 735.6 0 — —| 1,158 0 — —

Table 7: Results for the ISCAS miters using SAT algorithms

a. SATO gives an incorrect result for this instance.

7 Conclusions

This paper proposes a new algorithm for solving Boolean Satisfiability problems in combinational circuits. For

manipulating structural information, the proposed approach requires minor modifications in existalg@ihms.
Moreover we illustrate how recursive learning can also be used for solviliga8d, when integrated in a BAlgo-

rithm, how it can exploit structural information for simplifying the amount of reasoning performed. The experimental
evaluation of the new algorithm on fdifent applications shows dramatic improvements over other Boolean Satisfi-
ability solvers that have previously been shown to be higfdgtfe[23]. The experimental results also indicate that
the proposed algorithm fettively addresses the overspecification problem, leading to significant reductions in the
number of assigned variables for the satisfiable instanceslof SA
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