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Abstract

A spatial outlier is a spatially referenced object whose
non-spatial attribute values are significantly different from
the values of its neighborhood. Identification of spatial out-
liers can lead to the discovery of unexpected, interesting,
and useful spatial patterns for further analysis. One draw-
back of existing methods is that normal objects tend to be
falsely detected as spatial outliers when their neighborhood
contains true spatial outliers. In this paper, we propose
a suite of spatial outlier detection algorithms to overcome
this disadvantage. We formulate the spatial outlier detec-
tion problem in a general way and design algorithms which
can accurately detect spatial outliers. In addition, using
a real-world census data set, we demonstrate that our ap-
proaches can not only avoid detecting false spatial outliers
but also find true spatial outliers ignored by existing meth-
ods.

1 Introduction

Outliers have been informally defined as observations in
a data set which appear to be inconsistent with the remain-
der of that set of data [1, 5], or which deviate so much from
other observations so as to arouse suspicions that they were
generated by a different mechanism [4]. The identification
of outliers can lead to the discovery of useful knowledge
and has a number of practical applications in areas such
as credit card fraud detection, athlete performance analy-
sis, voting irregularity analysis, and severe weather predic-
tion [6, 11, 16]. In a spatial context, local anomalies are
of paramount importance. Spatial outliers are spatially ref-
erenced objects whose non-spatial attribute values are sig-
nificantly different from those of other spatially referenced
objects in their spatial neighborhoods. Informally, a spatial

outlier is a local instability, or an extreme observation with
respect to its neighboring values, even though it may not be
significantly different from the entire population. Detect-
ing spatial outliers is useful in many applications of geo-
graphic information systems, including transportation, ecol-
ogy, public safety, public health, climatology, and location
based services [12].

Recent work by Shekhar et al. introduced a method for
detecting spatial outliers in graph data set [13, 14]. The
method is based on the distribution property of the differ-
ence between an attribute value and the average attribute
value of its neighbors. Several spatial outlier detection
methods are also available in the literature of spatial statis-
tics. These methods can be generally grouped into two cat-
egories, namely graphic approaches and quantitative tests.
Graphic approaches are based on visualization of spatial
data which highlights spatial outliers. Example methods
include variogram clouds and pocket plots [3, 10]. Quan-
titative methods provide tests to distinguish spatial outliers
from the remainder of data. Scatterplot [2, 8] and Moran
scatterplot [9] are two representative approaches.

One major drawback of the existing detection ap-
proaches is that their application will lead to some true
spatial outliers being ignored and some false spatial out-
liers being identified. To minimize such defect, we propose
two iterative algorithms that detect spatial outliers by multi-
iterations. Each iteration identifies only one outlier and
modifies the attribute value of this outlier so that this out-
lier will not impact the subsequent iterations negatively. We
also propose a non-iterative algorithm which uses the me-
dian as the neighborhood function, thus reducing the neg-
ative impact caused by the presence of neighboring points
with very high/low attribute values. Using a real-world cen-
sus data, we show that our algorithms can avoid detecting
false spatial outliers and can find true spatial outliers ig-
nored by existing methods when the expected number of
spatial outliers is limited.
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2 Problem Formulation

Given a set of spatial points X = {x1, x2, . . . , xn} in
a space with dimension p ≥ 1, an attribute function f is
defined as a mapping from X to R (the set of real num-
ber). Attribute function f(xi) represents the attribute value
of spatial point xi. For a given point xi, let NNk(xi) de-
note the k nearest neighbors of point xi, where k = k(xi)
depends on the value of xi for i = 1, 2, . . . , n. A neighbor-
hood function g is defined as a map from X to R such that
for each xi, g(xi) returns a summary statistic of attribute
values of all the spatial points inside NNk(xi). For exam-
ple, g(xi) can be the average attribute value of the k nearest
neighbors of xi. To detect spatial outliers, we compare the
attribute value of each point xi with those attribute values of
its neighbors NNk(xi). Such comparison is done through
a comparison function h, which is a function of f and g.
There are many choices for the form of h. For example, h
can be the difference f − g or the ratio f/g. Let yi = h(xi)
for i = 1, 2, . . . , n. Given the attribute function f , function
k, neighborhood function g, and comparison function h, a
point xi is a spatial outlier or simply S-outlier if yi is an
extreme value of the set {y1, y2, . . . , yn}. We note that the
definition depends on the choices of functions k, g and h.

The definition given above is quite general. As a matter
of fact, outliers involved in various existing spatial outlier
detection techniques are special cases of S-outliers [15].
These include outliers detected by z algorithm [13], Scat-
terplot [2, 8], Moran scatterplot [9] and pocket plots [3,10].

3 Proposed Algorithms

We state our algorithms to detect S-outliers. For sim-
plicity, the description assumes all k(xi) are equal to a fixed
number k. The algorithms can be easily generalized by re-
placing fixed k with dynamic k(xi). As seen above, outlier
detection algorithms depend on the choices of the neighbor-
hood function g and comparison function h. Selection of g
and h determines the performance of each algorithm. In Al-
gorithm 1 below, the neighborhood function g evaluated at
a spatial point x is taken to be the average attribute value
of all the k nearest neighbors of x. Comparison function
h(x) is taken to be the ratio of f(x) to g(x). Very large
or very small value h(x) (detected by the threshold θ) is an
indication that x might be an S-outlier. Algorithm 1 is also
termed as an iterative r(ratio) algorithm, since iterations are
coupled with the ratios.
Algorithm 1 ( Iterative r Algorithm)

1. Given a spatial data set X = {x1, x2, . . . , xn}, an at-
tribute function f , a number k of nearest neighbors,
and an expected number m of spatial outliers. For
each spatial point xi, compute the k nearest neigh-
bor set NNk(xi), the neighborhood function g(xi)

= 1
k

∑
x∈NNk(xi)

f(x) and the comparison function

hi = h(xi) = f(xi)
g(xi)

.

2. Let hq or h−1
q denote the maximum of h1, h2,. . ., hn,

h−1
1 , h−1

2 , . . ., h−1
n . For a given threshold θ, if hq or

h−1
q ≥ θ, treat xq as an S-outlier.

3. Update f(xq) to be g(xq). For each spatial point xi

whose NNk(xi) contains xq , update g(xi) and hi.

4. Repeat steps 2 and 3 until either the threshold condi-
tion is not met or the total number of S-outliers equals
m.

In Algorithm 2 below, the neighborhood function g is
the same as in Algorithm 1. But the comparison func-
tion h(x) is chosen to be the difference f(x) − g(x). Ap-
plying such an h to the n spatial points leads to the se-
quence {h1, h2, . . . , hn}. A spatial point xi is treated as
a candidate of S-outlier if its corresponding value hi is
extreme among the data set {h1, h2, . . . , hn}. Let µ and
σ denote the sample mean and sample standard deviation
of {h1, h2, . . . , hn}. The standardized value for each hi

is yi = hi−µ
σ , and so the standardized data set becomes

{y1, y2, . . . , yn}. Now it is clear that xi is extreme in the
original data set iff hi is extreme in the standardized data
set. Correspondingly, xi is a possible S-outlier if |yi| is
large enough (again detected by θ).
Algorithm 2 (Iterative z Algorithm)

1. For each spatial point xi, compute the k nearest neigh-
bor set NNk(xi), the neighborhood function g(xi)
= 1

k

∑
x∈NNk(xi)

f(x), and the comparison function
hi = h(xi) = f(xi) − g(xi).

2. Let µ and σ denote the sample mean and sample stan-
dard deviation of the data set {h1, h2, . . . , hn}. Stan-
dardize the data set and compute the absolute value
yi = |hi−µ

σ | for i = 1, 2, . . . , n. Let yq denote the
maximum of y1, y2, . . . , yn. For a given threshold θ, if
yq ≥ θ, treat xq as an S-outlier.

3. Update f(xq) to be g(xq). For each spatial point xi

whose NNk(xi) contains xq , update g(xi) and hi.

4. Recalculate µ and σ of the data set {h1, h2, . . . , hn}.
For i = 1, 2, . . . , n, update yi = |hi−µ

σ |.
5. Repeat steps 2, 3, and 4 until either the threshold con-

dition is not met or the total number of S-outliers
equals m.

The simplest choice of θ in Algorithm 1 is θ = 1. It can
be larger than 1 depending on different scenarios. A com-
mon value of θ in Algorithm 2 may be taken to be 2 or 3.
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This is based on the result that in Algorithm 2 the compar-
ison function h is normally distributed if the attribute func-
tion f is normally distributed [15]. There is no clear guide-
line on which of the two algorithms (iterative r and z algo-
rithms) should be selected in applications. If the attribute
function f can take negative values, then it is obvious that
the iterative r algorithm should not be used due to the cur-
rent description of the algorithm. If the attribute function f
is non-negative, the selection depends on the properties of
the practical applications. In general, we recommend that
both algorithms be used.

In both Algorithms 1 and 2, once an S-outlier is detected,
some corrections are made immediately. These include re-
placing the attribute value of the outlier by the average at-
tribute value of its neighbors and some subsequent updating
computation. The effect of these corrections is to avoid nor-
mal points close to the true outliers to be claimed as possible
outliers. There is a direct method to reduce the risk of over-
stating the number of outliers without replacing the attribute
value of the detected outlier, as describe in Algorithm 3.
The method in Algorithm 3 defines the neighborhood func-
tion differently. Instead of the average attribute value, g(xi)
is chosen to be the median of the attribute values of the
points in NNk(xi). The motivation of using median is the
fact that median is a robust estimator of the “center” of a
sample.
Algorithm 3 (Median Algorithm)

1. For each spatial point xi, compute the k nearest neigh-
bor set NNk(xi), the neighborhood function g(xi) =
median of the data set {f(x) : x ∈ NNk(xi)}, and the
comparison function hi = h(xi) = f(xi) − g(xi).

2. Let µ and σ denote the sample mean and sample stan-
dard deviation of the data set {h1, h2, . . . , hn}. Stan-
dardize the data set and compute the absolute values
yi = |hi−µ

σ | for i = 1, 2, . . . , n.

3. For a given positive integer m, let i1, i2, . . . , im be the
m indices such that their y values in {y1, y2, . . . , yn}
represent the m largest. Then the m S-outliers are
xi1 , xi2 , . . . , xim .

A quick illustration of Algorithms 1, 2, and 3 is to apply
them to the data in Figure 1. Table 1 shows the results using
the three algorithms with parameters k = m = 3, com-
pared with the existing approaches. As can be seen, all the
three proposed algorithms accurately detect S1, S2, and S3
as spatial outliers, but z algorithm, Scatterplot, and Moran
Scatterplot, falsely identify E1 and E2 as spatial outliers.
In this table, the rank of the outliers is defined in an obvi-
ous way. For example, in iterative r and z algorithms, the
rank is the order of iterations, while in both z and Median
algorithms, the rank is determined by the y value.
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Figure 1. A spatial data set. Objects are lo-
cated in the X − Y plane. The height of each
vertical line segment represents the attribute
value of each object.

Methods
Rank Scatter- Moran z Iterative Iterative Median

plot Scatterplot Alg. z Alg. r Alg. Alg.

1 E1 S1 S1 S1 S1 S1
2 E2 E1 E1 S2 S2 S2
3 S2 E2 E2 S3 S3 S3

Table 1. The top three spatial outliers detected
by Scatterplot, Moran scatterplot, z, iterative
z, iterative r, and median algorithms.

4 Experiments

We empirically compared the detection performance of
our proposed methods with the z algorithm through min-
ing a real-life census data set. The experiment results in-
dicate that our algorithms can successfully identify spatial
outliers ignored by the z algorithm and can avoid detect-
ing false spatial outliers. In this experiment, we tested var-
ious attributes from census data compiled by U.S. Census
Bureau [17]. The attributes tested include population, pop-
ulation density, percent of white persons, percent of black
or African American persons, percent of American Indian
persons, percent of Asian persons, and percent of female
persons. We first ran the four algorithms (z, iterative r, it-
erative z, and median algorithms) to detect which counties
have abnormal population. There are 3192 counties in the
USA. We show the top 10 counties which are most likely to
be the spatial outliers.

Table 2 provides the experimental results for all four spa-
tial outlier detection algorithms. For the top 10 spatial out-
lier detected by z, iterative z, and median algorithms, most
of them are the same with slightly different order. In fact,
there are eight spatial outliers in common detected by the
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Methods
Rank z Alg. Iterative z Alg. Median Alg. Iterative r Alg.

1 Los Angeles,CA,9637494.0 Los Angeles,CA,9637494.0 Los Angeles,CA,9637494.0 Kenedy,TX,413.0
2 Cook,IL,5350269.0 Cook,IL,5350269.0 Cook,IL,5350269.0 Loving,TX,70.0
3 Harris,TX,3460589.0 Harris,TX,3460589.0 Harris,TX,3460589.0 Treasure,MT,802.0
4 Maricopa,AZ,3194798.0 Maricopa,AZ,3194798.0 Maricopa,AZ,3194798.0 Lincoln,NV,4198.0
5 Ventura,CA,770630.0 Dallas,TX,2245398.0 Miami-Dade,FL,2289683.0 Falls Church city,VA,10612.0
6 Dallas,TX,2245398.0 Miami-Dade,FL,2289683.0 Dallas,TX,2245398.0 La Paz,AZ,19759.0
7 Miami-Dade,FL,2289683.0 Wayne,MI,2045473.0 Wayne,MI,2045473.0 Alpine,CA,1192.0
8 Wayne,MI,2045473.0 Bexar,TX,1417501.0 Clark,NV,1464653.0 Hudspeth,TX, 3318.0
9 Bexar,TX,1417501.0 King,WA,1741785.0 Bexar,TX,1417501.0 Fairfax city,VA,21674.0
10 King,WA,1741785.0 San Diego,CA,2862819.0 Tarrant,TX,1486392.0 Gilpin, CO,4823.0

Table 2. The top ten spatial outliers detected by z, iterative z, iterative r, and Median algorithms.

three algorithms. Further examination shows that the top
10 counties selected by iterative z and median algorithms
are true outliers. But Ventura Co. in California was falsely
detected by the non-iterative z algorithm. This falsely de-
tected outlier was avoided by both the iterative z and median
algorithms. The last column of the table shows the top ten
candidate outliers from the iterative r algorithm. Although
these 10 candidates are true outliers from a practical exami-
nation, they are very different from those obtained from the
other three methods. This difference is due to the fact that
the iterative r algorithm focuses on the ratio between the at-
tribute value and the averaged attribute value of neighbors.

Experimental results from other attributes also show that
the iterative algorithms and median method are more ac-
curate than the non-iterative algorithm in terms of falsely
detected spatial outliers. For running the algorithms and
generating more results, we refer interested readers to [7],
where we developed one software package which imple-
ments all the existing and proposed algorithms.

5 Conclusion

In this paper we propose three spatial outlier detection
algorithms to analyze spatial data: two algorithms based on
iteration and one algorithm based on median. The experi-
mental results confirm the effectiveness of our approach in
reducing the risk of falsely claiming regular spatial points as
outliers, which exists in commonly used detection method-
ologies. Furthermore, it carries the important bonus of or-
dering the spatial outliers with respect to their degree of out-
lierness.
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