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Abstract

Boolean Satisfiability is a ubiquitous modeling tool in Electronic Design Automation (EDA). It finds application in

test pattern generation, delay-fault testing, combinational equivalence checking and circuit delay computation,

among many other problems. Moreover, Boolean Satisfiability is also in the core of algorithms for solving Binate

Covering Problems. This paper starts by describing how Boolean Satisfiability algorithms can take circuit structure

into account when solving instances derived from combinational circuits. Afterwards, it shows how recursive learn-

ing techniques can be incorporated into Boolean Satisfiability algorithms. The proposed algorithmic framework has

several natural applications in EDA. Moreover, potential advantages include smaller run times, the utilization of cir-

cuit-specific search pruning techniques, avoiding the overspecification problem that characterizes Boolean Satisfi-

ability testers, and reducing the time for iteratively generating instances of SAT from circuits. The experimental

results obtained on a large number of benchmark examples in different problem domains display dramatic reductions

in the run times of the algorithms, and provide clear evidence that computed solutions can have significantly less

specified variable assignments than those obtained with common SAT algorithms.
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1 Intr oduction

Boolean Satisfiability (SAT) is intrinsic to many problems in Electronic Design Automation (EDA). Originally

motivated by the work of T. Larrabee in test pattern generation[22], SAT models and techniques have since been

applied to delay-fault testing, combinational equivalence checking, circuit delay computation, logic synthesis and

functional vector generation, among other applications. (See [7, 9, 10, 22, 24, 26, 29] for an overview of applications

of SAT to EDA.) Moreover, SAT can also play a central role in solving instances of binate covering problems (BCP)

[8, 11, 12, 14, 15], in particular for those in which the constraints are hard to satisfy, e.g. in computing minimum size

test patterns[12]. SAT also plays a key role in other domains, including for example Artificial Intelligence[3, 30] and

Operations Research[2]. Recent years have seen dramatic improvements in SAT algorithms, which have been thor-

oughly validated in different application areas [3, 23, 30].

With respect to applications of SAT in EDA, in most cases the original problem formulation starts from a circuit

description, for which a given (circuit) property needs to be validated for at least one primary input vector. The result-

ing circuit formulation, which may only be implicitly specified, is then mapped into an instance of SAT, in most cases

using Conjunctive Normal Form (CNF) formulas.

The utilization of CNF models and SAT algorithms has important advantages:

1. Existing, and extensively validated SAT algorithms, can be used instead of dedicated algorithms.

2. New improvements and new SAT algorithms can be easily applied to each target application.

In contrast, the utilization of CNF formulas and associated SAT algorithms is also characterized by several draw-

backs:

1. As observed in [29], the structural information of the circuit, often of crucial importance, is lost.

2. In many EDA problems, a large number of instances of SAT has to be solved for each circuit. Hence, mapping

a given problem description into SAT can represent a significant percentage of the overall running time [22].

3. Computed input patterns are in general overspecified. Overspecification can be a serious drawback in different

applications, including circuit testing and binate constraint solving.

4. Powerful circuit-based reasoning techniques, e.g. recursive learning [19-21], cannot easily be applied.

With the purpose of addressing these problems, in [29] a new dynamic data structure, i.e. an extended implication

graph, is proposed for solving instances of SAT in combinational circuits. Despite the promising results of [29], uti-

lizing a new data structure requires dedicated algorithms. Hence new search pruning techniques, developed for exam-

ple in the context of SAT algorithms, will have to be adapted to the circuit graph data structure.

In this paper we show how to utilize structural information in SAT algorithms. To a generic SAT algorithm we add
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a layer that maintains circuit-related information, e.g. fanin/fanout information as well as value justification relations.

The proposed approach allows using any SAT algorithm to which this layer can be added. The main advantages of the

proposed approach is that some of the previously mentioned drawbacks, i.e. inaccessibility to structural information

and overspecification of input patterns, are eliminated. The main contribution over the work of [29] is that data struc-

tures used for SAT need not be modified, and so existing algorithmic solutions for SAT can naturally be augmented

with the proposed layer for handling structural information. Moreover, the approach proposed in this paper is signifi-

cantly simpler than the one in [29], since only minor modifications to SAT algorithms are required.

Another contribution of this paper is describing how to extend recursive learning to solving Boolean Satisfiability.

One practical consequence is that the resulting SAT algorithms can be competitive with existing solutions for solving

equivalence checking [5, 17, 18, 20, 27, 29]1, whereas existing SAT algorithms are not. Another consequence is that

recursive learning becomes applicable to other problem domains. We should also note that the recursive learning pro-

cedure proposed in this paper is strictly stronger than the original algorithm [21], since it learns and recordsclauses,

in contrast with the original recursive learning procedure, which is only targeted at learningnecessary assignments. If

recursive learning is used in the context of search, the ability to record clauses can become a significant advantage.

Moreover, we show how the proposed extended recursive learning procedure can take into account circuit structure

information in order for reducing the amount of reasoning effort and consequently the CPU time.

The proposed approach for solving SAT in combinational circuits is graphically illustrated in Figure 1. Basically,

by adding new layers to an existing SAT algorithm, we can exploit circuit structure and can incorporate search tech-

niques specifically targeted for combinational circuits.

The paper is organized as follows. Section2 introduces basic definitions associated with SAT and combinational

circuits. Next we briefly survey SAT algorithms, giving particular emphasis to those that have been shown to be

effective in solving EDA problems. Afterwards, in Section4, we detail the proposed approach for taking into consid-

eration structural information while solving SAT. Section5 shows how to extend recursive learning to CNF formulas

1. See for example [16] for a survey of different approaches for solving combinational equivalence checking.

Satisfiability
Boolean

Circuit Structure

Recursive Learning

Figure 1: Integrating circuit structure and recursive learning into Boolean satisfiability algorithms
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and how to then exploit the available circuit structure. Section6 analyzes preliminary results on two EDA applica-

tions. The paper concludes in Section7 by reviewing the contributions and providing some perspective on future

research work.

2 Definitions

The CNF formula of a combinational circuit is the conjunction of the CNF formulas for each gate output, where

the CNF formula of each gate denotes the valid input-output assignments to the gate. An example of a circuit, associ-

ated CNF formula and the specification of an objective is shown in Figure 2. (The derivation of the CNF formulas for

simple gates can be found for example in [22].) If we view a CNF formula for a gate as a set of clauses, the CNF for-

mulaϕ for the circuit is defined by the set union (or conjunction) of the CNF formulas of each gate. Hence, given a

combinational circuit it is straightforward to create the CNF formula for the circuit as well as the CNF for proving a

given property of the circuit.

SAT algorithms operate on CNF formulas, and consequently can readily be applied to solving instances of SAT

associated with combinational circuits. Examples include the CNF formulas for test pattern generation [22] and cir-

cuit delay computation expressions [26].

3 Boolean Satisfiability Algorithms

The overall organization of a generic SAT algorithm is shown in Figure 3. This generic SAT algorithm captures

the organization of several of the most competitive algorithms[3, 23, 30].

The algorithm conducts a search through the space of the possible assignments to the problem instance variables.

At each stage of the search, a variable assignment is selected with theDecide() function. A decision leveld is asso-

Figure 2: Example circuit and CNF formula

x1

x2
z

x4

x3

ϕ x1 x3+( ) x2 x3+( ) x1 x2 x3+ + 
 ⋅ ⋅ ⋅=

x3 z+ 
  x4 z+ 

  x3 x4 z+ + 
 ⋅ ⋅

ϕ′ x1 x3+( ) x2 x3+( ) x1 x2 x3+ + 
 ⋅ ⋅ ⋅=

x3 z+ 
  x4 z+ 

  x3 x4 z+ + 
  z( )⋅ ⋅ ⋅

(a) Consistent assignments

(b) With propertyz 0=
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ciated with each selection of an assignment. Implied necessary assignments are identified with theDeduce() func-

tion, which in most cases corresponds to straightforward derivation of implications[3, 23]. Whenever a clause

becomes unsatisfied theDeduce() function returns a conflict indication which is then analyzed using theDiag-

nose() function. The diagnosis of a given conflict returns a backtracking decision level, which denotes the deci-

sion level to which the search process is required to backtrack to. TheErase() function clears implied assignments

that result from each assignment selection. Different organizations of SAT algorithms can be modeled by this generic

algorithm. Currently, all of the most efficient SAT algorithms [3, 23, 30] are characterized by several of the following

key properties:

1. The analysis of conflicts can be used for implementingNon-chronological Backtracking search strategies.

Hence, assignment selections deemed irrelevant can be skipped over during the search [3, 23, 30].

2. The analysis of conflicts can also be used for identifying and recording new implicates of the Boolean function

associated with the CNF formula.Clause Recording plays a key role in recent SAT algorithms, but in most cases

large recorded clauses are eventually deleted [3, 23].

3. Other techniques have been developed.Relevance-Based Learning[3] extends the life-span of large recorded

clauses that will eventually be deleted.Conflict-Induced Necessary Assignments[23] denote assignments to

variables which are necessary for preventing a given conflict from occurring again during the search.

// Input arg: Current decision level d

// Output arg: Backtrack decision level

// Return value: SATISFIABLE or UNSATISFIABLE

//
SAT (d, & )

{

if (Decide (d) != DECISION)
return SATISFIABLE;

while (TRUE) {
if (Deduce (d) != CONFLICT) {

if (SAT (d + 1, ) == SATISFIABLE)

return SATISFIABLE;
else if ( != d || d == 0) {

Erase (d); return UNSATISFIABLE;
}

}

if (Diagnose (d, ) == CONFLICT) {

return UNSATISFIABLE;
}

}

}

β

β

β

β

β

Figure 3: Generic backtrack search SAT algorithm

β
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Before running the SAT algorithm, different forms of preprocessing can be applied [23]. This in general is denoted

by aPreprocess() function.

4 Satisfiability in Combinational Cir cuits

4.1 Additional Data Structur es

Let  denote a property of a combinational circuitC which is to be satisfied to an objective valueo. This satisfi-

ability problem is denoted by  and can be mapped into an instance of SAT, . The following information is

associated with each variablex of ϕ, that also represents a circuit nodex of :

1.  denotes the fanin nodes ofx.

2.  denotes the set of fanout nodes ofx.

3.  denotes the threshold value on the number of suitable assigned inputs (ofx) that are necessary for

justifying valuev on nodex.

4.  denotes the actual counter of assigned inputs (ofx) that are involved in justifying the valuev on nodex.

Note that the value assigned to each variablex is denoted by . Moreover, observe that each circuit nodex,

with assigned valuev, becomes justified whenever .

Table1 contains a few examples of threshold values on the number of assigned inputs required for justifying a

given node. For example, for an AND gate at least one input assigned value 0 justifies the assignment of value 0 tox,

whereas for value 1 all inputs must be assigned value 1. Hence,  and . As another exam-

ple, observe that for an XOR gate justification of any assigned value requires assignments to all gate inputs; hence

. For other simple gates this information can also be easily derived, and in all cases we have

.

For any simple gate with outputx, we can associate with each fanin nodew the counters that must be updated as

the result of assigning a valuev to w. For example, for an AND gate an assignment of 0 to a fanin nodew increments

Cp
Cp o,〈 〉 ϕ

C

FI x( )

FO x( )

υv x( )

ιv x( )

ν x( )

ιv x( ) υv x( )≥

Gate

1

1

1

Table 1: Threshold values on assigned inputs

υ0 x( ) υ1 x( )

x AND w1 … wk, ,( )= FI x( )

x NAND w1 … wk, ,( )= FI x( )

x NOR w1 … wk, ,( )= FI x( )

x XOR w1 … wk, ,( )= FI x( ) FI x( )

υ0 x( ) 1= υ1 x( ) FI x( )=

υ0 x( ) υ1 x( ) FI x( )= =

υ0 x( ) υ1 x( ), 1 FI x( ),{ }∈
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 by 1, and an assignment of 1 to fanin nodew increments  by 1. These relations are illustrated in Table2

for a few example gates. Note that for the XOR gates, both counters are updated when an input node becomes

assigned.

As with standard search algorithms in combinational circuits [1], ajustification frontier is maintained, which

denotes the sets of variables/nodes that require justification. Observe that the condition that indicates the need for

node justification is , where .

4.2 Modifications to the SAT Algorithm

Given the previous definitions, a SAT algorithm can be adapted so that the information regarding justification can

be properly maintained. Moreover, the fanin information can be used for implementing structure-based heuristic deci-

sion making procedures, e.g.simple or multiple backtracing [1]. With respect to the algorithm of Figure 3, functions

Deduce() andDiagnose() have to invoke dedicated procedures for updating node justification information. Addi-

tionally, theDecide() function now tests for satisfiability by checking for an empty justification frontier instead of

checking whether all clauses are satisfied. These are the only required modifications to the general SAT algorithm. In

addition, theDecide() function can optionally be modified to perform backtracing given the fanin information asso-

ciated with each variable.

We should note that the data structures described above operate in much the same way as justification works in

combinational circuits [1]. The main difference is that in our approach justification and value consistency are for-

mally dissociated; value consistency is handled by the SAT algorithm and justification by the new added layer.

5 Implementing Recursive Learning in SAT Algorithms

In this section we describe how to extend recursive learning [21] for CNF formulas. We start by briefly reviewing

the basic reasoning principle supporting recursive learning and illustrate how it can be applied in solving instances of

SAT. We then describe the changes to the basic backtrack search SAT algorithm so that it incorporates recursive

learning.

ι0 x( ) ι1 x( )

Gate

Table 2: Justification counters associated with gate inputs

wi 0= wi 1=

x AND w1 … wk, ,( )= ι0 x( ) ι1 x( )

x NAND w1 … wk, ,( )= ι1 x( ) ι0 x( )

x NOR w1 … wk, ,( )= ι1 x( ) ι0 x( )

x XOR w1 … wk, ,( )=
ι0 x( )

ι1 x( )

ι0 x( )

ι1 x( )

ν x( ) v=( ) ιv x( ) υv x( )<( )∧ v 0 1,{ }∈
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Let us consider the example circuit of Figure 4. Further, let us assume that our goal is to justify the objective

. As a result, it is immediate to conclude that the assignments  are required.

Assuming thatv andu are primary inputs we only need to consistently justify the assignment to nodey. In order to do

this we resort to recursive learning with depth 2[21].

For  the first justification to be considered is . The possible justifications for this assignment are

either  or . Considering the justification , the assignment  is implied. The same implica-

tion results when considering the justification . Hence, we can conclude that the assignment  implies

the assignment . From the initial recursion, the remaining justification for  is . The possible jus-

tifications for  are either  or . Considering each justification individually yields once more the

assignment . Since this assignment is implied for any justification of , we can then conclude that the

assignment  implies the assignment  if consistent assignments are to be identified for the circuit nodes.

The same reasoning that is used for implementing recursive learning in combinational circuits can naturally be

extended to clauses in CNF formulas. Indeed, for any clause to be satisfied at least one of the yet unassigned literals

must be assigned value 1. Recursive learning on CNF formulas consists of studying the different ways of satisfying a

given selected clause and identifying common assignments, which are then deemednecessary for the clause to

become satisfied and consequently for the instance of SAT to be satisfiable. Clearly, and because conflict diagnosis

can also be implemented, each identified assignment needs to be adequatelyexplained. Consequently, with each iden-

tified assignment a clause that describeswhy the assignment is necessary is created. Let us consider the example CNF

formula of Figure 5. In order to satisfy clauseω3, either  or . Considering each assignment separately

leads to the implied assignment ; for  due to  and for  due to . Hence, the assignment

 is necessary if the CNF formula is to be satisfied. One sufficient explanation for this implied assignment is

Figure 4: Example circuit

a

b

c

d

e

f

x z 0=
y 1=

v 1=

u 1=

z 0= v 1=( ) u 1=( ) y 1=( )∧ ∧

y 1= c 0=

a 0= b 0= a 0= x 1=

b 0= c 0=

x 1= y 1= f 0=

f 0= d 0= e 0=

x 1= y 1=

y 1= x 1=

ω1 u x w¬+ +( )=

ω2 x y¬+( )=

ω3 w y z¬+ +( )=

 Assignments: z 1= u 0=,{ }

Figure 5: Recursive learning on clauses

w 1= y 1=

x 1= w 1= ω1 y 1= ω2
x 1=
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given by the logical implication , which can be represented in clausal form as

. Consequently, this clause represents a newimplicate of the Boolean function associated with the CNF

formula and so it can be added to the CNF formula. This new clause also implies the assignment as long as

 and , as intended. As with recursive learning for combinational circuits, recursive learning for CNF

formulas can be generalized to any recursion depth.

In backtrack search SAT algorithms, recursive learning can be implemented as part of thePreprocess() func-

tion or as part of theDeduce() function. First, during preprocessing, each variable is assigned both logic values and

implied assignments are identified each time. Second, either during the search or as part of preprocessing, clauses

with literals set to 0 are analyzed by evaluating the consequences of each assignment that satisfies the clause. Assign-

ments common to all clause justifications are deemed necessary. This procedure is iteratively applied to clauses with

literals assigned value 0 as a result of the most recent implication sequence. Finally, for either preprocessing or

deduction, this process is repeated at each recursion depth. Observe that at each step, each identified necessary

assignment is associated with a newly created clause, that corresponds to a sufficient explanation for the assignment

to be necessary.

Observe that our proposed recursive learning procedure derives andrecords implicates of the function associated

with the CNF formula. Clearly, these implicates prevent repeated derivation of the same assignments during the sub-

sequent search. In contrast, the recursive learning procedure developed for combinational circuits only records neces-

sary assignments[21]. Hence, when used as part of a search algorithm, recursive learning may eventually re-derive

some of the already derived necessary assignments. Moreover, by taking into account the circuit structure informa-

tion, the recursive learning procedure can be made simpler, since only clause justifications of nodes in the fanin of a

given unjustified node need to be considered.

6 Experimental Results

In this section we evaluate the practical usefulness of the circuit structure-aware SAT algorithm described in

Section4. For this purpose, we used a state of the art public-domain SAT algorithm, GRASP[23], and built on top of

this algorithm a new SAT algorithm that takes structural information into account, CGRASP. Moreover, the extended

recursive learning procedure can also be utilized, either in GRASP or in CGRASP. In this situation we refer to the

SAT algorithms as, respectively, RL_GRASP and RL_CGRASP.

Three EDA applications are considered for evaluating CGRASP, RL_GRASP and RL_CGRASP, namely test pat-

tern generation [22], circuit delay computation (CDC) [9,26] and combinational equivalence checking. Statistics for

the ISCAS’85 benchmark circuits [6], regarding TPG and circuit delay computation, are shown in Table3. #PI, #PO,

#G, #F, #D, #R, LTP and∆ denote, respectively, the number of primary inputs, the number of primary outputs, the

number of gates, the number of stuck-at faults, the number of detectable faults, the number of redundant faults, the

longest topological delay and the critical circuit delay under floating-mode operation[9]. The miter instances for

combinational equivalence checking are described in Section6.3. All the experimental results shown below were

obtained on a P-II 266 MHz Linux workstation with 128 MByte of physical memory.

z 1=( ) u 0=( )∧ x 1=( )⇒
z¬ u x+ +( )

x 1=

z 1= u 0=
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6.1 Test Pattern Generation

The first experiment consists in evaluating CGRASP for TPG. For this purpose, both GRASP and CGRASP were

run on the ISCAS’85 benchmark circuits. The results are shown in Table4. For each algorithm, CNF(s), #B, #NCB,

%S and SAT(s) denote, respectively the total CNF formula build time, the total number of backtracks, the total num-

ber of non-chronological backtracks, the average percentage of specified variable assignments over all solved

instances and the SAT search time. As can be readily concluded, the search times become drastically reduced when

structural information is taken into account, and a justification frontier is used for SAT purposes. Indeed, for some of

the benchmark circuits the search times can be reduced by almost two orders of magnitude.

Besides the reduction in CPU times from GRASP to CGRASP, we can also observe similar reductions in the total

number of backtracks. Nevertheless, the pruning techniques of GRASP are still used in CGRASP, as the number of

Circuit #PI #PO #G
TPG CDC

#F #D #R LTP ∆
C432 36 7 160 524 520 4 17 17

C499 41 32 202 758 750 8 11 11

C880 60 26 383 942 942 0 24 24

C1355 41 32 546 1574 1566 8 24 24

C1908 33 25 880 1879 1870 9 40 37

C2670 233 140 1193 2747 2630 117 32 30

C3540 50 22 1669 3428 3291 137 47 46

C5315 178 123 2307 5350 5291 59 49 47

C6288 32 32 2406 7744 7710 34 124 123

C7552 207 108 3512 7550 7419 131 43 42

Table 3: Statistics for ISCAS’85 circuits

Circuit CNF(s)
GRASP CGRASP

#B #NCB %S SAT(s) #B #NCB %S SAT(s)

C432 3.2 2,855 115 100 7.5 167 8 75 2.2

C499 5.1 1,254 1,110 100 13.0 24 24 82 3.0

C880 4.9 2,690 968 99 30.2 55 31 33 3.1

C1355 27.9 5,464 644 100 77.4 73 40 89 18.9

C1908 27.6 3,505 2,224 100 108.0 1,353 946 80 33.6

C2670 14.0 12,949 6,997 85 437.2 5,132 1296 26 34.2

C3540 66.4 33,049 12,568 99 839.0 692 199 66 83.6

C5315 32.8 5,081 3,138 98 2,728 1,671 631 22 80.2

C6288 362.0 149,374 5,360 100 4,215 16,314 398 77 467.2

C7552 65.2 70,958 35,322 98 12,641 4,811 1704 44 248.0

Table 4: Results for test pattern generation
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non-chronological backtracks clearly illustrates. Moreover, CGRASP computes test patterns that are significantly less

specified than the test patterns computed by GRASP (see Table4). Hence, by taking structural information into

account we can effectively handle the overspecification problem, and compute test patterns that can be as specified as

those obtained with purely structural methods [1].

6.2 Cir cuit Delay Computation

Another potential application is SAT-based circuit delay computation [26]. Experimental results comparing

GRASP and CGRASP for circuit delay computation are shown in Table6. For these experiments, the model of [26] is

used, and unit gate delays are assumed. In addition to the ISCAS’85 circuits, we generated several carry-skip adders2,

to evaluate how each algorithm performs with increasing circuit size and complexity. As can be concluded once

more, utilizing to the structural information of the circuit proves crucial in reducing the CPU times spent searching.

Similarly to TPG, the reduction in run times can be dramatic, in some cases two orders of magnitude reductions are

observed. Once more, despite the very significant reductions in the run times, we can still observe the pruning tech-

niques of GRASP being used. As shown, the number of non-chronological backtracks still represents a significant

percentage of the overall number of backtracks. Moreover, as was noted for TPG, the advantages of CGRASP

become patent with increasing circuit sizes, especially for the carry-skip adders[26].

6.3 Combinational Equivalence Checking

In this section we study the application of existing SAT algorithms for solving combinational equivalence check-

ing (CEC). In addition we utilize two SAT algorithms that incorporate recursive learning and are aware of circuit

structure. The first RL_GRASP, utilizes recursive learning but does not exploit circuit structure information. The sec-

ond one, RL_CGRASP, utilizes both recursive learning and the circuit structure information to reduce the number of

clauses that have to be analyzed during the application of recursive learning. Both algorithms were run with the fol-

lowing options for all benchmark instances:

2. See Table5 for statistics regarding these circuits.

Circuit #PI #PO #G LTP ∆
csa.32.16 65 33 170 69 66

csa.32.8 65 33 180 73 38

csa.32.4 65 33 200 81 30

csa.64.16 129 65 340 137 70

csa.64.8 129 65 360 145 46

csa.64.4 129 65 400 161 46

csa.128.16 257 129 680 273 78

csa.128.8 257 129 720 289 62

csa.128.4 257 129 800 321 78

Table 5: Statistics for carry-skip adders
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1. Preprocess the CNF formula using depth 1 recursive learning for CNF formulas.

2. Search for a solution using recursive learning of depth 1 inDeduce() (See Figure 3), i.e. apply recursive

learning ateach level in the decision tree. Furthermore, clauses of size no greater than 80 can be recorded.

In order to evaluate the different SAT algorithms the ISCAS’85 miters[20] are used. The results are shown in

Table7. For each algorithm and for each instance, the allowed CPU time was 3,000 seconds. A first conclusion is that

the most efficient SAT algorithms, including REL_SAT [3], SATO [30] and GRASP[23] are in general inadequate

for solving instances of CEC. In contrast, by including recursive learning, RL_GRASP and RL_CGRASP are able to

solveall instances in reasonable amounts of CPU time. RL_GRASP can in general be faster, but it also experiences

larger variations in the run times, hence being less robust. Another interesting result is that the other features of effi-

cient SAT algorithms, including non-chronological backtracking, actually occur while solving instances of CEC, for

both RL_GRASP and RL_CGRASP. As can be observed, the number of non-chronological backtracks (#NCB) can

be a significant percentage of the overall number of backtracks (#B). Moreover, the value of thelargest backjump in

the decision tree (LJ) can be significant, thus justifying using conflict diagnosis techniques in combinational equiva-

lence checking.

Circuit CNF(s)
GRASP CGRASP

#B #NCB SAT(s) #B #NCB SAT(s)

C432 0.0 66 3 0.1 0 0 0.0

C499 0.0 0 0 0.5 0 0 0.0

C880 0.0 20 12 0.3 0 0 0.0

C1355 0.1 1,540 397 9.0 1 1 0.1

C1908 0.1 93 67 9.3 56 42 1.3

C2670 0.1 558 231 21.9 422 177 2.2

C3540 0.1 41 30 3.9 3 3 0.5

C5315 0.1 35 28 9.0 17 2 0.2

C6288 0.1 1,216 223 37.3 1,725 208 34.0

C7552 0.1 8 8 23.8 1 1 0.5

csa.32.16 0.0 0 0 0.2 0 0 0.0

csa.32.8 0.2 44 19 1.4 0 0 0.2

csa.32.4 1.3 431 240 7.4 210 33 0.8

csa.64.16 1.2 104 47 10.7 0 0 1.0

csa.64.8 6.0 1,745 425 80.0 694 57 4.7

csa.64.4 17.8 7,994 3,058 414.8 3,510 1,713 19.5

csa.128.16 36.2 15,110 2,500 1,447 2,526 105 31.4

csa.128.8 89.5 56,570 15,122 5,853 11,053 3,665 93.2

csa.128.4 199.2 108,098 44,309 24,725 33,190 23,238 399.6

Table 6: Results for circuit delay computation
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7 Conclusions

This paper proposes a new algorithm for solving Boolean Satisfiability problems in combinational circuits. For

manipulating structural information, the proposed approach requires minor modifications in existing SAT algorithms.

Moreover, we illustrate how recursive learning can also be used for solving SAT and, when integrated in a SAT algo-

rithm, how it can exploit structural information for simplifying the amount of reasoning performed. The experimental

evaluation of the new algorithm on different applications shows dramatic improvements over other Boolean Satisfi-

ability solvers that have previously been shown to be highly effective[23]. The experimental results also indicate that

the proposed algorithm effectively addresses the overspecification problem, leading to significant reductions in the

number of assigned variables for the satisfiable instances of SAT.
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