
Submitted to Operations Research

manuscript (Please, provide the mansucript number!)

Algorithms for Scheduling Runway Operations under
Constrained Position Shifting

Hamsa Balakrishnan
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, hamsa@mit.edu

Bala G. Chandran
Analytics Operations Engineering, Inc., Boston, MA 02109, bchandran@nltx.com

The efficient operation of airports, and runways in particular, is critical to the throughput of the air trans-

portation system as a whole. Scheduling arrivals and departures at runways is a complex problem that needs

to address diverse and often competing considerations of efficiency, safety, and equity among airlines. One

approach to runway scheduling that arises from operational and fairness considerations is that of constrained

position shifting (CPS), which requires that an aircraft’s position in the optimized sequence not deviate

significantly from its position in the first-come-first-served sequence. This paper presents a class of scalable

dynamic programming algorithms for runway scheduling under constrained position shifting and other sys-

tem constraints. The results from a prototype implementation, which is fast enough to be used in real-time,

are also presented.

Subject classifications : Transportation: Runway scheduling under Constrained Position Shifting. Dynamic

programming/optimal control: Deterministic polynomial-time scheduling algorithms.

Area of review : Transportation

1. Introduction

The air transportation system in the United States is a tightly constrained system that is operating

at (or close to) capacity at most major airports. In 2005, terminal-area congestion accounted for

only 13% of all delays at the 35 busiest airports; that number had risen to 17% in 2008, and

is currently at 21% over the first nine months of 2009 (Federal Aviation Administration 2009).

The increasing delays coupled with the expected increase in the demand for air transportation in

the future have motivated several initiatives, both in the United States and in Europe, for the

enhancement of terminal-area capacities (Arkind 2004, Boehme 1994). The runway system has been

identified as the primary bottleneck in airport capacity, due to various operational constraints on

runway operations (Idris et al. 1998). Consequently, even small enhancements to runway throughput

can have a significant impact on system-wide delays.

The terminal-area is a dynamic and uncertain environment, with constant updates to aircraft

states being obtained from surveillance systems and airline reports (Atkins and Brinton 2002). The

1

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

2 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

dynamic nature of the terminal-area necessitates the development of scheduling algorithms that

are computationally efficient, and therefore amenable to replanning when new events occur, such as

when a new aircraft enters the center boundary or when data updates are obtained. The challenge

lies in simultaneously achieving safety, efficiency, and equity, which are often competing objectives,

and doing so in a reasonable amount of time (Böhme 2005, Carr 2004, Anagnostakis et al. 2000).

There is broad consensus on how to independently model safety, efficiency, and equity; safety is

achieved by maintaining separation between aircraft and by satisfying downstream metering con-

straints, efficiency is equivalent to achieving high throughput and/or low average delay, and equity

is modeled by limiting the deviation from a nominal order or by minimizing variance in delay.

However, few solution approaches have been able to simultaneously model all three components

and optimally solve the runway scheduling problem in a computationally tractable manner. One

reason for this computational hurdle is that most runway scheduling models are, from a theoretical

perspective, inherently hard to solve (Beasley et al. 2000). Consequently, most practical implemen-

tations resort to heuristic or approximate approaches that produce “good” solutions in a short

time (Böhme 2005, Anagnostakis et al. 2001). The difficulty in solving these scheduling models

arises primarily because the solution space allows for the optimal sequence to deviate arbitrarily

from the first-come-first-served (FCFS) sequence.

Dear (1976) recognized that, in the short term, it is unrealistic to allow arbitrary deviations

from the FCFS sequence for two reasons: (i) the system affords controllers limited flexibility in

reordering aircraft, and (ii) large deviations from a nominal schedule may be unacceptable to

airlines from a fairness standpoint. This observation led to the Constrained Position Shifting (CPS)

approach for scheduling aircraft, which stipulates that an aircraft may be moved up to a specified

maximum number of positions from its FCFS order. For example, if the maximum position shift

(MPS) allowed were 2, an aircraft that is in the 8th position in the FCFS sequence can be placed

at the 6th, 7th, 8th, 9th, or 10th position in the new sequence. Several researchers in both the

United States and Europe have used CPS to model fairness, and have worked toward developing

fast solution techniques for scheduling within the CPS framework (Psaraftis 1980, Dear and Sherif

1991, Neuman and Erzberger 1991, Trivizas 1998, de Neufville and Odoni 2003, Carr 2004).

Psaraftis (1980) was the first to develop a polynomial-time algorithm for scheduling under CPS.

His algorithm exploited the fact that the number of different types of aircraft is typically small

(small, large, heavy, etc.), and had a complexity of O
(

N2(n

N
+1)N

)

where n is the number of air-

craft and N is the number of distinct aircraft types. This algorithm relied on all aircraft of the same

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 3

type being identical, which did not accommodate time-window restrictions on aircraft or prece-

dence relationships among aircraft, thus effectively scheduling all aircraft of a certain type in FCFS

order. Trivizas (1998) proposed a search-based algorithm with a complexity of O(n2k) where n is

the number of aircraft and k is the maximum shift parameter; however, achieving this complexity

required a very sophisticated implementation using up to 2k parallel processors. Further, his model

also failed to account for time-window restrictions and precedence constraints. The difficulty of

incorporating all operational constraints within a CPS framework even led to a conjecture by Carr

(2004) that in general, runway scheduling under CPS had exponential complexity.

This paper presents new algorithms for efficient runway scheduling on a single runway with

CPS constraints, while accounting for various operational considerations (including time window

restrictions and precedence constraints, which had not been modeled by previous approaches); for

reasons discussed in Section 7.3, the multiple runway case is beyond the scope of this paper. Our

key contribution in this paper is to cast the scheduling problem on a graph, referred to as the

CPS network and described in Section 3, whose size in polynomial in the number of aircraft. The

scheduling problems are then solved using dynamic programming on this network.

The core problem we consider is that of that of maximizing runway throughput (equivalent to

minimizing the makespan or the landing time of the last of a given set of aircraft) for arrivals-only

or departures-only operations. This scenario is of practical importance since many major airports,

such as Atlanta, Dallas/Fort Worth, Denver, and New York LaGuardia, use dedicated arrival

and departure runways, especially during periods of heavy demand (Federal Aviation Adminis-

tration 2004). Our algorithm to solve this problem, presented in Section 4, has a complexity of

O(n(2k +1)(2k+2)), where n is the number of aircraft and k is the maximum shift parameter. Thus,

the complexity of the algorithm is essentially linear in the number of aircraft since k is typically a

small constant (1, 2, or 3). In Section 5, we extend the algorithm to two other objective functions,

namely minimizing the maximum delay over all aircraft and minimizing the average delay, and

show that these can also be solved with a complexity that is polynomial in n and exponential in

k, although our algorithm for the latter problem is unable to account for time window constraints.

In order to handle more complex extensions, we introduce the discrete-time CPS network in

Section 6. This network, whose size is dependent on the number of time periods being considered,

allows us to develop pseudo-polynomial algorithms to minimize the weighted average of delay given

arbitrary aircraft-dependent cost structures. In Section 7, we present algorithms for the problem

of mixed operations (simultaneous arrival and departure scheduling on a single runway). One

of the algorithms, which solves a realistic problem of merging several departure queues and an

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

4 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

arrival queue, has a complexity that is polynomial in the number of aircraft and exponential in the

number of departure queues. Finally, we describe a prototype implementation of our algorithm for

minimizing makespan in Section 8.

This paper is of significance since it presents the first class of algorithms that are able to handle

commonly-encountered operational constraints and objectives within the CPS framework while

being computationally scalable.

2. Problem definition

The runway scheduling problem is to find a sequence and corresponding arrival/departure times

that optimize some objective of the schedule (for example, minimize the makespan or minimize a

weighted average of aircraft delay), subject to the following constraints.

1. Fairness: position shift constraints Since airlines are major stakeholders in the air

transportation system, it is important that an increase in efficiency is not achieved at the expense

of an equitable allocation of resources. This could happen if an aircraft that would have had an

early arrival or departure in the FCFS sequence is rescheduled to operate last, thereby incurring a

disproportionate amount of delay. CPS ensures some degree of fairness since it does not allow the

final sequence to deviate significantly from the FCFS order. The maximum number of position shifts

allowed is denoted by k, and the resultant scenario is referred to as a k-CPS scenario. Typically, k

for both arrival and departure scheduling is between 1 and 3 (de Neufville and Odoni 2003).

2. Minimum spacing requirements An aircraft operating on a runway faces the risk of insta-

bility if it interacts with the wake-vortex of an aircraft landing or taking off before it. To prevent

this, the Federal Aviation Administration (FAA) mandates minimum spacing requirements under

Instrument Approach Conditions (IAC) between aircraft operations on a runway, which depend

on the on the maximum takeoff weight capacity of the aircraft (Federal Aviation Administration

2006). While these spacing requirements are specified in terms of distance, they can be converted

to time requirements assuming a 5 nmi final approach path (de Neufville and Odoni 2003); Repre-

sentative values for these separations for three weight classes—small, large, and heavy—are listed

in Table 1 (for simplicity, we ignore separation requirements for B757 aircraft). We denote the

minimum time required between leading aircraft a and trailing aircraft b by δab.

Note that the wake vortex separation requirements for arrivals-only or departures-only opera-

tions satisfy the triangle inequality, that is δac ≤ δab + δbc, ∀ a, b, c. In addition, these separation

requirements satisfy all higher-order polygon inequalities (for instance, the quadrilateral inequality

in which δad ≤ δab + δbc + δcd, ∀ a, b, c, d). As a result, ensuring that spacing requirements are met

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 5

Trailing

Arrivals Departures

Heavy Large Small Heavy Large Small

Leading

Arrivals

Heavy 96 157 196 75 75 75
Large 60 69 131 75 75 75
Small 60 69 82 75 75 75

Departures

Heavy 60 60 60 90 120 120
Large 60 60 60 60 60 60
Small 60 60 60 60 60 60

Table 1 Minimum separation (in seconds) between operations on the same runway (Lee 2008).

between successive aircraft ensures that the spacing requirements are met for all pairs of aircraft.

This property will be exploited in subsequent sections when developing algorithms for the arrivals-

only or departures-only case. In Section 6.2, we describe algorithmic modifications that allow us

to solve the scheduling problem even when the triangle inequality is violated.

3. Time-window constraints Limits on the levels of delay that can be incurred by an aircraft

due to downstream traffic flow management initiatives, or constraints on possible maneuvers that

can be performed by the aircraft restrict the times at which an aircraft can reach a runway (Carr

2004). These constraints could possibly result in a set of disjoint time intervals in which an aircraft

can arrive/depart. For simplicity of notation, we describe the case when the time interval is con-

tinuous, defined by an earliest and latest time, but our approach is applicable to disjoint intervals

as well.

4. Precedence constraints Precedence constraints are pairwise requirements on aircraft that

stipulate whether one aircraft must land before another. Sources of such constraints are the airlines

themselves, who have precedence constraints due to banking operations, or priority flights. In

addition, arrivals on the same jet route are constrained to not overtake each other. Precedence

constraints can also represent the restricted freedom available to taxiing departures that are not

allowed to overtake each other (Carr 2004).

3. The CPS network

Our key contribution is to cast the scheduling problem on a directed acyclic graph in which every

feasible CPS sequence is represented by a path in the network; the scheduling problem is then

solved using dynamic programming.

For simplicity, we assume that the aircraft are labeled (1,2, · · · , n), according to their position in

the FCFS sequence. The network consists of n stages {1, · · · , n}, where each stage corresponds to

an aircraft position in the final sequence. A node in Stage p of the network represents a subsequence

of aircraft of length min{2k +1, p}. For example, for n = 6 and k = 1, the nodes in Stages 3, · · · ,6

represent all possible sequences of length 2k +1 = 3 ending at that stage. Stage 2 contains a node

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

6 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

1−2

1−3

2−1
sink

1−2−3

1−2−4

1−3−2

2−1−3

2−1−4

1−3−4

1−3−5

1−4−3

2−3−4

2−3−5

2−4−3

3−2−4

3−2−5

2−4−5

2−4−6

2−5−4

3−4−5

3−4−6

3−5−4

4−3−5

4−3−6

4−6−5

4−5−6

5−4−6

3−5−6

3−6−5

1−3−4

2−3−4

1−2−3

1−2−4

1−2−5

1−4−5

2−4−5

3−4−5

2−3−5

2−3−6

2−5−6

3−5−6

4−5−6

3−4−5

3−4−6

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

source

2−3

2−3−4

2

1

Figure 1 CPS network for n = 6, k = 1 generated from possible aircraft assignments shown on top. Nodes shaded

in black do not belong to any source-sink path, and can hence be pruned from the network.

for every possible aircraft sequence of length 2 ending at position 2, while Stage 1 contains a node

for every possible sequence of length 1 starting at position 1. This network, shown in Figure 1, is

obtained by finding all sequence combinations of possible aircraft assignments to each position in

the sequence. We refer to the last aircraft in a node’s sequence as the final aircraft of that node.

We then introduce two nodes—a source and a sink—that represent the beginning and end of the

sequencing process respectively. We add arcs from the source to each node in Stage 1, and from

each node in Stage n to the sink. An arc (i, j) is drawn from a node in Stage p to one in Stage p+1

if the aircraft subsequence of node j can follow that of node i, i.e., the first min{2k, p} aircraft

of node j’s subsequence are the same as the last min{2k, p} aircraft of node i’s subsequence. For

example, a sequence (1–2–3) in Stage 3 can be followed by the sequences (2–3–4) or (2–3–5) in

Stage 4. This results in a network where every directed path from a node in Stage 1 to one in Stage

n represents a possible k-CPS sequence. For example, the path (2)→ (2–1)→ (2–1–3)→ (1–3–4)→

(3–4–6)→ (4–6–5) represents the sequence 2–1–3–4–6–5.

Theorem 1. A k-CPS sequence exists if and only if there exists a corresponding source-sink path

in the network.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 7

Proof. By enumerative construction, every k-CPS sequence is a source-sink path in the network.

We now prove that every source-sink path in the network is a k-CPS sequence.

First, we observe that every source-sink path will consist of exactly n nodes (excluding the source

and sink) since each arc in the path moves forward by one stage. Given a path in the network, the

corresponding aircraft sequence is obtained taking the final aircraft of a node belonging to Stage p

and assigning it to position p in the sequence. Thus, position 1 in the sequence is the final aircraft

of the first node in the path, position 2 in the sequence is the final aircraft of the second node in

the path, and so on. Since there are n aircraft and the path is of length n, this procedure will yield

a feasible sequence as long as we assign a unique aircraft to each position, i.e., as long as the final

aircraft of each node in the path is different.

We now prove this result by contradiction. Suppose there exists a source-sink path in the network

containing two nodes with the same final aircraft. Let one of these nodes be in Stage p1 and the

other be in Stage p2 where p1 < p2. Then, the aircraft appears in position p1 and p2 in the sequence

represented by the path. The network is constructed using the fact that any aircraft can appear

in at most 2k +1 positions, so p2 is within 2k +1 positions of p1. But every subsequence of length

2k +1 or less is captured in some node along the path, so there exists a node in the path in whose

subsequence the same aircraft appears in more than one position, which is not allowed to occur

while generating the network. This contradiction implies that there cannot exist a source-sink path

containing two nodes with the same final aircraft.

Therefore, any source-sink path represents a sequence of n distinct aircraft, where each aircraft

appears in a position that belongs to one of at most 2k +1 possible position assignments for that

aircraft. �

There are some nodes in the network that cannot be part of any path from the source to the sink

(shown shaded in Figure 1) and can hence be eliminated to reduce the network size. The process

of pruning the network involves testing whether each node is reachable from both the source and

the sink (using a forward and reverse graph search) and eliminating nodes that are not reachable

either from the source or the sink.

3.1. Incorporating precedence constraints

We now describe how precedence constraints can be incorporated into the network. Let f(a) be

the position of aircraft a in the final (optimal makespan) sequence, and f(b) be the position of

aircraft b in the final sequence. For two aircraft a and b such that a < b, the precedence constraint

can either require that (i) f(a) < f(b), or (ii) f(a) > f(b).

Case I: The precedence constraint requires that f(a) < f(b).

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

8 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Lemma 1. Suppose there exists a path in the network such that f(a) > f(b). Then, the path contains

at least one node such that b appears before a in that node’s subsequence.

Proof. Since each aircraft can shift at most k positions, f(a) ≤ a + k and f(b) ≥ b − k. So

f(a)− f(b) ≤ a− b + 2k ≤ 2k − 1 (because a− b ≤ −1 given that a < b). Since f(a) and f(b) are

within 2k +1 of each other and every sequence of length at most 2k +1 is contained in some node

along the path, the path contains some node whose sequence has f(a) > f(b) and violates the

precedence constraint. �

The above lemma shows that removing nodes that violate precedence constraints is not only nec-

essary, but also sufficient for eliminating all source-sink paths that violate precedence constraints.

This yields the following procedure: in the presence of precedence constraints where a < b and we

require f(a) < f(b), remove all nodes that violate the precedence constraints, and solve the problem

on the resulting network.

Case II: The precedence constraint requires that f(a) > f(b).

Since the earliest position that b can land is b− k, the earliest time that a can land give that it

lands after b is b− k + 1. Similarly, the latest position that a can land is a + k, meaning that the

latest time that b can land is a+k− 1. Any node that contains a sequence that violates these two

constraints, i.e., has a in a position that is less than b−k or has b in a position greater than a+k

should be removed from the network since they cannot belong to a feasible path. We refer to the

network obtained after removing such nodes as the position-constrained network.

Lemma 2. Suppose there exists a path in the position-constrained network such that f(a) < f(b).

Then, the path contains at least one node such that a appears before b in that node’s subsequence.

Proof. In the position-constrained network, b−k +1≤ f(a)≤ a+k and b−k ≤ f(b)≤ a+k− 1.

So f(b)− f(a)≤ a− b+2k− 2≤ 2k− 3 (because a− b≤−1 given that a < b). Since f(a) and f(b)

are within 2k + 1 of each other and every sequence of length at most 2k + 1 is contained in some

node along the path, the path contains some node whose sequence has f(a) < f(b) and violates the

precedence constraint. �

This yields the following procedure: in the presence of precedence constraints where a < b and we

require f(a) > f(b), we first remove all nodes where the position constraint is violated, giving the

position-constrained network. Then, we remove all nodes that violate the precedence constraints,

and solve the problem on the resulting network.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 9

T (i) Arrival time of the final aircraft of node i.

T ∗(i) Arrival time of the final aircraft of node i in an optimal solution.

e(i) Earliest possible arrival time of the final aircraft of node i.

ℓ(i) Latest possible arrival time of the final aircraft of node i.

δi(j) Minimum separation between the final aircraft of node i (leading) and node j (trailing).

P (i) Set of nodes that are predecessors of node i, i.e., there exists an arc from every node
in P (i) to node i. (Note that P (source) = ∅.)

Table 2 Notation used in the algorithm for merging departure queues with an arrival stream.

3.2. Asymmetric shift constraints

One extension that is easily handled using the described framework is that of asymmetric shift

constraints, i.e., the number of allowed forward shifts is different from the number of backward

shifts. Let the maximum forward and backward shift parameters be denoted by k+ and k− respec-

tively. In order to model the asymmetric case, we first create a CPS network with parameter

k = max{k+, k−}. Then, we remove all nodes that violate the position shift constraints, and prune

the network as before. For example, suppose aircraft 4 in the example in Section 3 has k+ = 1

and k− = 0. The CPS network is created as before in Figure 1 using k = 1. Then, nodes (1–2–4),

(1–3–4), (2–1–4), and (2–3–4) are eliminated from Stage 3 (since aircraft 4 is not allowed to land

in position 3) and the network is pruned as before.

4. Minimizing the makespan

We now present an algorithm to minimize makespan using dynamic programming on the described

CPS network. Each arc (i, j) in the network is associated with a distance equal to the minimum

separation between the final aircraft of node i and that of node j, if they were to takeoff consec-

utively and in that order. Arcs that lead into the sink and out of the source have zero distance

associated with them. The notation used in our algorithm is listed in Table 2.

4.1. Dynamic programming recursion

Lemma 3. The values of T ∗(·) can be computed by the following dynamic programming recursion.

T ∗(j) = max

{

e(j), min
i∈P (j): T∗(i)≤ℓ(i)

(T ∗(i) + δi(j))

}

(1)

Proof. T ∗(j) ≥ e(j) since a sequence cannot start before the earliest arrival time of the final

aircraft in the sequence.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

If T ∗(i) > ℓ(i) for some predecessor node i, it implies that the sequence of node i cannot possibly

start within the allowable time window [e(i), ℓ(i)], and hence this node cannot be part of any

feasible source-sink path sequence. Therefore, all nodes with T ∗(i) > ℓ(i) can be ignored while

finding the arrival time of node i.

It is not possible for T ∗(j) to be strictly less than T ∗(i) + δi(j) for all predecessors i since

that would violate the separation requirement between the final aircraft of i and j. Therefore,

T ∗(j) ≥ T ∗(h) + δh(j) for at least one of the predecessors h ∈ P (j) : T ∗(h) ≤ ℓ(h). Since T ∗(j) ≥

T ∗(h) + δh(j) for at least one feasible predecessor h, it is certainly greater than the minimum of

T ∗(i) + δi(j) over all feasible predecessors i.

We have shown so far that T ∗(j)≥ e(j) and T ∗(j)≥mini∈P (j): T∗(i)≤ℓ(i) (T
∗(i) + δi(j)). To com-

plete the proof, we have to show that at least one of the above inequalities holds as an equality so

that T ∗(j) = max
{

e(j),mini∈P (j): T∗(i)≤ℓ(i) (T
∗(i) + δi(j))

}

.

We now prove the rest by contradiction:

Suppose T ∗(j) > e(j) and T ∗(j) > mini∈P (j): T∗(i)≤ℓ(i) (T
∗(i) + δi(j)). Then, it is possible to reduce

the value of T ∗(j) by some sufficiently small quantity while still maintaining a feasible solution,

which contradicts the optimality of T ∗(j).

Therefore, T ∗(j)≥ e(j) and T ∗(j)≥mini∈P (j): T∗(i)≤ℓ(i) (T
∗(i) + δi(j)) and at least one of the two

inequalities holds as an equality. �

The minimum makespan solution is obtained by applying the boundary condition T ∗(·) =

e(·) for all nodes in stage 1, and successively computing T ∗(·) for each node in stage 2 and

above by traversing the network from from left to right. The minimum makespan is the lowest

value of T ∗(·) among all nodes in stage n. The optimal sequence corresponding to the minimum

makespan solution is obtained by keeping track of the predecessor of node i in the sequence as

argmini∈P (j): T∗(i)≤ℓ(i) {T
∗(i) + δi(j)}, breaking ties arbitrarily. The pseudocode for the algorithm

is given in Figure 2.

This algorithm can also be used for checking whether or not a feasible solution exists: initially

set T (j) =∞ for all nodes in stage n, then solve for the minimum makespan. If T ∗(j) =∞ for all

nodes j in stage n, then no feasible solution exists, otherwise the algorithm has found a solution.

4.2. Complexity

Proposition 1. The complexity of the algorithm for finding the minimum makespan for n aircraft

and maximum position shift of k is O(n(2k +1)(2k+2)).

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 11

procedure FindMakespan:

begin

Set T ∗(·) to e(·) for all nodes in stage 1, and ∞ for all nodesin stage n;

for each p = 2, · · · , n do

for each node j in stage p do

T ∗(j) = max
˘

e(j),mini∈P (j): T∗(i)≤ℓ(i) (T ∗(i) + δi(j))
¯

;

pred(j) = argmini∈P (j): T∗(i)≤ℓ(i) (T ∗(i)+ δi(j));

end

Figure 2 Algorithm for computing the minimum makespan.

Proof. The nodes in each stage of the network are generated by all combinations of length 2k+1,

where each position in the sequence has at most 2k + 1 possible aircraft. The number of nodes in

each stage is therefore O((2k+1)(2k+1)); since there are n stages, the total number of nodes in the

network is O(n(2k+1)(2k+1)). Each node can have at most 2k+1 predecessors since the sequence of

a node differs from the sequence of its predecessor only in the first and last position. so the number

of arcs is O(n(2k +1)(2k+2)). Pruning the network requires looking at each arc at most twice—once

during the forward pass and once during the backward pass. The dynamic programming recursion

examines each arc at most once, so total complexity is equal to the number of arcs in the network,

which is O(n(2k +1)(2k+2)). �

In the presence of precedence constraints, each node would require O(k) work since we would

need to check if precedence is violated between the final aircraft in the node and each of the other

aircraft in the sub-sequence of the node. The complexity for preprocessing the entire network would

thus be the number of nodes times k, which is the same as the running time of the pruning and

dynamic programming recursion.

Although the complexity is exponential in k, it is of little consequence since k is typically small

(at most 3 in practice) (de Neufville and Odoni 2003). Therefore, the complexity of the algorithm

is essentially linear in n.

5. Other objective functions

5.1. Minimizing the maximum delay over all aircraft

Let D be an upper bound on the maximum delay over all aircraft (a trivial upper bound on the

maximum delay is obtained by n times the largest value of minimum required spacing, or the

largest value over all aircraft of ℓ(·)− e(·)). Alternatively, this upper bound can be computed from

the optimal sequence of the minimum makespan solution (assuming a feasible solution exists). We

will now assume that the earliest times and separations are all integers (or equivalently floating

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

12 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

point numbers to some fixed precision), resulting in D also being an integer. The solution that

minimizes maximum delay can be calculated by iteratively performing a binary search on the

interval {0,1, · · · ,D}, iteratively using the minimum makespan algorithm to check for feasibility.

The complexity of the algorithm is O(logD) multiplied by the complexity of the minimum

makespan algorithm, which equals O(n(2k +1)(2k+2) logD).

5.2. Minimizing the sum of delay over all aircraft

We now propose an algorithm that computes the minimum average delay solution within the CPS

framework, and can handle all previously mentioned constraints except the earliest/latest time

window constraints.

Working with the same CPS network as for the minimum makespan scenario, each node i in

stage p is associated with a function θi(p) = t1 + t2 + · · ·+ tp−1 +(n−p+1)tp, where tq is the arrival

time of the qth aircraft in a sequence of aircraft along some path from the source to node i (note

that this is different from aircaft q, which is the qth aircraft in the FCFS sequence). For each node

j in stage n, we wish to minimize θj(n) = t1 + t2 · · ·+ tn−1 + tn.

Let θ∗(·) be the value of θ(·) in an optimal solution, and t∗q be the corresponding values of t. In

order to compute the value of θ∗
j (n), we need to find the minimum value of θj(n) over all paths that

lead to node j. In order to solve for the value of θ∗(·) by dynamic programming, we first establish

the following properties.

Proposition 2. In an optimal solution, each aircraft is separated from its predecessor by exactly

the minimum required separation between the two aircraft.

The proof is by contradiction: if a feasible solution exists such that the proposition does not hold,

it is possible to achieve a strictly lower value of total delay by moving all aircraft ahead until the

proposition holds. Note that this property holds only if there are no time window constraints.

Proposition 3. All paths from the source to a given node in the CPS network contain the same

set of aircraft.

Proof. Given a node i in stage p of the network, let V −(i) be the set of all nodes (other than i)

that belong to all paths from the source to node i, and let V +(i) be the set of all nodes (other than

node i) that belong to all paths from node i to the sink. Let A−(i) and A+(i) be the set of final

aircraft of nodes in V −(i) and V +(i) respectively. Due to Lemma 1, A−(i) and A+(i) cannot have

any aircraft in common (otherwise, there exists a source-sink path in which an aircraft repeats,

which is not possible). Further, A−(i) has at least (p− 1) aircraft; otherwise, there exists a path

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 13

from the source to i in which an aircraft repeats. Similarly, A+(i) has at least (n− p) elements.

Since the sum of elements in A−(i) and A+(i) exactly equals n − 1 (all aircraft except the final

aircraft of node i), A−(i) and A+(i) have exactly (p − 1) and (n − p) aircraft respectively. Since

every path from the source to node i corresponds to a path of (p − 1) aircraft, all paths must

contain the same set of aircraft, i.e., the elements of A−(i). �

Consider a path in the network ending in node j belonging to stage p, in which node i is the

penultimate node. Then, for arc (i, j),

θj(p) = t1 + t2 + · · ·+ tp−1 +(n− p+1)tp

≥ t1 + t2 + · · ·+ tp−1 +(n− p+1)(tp−1 + δi(j))
= t1 + t2 + · · ·+ tp−2 +(n− p+2)tp−1 +(n− p+1)δi(j)
= θi(p− 1) + (n− p+1)δi(j).

Due to Proposition 3, all paths to node j contain the same set of aircraft. Thus, for all nodes

i that precede j, the function θi(p − 1) = t1 + t2 + · · · + tp−2 + (n − p + 1)tp−1 is calculated over

the same set of aircraft. Further, the (p − 1)th node in all paths ending in node j is the same

(by construction, it is the second-from-final aircraft of node j). Therefore, given a set of aircraft

landing times, the associated functions θi(p) of all nodes i that precede j are equal in value; they

differ only in the order of the terms t1, · · · , tp−2.

The dynamic programming recursion can hence be written as follows.

θ∗
j (s) = min

t1,··· ,tp−1

t1 + t2 + · · ·+ tp−2 +(n− p+2)tp−1 +(n− p+1)δi(j)

= min
i∈P (j)

θ∗
i (p− 1) + (n− p+1)δi(j)

Solving for θ∗(·) for all nodes in stage n is equivalent to solving the following shortest path

problem: assign each arc (i, j) in the CPS network from stage p − 1 to stage p a “distance” of

(n− p+1)δi(j), and solve for the shortest source-sink path in the network.

The proof of correctness follows from properties of shortest paths and is omitted here. The

complexity of solving a shortest path on this network is linear in the number of arcs, and is thus

the same as that for minimizing makespan, which is O(n(2k +1)(2k+2)).

6. Discrete-time models

While the framework proposed in Section 3 can solve the versions of the runway scheduling problem

considered so far, it is not immediately applicable to complex objectives such as the minimization of

the sum of arbitrary aircraft-dependent costs, or to situations in which the separation requirements

do not satisfy the triangle inequality (for example, for mixed arrival-departure operations on a

runway). In this section, we present discrete-time models for solving these extensions. We assume

that all input data (such as separations, time windows, etc.) are integer multiples of some time

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

14 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

period. For instance, an interval of about 5 seconds is appropriate in the context of arrival scheduling

given that the separations are of the order of a minute and it is difficult to control aircraft positions

and landing times to a very high degree of accuracy. We then create a copy of the CPS network

for each time period of interest and solve the problems using dynamic programming on this the

discrete-time CPS network. Since the number of nodes and arcs in the network now depends

on the number of time periods, the algorithms presented in this section have pseudo-polynomial

complexity (polynomial in the number of time periods).

6.1. Minimizing the sum of arbitrary aircraft-dependent cost functions

We now describe a pseudo-polynomial algorithm for the CPS scheduling problem with arbitrary

cost structures, assuming that time can be discretized to some appropriately small interval. For

instance, an interval of about 5 seconds is appropriate in the context of arrival scheduling given

that the separations are of the order of a minute and it is difficult to control aircraft positions and

landing times to a very high degree of accuracy. It is assumed that all inputs to the problem (time

windows, separation, etc.) are integer multiples of the interval. We consider scenarios in which

each aircraft has its own delay cost function, and the objective is to determine the schedule that

minimizes the sum of these costs.

Let c(a, ta) denote the cost of landing aircraft a at time ta. We wish to minimize
∑n

a=1 c(a, ta).

Without loss of generality, we can assume that c(·) is positive (if not, we can add a constant to all

values of c(·) to ensure that it is positive).

6.1.1. Dynamic programming algorithm Given the CPS network as defined in earlier

sections, let T (i) denote the set of feasible times that the final aircraft of node i can land (generated

from the time-window constraints). Define J(i, t) to be the cost of a feasible schedule generated

by a sequence of nodes starting at stage 1 and ending at node i, given that the final aircraft of

node i lands at time t. Let J∗(i, t) represent the minimum value of J(i, t) over all feasible schedules

ending in node i at time t. We then wish to minimize J∗(i, t) over all nodes in the nth stage of the

network and over all feasible time periods t∈ T (i).

The optimal schedule is generated by the following dynamic programming recursion, where fin(i)

denotes the final aircraft of node i. If fin(j) lands at time t′′, then

J∗(j, t′′) = min
i∈P (j),

t′∈T (i):(t′′≥t′+δi(j))

{J∗(i, t′) + c(fin(j), t′′)} (2)

The following boundary condition applies to all nodes i in Stage 1.

J∗(i, t) = c(fin(i), t) ∀ t∈ T (i) (3)

The next section describes the network representation of the above recursion.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 15

source (i, t1)

(j, t)2

Layer t

Layer t2

1

sink

Layer tmax

Layer 0

Figure 3 Schematic description of discrete-time network for minimizing the weighted sum of arrival times.

6.1.2. Network representation of the DP The solution to the recursion is equivalent to a

shortest path problem on a network that is constructed as follows. We begin by creating a copy of

the original CPS network for each time interval, henceforth referred to as a layer of the network,

as shown in Figure 3. Each node in this network is characterized by the pair (i, t), representing

node i in the original CPS network belonging to layer t, i.e., the “state” corresponding to the final

aircraft of node i landing at time t. Note that node (i, t) exists in the network only for t ∈ T (i).

An arc exists from node (i, t1) to (j, t2) only if arc (i, j) exists in the original CPS network and

(t2 − t1) ≥ δi(j), the minimum spacing between the final aircraft of nodes i and j. Finally, the

network contains arcs from the source to every node in stage 1, and an arc from every node in

stage n to the sink. Thus, a source-sink path, source→ (i1, t1)→ · · · → (in, tn)→sink, represents a

solution in which the final aircraft of node i1 arrives at time t1, that of node i2 arrives at time t2,

and so on. We refer to this network as the discrete-time CPS network.

Lemma 4. A schedule that is feasible (to CPS constraints, precedence requirements, time-window

restrictions, and separation requirements that satisfy the triangle inequality) exists if and only if

there exists a source-sink path in the discrete-time modified network.

The proof is omitted here since the more general case of when the separations may violate the

triangle inequality is proved in Section 6.2.

As a consequence of the above lemma, the problem can be solved as a shortest path problem

on the network with appropriately weighted arcs. Each arc entering node (i, t) is weighted by the

cost c(fin(i), t) of the final aircraft of node i arriving at time t; all sink-adjacent arcs are assigned

a cost of zero. The length of the shortest path from the source to node (i, t) equals J∗(i, t), and

the length of the shortest path from the source to the sink assuming that such a path exists is the

minimum cost solution. The absence of a source-sink path proves infeasibility of the problem.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

6.1.3. Bounding the set of feasible arrival times Since the computational efficiency of

a shortest path algorithm is determined by the number of nodes/arcs in the network, it is critical

to be able to bound the total number of time intervals and the set of feasible times T (i) for each

node. We now briefly describe an approach to obtaining good bounds in the absence of tight time-

window constraints. From the makespan-minimization algorithm presented in Section 4, we can

calculate for each node the earliest time that the final aircraft of that node can land, which gives

a bound on the set of feasible landing times that is necessarily tighter than e(·) determined by the

time-window constraint. However, obtaining a tighter bound than ℓ(·) on the latest arrival time is

slightly harder.

We first observe that in any optimal solution to the problem, an aircraft must either land at its

earliest time e(·), or the separation between an aircraft and it predecessor is upper bounded by the

largest required separation between all pairs of aircraft (denoted by δmax). (Otherwise, since c(·)

is positive, a better solution may be obtained by slightly advancing the aircraft, which contradicts

optimality.) Let λ(i) be the latest time that fin(i) lands, given that it must land either at e(·) or

is separated by δmax from its predecessor. Then, λ(·) is calculated using the following recursion.

λ(j) = max

{

e(j), max
i∈P (j)

(λ(i) + δmax)

}

(4)

The proof of correctness of this recursion follows from the fact that λ(j)≥ e(j) and λ(j)≥ λ(i) +

δmax for all i∈P (j), and one of these inequalities must hold as an equality in an optimal solution.

The lower and upper bounds obtained above (equivalent to a shortest and longest path calcula-

tion on the original CPS network) are are then intersected with the time-window constraints for

each aircraft to obtain T (·).

6.1.4. Complexity Let L denote an upper bound on the number of layers (time intervals)

during which an aircraft may land, which is the maximum cardinality of T (i) over all nodes

i (and is bounded above by ℓ(i) − e(i)). The number of nodes in the discrete-time network is

O(nL(2k + 1)(2k+1)). Each node in this network could have arcs leading into O(L(2k + 1)) other

nodes, since a node in the original CPS network can lead into up to 2k+1 nodes, each of which now

has up to L copies. Thus, the number of arcs in the discrete time network is O(nL2(2k +1)(2k+2)),

which is the complexity of solving the shortest path problem on the network. This algorithm has

been shown to be amenable to real-time implementation in computational experiments conducted

by Lee (2008).

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 17

source

sink

Layer t’

Layer t"

(i, t’, d’) (i, t’, di
max)

, d") (j, t", dj
max)

(i, t’, di
min)

(j, t", dj
min)

(j, t"

Figure 4 Discrete-time CPS network when the triangle inequality is violated.

6.2. Scenarios in which the triangle inequality is violated

We now describe modifications to the algorithm in order to handle cases where the triangle inequal-

ity is violated (for instance, this situation occurs when simultaneously scheduling both arrivals and

departures on a single runway). The key idea is to expand the state space to keep track of spacings

that may violate triangle inequality.

In the modified network, each node represents a 3-tuple (i, t, d), corresponding to the final air-

craft of node i of the original CPS network arriving/departing at time t such that the separation

between fin(i) and its predecessor is greater than or equal to d intervals (this will be made more

precise shortly). Note that the sequence of aircraft in each node contains at least 3 aircraft (2k+1),

therefore the aircraft immediately preceding fin(i) is not ambiguous and comprises of the penul-

timate aircraft of node i. Nodes in stage 1 represent the 3-tuple (i, t,0) since they do not have a

predecessor aircraft. A schematic description of the modified network is shown in Figure 4.

A node (i, t, d) exists if:

1. Node i exists in the original CPS network,

2. t∈ T (i), and

3. dmin
i ≤ d≤ dmax

i , as computed below.

The parameter dmin
i equals the minimum separation required between the penultimate and final

aircraft of node i (say, aircraft a and b respectively). The parameter dmax
i is defined to be the

minimum separation that is required between a and b in order to ensure that any aircraft that

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

18 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

trails b is sufficiently separated from a as long as the minimum separation between b and that

aircraft is maintained. More formally,

dmin
i = δab

dmax
i = max

{

max
j:i∈P (j)

{

δa,fin(j) − δb,fin(j)

}

, dmin
i

}

Example 1. Given node i in the CPS network with penultimate and final aircraft a and b respec-

tively, let the minimum required separation between a and b be 60 seconds; then, dmin
i = 60 seconds.

Suppose there exists a node j with final aircraft c that such that arc (i, j) exists in the CPS net-

work, and δac = 135 seconds and δbc = 70 seconds. Then, the triangle inequality for the triplet of

aircraft (a, b, c) is violated. However, if aircraft a and b were separated by any interval greater than

or equal to 65 seconds, then the minimum spacing between a and c is satisfied as long as we ensure

the minimum spacing between b and c. Therefore, in this case, dmax
i = 65 seconds.

An arc exists between (i, t′, d′) and (j, t′′, d′′) if:

1. Arc (i, j) exists in the original CPS network,

2. (t′′ − t′)≥ dmin
j ,

3. d′′ = min{(t′′ − t′), dmax
j }, and

4. d′ + t′′ − t′ is greater than or equal to the separation between the penultimate aircraft of i

and the final aircraft of j. (Note that all predecessors of node j have the same penultimate aircraft

since the aircraft subsequence of node j has at least three aircraft.)

Finally, adding arcs from the source to each node in Stage 1 and from each node in Stage n to the

sink completes the network.

Lemma 5. Every source-sink path in the discrete-time triangle-inequality modified network repre-

sents a feasible schedule (one that satisfies CPS constraints, precedence requirements, time-window

restrictions, and separation requirements).

Proof. Consider a path defined by a sequence of nodes (v1, t1, d1), (v2, t2, d2), · · · , (vn, tn, dn) and

arcs between successive nodes. By the properties of the CPS network, the sequence of nodes

v1, v2, · · · , vn satisfies CPS and time-window constraints. Also, by construction of T (·), every ti

explicitly obeys time-window restrictions. Therefore, it only remains to be shown that minimum

separations are satisfied in any source-sink path.

The separation between fin(vi) and fin(vi+1) is satisfied since an arc from node (vi, ti, di) to

(vi+1, ti+1, di+1) exists only if (ti+1 − ti) ≥ dmin
vi+1

= δvi
(vi+1). We now show that the separation

between fin(vi−1) and fin(vi+1) is satisfied. By construction,

di + ti+1 − ti ≥ δfin(vi−1),fin(vi+1) (5)

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 19

Since di = min{ti − ti−1, d
max
vi

} (also by construction), we get di ≤ ti − ti−1. Substituting this back

into Equation 5 gives ti+1 − ti−1 ≥ δfin(vi−1),fin(vi+1), which is feasible. �

Lemma 6. An optimal schedule (one that minimizes sum of positive separable costs for each air-

craft subject to CPS constraints, precedence requirements, time window restrictions, and separation

requirements that may violate the triangle inequality) is represented by a source-sink path in the

discrete-time triangle-inequality modified network.

Proof. Let an optimal solution to the problem be represented by the set of pairs

{(i1, t1), (i2, t2), · · · , (in−1, tn−1), (in, tn)}, where (iq, tq) represents aircraft iq arriving/departing at

time tq. Due to earlier proved properties of the basic CPS network (in Section 3), there exists a

unique path in the original CPS network corresponding to this sequence. Let the sequence of nodes

be denoted by v1, v2, · · · , vn belonging to stages 1 through n respectively.

Since the given solution is optimal, each aircraft lands either at the earliest time, or its separation

from the previous aircraft is lower bounded by the minimum separation between the aircraft pair

and upper bounded by the maximum separation between all aircraft pairs (otherwise, it is possible

to reduce the solution cost by moving the aircraft ahead by one time interval). Thus, the given

arrival time tq must belong to the interval T (vq) as computed in Section 6.1.3, and there exists at

least one copy of node vq in layer tq. Since (tq − tq−1) ≥ dmin
vq

, each aircraft can be assigned to a

node (vq, tq, dq), where dq ≥ dmin
vq

and dq = min{(tq − tq−1), d
max
vq

}.

To complete the proof, we use an inductive argument to show that there exist arcs between

these nodes, forming a source-sink path in the discrete-time triangle-inequality modified network.

Consider three nodes (vq−1, tq−1, dq−1), (vq, tq, dq), and (vq+1, tq+1, dq+1) corresponding to arrival

events (iq−1, tq−1), (iq, tq), and (iq+1, tq+1) respectively We show that if an arc exists between

(vq−1, tq−1, dq−1) and (vq, tq, dq), then the nodes (vq, tq, dq) and (vq+1, tq+1, dq+1) satisfy the four

requirements for an arc to exist between them.

1. The arc (vq, vq+1) exists in the original CPS network, since the nodes were chosen such that

they form a source-sink path.

2. (tq+1 − tq)≥ dmin
vq+1

holds true since (tq+1 − tq)≥ δvq(vq+1) = dmin
vq+1

.

3. dq+1 = min{(tq+1 − tq), d
max
vq+1

} by construction.

4. We need to prove that dq + tq+1 − tq ≥ δiq−1,iq+1
. Since there exists an arc between

(vq−1, tq−1, dq−1) and (vq, tq, dq), dq = min{(tq − tq−1), d
max
vq

}. There are two possible cases:

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

20 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Case 1: dq = (tq − tq−1). In this case,
dq + tq+1 − tq = tq − tq−1 + tq+1 − tq

= tq+1 − tq−1

≥ δiq−1,iq+1
(due to solution feasibility.)

Case 2: dq = dmax
vq

. In this case,

dq + tq+1 − tq = dmax
vq

+ tq+1 − tq

≥ δiq−1,iq+1
− δiq,iq+1

+ tq+1 − tq (by definition of dmax)
≥ δiq−1,iq+1

− δiq,iq+1
+ δiq,iq+1

(due to solution feasibility)
= δiq−1,iq+1

The arc from (v1, t1, d1) to (v2, t2, d2) (i.e., an arc from Stage 1 to Stage 2) satisfies the first three

requirements by construction and therefore exists in the network. By induction, this implies that all

arcs from (vq, tq, dq) and (vq+1, tq+1, dq+1) for q ∈ {2, · · · , (n−1)} exist. Since all source-adjacent and

sink-adjacent arcs exist by construction, we have identified a sequence of nodes and arcs forming

a source-sink path in the network that represents the given optimal solution. �

Lemmas 5 and 6 together imply that the minimizing the schedule cost over all paths in the

constructed network will yield an optimal schedule. The problem can be solved as a shortest path

computation by weighting the arcs of the network as follows: each arc entering node (i, t, d) is

assigned a cost c(i, t), and arcs to the sink are assigned zero cost.

6.3. Complexity

The discrete-time triangle-inequality modified network has O(n(2k + 1)(2k+1)Lδmax) nodes, where

L is the maximum cardinality of T (i) over all nodes i, (which is bounded by (ℓ(i)− e(i)), and δmax

is the maximum violation of the triangle inequality, which is bounded by the largest minimum

separation among all pairs of aircraft. Each node (v, t, d) can lead into up to (2k+1)L other nodes

(v′, t′, d′) since v has at most 2k + 1 successors, and there are up to L values of t′. (Note that the

number of values of d′ does not enter the complexity since d′ is defined by the values of t and

t′.). Thus, the complexity of the algorithm is O(nL2δmax(2k +1)(2k+2)). Thus, accommodating the

triangle inequality only adds a complexity of δmax to an equivalent problem in which the separation

requirements obey the triangle inequality.

Remark 1. If the triangle inequality is obeyed, then dmin
i = dmax

i = δab. In this case, the modified

network (Figure 4) is equivalent to the discrete-time CPS network when the triangle inequality is

satisfied (Figure 3). The proof of Lemma 5 therefore also proves Lemma 4.

7. Simultaneous scheduling of departures and arrivals

We now consider the scheduling problem when arrivals and departures share a common runway.

The separation requirements between arrival and departure aircraft is shown in Table 1. The

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 21

triangle inequality is violated only in the following cases: (i) Heavy arrival followed by any departure

followed by Large arrival (violated by 22 seconds), and (ii) Heavy arrival followed by any departure

followed by small arrival (violated by 61 seconds).

The quadrilateral and all higher polygon inequalities are valid. One important observation here

is that the triangle inequality is violated only by two arrivals separated by a departure. The

implication is that it is sufficient to ensure that the triangle inequality is satisfied between pairs

of arrival aircraft in order to ensure that it is satisfied across the entire sequence, a property that

will be exploited in one of our algorithms.

7.1. Coupled arrivals and departure position constraints

The first possible scenario for scheduling mixed operations on a single runway is that the FCFS

sequence consists of both arrival and departure aircraft, and every aircraft has a CPS constraint

with respect to its FCFS sequence position. The challenge here is that the triangle inequality is

violated when departures and arrivals interact.

Following the algorithm described in Section 6.2, the problem can be solved with a complexity

of O(nL2δmax(2k + 1)(2k+2)). In this case, δmax is 61 seconds (divided by an appropriate time

discretization, if applicable). Further, since only 6 triplets of aircraft out of a possible 216 can lead

to violations of the triangle inequality, we expect that only a small fraction of nodes will require

the triangle-inequality modification, leading to significantly reduced complexity in practice (the

exact reduction in complexity depends on the specific instance being solved).

7.2. Optimal merging of arrivals and departures on a single runway with independent

position shift constraints

In this section, we study a more realistic scenario of arrival-departure tradeoffs on a single runway

that is fed by several departure queues (each following FCFS) and one arrival stream (with CPS

constraints). This is a good representation of current airport operations, in which aircraft queue

up in staging areas at the departure runway threshold for takeoff. Due to the narrow layout of the

taxiways, aircraft within the same departure queue cannot overtake each other, but position swaps

can occur between aircraft in different departure queues.

Arrivals are constrained as before by CPS, precedence, and time window constraints. Since depar-

tures are already in their respective queues, it is not necessary to consider earliest time restrictions

for the departures. In addition, we do not consider latest time restrictions either on departures,

thereby giving arrivals greater priority than departures (which can be delayed indefinitely in order

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

22 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

x The vector (x1, x2, · · · , xq) representing the number of aircraft that have departed from
each departure queue, i.e., x1 from the first queue, x2 from the second, etc.

x|r State of the departure queues given that the last departure was from the rth queue.

δi(j) Minimum separation between the final aircraft of nodes i (leading) and j (trailing).

µrs(x,y) The minimum possible makespan of a sequence of departures starting from departure
state x|r and ending in departure state y|s.

δi(x|r) The minimum required separation between the final aircraft of node i and the xth
r

aircraft of the rth queue (leading and trailing respectively).

δx|r(i) The minimum required separation between the xth
r aircraft of the rth queue and the

final aircraft of node i (leading and trailing respectively).

Table 3 Notation used in the algorithm for merging departure queues with an arrival stream.

to accommodate arrivals with latest time constraints). The departure queues are coupled via posi-

tion constraints (for example, aircraft a must be between the 10th and 15th aircraft to depart), as

well as precedence constraints (for example, aircraft a in the first queue must depart before aircraft

b in the second queue).

The problem can be stated as follows: Given an arrival sequence of nA aircaft with an associated

FCFS sequence, nD departure aircraft over q queues, each having nD
1 , nD

2 , · · · , nD
q aircraft, position

constraints for each departure aircraft, position shift constraints for the arrivals (with maximum

position shift k), precedence constraints between pairs of arriving aircraft or pairs of departing

aircraft, time-window restrictions on arriving aircraft, and separation requirements listed in Table

1, find a schedule (sequence of aircraft and associated runway operation times) that minimizes the

makespan while satisfying all the listed constraints.

The following section describes a strongly polynomial algorithm to solve this problem.

7.2.1. Algorithm description For simplicity of description we introduce a dummy arrival

aircraft that is preceded by all aircraft in the system (we will describe later how this is enforced).

The separation between the dummy aircraft and any other aircraft is then set to zero, forcing the

makespan of the solution with the dummy aircraft to equal that of the original problem.

The notation we use to describe our algorithm is listed in Table 3.

Calculating the makespan of departure subsequences. We pose the problem of finding the

values of µrs(x,y) as a shortest path problem on a network shown in Figure 5. The network has

a “state” node for every possible value of x|r; an arc exists from state node x|r to x′|s if xi = x′
i

for all i 6= s and x′
s = xs +1, i.e., if state x′ is reached from state x by one departure from queue s.

The arc from x|r to x′|s is assigned a “distance” equal to the minimum separation required when

the xth
r aircraft of queue r is followed by the x

′th
s aircraft of queue s.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 23

Departure queue s

1, . . . , x r −1, . . . , x s , . . . , x q)

(x1, . . . , x r , . . . , x s , . . . , x q)

(x1, . . . , x r +1, . . . , x s , . . . , x q)

(x1, . . . , x r , . . . , x s +1, . . . , x q)

2(n , n , . . . , nq)
D D
1

D

(0, . . . , 1, . . . , 0, . . . 0)

Departure queue r

(x1, . . . , x r −1, . . . , x s , . . . , x q)

(x1, . . . , x r , . . . , x s , . . . , x q)

(x1, . . . , x r +1, . . . , x s , . . . , x q)

(x1, . . . , x r , . . . , x s +1, . . . , x q)

2(n , n , . . . , nq)
D D
1

D

(0, . . . , 0, . . . , 1, . . . 0)

(x

Figure 5 Shortest path network for computing the makespan of departure subsequences.

Nodes that violate the position constraints or the precedence constraints are then removed from

the network.

Example 2. If the 5th aircraft in queue r must be within the first 10 departures, the constraint

is imposed by removing all nodes x in which x1 +x2 + · · ·+xq > 10 and xr < 5.

Example 3. If the 4th aircraft in the rth queue must depart before 6th aircraft in the sth queue,

the constraint is imposed by removing all nodes x in which xr < 4 and xs ≥ 6. This network is

referred to as the departure position-constrained network.

Proposition 4. The makespan µrs(x,y) is given by the shortest path distance from node x|r and

ending in state y|s in the departure position-constrained network.

The proof follows from the fact that all feasible states and transitions between states of the

departure queue are explicitly enumerated, therefore every path represents a feasible sequence of

departures. Since the triangle inequality is not violated and departures have no earliest/latest time

constraints, the makespan is the sum of minimum separations between successive departures.

Calculating the makespan of combined arrivals and departures. We construct a CPS

network for the arrival sequence that satisfies CPS and precedence constraints for the arrival stream

as described in Section 3. We then associate each node i in the network with the function Ji(x),

denoting the arrival time of the final aircraft of node i given that it is immediately preceded by a

departure operation and the departure queue is in state x at the time of arrival. Finally, a dummy

node is created (with the dummy aircraft as its final aircraft), which is preceded by all nodes in Stage

nA of the arrival CPS network. The dummy node is associated with the state (nD
1 , nD

2 , · · · , nD
q),

corresponding to all departures having occurred before the dummy aircraft’s arrival.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

24 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Let J∗
i (x) denote the minimum value of Ji(x) over all feasible paths ending in node i given that

the departure queues are in state x. We wish to minimize J∗
i (nD

1 , nD
2 , · · · , nD

q) where i is the last

(dummy) node in the CPS network.

Given two nodes i and j such that the final aircraft of node i lands when the departure queue

is in state x and that of node j lands when the departure queue state is y, and the final aircraft

of nodes i and j are separated in the runway sequence only by departing aircraft, we denote the

minimum separation required between the final aircraft of node i and j by σij(x,y). There are

three components to this separation:

1. The separation between the final aircraft of node i and the first departure after state x, or

δi(x
′|r), where x′|r is obtained from state x by one additional departure from queue r

2. The separation between the last aircraft to depart (say, from queue s) given state y and the

final aircraft of node j, or δy|s(j)

3. The separations between departures starting at state x′|r and ending at state y|s, or µrs(x
′,y).

The value of σij(x,y) is calculated by minimizing over all values of r, s. As noted earlier, the

separations in Table 1 are such that the triangle inequality is violated only by two arrival aircraft

separated by a departure aircraft. Therefore, given δi(j) (the separation between the final aircraft

of nodes i and j), σij(x,y) can be corrected for triangle inequality violations, and is calculated as

follows.

σij(x,y) = max



















δi(j), min
r,s∈{1,··· ,q}

x′
t=xt ∀t6=r

x′
r=xr+1

δi(x
′|r) +µrs(x

′,y) + δy|s(j)



















(6)

Lemma 7. The values of J∗(·) are calculated by the following recursion

J∗
j (y) = max







e(j), min
i∈P (j)

0≤x<y:J∗
i (x)≤ℓ(i)

(J∗
i (x) +σij(x,y))







The proof of this recursion is omitted here since it is very similar to the proof of Lemma 3: J∗
j (y)

must exceed e(j) (due to time window constraints) as well as the minimum value of J∗
i (x)+σij(x,y)

(due to minimum separation requirements), and one of these inequalities must hold as an equality

due to optimality.

Applying the boundary condition to all nodes in Stage 1

J∗
i (x) = min

r,s∈{1,··· ,q}
µrs(0,x) (7)

and unrolling the recursion to compute J∗(·) for the last dummy aircraft with the departure queue

state x = (nD
1 , nD

2 , · · · , nD
q) yields the minimum makespan solution.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 25

7.2.2. Complexity

Lemma 8. The complexity of the proposed algorithm for optimally merging arrivals and depar-

tures on a single runway with independent position shift constraints to minimize the makespan is

O
(

(

γ2q5 +nA(2k +1)(2k+2)
)

(1 + nD

q
)2q

)

.

Calculating the values of µ and σ: The number of departure queue states is (1 + nD
1) × (1 +

nD
2)× · · · × (1 + nD

q), which is O
(

(1 + nD

q
)q

)

. The number of departure queue nodes is therefore

O
(

q(1 + nD

q
)q

)

. Since each node can lead to up to q nodes, corresponding to one additional depar-

ture from each queue, the number of arcs is O
(

q2(1 + nD

q
)q

)

. The complexity of computing the

shortest path from a given node to all other nodes in a directed acyclic graph equals the number of

arcs in the network (Cormen et al. 1990, p. 536). Therefore, the complexity of computing all values

of µab(x,y) is the number of arcs multiplied by the number of nodes, which is O
(

q3(1 + nD

q
)2q

)

.

In order to determine the values of σij(x,y) for all pairs of nodes i and j, it is sufficient to

compute it for every pair of arriving aircraft types corresponding to nodes i and j and is not

necessary for all pairs of nodes. Given the number of arrival aircraft types γ, the work done to

compute σ is O(γ2q2) times the work to calculate µ. Thus, the complexity of calculating all values

of σ is O
(

γ2q5(1 + nD

q
)2q

)

.

Calculating the values of J∗(·): The number of nodes in the CPS network is O
(

nA(2k +1)(2k+1)
)

.

Since there are O
(

(1 + nD

q
)q

)

possible states of the departure queue, the number of val-

ues of J∗ that need to be computed is O
(

(2k +1)(2k+1)(1 + nD

q
)q

)

. Each computation of J∗

is performed over O(2k + 1) predecessor nodes and over O((1 + nD

q
)q) preceding departure

queue states, which is O
(

(2k +1)(1 + nD

q
)q

)

times. Thus, the complexity of the recursion is

O
(

nA(2k +1)(2k+2)(1 + nD

q
)2q

)

.

Thus the complexity of the entire algorithm (required to calculate both J∗ and µ) is

O
(

(

γ2q5 +nA(2k +1)(2k+2)
)

(1 + nD

q
)2q

)

. �

While it is possible to extend our algorithm to other objectives (such as minimizing average delay)

using time discretization, the resulting algorithms are unlikely to be computationally tractable due

to the increased complexity.

7.3. Scheduling operations on multiple runways

The problem of scheduling operations on multiple runways is more complex, since it depends

greatly on the layout of the airport, and the relative orientation and geometry of the runways.

For example, depending on the distance between the centerlines, operations on parallel runways

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

26 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

may or may not need to be coordinated. In the case of runways with sufficient separation, runway

assignments are made based on the location of the gates, departure fixes, taxi routes, or the length

of runway required by an aircraft, etc. Any realistic runway assignment algorithm must take into

account factors like airline gate use agreements, departure fix assignments, missed approach paths,

and taxi routes, and is beyond the scope of this paper.

Many space-constrained airports operate in practice as single runway airports (depending on

maintenance schedules or wind direction). In addition, when the runway centerlines are closely

spaced, inter-arrival separations between the two runways are effectively equal to the single-runway

separation requirements, reducing the problem of scheduling operations (with runway assignments)

to that of single-runway scheduling (de Neufville and Odoni 2003, Lee 2008). For the intermediate

separations between parallel runways, and for intersecting runways, separation requirements vary

depending on the airport and the country. It is therefore difficult to draw any general conclu-

sions; however, if the separation requirements satisfy the quadrilateral inequality, the approaches

proposed in this paper can be used for scheduling operations on multiple runways.

8. A prototype implementation

This section presents a proof-of-concept implementation, describes its performance on various

realistic scenarios, and provides some insight into the nature of the minimum makespan solution.

8.1. Experimental design

The Denver ARTCC airspace is shown in Figure 6 (Left), with the jet routes that carry arrival

traffic. Arrivals at DEN are routed through one of eight arrival gates into the Denver TRACON

airspace (a 42 nmi radius around the airport). We consider a scenario in which all traffic from the

NE and NW gates land on a single runway and we wish to minimize the makespan of the arrival

sequence. The number of aircraft arriving through each of the gates was based on the historical

fraction of traffic through the different gates (Bureau of Transportation Statistics 2007). We used

a Poisson arrival process to generate the sequence of times at which aircraft enter the Denver

Air Route Traffic Control Center (ZDV); this assumption has been validated by (Willemain et al.

2004), who showed that the inter-arrivals times at airports before the final control actions are

executed are nearly Poisson. Given the times that aircraft enter ZDV, it is possible to compute the

FCFS order of arrivals at the runway, and the Estimated Times of Arrival (ETAs) at the airport

by using the average time spent by aircraft on the different jet routes. This data is shown for the

Northern arrivals in Figure 6 (Right).

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 27

Jet Time

Route within Gates

No. ZDV

J163 42.30 TOMSN
NW

Gates
(45% of
traffic)

J056 45.45 TOMSN
J170 45.00 RAMMS
J024 47.78 TOMSN
J136 45.00 RAMMS

J114 41.43 LANDR NE

Gates
(55% of
traffic)

J010 45.00 SAYGE
J157 45.00 LANDR
J060 45.00 SAYGE

Figure 6 [Left] Denver airspace, showing jet routes and arrival gates. [Right] Jet route traversal times and per-

centage of traffic for northern arrivals (Neuman and Erzberger 1991).

Step 1: Choose values for n∈ {10,20,30,40, or50}, k ∈ {1,2,3}, andr ∈ {24,40,60}.
Step 2: Construct a sequence of n arrival times at the boundary of ZDV with exponentially distributed inter-arrival

times with mean 1/r.
Step 3: Assign a jet route to each aircraft based on the fraction of traffic on each jet route.
Step 4: Construct the precedence relationships among aircraft within the same jet route.
Step 5: Compute the ETA for each aircraft using transit time within ZDV, and construct the FCFS sequence.
Step 6: Assign an earliest arrival time of ETA minus 1 minute, and a latest arrival time of ETA plus 60 minutes

to each aircraft.
Step 7: Assign an aircraft type to each aircraft based on the fleet mix (using either 40% Heavy, 40% Large, and

20% Small, or 45% Heavy, 45% Large, and 10% Small), and use this to determine the required spacing
between the aircraft.

Table 4 Method for construction of a problem instance in our experiments.

For each of the directions of arrival, we divided the traffic equally among all the corresponding

jet routes. As described in (Neuman and Erzberger 1991), it is necessary to maintain FCFS order

among aircraft in the same jet route. Therefore, we used the jet routes to determine the landing

precedence relationships. We set the earliest arrival time at 1 minute less than the ETA, since it is

often not economically worthwhile to move the landing time forward by more than a minute (Neu-

man and Erzberger 1991). We set the latest possible arrival time at 60 minutes after the ETA,

implying that we would not put an aircraft on hold for more than an hour.

Since the extent of the benefit of resequencing aircraft would depend on the relative fractions of

different sizes of aircraft, we considered two mixes of aircraft types: one a 40% Heavy, 40% Large,

and 20% Small mix, and the other a 45% Heavy, 45% Large, and 10% Small mix of aircraft, which

are practical since most major airports are likely to have more Heavy and Large aircraft operations

than Small ones.

The data for a single instance of our experiment was thus constructed as described in Table 4.

Given a FCFS sequence with precedence and minimum spacing requirements, we applied our

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

28 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 10 20 30 40 50

(F
C

F
S

-C
P

S
)/

F
C

F
S

Number of aircraft

Mix: 40% Heavy, 40% Large, 20% Small

rate=20 aircraft/hr, k=1
rate=20 aircraft/hr, k=2
rate=20 aircraft/hr, k=3
rate=40 aircraft/hr, k=1
rate=40 aircraft/hr, k=2
rate=40 aircraft/hr, k=3
rate=60 aircraft/hr, k=1
rate=60 aircraft/hr, k=2
rate=60 aircraft/hr, k=3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 10 20 30 40 50

(F
C

F
S

-C
P

S
)/

F
C

F
S

Number of aircraft

Mix: 45% Heavy, 45% Large, 10% Small

rate=20 aircraft/hr, k=1
rate=20 aircraft/hr, k=2
rate=20 aircraft/hr, k=3
rate=40 aircraft/hr, k=1
rate=40 aircraft/hr, k=2
rate=40 aircraft/hr, k=3
rate=60 aircraft/hr, k=1
rate=60 aircraft/hr, k=2
rate=60 aircraft/hr, k=3

Figure 7 Percentage improvement in makespan using CPS over FCFS when fleet mix is [left] 40% Heavy, 40%

Large, 20% Small, and [right] 45% Heavy, 45% Large, 10% Small

algorithm to minimize the makespan of the sequence, and compared the measured the difference

between the FCFS makespan and the CPS makespan. We performed Monte-Carlo simulations for

various values of n, k, and r, the results of which are presented in the next section.

8.2. Results

The improvement in makespan of the optimal CPS sequence over that of the FCFS sequence is

shown in Figure 7. Each data point in the figure is an average of 100 randomly generated instances.

The experiments demonstrate that there is greater benefit to rescheduling when the fleet mix

is more homogenous (40% Heavy, 40% Large, and 20% Small). Also, the benefit to using CPS is

greater when the arrival rate is greater (under lower arrival rates, the gaps in the FCFS sequence

are difficult to fill up because we allow an aircraft to advance up to a minute ahead of the ETA).

Finally, the experiments show that at rates of 40 aircraft per hour, which are achieved at most

major airports during peak demand, the benefit to rescheduling can be around 5% of the FCFS

makespan (or 3 minutes saved over a 1 hour period, equivalent to a throughput increase of 2-3

aircraft per hour), which is significant in today’s operating environment.

We next study the effect of minimizing makespan on the average delay, since it is conceivable that

makespan is minimized at the cost of total system delay which would not be a desirable outcome.

Figure 8 shows the dependence of gain in average delay over the gain in makespan. Each data point

is one instance of a scenario (10, 20, 30, 40, or 50 aircraft, an arrival rate of 20, 40, or 60 aircraft

per hour, and a fleet mix of 40% Heavy, 40% Large, and 20% Small, or 45% Heavy, 45% Large,

and 10% Small). The x-axis (makespan gain) is the difference between the makespan of the FCFS

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!) 29

-100

-50

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400A
ve

ra
ge

 d
el

ay
 g

ai
n

F
C

F
S

-C
P

S
 (

se
c.

 p
er

 a
irc

rf
t)

Makespan gain FCFS-CPS (sec.)

Effect of makespan minimization on average delay

k=1 observation
k=2 observation
k=3 observation

(k=1) Best fit a x^b: a= 0.31, b = 1.07
(k=2) Best fit a x^b: a= 0.25, b = 1.10
(k=3) Best fit a x^b: a= 0.22, b = 1.12

n k = 1 k = 2 k = 3

10 < 0.001 0.001 0.017

20 < 0.001 0.004 0.236

30 < 0.001 0.006 0.449

40 < 0.001 0.009 0.698

50 < 0.001 0.012 0.914

Figure 8 [Left] Comparison of gain in seconds of CPS over FCFS for average delay per aircraft vs makespan in

optimal makespan solution, and [Right] run times (sec.) for different values of n and k.

sequence and the makespan of the CPS sequence; the y-axis is the difference in average delay per

aircraft between the FCFS sequence and that of the optimal makespan CPS sequence. The main

observation is that a decrease in makespan is usually (and perhaps not surprisingly) accompanied

by a decrease in average delay, which is a desirable by-product of the algorithm.

The run times of our algorithm are shown in Table 8, each data point being the average over

600 instances (100 instances each of 3 different arrival rates and 2 fleet mixes). The program was

written in C and was run on a PC with a 2 GHz processor and 2 GB RAM.

9. Conclusion

We have developed a unified framework for runway scheduling under constrained position shifting,

and demonstrated that the problems of enhancing throughput, decreasing delay, and ensuring

fairness can be effectively modeled and solved in polynomial time (linearly in the number of aircraft)

while accounting for most operational constraints. We also extended the framework to include

more general cost functions (by using discrete-time models) and to mixed arrival and departure

operations, including the merging of multiple departure queues. The algorithms can be easily

implemented, and a prototype implementation for arrival scheduling demonstrates that the run-

times are sufficiently small to enable real-time deployment.

References

Anagnostakis, I., J.-P. Clarke, D. Böhme, U. Völckers. 2001. Runway operations planning and control:

Sequencing and scheduling. Journal of Aircraft 38(6).

Anagnostakis, I., H. R. Idris, J. P. Clarke, E. Feron, R. J. Hansman, A. R. Odoni, W. D. Hall. 2000. A

conceptual design of a departure planner decision aid. 3rd USA/Europe ATM R&D Seminar . Italy.

Balakrishnan and Chandran: Scheduling Runway Operations under Constrained Position Shifting

30 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Arkind, K. D. 2004. Requirements for a novel Terminal Area Capacity Enhancement Concept in 2022. AIAA

Guidance, Navigation and Control Conference and Exhibit . Providence, RI.

Atkins, S., C. Brinton. 2002. Concept description and development plan for the Surface Management System.

Journal of Air Traffic Control 44(1).

Beasley, J. E., M. Krishnamoorthy, Y. M. Sharaiha, D. Abramson. 2000. Scheduling aircraft landings - the

static case. Transportation Science 34(2) 180–197.

Boehme, D. 1994. Improved airport surface traffic management by planning, problems, concepts and a

solution TARMAC. Lecture Notes in Control and Information Sciences 198 .

Böhme, D. 2005. Tactical departure management with the Eurocontrol/ DLR DMAN. 6th USA/Europe

ATM R&D Seminar . Baltimore, MD.

Bureau of Transportation Statistics. 2007. http://www.bts.gov.

Carr, F. R. 2004. Robust decision-support tools for airport surface traffic. Ph.D. thesis, MIT.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest. 1990. Introduction to Algorithms . McGraw-Hill.

de Neufville, R., A. R. Odoni. 2003. Airport Systems: Planning, Design and Management . McGraw-Hill.

Dear, R. G. 1976. The dynamic scheduling of aircraft in the near terminal area. MIT Flight Transportation

Laboratory Report R76-9, MIT.

Dear, R. G., Y. S. Sherif. 1991. An algorithm for computer assisted sequencing and scheduling of terminal

area operations. Transportation Research, Part A, Policy and Practice 25 129–139.

Federal Aviation Administration. 2004. Airport capacity benchmark report.

Federal Aviation Administration. 2006. Air Traffic Control: Order 7110.65P. Incl. Change 1, effective 8/3/06.

Federal Aviation Administration. 2009. http://aspm.faa.gov/main/opsnet.asp.

Idris, H. R ., B. Delcaire, I. Anagnostakis, W. D. Hall, N. Pujet, E. Feron, R. J. Hansman, J.-P. Clarke, A. R.

Odoni. 1998. Identification of flow constraint and control points in departure operations at airport

systems. AIAA Guidance, Navigation and Control Conference. Boston, MA. AIAA-1998-4291 .

Lee, H. 2008. Tradeoff evaluation of scheduling algorithms for terminal-area air traffic control. Master’s

thesis, MIT.

Neuman, F., H. Erzberger. 1991. Analysis of delay reducing and fuel saving sequencing and spacing algorithms

for arrival spacing. NASA Technical Memorandum 103880.

Psaraftis, H. N. 1980. A dynamic programming approach for sequencing groups of identical jobs. Operations

Research 28 1347–1359.

Trivizas, D. A. 1998. Optimal scheduling with Maximum Position Shift (MPS) constraints: A runway

scheduling application. Journal of Navigation 51(2) 250–266.

Willemain, T. R., H. Fan, H. Ma. 2004. Statistical analysis of intervals between projected airport arrivals.

Rensselaer Polytechnic Institute DSES Technical Report No. 38-04-510.

