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1. In t roduc t ion  

In this paper we consider a singularly perturbed Markov Decision 
Process with the limiting average cost criterion. We assume that 
the underlying process is composed of n separate irreducible pro- 
cesses, and that the small perturbation is such that it “unites” 
these processes into a single irreducible process. This structure 
corresponds to the Markov chains admitting “strong and weak in- 
teractions” that arises in many applications, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas studied by a 
number of authors (e.g., see Delebecque and Quadrat [5], Phillips 
and Kokotovic [13], Coderch et al. [3], Kokotovic [lo], Schweitzer 
[15] and 1161, Rohlicek and Willsky [14], and Aldhaheri and Khalil zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[I]). Our results can also be viewed as a continuation of a line of 
research initiated by Schweitzer [I51 in 1968. 

In Section 2 we introduce the formulation and some results given 
by Bielecki and Fi1a.r [2] of the underlying control problem for the 
singula.rly perturbed MDP; the so-called “limit Markov Control 
Problem’’ (limit MCP). In particular these authors proved that 
an optimal solution to the perturbed MDP can be approximated 
by an optimal solution of the limit MCP for sufficiently small 
perturbation. 

In Sectioii 3 we demonstrate tha.t the above limit Markov Control 
Problem ca.n be solved by a suitably constructed linear program. 

In Section 4 we construct an algorithm for solving the limit Markov 
Control Problem based on the policy improvement method. Re- 
cently we learned that this algorithm is similar to one given by 
Pervoewnskii and Gaitsgori [12]. However, these authors did not 
explicitly consider the limit Markov Control Problem, and worked 
only in t,he smaller class of deterministic strategies. 

2. Definit ions and Prel iminar ies 

A disrret,e Markovian Decision Process (MDP, for short) is ob- 
serwd a.t t,iine points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = 0, I, 2 , .  . .. The state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspace is denoted 
by S = { 1 ~ 2 , .  . . , N}. With each state s E S we associate a finite 
action set  i l(.s) = {1 ,2 , .  . . ,ma}.’ At any time point t the sys- 
tem is in  o i i ~  of the states s and the controller chooses an action 
a t A(s ) ;  as a result the following occur: (i) an immediate reward, 
r ( s , a )  is accrued, and (ii) the process moves to a state s’ E S 
with transition proba.bility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(s ’  1 s ,a ) ,  where p(s’ I s , a )  2 0 and 
CStEsp(s’ I s ,a )  = 1. Henceforth, such an MDP will be synony- 
mous with the four-tuple: 

-. - 

r = (s, {A(.?); s E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi, w, a) ;  (9, a )  E s x ~ ( s ) ) ,  

(9, a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ’ )  E s x A ( s )  x S } ) .  
I 8, a); 

While a general control strategy in r may depend on the complete 
state-action histories of the process, in this paper we shall concern 
ourselves only with the class II of all stationary strategies. A 
stationary strategy A E II is the vector: 
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where s ( s , a )  is the probability that the controller chooses ac- 
tion a E A ( s )  in state s whenever that state is visited, of course, 
C . E A ( 6 , ~ ( ~ , a )  = 1 for all s. A strategy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK E II will be called de- 
terministic if ~ ( s ,  U )  E (0, l} for all (3, U )  E s x 4 8 ) .  

With every A E IT we shall associate the following quantities: 

.(A) = ( T ~ ( A ) ,  . . . , T N ( K ) ) ~ ,  the vector of single stage expected 
rewards in which ~ ~ ( n )  := CaEA(b) ~ ( s ,  a)..(., a )  for each s E S; a 

Markov matrix P ( K )  = ( p s S t ( r ) )  

p(s’ 1 s, a)x (s ,  U )  for all s, s’ E 5’; the generator of the correspond- 
ing Markov Chain, namely, the matrix G ( x )  := P ( x )  - I ;  the 
corresponding Cesaro-limit matriz (sometimes called the ergodic 
projection at infinity) defined by: 

N 
where  pal,(^) := CaEA(,) s,s’=17 

where Po(( , )  := I N ,  an N x N identity matrix; the overall per- 
formance indrx resulting from the use of A,  namely, J ( S , K )  := 

[ P x ( ~ ) r ( ~ ) ] s  for each initial state s E S.’ 

The “classical” limiting average Markov Decision problem is the 
optimization problem: Find x 0  E lI such that 

J(s,aO) = m;xJ(s,n) for dl s E S. 

A stra.tegy K O  satisfying the above will be called optimal. It is 
well known that there always exists an optimal deterministic pol- 
icy and there is a number of finite algorithms for its computation 
(e.g., Dena.rdo [ 6 ] ,  Derman (71, Kallenberg [8]). 

In this paper we shall assume that: 

( A l )  S = u:,,S; where Si n Sj = 8 if i # j, n > I, cards; = n;, 
nl + . . . -1 n, = N ,  

and 

(A2) p(s’ I s , a )  = 0 whenever s E Si and s‘ E Sj, i # j .  

Consequently we can think of r as being the “union” of n smaller 
MDP’s r;, defined on the state space Si, for each i = 1 , 2 , .  , . ,n,  
respectively. Note that if IIi is the space of stationary strategies 
in r;, then a strategy A E IT in I? can be written in the natu- 
ral way as K = (K’,  r2 , .  . . , +‘), where xi E I I i .  The probability 
transition mat,rix in ri corresponding to r i  is, of course, defined 
by: P;(ri) := ( p # + ~ ( x ~ ) ) # , ~ , ~ ~ , ,  and the generator G;(n’) and the 

Cesaro-limit P;(ri) matrices can be defined in a manner analogous 
to that in the original process I?. In addition, we assume that: 

‘Not? l.hat action z E A(s)  may not be the same as action i E A(s’)  if "'The nointion [u / ,~  will be tlsed to denote the s-th entry of a vector U 
s # SI. This simplification of notal.ion shoold not cause ambiguity. 

‘\Air RL’C iiitlrl,trtl III hlarc T~-I I [ I I I I I~  h r  pciitit iiix o i i t .  rt.fererire [ L O ]  t o  us. 
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(A3)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFor every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 , 2 , .  , . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn and for all xi  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII; the matrix P;(a') 
is a.n irreducible matrix. 

In vicsw of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(AB),  Pi,(r i )  is a matrix with identical rows, We shall 
deiio(.v a n y  row of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP%.(T') by pr (~1) .  

Remark 2.2 Note that as a result of (SPA) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Al)-(A9) the 
rank of P ~ ( T )  is 1 ,  which is strictly less than n, the rank of P'(r) .  
Con,sequently our perturbation is indeed a singular perturbation in 
the scnsc of Delebecque [4]. 

Under a.ssumpiion SPA the MDP re, E E [0, eo], defined as: 
r, = ( S , { A ( s ) ; s  E S } , { ~ ( s , a ) ; ( s , a )  E S x A(s)) , {p , (s ' l  3 , ~ ) ;  

Reiiiark 2.1 Note  th0.t for all K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 II we have the following rep- ( S , a l R ' )  s A ( 5 )  > 
resedation of P. ( T ) :  is called the singularly perturbed MDP. 

P - ( n )  = E M ( T )  Denoting by P;(T) the ergodic projection at infinity corresponding 
to P f ( x )  we define the overall performance index resulting from the 
use of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx E II by: 

wlter'c h zs an N x n matrix with entries: 

1 if cjlk:: n k  < s I E;=, n k  esj = { 
0 otherwise L ( s , x )  = [Pc*(n)r(a)]., s E S. 

The optimal value function Jc corresponding to rL is given by: for  s = 1 , 2 , ,  . , , N and j = 1 , 2 , .  . . ,n, and M ( r )  is an n x N 
matriz with entries: 

f o r  j = 1,2,, . , , ands = 1,2,. , , , N .  ofcourse we set E;=, nk := Note (,hat by SPA, p, ( T )  is irreducible and hence there is no loss 

o. N~~~ also that f rom the above definitions we of gelleralit,Y in omitting t,he argument s in the above, and writing 
simply JF(r ) ,  and  \7< respectively. 

We now recall from 121 the analysis of the limiting behavior of Jc 

as E goes to zero and the validity of the so called limit control 

I' are perturbed slightly, Towards this goal we shall define a certain limit optimization problem, to be defined in sequel, is 
&optimal in l?, for any S > 0 and for E sufficiently small. 

The problems described above pertain to the class of MDP's with 
singularly perturbed transition kernels or more generally to  the 
class of control problems for Markov Processes with singularly 

where the Of satisfy Cs'ES d(s' s,  '1 = for perturbed generators. Related problems for discounted cost crite- 
( s , a )  F S >: A ( s ) ,  ria have been addressed in Delebecque & Quadrat [5] and Dele- 

becque [4] in the case of discrete time Markov chains and in Phi l ip  -1 5 d(s I s , a )  5 0 ,  d(s' I s , a )  2 0 ,  and a # s'. 

& Kokotovii: 1131 for both continuous and discrete time Markov 
Now, with every T E 11 we can associate a perturbation genera- 

tor rnatrix D(T)  = (d..,(n))a,a,=l where d r s i ( r )  = C,,~(,)d(a' 1 
s ,a )a (s ,a ) .  We shall also require that there exists EO > 0 such 
that for every T E II, 

that: 

h.l(n)E = L,. 

We now consider the situation where the transition probabil- principle in the present framework, that is, an Optimal strategy in 

ities 
the disturbance law as the set: 

D = {d(s'  1 s ,a)  j ( s , a , s ' )  E S x A(s )  x S )  

N 

For each E let us define the matrix B(*) by: 

G,(a) := G(n) + E D @ )  
B( T )  er hl( n)D( 7r)E. 

is a gmerator of a Markov chain for any E 5 €0. We note that by Remark 2.1 B(n) is a generator of an "aggre- 
gated" Markov chain on a state space 9 '%' {1 ,2 , .  . . ,n). 

We shall consider a family of perturbed processes I?, for E E [0, €01 
that (lifer from the original MDP r only in the transition law, 
namely, i n  Tr for every (s ,  a, s') E S x A ( s )  x S we have: 

Remark 2.3 By  A1-A3 and the operator B(*) defines an 
irreduczble Markov chain on S .  This can be verified by direct in- 
spection, (see also remark 2 p. 338 in Delebecque 1.1). 

pc (s '  I s, o )  := p(s' I s, a )  + Ed(s' 1 s, a ) .  (2.2) 
By (2 I )  and (2 2) we have that every T E 11 induces in the per- 

tion matrix 

turbed I,rocess r, the Markov Chain with the probability transi- Now let P*(.)  denote the ergod1c projection at infinity 
ing to B(T), for each A E II Define, for r E II, an N x N matrix: 

P*(7r) = E P * ( n ) M ( s ) .  (2.4) 

From Delebecque (41 Theorem 3, and the results of Kat0 [9], chap- 
ter 11 ,  Rielecki and Filar [Z] obtained an asymptotic result stated 

P J x )  = GE(n)  + IN. (2.3) 

The most important structural assumption of this paper is stated in 2" 

Lemma 2.1 Cinder the assumptions A1-A3  and SPA below. 

matrix. 
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Using this Lemma, the following Corollary was derived in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]. 

Corol lary 2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAssume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA l - A 3  and SPA. Then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE Si, j = 
4 2 , .  . . ,n. 

lim 1 max[P*(r) f (a) ] j  - max[P:(r)r(x)].l = 0 (2.6) 
€+o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*En 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?(r) := M(*)r(r) 

R e m a r k  2.4 The optimization problem: 

max[P*(*)r(*)l,, s E s 
*En 

is called the the limit Markov Control Problem. 

The optimization problem. 

m a x [ P * ( ~ ) ~ ( r ) ] j ,  * E n  j = 1 . ~ 2 , .  . . , n (AL) 

is called the aggregated limit Markov Control Problem. 

R e m a r k  2.5 Note that in view of (2.4) we have: 

[ P * ( ~ ) r ( r ) ] ~  = [ P * ( r ) ~ ( ~ ) l j  f o r  s E ~ j ,  j = I ,  2 , .  . . ,n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA E II. 

I t  follows that any maximizing strategy A' for (AL)  is also a max- 
imizing strategy for (L)  and vice-versa. The existence of a mazi- 
mizing strategy A' is clear. I n  view of (2.7) and the irreducibility 
properties it is also clear that A' does not depend o n  the initial 
state s E S .  

Using the resiilts above, the following theorem was proved in [2]: 

Theorem 2.1 (Limit Control Principle) Assume A l -A9  and SPA 
Lei, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT" E II be any mazimizer in (AL).  Then for all 6 > 0, there 
exists t6 > 0 such that for all E < €6. 

(2.9) 

- -__ lle*(ro)4ro) - All zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 6. (2.8) 
3. Linear Programming and the Limit Markov 

Control Problem 

We have seen in Section 2 that the optimization problem: 

is the natural problem to attempt to solve in the case of a singu- 
larly perturbed Markov Decision Process. We shall demonstrate 
that this problem can be converted to an equivalent problem in 
the space of the long-run state-action frequencies. Towards this 
goal we shall now consider one of the irreducible MDP's: 

r, = (.si, { ~ ( s ) ;  s E si},  {+, a) ;  (8, a)  E si x ~ ( 3 1 1 ,  {PW I 
s,a);  ( s , a , s ' )  E Si x A(s)  x Si}) that were already introduced 
in Section 2, with i = 1 ,2 , .  . . , n. The following results are well- 
known (e.g., see Kallenberg 181). With each I?; we can associate a 
polyhedral set: 

r i ( s ,  a)  := xi,; (3, a )  E S; x A(s) .  
a€A(a) 

Now, if ri E II; and p;(a') is the corresponding stationary distri- 
bution in I?; it can be shown that the inverse map is T-' : IIi + Xi 
such that T-'(T') := x i ,  where 

. .  
& := [ P ~ ( A ' ) ] ~ A ' ( S ,  a) ;  (3, a)  E Si x A ( s )  

We shall now rewrite the objective function of (L) (with the help 
of (2.4) and structural assumptions) as: 

Y ( A )  := [P*(=)r(n)l, = [ ~ P * ( r ) ~ ( A ) r ( a ) l ,  

where P * ( A )  is the stationary distribution vector of P ( T )  = &A)-+ 

I,,,,, s E S, and K = (n1 , r2 . .  . ,A " )  as in Section 2. 

It can be easily checked that with T as above we have: 

(3.1) - = X ? = = , [ ~ * ( ~ ) l i [ ~ ~ ( r ' )  . r ; (~ ' ) ] ,  
.. ___ - 

[ P : ( ~ ' ) J ,  = IP~(T(x'))I. = zta ( 3 4  
,€A(*) 

for each i = 1 , 2 , .  . . ,n and s E Si. Hence (3.1) - (3.2) yield: 

(3.3) 
i=l *€Si ,Ed(#) 

for every s E S, where xi = T-'(A'). 

Recall that p ' ( r )  is the unique solution of the system ofequations: 

2 P ( A )  = aT 

c:=l ai = 1, 

since P(r) is irreducible for all A E II. The first of these equations 
can, by definition of B ( r ) ,  be expressed as: 

aTM(7r)(D(7T) + IN)E = aT (3.4) 
Equivalently, using the fact that M ( A ) I N E  = I,,, we can transform 
(3.4) to: 

aTM(*)D(r )E = OT. (3.5) 
Note that U(r) := M ( r ) D ( a ) E  is an n x n matrix whose (i, j ) -  
th entry is: 

~ i j ( ~ )  := C 1 [ p f ( ~ ~ ) ] . d , ~ , ( ~ ~ ) .  (3.6) 
dESj sES; 

Nos- using (3 .2)  we see that with x i  := T-'(a') for each i = 
1 , 2 , .  . . ~ n, we have: 

V i j ( X )  := U,.( 13 r) = 4 s '  I s,a)z',,, (3.7) 
s'€Sj  aESi aEA(s) 

where x = ( x l , x z ,  . . . ,x"). 
Setting I''(X) = ( ~ ; j ( x ) ) n .  

following nonlinear programming problem ( N L ) :  
, we are now led to consider the 

*.,=l 

m a x i m i z e x  C ~ ( s ,  a)c;,a; 
i=l #€Si ,Ed(.) 

Subject to: 

(i) xi  = {xi, I (s, a )  E Si x A ( s ) }  E X ; ,  i = 1 ,2 , .  . . n, 

(ii) ai 2 0, i = 1,2,. . . , n, and 

(iii) aTI,'(x) = oT. 
a; = 1, 

1404 
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Note lhat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (xll.. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,xn) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = (a1,. . . ,a,) a,re the vari- 
' 

ables in the problem (NL). 

We can now state the following result [2]: 

Theorem 3.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(?,a) be an optimal solution of the nonlinear 
program (NL) .  Define ii := T ( 2 )  for i = 1,2, .  . . ,n and ir := 
( + I , .  . . , i r " ) ,  then ir is optimal in the limit problem (L). 

Remark 3.6 The importance of the above theorem stemsfrom the 
fact that it converts the limit problem (L) into the problem (NL). 
In wh.at follows, we shall demonstrate that an optimal solution in 
the program (NL)  can be obtained from an optimal solution of an 
appropriate linear program that can be solved by efficient linear 
programmang techniques. 

Consider the following linear programming problem (P): 

maximize E r (s ,a )z f ,  
i = l r€S ;  aEA(a) 

Si1 b j  ec t  t 0: 

n 

C C d(s' 1 s,a)zfa = 0; j = 1 ,2  , . . . ,  n (3.9) 
r = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa'ES,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs€S, aEA(s) 

.Ia 2 0; i = 1 ,2 , .  . . ,n;  s E Si; a E A(a) (3.11) 

Lemma 3.1 For any feasible solution z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ~ ( P ) ~  

C z ~ , > o  fur all i ~ { 1 , 2 ,  ..., n}  

Proof: Define F ( a )  := { i  E { 1,2, .  . . , n} : &si CaE,qr) zf, > 0) 
and P(z) := { i  E {1 ,2 , .  . . , n}  : &Si &.A(,) zid = 0): 
We shall show that E ( z )  = 4. Assume F ( z )  # 4. Fori E P(Z) set 
ai := 0 and take any strategy ri E II; and define xi := 2'-'(ri). 
For i E F ( z )  define: 

aES, aEA(8) 

ai := E z:, (3.12) 
a &  .€A(#) 

and 

X i "  := 'la . for all s E Si, a E A(s) .  (3.13) 
Cac~, C a E A ( a )  Z:a 

Note that we have: 

zfa = z:,ai for all i E {I ,  2 , .  . . , n } ,  s E Si, a E A(s) .  
(3.14) 

From (3.8) and (3.13) we have: for all i E F ( z )  

(688p - p(9' I ~,a) )z f ,  = 0 for all 8' E si. 
r f S ,  n ~ A ( s )  

From (3 .13)  it follows that: 

t;,, ;: II for  all E si, E ~ ( s ) ,  and C C 4, = 1 
aESi aEA(r) 

It follows that for all i E F ( z ) ,  
Since T is bijective, there exists a strategy ri in l'; such that 

Now (3.9) and (3.14) imply that for all j = 1 ,2 , .  . . ,n: 

xi E Xi. 

xi = T-1(7+). 

n 

o = E d(s' I s,a)&a; 
i=l a'ESj s€Si a€A(a) 

where aT = (a l ,az, .  . . ,an) and r = ( r ' ,~ ' ,  . , , ,A" ) .  

Thus aTit4(r)(D(r) -t b ) E  = aT since M ( ~ ) I N E  = I,, which ie 
the same as aTP(r)  = 2. 
From the definitions of a; we have by (3.10): 

n n 

Cai=CC C 'fa=', 
i= l  i= l  .€Si aEA(a) 

and by (3.11) a; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 for i = 1 , .  . . ,n. 
Now we have: 

aTP(7r) = aT 
n 

Eai = 1; a;>O; i = l ,  ..., n. 
i=l 

But P ( r )  is irreducible, hence all a; must be positive, and thus 
we have a. contradiction. Therefore F ( z )  must be empty. 0 

Theorem 3.2 If % is an optimal solution of (P), then (%, &) is 
an optimal solution of ( N L ) .  Where 

for  i = 1 , 2 , .  . . ,n; s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 5';; a E A(s). 
Proof: By Lemma 3.1, x is well defined. Also, from the proof of 
Lemma 3.1, it follows that (x,&) is a feasible solution in (NL). 
To prove that (2, &) is optimal in ( N L ) ,  let (x, a)  be any feasible 
solution in (NL) and define z by zt, := xfaa;; i = 1, .  . . ,n; a E 

Si; a E A(s ) .  Note that a is feasible for ( P ) ,  and we have: 

f: r(s,a)Zf, = 2 E;,&;. 
1=1 aES, aEA(a) i=l #€Si .EA(#) 

0 

Next we shall show that an optimal deterministic strategy for the 
limit Markov Control Problem (L) can be constructed from an 
extreme optimal solution of the linear programming problem (P). 

Lemma 3.2 Let % be an ertreme feasible solution for (P ) ,  then 
for any i E {1 ,2,  . . . , n} and any s E Si there is a unique a E A(8) 
such that Zta > 0.  

Proof: Since in particular ?r is a feasible solution for ( P ) ,  it follows 
from the proof of Lemma 3.1 that for any i E {1 ,2, .  . . , T I }  there 
exists a. strategy ?ri such that: 

This proves the optimdity of ( % , E ) .  
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r : ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[T-l(ni)laa := [ P ~ ( X ' ) ] , T ' ( S ,  a ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,,, E , E A ( , )  ":, 

a E A(s) .  
Hence for all i E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{1 ,2 , .  . . ,n}, s E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi, there exists a E A(s) : 
zf, > 0. Thus the number of positive elements in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI is at least 
n l  + n2 + . . . + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, := N .  On the other hand, since ?r is an extreme 
feasible solution for ( P ) ,  the number of positive elements in I is not 
greater than the rank k of the matrix corresponding to the linear 
program (P). From that matrix we have: for any i E {I, 2,. . . ,n} ,  

CI'ES,[CSGS, C a ~ A ( a ) ( ' a d  - P(5' 1 s > a ) ) z 6 a 1  = C a E S ;  CaEA(s)(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1)z ia  = 0, and ~ j n _ l I ~ Y = 1  ~ 8 1 E S j  Cscs, CaCA(a),d(s' I 59 a)z;aI 
= Ey=l CaES, CatA(.)[Cj"=l Cs'ES, d(s' 1 s,  

Hence k 5 (nl - 1) + (nz - 1) + . . . + (n, - I) + (n - 1) + 1 = 
nl +nz +. . . +n, := N .  Therefore the number of positive elements 
in z is exactly N ,  and we conclude that z:a > 0 for exactly one 

0 

Theorem 3.3 The limit Markov Control Problem ( L )  has an op- 
timal deterministic strategy. 

Proof: It is clear that the problem ( N L )  is feasible. This implies 
that the problem ( P )  is feasible (if (x, CY) is feasible for ( N L ) ,  then 
zia = Z:~CU~ is feasible for ( P ) ) .  Since the constraints in ( P )  define 
a bounded polyhedron, then ( P )  has an optimal extreme solution, 
say 2. From Theorem 3.2 the corresponding (%,6) is an optimal 
solution for ( N L ) .  From Theorem 3.1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii := (e', . . . ,iin) where 
ii' := T(%' )  for i = 1 , 2 , .  . . , n is optimal in ( L ) .  From Lemma 3.2, 
n must be deterministic. 0 

= 0. 

a E A ( s )  for any i E {I, 2 , .  . . , n}  and any s E Si. 

R e m a r k  3.7 Note that from Lemma 3.2 and from the proof of 
Theorem 3.3, at follows that if z := {zfa I s E Si; i = 1,. . . ,n; a E 
A ( s ) }  is an optimal extreme solution of the linear program ( P ) ,  
then the policy defined by: 

f(s) = a; s E Si; i = 1 ,...,n -e=+ Zf, > 0 

is optimal in the limit Markov control problem ( L ) .  

R e m a r k  3.8 In  this section we proved that the limit problem ( L )  
can be converted into the linear program ( P ) .  In  view of the special 
structure of ( P ) )  an approach of the Wolfe-Dantzzg decomposition 
method (e.g., see hfurty [ l l ]) is suggested. Hence the linear pro- 
gram ( P )  may not s u e r  from the curse of dimensionality. In  the 
next section we shall construct another algorithm which does not 
suffer f rom the dimensionality of the problem. 

4. Aggregation-Disaggregation Algorithm. 

Consider t,he Aggregated Markov Decision Process !? defined as 
follows : 

Note that for any i E s, each action a E A(;) defines a determin- 
istic strategy which maps s E Si onto a,. Thus in (4.1) and (4.2), 
pi(.) is well defined. 

The validity of the Transition Law, namely: 

Cy=, q;i(a) z I, i E S, a E A(;) and q;j(a) 2 0, 
( i ,  a , j )  E s x A ( i )  x S 
can be checked by inspection using the assumptions made on the 
disturbance law D.  

The classical limiting average Markov Decision problem for f is 
the optimization problem 

where li is the class of all stationary strategies in f i ,  Q*(ii) 
is the Cesaro-limit matrix corresponding to the Markov matrix 
Q ( F )  which is defined by Q ( f )  := (qij(ii)):j=l where pij(ii) := 
C a E ~ ( i )  qt j (a)%(i ,  a )  for all i, j E 3; and c(ii) := (c l ($ ) ,  . . . ,%(if)) 
is the vector of single stage expected rewards in which ci(ii) := 
Cacqr) c ( i ,  a )%( i ,  a )  for each i E S .  

Note that there is a one to one correspondence between the deter- 
ministic strategies in f and r. 
Let J be a deterministic strategy in r, the corresponding deter- 
ministic strategy f in I? is defined by: 

f o r  each i i? and s 6 Si, f(3) := [f(i)].. 
Proposition 4.1 Let f be an optamal deterministic strategy for 
the problem (AP) ,  then the corresponding f is an optimal deter- 
ministic strategy for the limit Markov Control Problem (L)  

Proof: Note that from the theory of Markov Decision Processes 
(e.g., see [S]-LS]) f always exists. It can be verified by inspec- 
tion that &(f) = p ( f )  since P(f) = In + M ( f ) D ( f ) E .  Thus 
Q*(f)  = P * ( f )  and &*(f)c( f )  = P * ( f ) f ( f ) .  Therefore f must be 
an optimal solution for the problem (AL), since the problem (AL) 
has an optimal deterministic strategy (Remark 2.5 and Theorem 
3.3). Now from Remark 2.5 we conclude that f is an optimal 
strategy for the problem (L). 

R e m a r k  4.9 In view of the fact that for any deterministic strat- 
egy f in the process f we have Q(f) = 1"( f )  and I'( f) is irreducible 
(Remark 2.3), thus Q(f) is irreducible. This shows that f is an 
irreducible AfDP and therefore it can be solved by using the simpli- 
f ied  policy improvement algorithm (e.g., see Denardo [6], Derman 
[Y]) Kallenberg [8]). 

The "standard" policy improvement algorithm for the aggregated 
MDP i=' can be stated as follows: 

Step 1: Select an arbitrary deterministic strategy f. 

The State Space of r : 
The Action Spaces of r : A(;) := S,,s,A(s) for each i E 3 
The Transition Law of I' : 

3 := {1 ,2 , .  . . , n} Step 2: Solve the following linear system for the unknowns A, y1,. . . , 
YrL-1 :  

f o r  all ( i , a , j )  E 3 x A(;)  x 3, 

j=1 

The Rewards of r : for all i E 3, a E A(i)  

c( i ,  a )  := C [pT(a) l .~(s,  a8) ,  (4.2) where yn := 0. 
SES, 

where a = {a ,  1 s E Si}, Step 3. Find a deterministic strategy j that satisfies: 
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c ( i , g ( i ) ) + ~ q i j ( g ( i ) ) y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> c ( i , f ( i ) ) + ~ s i j ( f ( i ) ) y j i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 , 2 , .  . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,n. ~eferences 
j= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 j=1 

(4.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
If this is not possible for some i E {1,2, .  . . , n}, then set #(i) = 

[I] R. Aldhaheri and H. Khalil, Aggregation and optimal control 
of nearly completely decomposable mar&ov chains, in Proceed- 
ings of the 28th CDC, IEEE, 1989, pp. 1277-1282. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( 9  

If g = f ,  STOP. 
Otherwise f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt # and go to Step 2. 

It follows that for each i = 1 , .  . . , n; (4.4) is the same as: 

[2] T. R. Bielecki and J .  A. Filar, Singularly Perturbed Markov 
Control Problem: Limiting Average Cost, Tech. Rep. 89-04, 
University of Maryland at Baltimore County, 1989. 

(31 M. Cordech, A. Willsky, S. Sastry, and D. Castanon, Hzerar- 
chical aggregation of linear systems with multiple time scales, 
IEEE Transactions on Automatic Control, AC-28 (1983), 
pp. 1017-1029. 

[4] F. Delebecque, A reduction process for perturbed markov 
chains, SIAM Journal of Applied Mathematics, 48 (1983), 

[5] F. Delebecque and J .  Quadrat, Optimal control of marho; 
chains admitting strong and weak interactions, Autometica, 

pp. 325-350. 

17 (1981), pp. 281-296. 

[6] E. V. Denardo, Dynamic Programmang, Prentice-Hall, Egle- 
wood Cliffs, New Jersey, 1982. 

[7] C. Derman, Finite State Markovian Decision Process, Aca- 
demic Press, New York, 1970. 

P;(g(i))T+(i)) , p;(f( i))*Ei(f( i)) ,  (4.5) 
[8] L. C. M. Kallenberg, Linear Programming and Finite Marko- 

vian Control Problems, Mathematical Center Tracts 148, Am- 
sterdam, 1983. 

Since pt(a)*Zi(a) is the value of the "strategy" a + a,, E si) 
in the irreducible MDP I'i in which the rewards are defined by Ed, 

the simplified policy improvement algorithm. 

191 T. Kato, Perturbation Theoryfor Linear Operators, Springer- 
Verlag, Berlin, 1980. 

then the strategy 3 in (4'5) can be computed by one iteration of [ lo] P, Kokotovic, Application of singular perturbation techniques 
to control problems, SIAM Review, 26 (1984), pp. 501-550. 

From the previous results, our Aggregation-Disaggregation Alga- ["I K. G. MurtY, Programming, Wiley, New York, 1983* 

rithm for Solving the limit Markov Control Problem (L) is stated 
as follows: 

Step 1: Select an arbitrary deterministic strategy f in r, and set: 

ll2] A. A, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ k i i  and V. G. ~ d ~ ~ ~ ~ ~ i ,  ~h~~~ of Subopt& 
mal Decisions, Kluwer, Dordrecht, 1988. 

[131 R, G, Phillips and p. Kokotovic, A 
tion approach to modelling and control of markov chains, 
IEEE Transactions on Automatic Control, AC-26 (1981), 
Pp. 1087-1094. 

[f(i)I8 := f(s); 

Step 2: Compute p r ( f ( i ) ) ;  qij(f(i)); and c(i, f(i)); 

s E Si; i = 1,2 , .  . . n. 

i = 1,2 , .  . .,n 

[14] J. Rohlicek and A. Willsky, Multiple time scale decomposition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = 2 , . .  ' 7  For each = ',. ' .  the computation Of of discrete time markov chains, Systems and Control Letters, 
pi( f (i)) is done by solving the linear system: 11 (1988), pp. 309-314 

x iTP i ( f ( i ) )  = xi, zt = 1. [15] P. J .  Schweitzer, Perturbation theory and finite markov 
chains, Journal of Applied Probability, 5 (1968), pp. 401- 
413. 

#€Si 

Step 3: Solve, for the unknowns A, y l ,  ya, . . . , yn-l, the linear system: [ 161 P. J. Schweitzer, Perturbation series ezpansions for nearlg 
completely-decomposable markov chains, Teletrafic Analysis 
and Computer Performance Evaluation, 1986, pp. 319-328. 

n 

X + yi = c(i, f(i)) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqij(  f ( i ) ) y j  i = 1 , .  . . ,n; y, = 0. 
j=1 

Step 4: For each i = 1 , .  . . , n  compute the deterministic strategy g ( i )  
obtained after one iteration of the simplified policy improve- 
ment algorithm for the MDP I'i with reward Ei (the starting 
strategy is f ( i ) ) .  

Step 5: If g(i) = f ( i )  for all i = 1 , .  . . , n STOP. 
Otherwise f(i) c g(i); i = 1 , 2 , .  . . ,n  and go to Step 2. 
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