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Of great importance in studying the structure of the
Earth’s crust is solving the structural inverse gravity
problem, which consists in finding the interface
between layers with different densities using known
density jumps and a gravitational field. This is an ill-
posed problem described by the nonlinear integral
first-order Fredholm equation.

In [1], the method of local corrections is applied to
determine the structural boundaries. The observed
data are processed with the technique proposed by
Martyshko and Prutkin [2]: fields for each layer
between given depths are calculated and then a modi-
fied method of local corrections is applied to find the
structural boundary from the corresponding distin-
guished field.

Non-linear analogs of the methods of the steepest
descent, minimum error, and Levenberg-Marquardt
method [3], iteratively regularized Newton method
[4], and gradient iterative methods with constant
damping factors [5] were also used to solve the nonlin-
ear gravity problem in the two-layer and three-layer
medium for preliminarily calculated fields.

Here we try another approach based on application
of linearized gradient methods with new weight fac-
tors. Such an approach makes it possible to find several
structural boundaries from the integral equation
simultaneously for the sum of fields distinguished from
the observed field, thus improving the solution accu-
racy and decreasing the iteration number and execu-
tion time.

Efficient parallel algorithms based on the gradient
methods with weight factors were developed and
implemented on a multicore Intel processor and
NVIDIA Tesla graphic processor unit incorporated in
the Uran supercomputer. The structural gravity prob-
lem was solved in a four-layer medium for the eastern
part of the Middle Urals from real observations.

Assume that the lower half-space consists of several
layers of constant density divided by the sought sur-
faces Sl (l = 1, 2, …, L), where L is the number of inter-

faces (Fig. 1). The gravitational effect generated by
such a half-space equals the sum of gravitational
effects of contact surfaces. Let interfaces be defined by
equations zl = zl(x, y), the density jumps on them are

Δσl, and surfaces have horizontal asymptotic planes

zl = Hl, i.e., zl(x, y) – Hl| = 0.

The field of boundary superposition with accuracy
to the constant term equals [1]

(1)

where f is the gravitational constant, L is the number

of interfaces, Δg(x, y) = . 

Discretization of Eq. (1) on the n = M × N grid with
given Δg(x, y) and approximation of integral operator
A(z) using the quadrature formula yield the right-hand
side vector F(x, y) of M × N dimension, the resultant
solution method z(x, y) = [z1(x, y), z2(x, y), …, zL(x, y)]
of L × M × N dimension, the matrix of the derivative of
operator A'(zk)T of L × M2 × N2 dimension, and the sys-
tem of nonlinear equations

The problem is undetermined, since we attempt to
find several unknown functions zl = zl(x, y) from the
given function Δg(x, y).

In this work, the gravity problem in a multilayer
medium is solved using linearized iterative gradient
methods with new weight factors γi calculated for each
component zi, i = 1, 2, …, L × M × N:
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the linearized steepest descent method (LSDM)

(2)

and the linearized minimum error method (LMEM)

(3)

where γi ∈ [0, 1], zi is the ith component of resultant
vector z(x, y), and k is the iteration number.

Weight factors γi will be chosen as follows:

where Fl (l = 1, 2, …, L) are anomalous fields gener-
ated by the gravitating mass located below the corre-
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sponding depths Hl for the sought surfaces of interface
Sl (l = 1, 2, …, L).

Weight factors γi were found successively from field
FL separated from field F using the technique of [2],
from field FL – 1 separated from the difference field F –
FL, from field FL – 2 separated from the difference field
F – FL – FL – 1, and so on.

For numerical implementation of methods (2) and

(3), the horizontal asymptotic planes  = Hl (l = 1, 2,

…, L) were used as the initial approximation. The con-

dition  < ε at sufficiently small ε, where F =

, was taken as the termination criterion.

The use of multiprocessor computing systems
essentially reduces the execution time. The idea of
parallelizing algorithms (2) and (3) implies dividing
the matrix A'(zk)T into blocks and the solution vector
z(x, y) and right-hand side vector F(x, y) into parts.
For the current iteration, each of the processors
(cores) computes a definite part of the solution vector.
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Fig. 1. Model of a multilayer medium.
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For the eastern Middle Urals, the gravity problem
of finding interfaces of S1, S2, S3 media with density
jumps Δσ1 = 0.3, Δσ2 = 0.2, and Δσ3 = 0.1 g/cm3 was
solved for the model of a four-layer medium using data
of [6] measured over an area S = 62 × 145.75 km2. The
distances to the asymptotic planes were taken to be
H1 = 15, H2 = 20, and H3 = 25 km. Discretization of
Eq. (1) on a 82 × 108 grid with steps Δx = 0.756, Δy =
1.35 km yields vector z(x, y) of dimension 35 424 and
matrix A'(zk)T of dimension 35 424 × 8856.

The problem was solved on an Uran supercom-
puter using the LSDM and LMEM algorithms. As a
result, the relative norm of discrepancy ε decreased by
two orders of magnitude as compared to the initial
ε0 = 1. As compared to the solution of problems for
fields distinguished for each structural boundary using

methods (3) and (4) with factor γ = 0.05 for ε = 0.015
(number of iterations N = 288), the solution of gravity
problems for the sum of fields by methods (3) and (4)
with weight factors γi at β = 1.4 for ε = 0.015 was
reached with fewer iterations N = 70. Using model
examples, it was demonstrated that solution of prob-
lem (1) for the sum field provides an order of magni-
tude decrease in the relative error, number of itera-
tions, and execution time as compared to that for each
structural boundary.

The time of solving the gravity problem by the
LMEM method on six-core Intel processors or on an
NVIDIA Tesla GPU was 73 and 36 s, respectively.

Figure 2 demonstrates the observed gravitational
field. Figures 3 and 4 show the interfaces found.
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Fig. 2. Observed gravitational field.
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Note that the geomagnetic data for the same area S
were interpreted by collaborators of the Institute of
Geophysics, Ural Branch, Russian Academy of Sci-
ences, and taken into account for choosing the
medium model considered above.
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