
Algorithms for String Matching

with Applications in Molecular Biology

By J. L. Holloway

A Thesis submitted to

Oregon State University

in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Completed 7 August 1992

Commencement June 1993.

AN ABSTRACT OF THE THESIS OF

J. L. Holloway for the degree of Doctor of Philosophy in

Computer Science presented on 7 August 1992.

Title: Algorithms for String Matching with Applications in Molecular Biology

Abstract approved:

Paul Cull.

Abstract approved:

Walter Rudd.

As the volume of genetic sequence data increases due to improved sequenc-

ing techniques and increased interest, the computational tools available to analyze

the data are becoming inadequate. This thesis seeks to improve a few of the com-

putational methods available to access and analyze data in the genetic sequence

databases. The �rst two results are parallel algorithms based on previously known

sequential algorithms. The third result is a new approach, based on assumptions

that we believe make sense in the biological context of the problem, to approximat-

ing an NP{complete problem. The �nal result is a fundamentally new approach

to approximate string matching using the divide and conquer paradigm instead

of the dynamic programming approach that has been used almost exclusively in

the past.

Dynamic programming algorithms to measure the distance between se-

quences have been known since at least 1972. Recently there has been interest

in developing parallel algorithms to measure the distance between two sequences.

We have developed an optimal parallel algorithm to �nd the edit distance, a metric

frequently used to measure distance, between two sequences.

It is often interesting to �nd the substrings of length k that appear most

frequently in a given string. We give a simple sequential algorithm to solve this

problem and an e�cient parallel version of the algorithm. The parallel algorithm

uses an e�cient novel parallel bucket sort.

When sequencing a large segment of DNA, the original DNA sequence is

reconstructed using the results of sequencing fragments, that may or may not

contain errors, of many copies of the original DNA. New algorithms are given to

solve the problem of reconstructing the original DNA sequence with and without

errors introduced into the fragments. A program based on this algorithm is used

to reconstruct the human beta globin region (HUMHBB) when given a set of 300

to 500 mers drawn randomly from the HUMHBB region.

Approximate string matching is used in a biological context to model the

steps of evolution. While such evolution may proceed base by base using the

change, insert, or delete operators, there is also evidence that whole genes may

be moved or inverted. We introduce a new problem, the string to string rear-

rangement problem, that allows movement and inversion of substrings. We give

a divide and conquer algorithm for �nding a rearrangement of one string within

another.

Approved:

Professor of Computer Science in charge of major

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of Graduate School

Date thesis presented 7 August 1992

Text entered by J. L. Holloway

Approved by Committee:

Major Professor (Paul Cull)

Major professor (Walter Rudd)

Committee Member (Bella Bose)

Committee Member (Bruce D'Ambrosio)

Graduate School Representative (Christopher Bell)

Date thesis presented 7 August 1992

ACKNOWLEDGEMENTS

Thanks to Paul Cull, Walter Rudd, Bruce D'Ambrosio, Bella Bose, and

Christopher Bell for serving on my committee, guiding the direction of this re-

search, and suggesting improvements on early drafts of my dissertation.

Thanks to Paul Cull, Rick Hangartner, and Shawn Larson for many inter-

esting discussions on numerous topics over co�ee. Several ideas were born, and

many more died, at the Beanery.

Thanks to Charlotte, David, Judy, and Mildred for creating wonderful

places to come home to.

Special thanks to my mother, Judy Kelble, for providing me with every

possible opportunity to succeed.

Table of Contents

1 Introduction 1

1.1 Motivation : 1

1.1.1 Shotgun sequencing : 3

1.1.2 Sequence similarity and alignments : : : : : : : : : : : 4

1.1.3 Motifs : 4

1.1.4 RNA secondary structure : : : : : : : : : : : : : : : : 5

1.2 Overview of thesis : 7

2 Literature Review 10

2.1 History, review, and overview : : : : : : : : : : : : : : : : : : 10

2.2 Exact string matching : 13

2.2.1 Sequential algorithms : : : : : : : : : : : : : : : : : : : 13

2.2.2 Data structures : 15

2.2.3 Parallel algorithms : 16

2.3 Approximate string matching and sequence alignment : : : : : 17

2.3.1 Computer science literature : : : : : : : : : : : : : : : 17

2.3.2 Biology literature : 23

2.3.3 Sequence analysis : 34

2.4 Sequence searching : 34

2.4.1 Sequential algorithms : : : : : : : : : : : : : : : : : : : 35

2.4.2 Parallel and distributed algorithms : : : : : : : : : : : 36

2.5 Motifs : 37

2.6 Hardware for approximate string matching : : : : : : : : : : : 39

2.7 Shortest common superstrings and sequence overlaps : : : : : 40

2.8 Gene rearrangement and inversions : : : : : : : : : : : : : : : 42

2.9 Repeated substrings : 43

2.10 Other interesting and related problems : : : : : : : : : : : : : 44

2.10.1 Tertiary structure : 44

2.10.2 Restriction map construction : : : : : : : : : : : : : : 45

2.10.3 RNA secondary structure : : : : : : : : : : : : : : : : 46

2.10.4 Phylogenetic reconstruction : : : : : : : : : : : : : : : 46

2.10.5 Multi{dimensional matching : : : : : : : : : : : : : : : 46

3 The Edit Distance Problem 48

3.1 Problem de�nition : 48

3.2 The serial algorithm : 49

3.3 The parallel algorithm : 52

3.3.1 Parallel implementation : : : : : : : : : : : : : : : : : 54

3.3.2 Performance : 54

4 The Most Frequent Substring Problem 59

4.1 Problem de�nition : 60

4.2 Sequential algorithm : 60

4.3 Parallel algorithm : 60

4.4 Parallel implementation : 65

4.5 Space usage : 66

4.6 Related parallel bucket sort algorithms : : : : : : : : : : : : : 67

5 Shotgun Sequencing 69

5.1 Previous work : 70

5.2 The perfect match string consensus problem : : : : : : : : : : 74

5.2.1 Problem de�nition : 74

5.2.2 How many distinct common superstrings exist? : : : : 75

5.2.3 Algorithm to �nd the common superstrings : : : : : : : 77

5.3 The string consensus problem : : : : : : : : : : : : : : : : : : 78

5.3.1 Assumptions : 79

5.3.2 The problem de�nition : : : : : : : : : : : : : : : : : : 80

5.3.3 Naive algorithm : 80

5.3.4 Rabin{Karp type algorithm : : : : : : : : : : : : : : : 81

5.3.5 Algorithm based on sorting : : : : : : : : : : : : : : : 85

6 Log Inexact Shotgun Sequencing 92

6.1 Introduction : 92

6.1.1 Assumptions : 93

6.1.2 Problem de�nition : 94

6.2 Naive log inexact algorithm : : : : : : : : : : : : : : : : : : : 94

6.3 Rabin Karp log inexact algorithm : : : : : : : : : : : : : : : : 97

6.3.1 Reliability : 98

6.3.2 Running time : 100

6.3.3 Increased match length : : : : : : : : : : : : : : : : : : 103

6.4 Su�x array based log inexact algorithm : : : : : : : : : : : : 105

6.4.1 Algorithm : 105

6.4.2 Worst case running time : : : : : : : : : : : : : : : : : 106

6.4.3 Expected running time : : : : : : : : : : : : : : : : : : 107

6.4.4 Implementation and Discussion : : : : : : : : : : : : : 109

6.4.5 Generalization : 112

7 Divide and Conquer Approximate String Matching 115

7.1 Introduction : 115

7.1.1 Previous work : 116

7.1.2 Overview : 119

7.2 Problem de�nition : 120

7.3 Algorithm : 121

7.3.1 Alignments : 122

7.3.2 Basic algorithm : 122

7.3.3 A simple example : 126

7.3.4 Optimal gap positions : : : : : : : : : : : : : : : : : : 127

7.3.5 Constructing the alignment : : : : : : : : : : : : : : : 131

7.3.6 Inversions : 132

7.3.7 Parallel algorithm : 134

7.4 Resource use : 139

7.4.1 Basic algorithm : 139

7.4.2 Optimal gap placement : : : : : : : : : : : : : : : : : : 145

7.4.3 Constructing the alignment : : : : : : : : : : : : : : : 147

7.4.4 Inversions : 148

7.4.5 Parallel algorithm : 149

7.5 Examples and comparisons : 151

7.5.1 Triosephosphate isomerase gene : : : : : : : : : : : : : 151

7.5.2 Histone gene cluster of P. miliaris : : : : : : : : : : : : 157

7.5.3 Histone gene cluster of X. laevis : : : : : : : : : : : : : 158

7.5.4 Running Time : 162

7.6 Summary and future work : 165

8 Ideas for Future Research 167

8.1 Nucleotide / amino acid alignment with frame shifts : : : : : : 167

8.2 Divide and conquer multi{dimensional matching : : : : : : : : 169

8.3 Updating su�x arrays : 169

8.4 Chaos game theory and approximate string matching : : : : : 170

8.5 Comparing a sequence against a database of motifs : : : : : : 171

Bibliography 173

Appendix 194

A Glossary 194

List of Figures

1.1 The size of the GenBank nucleic acid database measured in

nucleotides during the past ten years. : : : : : : : : : : : : : : 2

1.2 The size of the GenBank nucleic acid database measured in

nucleotides on a log scale during the past ten years. : : : : : : 2

1.3 One of three possible secondary structures for the 5s{rRNA of

Bacillus licheniformis as computed by the MFOLD program

of Zuker & Stiegler. The lines connecting adjacent base pairs

in the stems represent strong bonds and the dots represent

weaker bonds. : 6

3.1 A parallel dynamic programming algorithm to compute the

minimum edit distance between two strings. : : : : : : : : : : 53

5.1 An algorithm to compute all possible strings, W , that could

have been used to create the multiset S from two copies of W . 78

5.2 A naive algorithm that will solve the string consensus problem

by searching all possible pre�x/su�x matches. : : : : : : : : : 81

5.3 The running time in CPU seconds for the naive algorithm to

solve the string consensus problem. : : : : : : : : : : : : : : : 82

5.4 The square root of the running time for the naive algorithm

to solve the string consensus problem. : : : : : : : : : : : : : : 82

5.5 An algorithm based on Rabin{Karp style string matching to

solve the string consensus problem. : : : : : : : : : : : : : : : 84

5.6 The running time in CPU seconds for the Rabin{Karp based

algorithm to solve the string consensus problem. : : : : : : : : 86

5.7 The running time divided by the log of the number of strings

for the Rabin{Karp based algorithm to solve the string con-

sensus problem. : 86

5.8 An algorithm based the the trie data structure to solve the

string consensus problem. : 87

5.9 An algorithm to sort the string and construct the trie as the

strings are being sorted. : 88

5.10 An algorithm to search the trie for a string. : : : : : : : : : : 88

5.11 The running time in CPU seconds for the sort based algorithm

to solve the string consensus problem. : : : : : : : : : : : : : : 90

5.12 The running time divided by the log of the number of strings

for the sort based algorithm to solve the string consensus

problem. : 90

6.1 A naive algorithm that will check all length k pre�x/su�x

overlaps to solve the log inexact consensus string problem : : : 94

6.2 The running time in CPU seconds used by the naive algorithm

to solve the log inexact consensus string problem. : : : : : : : 96

6.3 The square root running time used by the naive algorithm to

solve the log inexact consensus string problem : : : : : : : : : 96

6.4 An algorithm to convert the XOR value of two numbers to

the di�erences of two numbers that would result in the XOR

value. : 97

6.5 An algorithm based on the Rabin{Karp method of strings

matching to solve the log inexact consensus string problem. : : 99

6.6 The running times in CPU seconds for the naive and RK

algorithms to solve the log inexact consensus string problem. : 101

6.7 The square root of running times for the naive and RK algo-

rithms to solve log inexact consensus string problem. : : : : : 101

6.8 The extended RK based algorithm for the log inexact match

problem. : 104

6.9 An algorithm to solve the log inexact match problem using

su�x arrays. : 105

6.10 An algorithm to �nd log inexact matches using a su�x array. : 106

6.11 The running time in CPU seconds of the su�x array algorithm

to solve the log inexact match problem while varying number

of strings. : 109

6.12 The running time in CPU seconds of the su�x array algorithm

to solve the log inexact match problem varying size of strings. 110

6.13 The running time in CPU seconds of the su�x array algorithm

to solve log inexact match problem varying size of minimum

overlap. : 110

6.14 The log of running time of the su�x array algorithm allowing

n� errors. : 111

7.1 A divide and conquer algorithm to �nd an approximate align-

ment of P in T . : 124

7.2 The characters of the pattern, S1, are compared to the cor-

responding characters of the text, S2, and the results stored

in the leaves of the distance tree. : : : : : : : : : : : : : : : : 125

7.3 An algorithm to compute the values of the internal nodes of

the distance tree. : 125

7.4 The distance tree at stages one, two, and three while aligning

the pattern P = ABCD and the text T = ABXXCD. A node

in the distance tree is (score, max, max pos). : : : : : : : : : : 128

7.5 An algorithm that places gaps optimally while computing the

internal nodes of the distance tree. : : : : : : : : : : : : : : : 128

7.6 The procedure max gap �nds the optimal position of a gap. : : 129

7.7 The procedure max gap will move the gap, in this case to the

left, and compute the change in alignment score as characters

are moved form the tail of P1 to the head of P2. : : : : : : : : 129

7.8 A divide and conquer version of the algorithm that will con-

struct the alignment. : 131

7.9 A Divide and Conquer algorithm to �nd an approximate align-

ment of P in T allowing inversions in the alignment. : : : : : : 132

7.10 An algorithm to compute the internal nodes of the distance

tree when inversions are allowed in the alignment. : : : : : : : 133

7.11 A Parallel divide and conquer algorithm to �nd an alignment

of P in T . : 135

7.12 An algorithm to compute the leaves of the distance tree in

parallel. : 135

7.13 An algorithm to compute the internal nodes of the distance

tree in parallel. : 136

7.14 An algorithm to reconcile the internal nodes of the two dis-

tance trees in parallel. : 136

7.15 Tree used by parallel algorithm : : : : : : : : : : : : : : : : : 136

7.16 A diagram of a gap insertion for case 1 of Lemma 3. : : : : : : 145

7.17 A diagram of a gap insertion for case 2 of Lemma 3. : : : : : : 145

7.18 Schematic representation of input used to time the divide and

conquer algorithm. : 163

List of Tables

3.1 Time to compute the edit distance between two satellite DNA

sequences from D. melanogaster using the parallel dynamic

programming algorithm while varying the number of processors. 56

3.2 Speedup of parallel dynamic programming algorithm, part 1 : 56

3.3 Speedup of parallel dynamic programming algorithm, part 2 : 57

4.1 Elapsed time in seconds to sort substrings of a string of 215

characters : 66

4.2 Percent processor utilization for a string of 215 characters : : : 66

7.1 The starting and ending position of each exon in the TIM

genes of G. gallus and A. nidulans. : : : : : : : : : : : : : : : 152

7.2 Positions of the TIM gene from G. gallus that align the with

exons of the TIM gene from A. nidulans. Each exon from A.

nidulans was aligned seperately in the entire TIM sequence

of G. gallus using both algorithms. : : : : : : : : : : : : : : : 154

7.3 Results of aligning the complete TIM gene from A. nidulans

with the complete TIM gene from G. galus using the Myers

& Miller dynamic programming algorithm. : : : : : : : : : : : 155

7.4 Results of aligning the complete TIM gene from A. nidulans

with the complete TIM gene from G. galus using our divide

and conquer algorithm. : 156

7.5 Exon positions in two alleles of the Psammechinus miliaris

histone complex. : 157

7.6 Results of the alignment of the complete histone complex se-

quences of P. miliaris V01143 and P. miliaris V01144 using

the dynamic programming algorithm. : : : : : : : : : : : : : : 158

7.7 Results of the alignment of the complete histone complex se-

quences of P. miliaris V01143 and P. miliaris V01144 using

our divide and conquer algorithm. : : : : : : : : : : : : : : : : 159

7.8 Exon positions in two alleles of the X. laevis histone complex. 159

7.9 Results of aligning the individual exons from the histone gene

cluster in X. laevis X03017 in the full histone gene cluster

sequence from X. laevis X03018 using both algorithms. : : : : 160

7.10 Positions of the histone gene cluster from X. laevis X03017

that match the exons from the histone gene cluster from X.

laevis X03018. The alignment was done using the complete

histone gene cluster from each X. laevis sequence using the

Myers & Miller dynamic programming algorithm. : : : : : : : 161

7.11 Positions of the histone gene cluster from Xenopus laevis

X03017 that match the exons from the histone gene cluster

from X. laevis X03018. The alignment was done using the

complete histone gene cluster from each X. laevis using our

divide and conquer algorithm. : : : : : : : : : : : : : : : : : : 162

7.12 Running time in CPU seconds to compute an alignment of A.

nidulans with G. gallus using several variants of our divide

and conquer algorithm. : 163

7.13 Speedup of the parallel divide and conquer algorithm to align

a string of lengh 4096 within a string of length 8192. : : : : : 164

1

Chapter 1

Introduction

In the 7 May 1992 issue of Nature, S. Oliver et. al. [213] reported that the complete

sequence of the �rst eukaryotic chromosome, chromosome III of Saccharomyces

cerevisiae (bakers' yeast), had been determined. This and many similar projects

have contributed to the rapid growth of the nucleic acid databases during the past

decade. Figures 1.1 and 1.2 show how the number of nucleotides in the GenBank

database has been growing during the past ten years. How will this information

be analyzed? How will it be accessed in the future?

1.1 Motivation

The goals of the human genome e�ort as stated in the report \The U.S. human

genome project: The �rst �ve years, FY 1991{1995" [275] include the following:

� Develop algorithms and analytical tools to interpret genomic information.

� Create database tools that provide easy access to up{to{date physical map-

ping, genetic mapping, chromosome mapping, and sequencing information

and allow ready comparison of the data in these several data sets.

� Develop e�ective software and database designs to support large{scale map-

ping and sequencing projects.

2

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

82 83 84 85 86 87 88 89 90 91 92 93

B
a
s
e
s

i
n

G
e
n
B
a
n
k

Year

� � � �� � � ��
����

� ��
���
��
���
�
��
�
�
��
�

Figure 1.1: The size of the GenBank nucleic acid database measured in nucleotides

during the past ten years.

100000

1e+06

1e+07

1e+08

82 83 84 85 86 87 88 89 90 91 92 93

B
a
s
e
s

i
n

G
e
n
B
a
n
k

Year

�

� � �
� � �

���
���
� ����

�����
�����

����

Figure 1.2: The size of the GenBank nucleic acid database measured in nucleotides

on a log scale during the past ten years.

3

The human genome project has created and supports a community of re-

searchers investigating algorithms to improve the analysis and access to the genetic

databases. My interest is in the applications of approximate string matching to

the problems of accessing and analyzing data in the DNA, RNA, and protein

sequence databases. A number of other reasons have been given by others for

studying approximate string matching including, spelling correction, tree ring

dating, geological strata recognition, and bird song recognition.

1.1.1 Shotgun sequencing

Current technology limits the number of bases of a DNA sequence that can be

determined in one operation to several hundred. To determine the sequence of

longer pieces of DNA, the DNA must �rst be broken into appropriate sized pieces.

The two methods frequently used to determine the order of bases in a DNA

sequence are ordered sequencing and shotgun sequencing.

Ordered sequencing creates a collection of DNA fragments that all have

one end in common by progressively removing bases from the other end of the

sequence with an enzymatic reaction. As the bases are being removed, samples

of the DNA are removed from the enzymatic reaction and the degradation of the

DNA in the sample is stopped. Each successive sample of DNA will be shorter than

the previous sample since the longer the enzymatic reaction is allowed to proceed,

the shorter the remaining DNA will be. If the DNA samples are removed at

appropriate intervals, we will have a collection of di�erent length DNA fragments,

each with a common su�x. Each of the DNA fragments is cloned to produce

a large quantity of the DNA that is then sequenced. Since we know the order

of each clone in the complete sequence, once the clones have been sequenced,

reconstructing the original sequence is simple.

In shotgun sequencing, instead of producing an ordered set of sequence

fragments, a random set of fragments is produced. Both the starting and ending

position of the sequence fragment vary over the length of the sequence. The

4

sequence fragments are sorted by size and appropriate sized fragments are cloned

so that enough DNA is produced to be sequenced. The DNA may be fragmented

by sonicating the DNA, exposing the DNA to DNase I, or exposing the DNA

to restriction enzymes. The overlaps that occur between the sequenced random

DNA fragments are used to reconstruct the original sequence. Since errors occur

in the process of sequencing, reading the sequencing gels, and entering the data,

approximate string matching methods must be used to reconstruct the original

sequence from the sequence fragments.

1.1.2 Sequence similarity and alignments

Once a DNA sequence that codes for some protein with unknown function has

been sequenced, the databases of DNA sequences are searched for similar DNA

sequences. The function of the unknown piece of DNA may be inferred from

DNA sequences with similar structure that are found in the databases. In many

situations, knowing that two sequences are similar is enough, but in other situ-

ations such as constructing a phylogenetic tree, a one to one alignment between

the bases of the sequences is required. The processes of evaluating the similarity

of sequences and constructing an alignment between two sequences both make

heavy use of algorithms to do approximate string matching. The size of these

problems varies greatly, from aligning two short sequences to doing a complete

n{wise comparison of all sequences in the GenBank database.

1.1.3 Motifs

A motif (also called a template or a �ngerprint) is a short pattern in an amino

acid or nucleotide sequence that is frequently associated with some structure or

function of the molecule. Motifs involve computation in two situations, discovery

of the motif, and searching sequences for previously discovered motifs.

The problem of systematically discovering a motif from a collection of se-

quences that are believed to have a similar structure or function is challenging.

5

There are several aspects to discovering a motif that make it di�cult. A motif

is not always continuous, there may be gaps between positions that specify cer-

tain characters. For example, the leucine zipper motif speci�es the amino acid

leucine appear in every seventh position of the amino acid sequence. A motif is

not always perfectly conserved, there will be positions in the motif that are only

partially speci�ed. The motif is not always located at the same position in each

sequence in which it appears.

Once a motif has been speci�ed it is used to search for other occurrences

of the motif. Several hundred motifs have been collected by A. Bairoch [28] in

the PROSITE database. A single motif may be used to select sequences from a

database in an attempt to �nd all sequences with a speci�c structure or function.

A single sequence may be compared with each motif in the database to �nd one or

a few motifs that match parts of the sequence. The motifs that match a sequence

may be used to infer the structure or function of the molecule.

1.1.4 RNA secondary structure

Transfer RNA (tRNA) and ribosomal RNA (rRNA) form a stem and loop struc-

ture that is often shown in two dimensions. Figure 1.3 shows the secondary

structure of the 5s rRNA of Bacillus licheniformis as computed by the MFOLD

program of M. Zuker & P. Stiegler [298]. The resulting stem and loop structure

is the arrangement of the bases in the rRNA that minimizes the free energy in

the two dimensional structure. The stems generally follow the Watson{Crick base

pairing so that G's usually align with C's and A's with U's. Occasionally G's will

pair with U's.

The two subsequences that compose a stem in the rRNA secondary struc-

ture are approximately inverted complements of one another. Algorithms that

can quickly and accurately search for approximate substring matches in an RNA

sequence might be able to improve the speed of programs used to compute the

secondary structure of RNA molecules.

6

U 1
G

A

G

A

G

A
A

U

G

C

U

C

U

C
A

G

A

A

A20

GCCA

A

A G G C

A

A
G

G
A

AA
C

C

U
G

40

G
C

U
A

A
A

G
G

C
C

A
U A

C

C

U
C

C
U

G

60

U

C

U

C

A

C

U

G

C
C

U
U

G
A

A
G

G
C

C

A

80

G

U

G

A

G

G A A C

G

C

A

U

A

G

U

U

U

G

G

100 U

G

G

C

G
A

U

A

G
C

GAAGAG
GUC

A

120

C
AC

C

C
G

U

U

C

C

CA
U

G

C

C G

A

A

C

140 A
C G

G

A
A

G U

U
A A

G

C U C U U C A

G

160

C
G C

C

G

A

U

G
G U

A

G

U

U

G

G
G

G
G

C

180

U

U
C

C
C

C
C

U
G

U
G

A

GA
G

U
A

G
G

A

200

C

G

C

C

G

C

C

A

A

G

C

A

A

U

G

U

G
A

C
U

220

U

U

C

A

U

A A G G

A

G
A

CUU

U

U

U
U

U

240
UN

Figure 1.3: One of three possible secondary structures for the 5s{rRNA of Bacillus

licheniformis as computed by the MFOLD program of Zuker & Stiegler. The lines

connecting adjacent base pairs in the stems represent strong bonds and the dots

represent weaker bonds.

7

1.2 Overview of thesis

The remainder of the thesis is organized as follows. Chapter two is a review of

the literature in exact string matching, approximate string matching and related

areas. Since string matching and pattern matching are fundamental questions in

both computer science and computational biology, the literature is extensive. The

�nal few pages of chapter two discuss problems that are not directly addressed in

the rest of the thesis, but that may bene�t from the algorithms that are developed

in this thesis or may contribute to the areas that are discussed in this thesis.

Chapters three and four present e�cient parallel solutions to two indepen-

dent problems. The dynamic programming approach to aligning sequences has

been investigated extensively in both the computer science and computational

biology literature. In chapter three, I present an e�cient parallel algorithm to

compute the edit distance between two sequences, a method of measuring the sim-

ilarity between sequences, that runs in O(mn=p) time using O(p); p � min(m;n)

EREW PRAM processors when given two sequences of length m and n. Chapter

four presents an e�cient parallel solution to the problem of �nding the most fre-

quent substring of length m given a string of length n over a �xed, �nite alphabet

that uses O(mn=p) time with O(p); p � n= logn EREW PRAM processors. The

solution to the most frequent substring problem required the development of an

e�cient parallel bucket sort algorithm.

Chapters �ve and six examine the problem of reconstructing a sequence

when given the fragments of several copies of the sequence. The original sequence

is reconstructed by examining matches between su�xes and pre�xes of the frag-

ments. It is assumed that given a set of sequence fragments, the original sequence

is the shortest common superstring of the fragment strings. A common super-

string of a set of strings is some string that contains, as a substring, each string in

the set of strings. The problem of �nding the minimal length reconstruction has

been shown to be NP{complete. Previous approaches to this problem have been

to develop algorithms that approximate the correct arrangement of the fragments.

8

The approach used in chapters �ve and six is to make assumptions about the set

of fragments and then compute the correct arrangement. Chapter �ve discusses

two new algorithms to solve the problem when the matches between su�xes and

pre�xes are assumed to be exact matches. In chapter six, two algorithms are de-

veloped that will solve the problem when the su�xes and pre�xes do not exactly

match but are allowed to have a number of mismatches that is related to the

length of the su�x/pre�x overlap.

Chapter seven presents a fundamentally new approach to solving the gen-

eral problem of approximate string matching. Dynamic programming solutions

for the approximate string matching problem have been used almost exclusively

to solve the problem. A restriction that most dynamic programming solutions im-

pose is that every operator used to transform one string into the other must have

the non{intersection property. Given the strings A and B, the non{intersection

property states that if the characters Ai and Bj are aligned with one another,

and Ak and Bl are aligned with one another, then if i < k, it must also be the

case that j � l. The non{intersection property prohibits the consideration of A

matching B�1, although this situation occurs in the DNA databases. I developed

a divide and conquer algorithm that is not constrained by the non{intersection

property to solve the approximate string matching problem. The divide and con-

quer algorithm is simple, uses a very small amount of work space, runs quickly,

and is easily parallelized. Each processing node in the parallel algorithm uses

a constant amount of space, communicates with at most four other processors

and can complete the computations for each input character in a small constant

amount of time. Several variations of the algorithm are given and the algorithm

is applied to a number of DNA sequences to demonstrate its utility.

Chapter eight, the �nal chapter, brie
y discusses several problems along

with ideas for their solution that I believe are interesting questions for future

research.

� Dynamic programming algorithms have been used to align DNA sequences

9

with amino acid sequences. Since every amino acid corresponds to three

adjacent DNA bases, the deletion or insertion of a DNA base changes the

\reading frame" of all positions following in the string and so must be treated

di�erently than an ordinary insertion or deletion.

� The divide and conquer approach to approximate string matching can be ex-

tended to multidimensional approximate matching. The divide and conquer

algorithm allows simultaneous searches for a number of transformations of

the pattern so that, when searching a bitmap for a pattern bitmap, a match

can be found even if parts of the bitmap must be transformed.

� Heavy use of the su�x array data structure is made in some of the approxi-

mate pattern matching algorithms. Since the genetic databases are large and

growing, algorithms to construct a su�x array in parallel and incrementally

update the su�x array would be useful.

� Finally, I give an idea that might allow us to �nd all substrings of a given

text string that have a hamming distance within k of a given pattern string

quickly for small pattern strings.

10

Chapter 2

Literature Review

2.1 History, review, and overview

In 1972, Ulam [274] wrote a 'preview' article with the title \Some ideas and

prospects in biomathematics" that contained several of the ideas that have been

extensively studied in the past twenty years. He advocated a distance metric

between DNA sequences as a measure of sequence similarity. He considered the

operations of individual insertions, deletions, and mutations and suggested that

insertions and deletions of blocks of characters might be important to consider.

In that paper, Ulam also discussed the construction of phylogenies using both

distance methods and character based methods.

There are a number of books for geneticists and molecular biologists that

address the problems of sequence analysis. In the book \Time Warps, String

Edits and Macromolecules: The Theory and Practice of Sequence Comparison",

editors David Sanko� and Joseph Kruskal [235] gathered together an excellent

collection of introductory papers on the topics of sequence searching, sequence

alignment, pattern recognition and speech processing and recognition. In 1986, R.

Doolittle [73] wrote the book \Of URFs and ORFs"1 that addressed the problems

of identifying genetic sequences and testing the signi�cance of matches found

between the query sequence and sequences in the databases that appear to be

similar. Two books appeared in 1987, the �rst by G. von Heijne [278] and the

1Unidenti�ed Reading Frame (URF) and Open Reading Frame (ORF)

11

second by Bishop & Rawlings [40], and another book in 1988 by A. Lesk [179]

covered many of the same problems and procedures as the two books mentioned

previously. Recently M. Gribskov and M. Devereux [124] edited a book that

addresses the steps of sequence entry into the computer, overlap detection, editing,

analyzing, and reporting of sequence data. Even though the intended audience for

these books is geneticists and molecular biologists, it is important for a computer

scientist working in the area of sequence alignment and sequence searching to be

aware of the material in these books.

There have been several review papers in the past ten years about prob-

lems, algorithm, and software applicable to problems of sequence analysis in

genetics and molecular biology. In 1983, Gingeras [115] surveyed the available

software packages that performed statistical analysis of DNA sequence data. In

the 1986 volume of Annual Review of biophysics and biophysical chemistry, W.

Goad [116] reviewed algorithms for sequence alignment and sequence searching.

The paper included sections on text processing methods in sequence analysis,

the Needleman{Wunsch{Sellers alignment algorithms, local similarity algorithms,

database searching algorithms, and the statistical signi�cance of similar sequences.

R. Nussinov [211] published the paper \Theoretical molecular biology: Prospec-

tives and perspectives" in 1987, in which she discussed searching databases for

similar sequences and searching for patterns common to many sequences. In a

review paper that appeared in Science in 1988, C. Delisi [71] discussed the appli-

cation of computers in molecular biology. Although only a few paragraphs of the

paper deal directly with sequence alignment, there are many interesting ideas in

the paper. In the forward to the 1989 special issue of the Bulletin of Mathematical

Biology on molecular sequence analysis, M. Waterman [285] gives an introduction

to the many papers that appear in that issue of the Bulletin of Mathematical

Biology.

There are several databases that are frequently used when searching for

similar sequences of nucleic acids or amino acids. In the paper \The EMBL

12

data library", G. Cameron [49] described the data bases and services that EMBL

provides. In similar papers, H. Bilofsky and C. Burks [38] and J. Moore & C.

Burks [199] describe the databases that are maintained at GenBank, the genetic

sequence databank.

In the 1987 papers by W. Gilbert [114] and L. Hood & L. Smith [135]

arguments are presented in favor of completely sequencing the human genome.

The paper by Hood and Smith advocates waiting for �ve to ten years while the

sequencing technology develops before sequencing the human genome. Gilbert

advocates starting the project now and believes that it could be completed by the

year 2000. Another interesting project with plans to sequence an entire genome is

the worm project. The 1989 paper by L. Roberts [228] describes the current status

of the Caenorhabditis elegans project and the approach being taken to sequence

the genome.

Jungck and Friedman [151] in 1984 compiled the �rst annotated bibliog-

raphy that I have found in the area of computational biology [151]. In 1991

Barron, Witten, Harkness, and Driver [31] published \A bibliography on com-

putational algorithms in molecular biology and genetics" and in the same year

Bairoch [29] published \SEQANALREF: a sequence analysis bibliographic refer-

ence databank". Both Barron's and Bairoch's bibliography contain well over 1000

references, although neither contain abstracts or extensive comments. Both are

available electronically to facilitate computer searches. I [134] have recently made

available an annotated bibliography that contains about 350 papers, each with

the bibliography or a summary of the paper that is available as a technical report

or electronically.

In 1985, in an e�ort to introduce some of the computational problems in

genetics to computer scientists, Friedland and Kedes [96] presented a paper in the

Communications of the ACM that covered several computational questions that

a geneticist might be faced with. They discuss the program MOLGEN and AI

techniques that might be useful in solving some these questions.

13

2.2 Exact string matching

Exact string matching is a fundamental problem in computer science that has been

addressed in many of the algorithm texts including [6, 239, 113, 57]. Since exact

string matching algorithms are frequently used as important pieces of approximate

string matching algorithm, I will review the exact string matching literature here.

A typical string matching problem is: given some text T of length n and

a pattern P of length m �nd the each occurrence of P in T . The obvious brute

force algorithm to solve this problem takes O(n �m) time in the worst case, but

frequently takes time proportional n+m.

2.2.1 Sequential algorithms

In a paper in 1975, A. Aho and M. Corasick [4] describe an algorithm to �nd

all occurrences of a set of strings, the pattern strings, in a text using a pattern

matching machine. The pattern matching machine can be constructed in time

proportional to the sum of the length of the pattern strings. The number of

state transitions that occur when the pattern matching machine is given the text

is shown to be less than (2 � jtextj). The state transitions can be stored in a

two dimensional array of size ((numberofstates) � jalphabetj) so it is possible to

simulate the machine in time proportional to the length of the text. A modi�cation

of this algorithm was given by J. Aoe [20].

In 1977, D. Knuth, J. Morris & V. Pratt [162] published an algorithm

that �nds all matches of a pattern in a text without backing up in the text using

O(jpatternj+jtextj) operations. A �nite state machine is built from the pattern so

that when a mismatch is found the pattern can be moved ahead as far as possible

in the text. In 1990, C. Consel and O. Danvy [55], gave a program re�nement

derivation of the Knuth Morris Pratt pattern matching algorithm.

The string matching algorithm that is frequently used in practice today was

introduced by R. Boyer and J. Moore [45] in 1977. This algorithm, like the Knuth

14

Morris Pratt algorithm, uses time proportional to the length of the pattern and the

length of the text. The Boyer Moore algorithm constructs a �nite automata that

compares the pattern with the text starting at the right end of the pattern and

proceeding left until a mismatch is found. When a mismatch is found, the pattern

is moved ahead in the text. Although in practice this algorithm is faster that the

Knuth Morris Pratt algorithm it does require that the text be read backwards

in some situations. Variations of the Boyer Moore algorithm have been given

by R. Baeza{Yates [26] and T. Lecroq [178]. The papers by R. Schaback [236]

and R. Baeza{Yates [27] show the expected time of the Boyer Moore algorithm is

sublinear. Recently, a number of re�nements to the Boyer Moore algorithm have

been published [137, 261, 251, 142].

In 1987 R. Karp and M. Rabin [158] gave a randomized pattern match-

ing algorithm. The basic idea used by the algorithm is that a �ngerprint of a

string can be computed in real time and will be much smaller than the original

string. The �ngerprint of a string is the string interpreted as a number modulo

a large prime. The �ngerprint of the pattern string can be compared with the

�ngerprints of substrings of the text string. In the worst case this algorithm takes

O(jpatternj � jtextj) time, although G. Gonnet and R. Baeza{Yates [118] show that

the algorithm almost always runs in linear time.

Zvi Galil has published a series of papers on exact string matching that

have resulted in optimal, measured in space and time complexity, string matching

algorithms. In 1983, Z. Galil and J. Seiferas [106] developed an algorithm that

simultaneously used O(n) time and O(1) space. This algorithm does have the

drawback that in some situations it will need to re{read some of the input. M.

Crochemore [60] constructed an algorithm that uses linear time and constant space

during both the preprocessing phase and the scanning phase of the algorithm.

In two papers, L. Colussi, Z. Galil, & R. Giancarlo [54] and Z. Galil [99], give

tight upper and lower bounds on the number of comparisons needed to do string

matching.

15

There have been a number of interesting generalized and hybrid string

matching algorithms published. In 1987, K. Abrahamson [2] de�ned and gave an

algorithm to solve the generalized string matching problem where each position

of the pattern can match some set of characters from the alphabet. T. Eilam{

Tzore� & U. Vishkin [75] consider the problem of matching transformations of

the pattern in the text instead of matching the pattern itself. A linear time,

constant space algorithm by M. Crochemore and D. Perrin [62] used the ideas of

the Knuth Morris Pratt and the Boyer Moore algorithms to process the pattern

string automaton from both the left and right ends simultaneously. By sampling

the text, R. Quong [223] developed an algorithm with fast average case behavior.

If the alphabet is ordered, M. Crochemore [61] has developed an algorithm that

�nds all occurrences of a pattern in a text using linear time, constant space, and

that does not need to preprocess the pattern.

2.2.2 Data structures

A su�x tree is a data structure that can be created in time proportional to the

length of a string, A, that allows the question \Is B a substring of A?" to be

answered in O(jBj+log jAj) time. The basic ideas of a su�x tree were introduced
in 1973 by Weiner [290] in a paper that gave an algorithm to construct bi{trees,

a data strucutre closely related to su�x trees, in linear time and space. That

algorithm is presented in the Aho, Hopcroft, & Ullman text book [6] and the data

structure is referred to as a position tree. In 1976 E. McCreight [193] introduced an

algorithm to construct a su�x tree, a data structure closely related to the bi{tree

and position tree that uses about 25 percent less space than previous algorithms.

In 1986, A. Apostolico [21] devised anO(logn) time parallel algorithm to construct

a su�x tree for a string of length n on a CRCW PRAM with O(n) processors.

The algorithm has the disadvantage of usingO(n2) space although only O(n logn)

of the cells need to be initialized.

In 1990, Manber and Myers [189] introduced the su�x array, a data struc-

16

ture that is three to �ve times more space e�cient than the su�x tree. Using

su�x arrays, the question \Is B a substring of A?" can still be answered in

O(jBj + log jAj) time. In some cases a su�x array for a string of length n may

take O(n logn) time to construct when a su�x tree for the same string could be

constructed in O(n) time. The expected time for the construction of a su�x array

is O(n).

2.2.3 Parallel algorithms

Galil and Vishkin have written a series of papers leading to optimal parallel al-

gorithms for exact string matching. Each of the four following papers gives an

optimal parallel algorithm, but the time required decreases and the number of

processors increases in each successive paper. The �nal paper gives a constant

time optimal parallel algorithm for exact string matching.

In 1984, Z. Galil [98] gave an algorithm that matches strings in O(logn)

time using O(n= logn) CRCW PRAM processors. This time includes the pre-

processing of the pattern string. One limitation to Galil's algorithm is that it

requires the size of the alphabet to be �xed. In a 1985 paper, U. Vishkin [277]

constructs a parallel algorithm for string matching that runs in O(logn) time us-

ing O(n= logn) CRCW PRAM processors, but does not require the size of the

alphabet to be �xed. In 1990, Breslauer & Galil [47] reduces the time required

by a CRCW PRAM for string matching to O(log logn) using O(n= log logn) pro-

cessors. In his 1992 paper, Galil [100] gave an algorithm that reduced the time

required by a CRCW PRAM computer with O(n) processors to O(1) to solve the

exact string matching problem.

17

2.3 Approximate string matching and sequence align-

ment

Algorithms to do approximate string matching and sequence alignment using

similar solutions have been developed independently by a number of di�erent

researchers in both computer science and biology. In this section I will try to fol-

low the development of the approximate string matching in the computer science

literature separately from the development of sequence alignment in the biology

literature. Many of the algorithms discussed in this section are variations on a

basic dynamic programming algorithm to do approximate string matching. The

paper by W. Miller & E. Myers [196] gives an excellent presentation of the basic

algorithm.

2.3.1 Computer science literature

There are several problems in computer science that are considered approximate

string matching, including the string to string correction problem, the edit dis-

tance problem, the longest common subsequence problem and the k{mismatch

problem. Several of these problems have similar dynamic programming solutions.

The string to string correction problem

In 1974, R. Wagner & M. Fischer [279] de�ned the string to string correction

problem and gave a dynamic programming algorithm to solve it. The string to

string correction problem is: given two strings, A and B, m = jAj; n = jBj, �nd
the minimum number of operations needed to change A into B. The operations

available are to change one character of one of the strings, to delete a character

from one of the strings, and to insert a character into one of the strings. This

problem is also called the edit distance problem. The algorithmWagner & Fischer

gave solves the string to string correction problem in O(mn) time. In the following

year, R. Lowrance & R. Wagner [184] extended the algorithm to include the

18

operation of interchanging two adjacent characters in one of the strings. With this

added operation, the problem can be solved using a similar dynamic programming

algorithm that uses O(mn) time. Both of the previous algorithm require O(mn)

space. In 1975, D. Hirschberg gave a linear space algorithm to solve the longest

common subsequence problem that runs in O(jAj � jBj) time. The longest common
subsequence problem is very similar to the string to string correction problem and

the space saving ideas of Hirschberg can be applied to the algorithms of Wagner

& Fischer and Lowrance & Wagner.

There have been several interesting results related to the string to string

correction problem. W. Tichy [267], in 1984, de�ned another set of operations

that allowed the string to string correction problem with block moves to be solved

in time and space linear in the size of the input. The only operation available is

to move a block of characters in one of the strings and the goal of the problem

is to cover one of the strings with blocks from the other string. The algorithm

given by W. Tichy runs in time and space that is linear in the size of the input.

M. Maes [185] considered cyclic strings, strings with no ends, and de�ned the

cyclic string to string correction problem. An algorithm was developed to �nd the

minimum number of edit operations needed to transform one cyclic string into the

other that used O(nm logm) time where n and m are the size of the cyclic strings.

W. Masek & M. Paterson [191] in a 1980 paper gave an algorithm to compute the

minimum cost of a sequence of edit operations to convert one string into another

that used O(n � max(1;m= logn)) time, n > m. To achieve this time bound the

cost of each edit operation must be an integral multiple of a single positive real

number and the alphabet must be �nite.

In a 1976 paper C. Wong & A. Chandra [294] and later in a 1988 paper X.

Huang [139] showed an
(nm) lower bound to �nd the minimum cost sequence

of edit operations to convert one string of length n to another string of length m.

The model of computation assumed that the operations on the characters in the

strings were limited to tests of equality.

19

The longest common subsequence problem

A subsequence of the string A = a1a2 � � � an is any string of characters ai1ai2 � � � aik
where i1 < i2 < � � � < ik. The longest common subsequence between two strings A

and B is the longest string that is a subsequence of both A and B. The problem of

�nding the minimum cost edit sequence to transform one string into another is the

dual of the problem of �nding the longest common subsequence of two strings.

The solution to the longest common subsequence problem seems to be folklore

in computer science [57]. The dynamic programming algorithms that were used

to solve the longest common subsequence problem took O(nm) time and space,

where n and m were the lengths of the strings. In 1975, Hirschberg [132] gave an

algorithm to solve the longest common subsequence problem in O(nm) time and

O(n +m) space. In the following year, A. Aho, D. Hirschberg & J. Ullman [5]

show that any algorithm to solve the longest common subsequence problem using a

decision tree model of computation where each vertex represents a test of equality

between two characters must use
(nm) comparisons if the size of the alphabet

is not bounded.

A number of algorithms have been presented that improve the running

time by restricting the problem in various ways. In 1977, J. Hunt & T. Szyman-

ski [143] added the parameter r that is the number of ordered pairs of position in

the strings that match. They give an algorithm that runs in O((r+n) logn) time.

A modi�cation to this algorithm was presented by S. Kuo & G. Cross [164] that

improved the running time to O(r+ns+logn) where s is the length of the longest

common subsequence. W. Hsu and M. Du [138], in 1984, added the parameters

�, the length of the longest common subsequence, and s, the number of distinct

symbols appearing in the two strings. They gave an algorithm to �nd the longest

common subsequence of two sequences that usesO(n log s) preprocessing time and

O(�m log(n=m) + �m) time. By showing the equivalence of the longest common

subsequence and the edit distance problem, E. Myers [204] was able to construct

an O(nd) time algorithm to �nd the longest common subsequence where d is the

20

length of the edit sequence to transform one string into the other. A variant of the

algorithm that takes O(n logn + d2) time was also presented. In 1992, A. Apos-

tolico, S. Browne, & C. Guerra [22] discussed several algorithm to compute the

longest common subsequence using linear space and, in favorable circumstances,

sub{quadratic time. If the matrix used in the dynamic programming algorithm

can be made sparse, D. Eppstein, R. Giancarlo, Z. Galil, & F. Italiano [82] have

developed an algorithm using a linear, concave, or convex gap penalty function

(de�ned in the following section) to take advantage of the sparsity of the matrix

to reduce the running time.

Algorithms have been developed that limit the maximum edit distance to

be considered between the pattern and substring in the text. This limit allows

the algorithm to consider a much smaller number of possible alignments. In 1985,

E. Ukkonen [272] gave an algorithm that, given k, the maximum edit distance

to consider, constructs a �nite state automaton to �nd the positions in the text

that were at most an edit distance of k from the pattern. In the following year,

G. Landau, U. Vishkin, & R. Nussinov [169] developed an algorithm to solve

the above restricted edit distance problem in O(m2 + k2n) time. Z. Galil & K.

Park [103] gave a new algorithm to solve this problem using O(m2 + kn) time.

Convex and concave gap penalty functions

Many of the algorithms that compute the minimum cost edit script required to

convert one string into another penalize a sequence of k delete operations as k

independent events. There are situations where it is desirable to treat a series of

consecutive deletes as one event and penalize it by some function of the number of

consecutive deletes. This function, the gap penalty function, may be any function,

but constant, linear, a�ne, convex, or concave functions are usually used. Of

particular interest to people aligning sequences are convex gap penalty functions,

functions that eventually grow more slowly than linearly.

In a series of papers and technical reports, Z. Galil and his co{workers have

21

developed algorithms that make clever use of the assumption that the gap penalty

function is convex or concave [101, 79, 81, 83, 78, 76, 102, 80, 104, 105]. W. Miller

and E. Myers [197] gave algorithms to compute the edit distance between two

sequences using a convex or a concave gap penalty function. The algorithms run

in O(n2 logn) time and use O(n) space. They also gave a variant of the algorithm

that uses a piece{wise a�ne gap penalty functions.

The k{mismatch problem

Given two strings, A and B, m = jAj; n = jBj; jAj < jBj, the k{mismatch

problem it to �nd all positions in B where A aligns with k or fewer mismatches.

In a series of papers, G. Landau, U. Vishkin, & R. Nussinov [165, 166, 170] gave

algorithms to solve the k{mismatch problem using O(k(m logm + n)) time and

O(nk) space. In 1989, R. Grossi and R. Luccio [126] developed an algorithm

using su�x trees that solved the k{mismatch problem. A. Bertossi, E. Lodi, F.

Luccio, & L. Pagli [37] considered the k{mismatch problem when the length of

the text is much larger than the length of the pattern. In this paper, they also

consider mismatches that are dependent on the context of the pattern or the text.

Algorithms are developed to solve these problems in O(kn) time.

Other interesting approximate string matching algorithms

E. Myers & W. Miller [207] considered approximate matching of regular expres-

sions. The problem is \given a sequence A and a regular expression R, �nd a

sequence matching R whose optimal alignment with A is the highest scoring of all

such sequences". The algorithm they give to solve this problem runs in O(mn)

time where m = jAj and n = jRj. They give a number of related algorithms

including one that uses an arbitrary, increasing gap penalty function and runs in

O(mn(m+ n) + n2 logn) time.

String matching with a sequence of don't cares is a weak form of approx-

imate string matching. U. Manber & R. Baeza{Yates [188] gave an algorithm to

22

solve this problem using su�x arrays. Once the su�x array has been constructed

the algorithm can �nd the number of occurrences of the pattern in O(logn) time

where n is the length of the text. A list of all occurrences can be produced in

O(n1=4 + R) where R is the number of occurrences of the pattern in the text. J.

Bradford [46] introduced an algorithm that encodes strings as binary codewords

such that the hamming distance between the codewords is equal to the edit dis-

tance between a pair original strings. The cost of computing the codewords is high,

but the cost of computing the hamming distance between two of the codewords

is linear in the length of the codeword. In 1990, W. Chang and E. Lawler [51]

improved the algorithm of Landau & Vishkin [167] and used it to construct algo-

rithms that perform exact and inexact matching in sublinear expected time. In a

technical report, P. Cull and J. Holloway [63] gave a divide and conquer algorithm

to do approximate string matching with inversions and swaps that runs in O(mn)

using O(m) work space where m and n, m < n, are the lengths of the strings.

This algorithm is discussed in detail in Chapter 7.

E. Myers [205] introduced the consecutive alignments problem to allow

the video screen to be updated on{line as the optimal alignment between strings

is being computed. The problem is, given two strings A and B, �nd the best

alignment for each su�x of A in B. Algorithms are presented that solve this

problem in the same time as the standard dynamic programming algorithms used

to align sequences. This algorithm allows incremental screen updates of the best

alignment.

Parallel algorithms for approximate string matching

To solve the string to string correction problem de�ned earlier, R. Wagner & M.

Fischer [279] compute the values of an m�n matrix. The dynamic programming

algorithm to solve the string to string correction problem computes element (i; j)

of the matrix from the elements (i; j�1); (i�1; j) and (i�1; j�1) of the matrix.
This permits the computation of an entire northeast southwest diagonal of the

23

matrix in parallel. See chapter 3 for details of parallelizing the standard dynamic

programming algorithm to compute the string to string correction algorithm.

In 1986, M. Veldhorst [276] described a parallel algorithm to solve a dy-

namic programming problem related to the dynamic programming algorithms

used to solve the string to string correction problem. Although this algorithm

could not be used to solve the problems we are interested in, it does contain the

key ideas needed to parallelize the dynamic programming algorithms used to solve

the string to string correction problem.

In 1986, Landau & Vishkin [167] gave a parallel algorithm to solve the

k{mismatch problem in O(logm+n= logn+ k) time using O(m2+n) processors.

The text is length n, the pattern is length m, and k is the maximum number

of mismatches allowed in the alignment. Landau & Vishkin [168] gave a parallel

algorithm to solve the string to string correction problem when the number of

edit operations is limited to k. The algorithm they give runs in O(logm + k)

time using n processors. O. Ibarra, T. Pong, & S. Sohn [145, 146] give a parallel

algorithms to solve the string edit problem and the longest common substring

problem on the hypercube architecture. The algorithm uses O(log2 n) time and

constant space using O(n3= log2 n) processing elements of a SIMD hypercube. In

1992, O. Ibarra, T. Jiang, & H. Wang [144] gave an algorithm to solve the string

edit distance problem using a linear array of m identical �nite state machines in

O(n) time.

2.3.2 Biology literature

In 1984, M. Waterman [282] surveyed the problems of sequence comparison in

biology. A number of topics were included in the discussion including sequence

comparison, location of long matching subsequences, and comparison of several

sequences simultaneously. In 1988 M. Waterman [284] again surveyed the prob-

lems of computer analysis of nucleic acid sequences. E. Tyler, M. Horton, & P.

Krause [270] in 1991 examined each of the major algorithms used for sequence

24

comparison and discussed the problems in molecular biology that each algorithm

was most suited to solve.

Similarity matrices

Unlike the character matching that was discussed above in which characters either

match or do not match, amino acids have physical and chemical properties that

make some amino acids similar to one another and other dissimilar. To capture the

similarity between amino acids, tables have been constructed to give the \cost" of

replacing one amino acid with another [70]. These matrices, commonly referred to

as PAM matrices, are further investigated in the 1985 paper by W. Wilber [291].

A similarity matrix can be used to favor sequence alignments in which

amino acids have been replaced with similar amino acids over alignments in which

amino acids have been replaced with dissimilar amino acids. S. Altschul [11] argues

that certain matrices should be used when aligning individual sequences and other

matrices should be used when searching the amino acid databases for sequences

similar to a query sequence. P. Argos [23] gave a thorough procedure using PAM

matrices to align protein sequences and to test the signi�cance of the alignment.

Global sequence alignment

In 1970, Needleman &Wunsch [209] gave an algorithm to �nd the longest common

subsequence of two amino acid sequences. Although a detailed algorithm is never

explicitly stated, it is clear that the ideas of the dynamic programming algorithms

presented in later papers appear in this paper. The algorithm of Needleman &

Wunsch was modi�ed slightly by Sanko� [231] and shown to take time and space

proportional to the product of the length of the sequences being aligned. This

paper introduced the matrix W and the equation

W (i; j) = maxfW (i � 1; j); W (i; j � 1); W (i� 1; j � 1) + �(ai; bi)g (2:1)

25

that is the basis for many of the dynamic programming algorithms. P. Sell-

ers [240, 241] generalized the algorithm of Sanko� to use a variety of distance

functions. Sellers' distance metrics and algorithms were further generalized by M.

Waterman, T. Smith, & W. Beyer [289] to allow insertions and deletions of mul-

tiple characters. Waterman's algorithm requires O(n2m) time and O(nm) space.

In 1982, O. Gotoh [119] reduced the time required by Waterman's algorithm to

O(nm) by requiring the gap penalty function be linear. Waterman [281] gave an

algorithm that used a convex gap penalty function and conjectured that it used

O(nm) time. M. Fredman [94] gave a version of the dynamic programming algo-

rithm that penalizes each gap by a constant, regardless of the length of the gap.

The algorithm of Gotoh [119] was improved by S. Altschul [14] in 1986 to use any

a�ne gap penalty function. This allowed the separation of the cost of breaking

the sequence and the cost associated with the length of the gap. In 1990, O.

Gotoh [122] gave an algorithm that can simulate a convex gap penalty function

with a piecewise linear gap penalty function. Gotoh's algorithm runs in O(lmn)

time where l is the number of linear pieces that make up the gap penalty function.

The e�ects of choosing various a�ne gap penalty functions used by the

dynamic programming algorithm to align sequences were investigated by W. Fitch

& T. Smith [91] in a 1983 paper. A similar study was done in 1985 by D. Feng, M.

Johnson, & R. Doolittle [88]. In 1991, J. Spouge [256] presented empirical results

of aligning sequences using unweighted end{gaps, a�ne gap penalty functions,

constant gap penalty functions, and concave gap penalty functions.

In a previous section we saw that the string to string correction problem

could be sped up if we limited the number of edit operations allowed to some

constant, k. A similar idea is given in a paper by M. Waterman [280] in 1983. That

paper describes an algorithm to �nd optimal alignments when the alignments are

restricted to those using at most k insert, delete, or change operations. Papers by

J. Fickette [89] and E. Ukkonen [271] presented similar ideas. In 1985, the ideas of

Fickette and Ukkonen were extended by J. Spouge [255] to search for the optimal

26

alignment from both the left and right ends of the sequences simultaneously.

In the late 1980's the biologists and computer scientists became more aware

and interested in each others' work. The 1975 result of Hirschberg [132] that

gave an algorithm for the longest common subsequence using linear space was

introduced and applied to the sequence alignment problem by E. Myers & W.

Miller [206] in 1988. A 1990 paper by S. Wu, U. Manber, G. Myers, & W.

Miller [295] applied their algorithms to the problem of sequence alignment. The

algorithms of G. Landau, U. Vishkin, & R. Nussinov (and many other algorithms)

to solve the k{di�erences problem and the approximate string matching problem

were given in volume 183 of the methods in enzymology series [171].

There have been several algorithms given to align or compare sequences

that are not related to the dynamic programming algorithms. In 1982, J. Felsen-

stein, S. Sawyer, & R. Kochin [87] introduced the idea of using the fast Fourier

transform to construct a fast algorithm to measure the similarity of sequences.

Their algorithm computes the maximum number of exact matches between two

nucleic acid sequences for any alignment with no gaps. Four indicator sequences

are built for each sequence, one for each base. The indicator sequence for base

X has a 1 at position i when base X appears at position i of the sequence. Po-

sition j of the product of the indicator sequences for base X has the number of

exact matches of the X base when one sequence is aligned at position j of the

other sequence. By using the FFT to do the multiplications the algorithm runs

in O(n logn) time.

A maximum likelihoodmethod has been developed to align sequences when

explicit transition probabilities have been obtained to create a statistical model of

DNA evolution. In 1986, M. Bishop & E. Thompson [41] introduced the optimal

sequence alignment problem under a probabilistic model of DNA evolution. A

similar model of evolution is introduced by J. Thorne, H. Kishino, & J. Felsen-

stein [266] in 1991. In a paper submitted to the Journal of Molecular Evolution,

J. Thorne, H. Kishino, & J. Felsenstein [265] extend their algorithm to address

27

multi{base insertions and deletions.

In 1990, two papers by Allison, Wallace, & C. Yee [8, 7] described a method

to measure the similarity of sequences based on the minimum message length

encoding of the pair of sequences. This method requires that the method used

to encode the sequences (the model of evolution) and the encoded sequences be

included in the measure of the message length. Using this scheme it is possible to

consider di�erent models of evolution to explain the di�erences between sequences.

In 1984, W. Wilbur & D. Lipman [293] developed a method to measure

the similarity of two sequences based on the context of the nucleic acids or amino

acids being compared. After they de�ne the distance, they give a dynamic pro-

gramming algorithm to compute the similarity of the sequences. In the same year,

P. Sellers [244] gave an algorithm that measures the mismatch density of a region

of the match and then used this measure to construct a dynamic programming al-

gorithm. D. Davison & K. Thompson [69] developed an algorithm to measure the

similarity between local regions of sequences instead of the entire sequence. This

type of algorithm can be used when reconstructing a sequence from shotgun se-

quencing data. D. Torney, C. Burks, D. Davison, & K. Sirotkin [268] introduced

a measure of dissimilarity between sequences that is used to search for similar

sequences.

Most of the algorithms that we have considered in this section have used

only the primary sequence information to measure the similarity between se-

quences. In 1987, M. Gribskov, M. McLachlan, & D. Eisenberg [125] gave a

method called pro�le analysis that is based on the three dimensional structure of

the protein as well as the primary amino acid sequence.

Local subsequence alignment

In the previous section we considered the problem of aligning two sequences.

Frequently it is also interesting to search for parts of a sequence that are similar to

other sequences, or parts of other sequences. In 1979 and 1980, P. Sellers [242, 243]

28

gave an algorithm to list all pairs of intervals, one from each of two sequences,

that are locally similar to one another. This algorithm is also presented in a very

readable format in the book chapter by B. Erickson [84]. A variant of Sellers'

algorithm was given by W. Goad & M. Kanehisa [117] that used a more sensitive

distance measure so that the number of similar pairs of subsequences found by

the algorithm was reduced.

Sellers' algorithmminimizes the dissimilarity between the two subsequences.

In 1981, T. Smith and M. Waterman [253] gave an algorithm that maximizes the

similarity between the subsequences and allows for arbitrarily long gaps in the

alignment. This algorithm was extended by M. Waterman and M. Eggart [287] to

�nd all non{intersecting similar subsequences that score above a given threshold.

In 1992, M. Schoniger & M. Waterman [238] further extend the algorithm to �nd

non{intersecting inversions.

In 1986, S. Altschul & B. Erickson [12, 13] introduced a new measure of

subsequence similarity and an algorithm that uses this nonlinear similarity func-

tion to �nd subsequence alignments. The similarity measure that they use is based

on the logarithm of the probability of �nding mismatches in a speci�ed length of

the alignment. This algorithm is examined in a paper by C. Lawrence [175] and

several examples of its use are given.

Parallel algorithms

The dynamic programming algorithm used for many of the sequence alignment

problems lends itself easily to parallel implementation. In 1989, N. Core, E.

Edmiston, J. Saltz, & R. Smith [56] gave a parallel implementation of the dynamic

programming algorithm to align two sequences. Their implementation usesO(nm)

space and O(n) time using O(m) processors, n � m. The space requirement

of the algorithm limit the practicality of this algorithm. In the same year, X.

Huang [140] gave a parallel version of the dynamic programming algorithm for

sequence comparison that runs in linear time and uses linear space. X. Huang,

29

W. Miller, S. Schwartz, & R. Hardison [141] gave a parallel algorithm that solves

the local similarity problem using only linear space.

The problem of sequence comparison has been used by a number of re-

searchers to demonstrate the ease of implementation of an algorithm using their

parallel computer language. In 1989, A. Singh & R. Overbeek [248] implemented

the standard dynamic programming algorithm using the parallel programming

language unity. The algorithm has also been implemented by D. Sittig, D. Foulser,

N. Carriero, G. McCorkle, & P. Miller [249] to demonstrate C{Linda.

Multiple sequence alignment

Biological molecules such as DNA, RNA, and proteins are frequently used to con-

struct phylogenetic trees. A phylogenetic tree describes the evolution of a group of

organisms or molecules. When these molecules are used, they must be aligned so

that homologous positions in the molecules are aligned with one another. A par-

ticular position in a group of molecules is homologous if that position has evolved

in each of the molecules from a single position of a common ancestor molecule.

Homology in biological molecules if often inferred from similarity between the

molecules. Several algorithms have been developed to align several sequences so

that similar regions will be aligned with one another. In 1988, T. Friedemann [95]

published a review article discussing seven multiple sequence alignment programs.

Another reason to perform multiple sequence alignments is to improve the

sensitivity of a sequence similarity search. In 1990, S. Altschul & D. Lipman [17]

described an algorithm to search amino acid databases for several sequences that

are similar to the query sequence. By searching for more than one sequence,

relationships that might otherwise be obscured by noise can be found.

The dynamic programming algorithm to align two sequences can be ex-

tended to align three or more sequences. This approach generally leads to algo-

rithms that require time proportional to the product of the length of the sequences

begin aligned so the dynamic programming algorithm for aligning multiple se-

30

quences quickly becomes impractical as the number of sequences increases. In

1985, M. Murata, J. Richardson, & J. Sussman [203] extended the dynamic pro-

gramming algorithm to simultaneously align three sequences. Their algorithm

runs in time proportional to the product of the length of the three sequences.

In the following year, O. Gotoh [120] gave a dynamic programming algorithm to

align three sequences that also produces a traceback of the edit operations used to

create the alignment. It is shown that the time required to produce the traceback

is small compared to the time required to compute the alignment. In 1986, E.

Sobel & H. Martinez [254] presented an algorithm to compute near optimal align-

ments of two or more sequences by using the dynamic programming algorithm to

align small segments of the sequences instead of the individual characters.

The dynamic programming approach to simultaneously align several se-

quences is not practical in many situations. An alternative is to cluster the se-

quences into small groups and then use the dynamic programming algorithms to

align the sequences in the groups. In 1988, F. Corpet [58] and H. Carrillo &

D. Lipman [50] gave algorithms that compute all of the pairwise alignments us-

ing the dynamic programming algorithm and then use the pairwise alignments to

create a hierarchical clustering of the sequences. D. Lipman, S. Altschul, & J.

Kececioglu [182] extend and implement the algorithm of Carrillo & Lipman. A

similar method was given by S. Subbiah & S. Harrison [260] in 1989. S. Altschul

& D. Lipman [16], in 1989, show that the multiple sequence alignment problem

can be viewed as a circular programming problem, a generalization of the linear

programming problem. It was not clear if Khachian's algorithm or Karmarkar's

algorithm could be used to solve the problem in polynomial time. M. Berger & P.

Munson [36] have developed an iterative randomized algorithm to align multiple

sequences. Their algorithm divides the sequences into two groups and then uses

a variant of the dynamic programming algorithm to align the two groups. Each

group of sequences is treated as a single sequence during the alignment process.

This process is iterated; each iteration improves the alignment of the groups.

31

The de�nition of a gap penalty when aligning multiple sequences is not as

intuitive as the de�nition that applies when aligning two sequences. In a 1989

paper, S. Altschul [10] considers a new de�nition of the gap penalty function

that uses information gathered from the results of pairwise alignments of the

sequences to be aligned. In 1990, O. Gotoh [121] shows that pairwise optimal

alignments between three or more sequences may not be consistent. It is argued

that characters that lead to the inconsistency are usually distributed in clusters.

Using this idea, an algorithm is developed that selects the consistent regions of

the pairwise sequence alignments to construct the global alignment.

Due to the computational demands of computing the optimal alignment

of multiple sequences, several heuristics have been proposed. A method given

by M. Johnson & R. Doolittle [148] uses a window that restricts attention of

the alignment algorithm to a small portion of the sequences. This window is

moved along the sequences and gaps are inserted to align the sequences within the

window. Similar methods are given by M. Waterman, R. Arratia, & D. Galas [286]

and M. Waterman [283]. D. Bacon & W. Anderson [25] present a heuristic to �nd

a good alignment between several sequences by scoring segments of the sequences

using a similarity matrix. The heuristic does not handle gaps other than to align

segments of the sequences in various positions. A. Landraud, J. Avril, & P.

Chretienne [172] describe a method to align several sequences by �rst constructing

a library of frequently occurring substrings that appear in the sequences and then

searching for regions in the sequences where a majority of the sequences contain

the same substring. This region is used to anchor the sequences and process is

repeated with the subsequences to the left of the anchor point, and again with

the subsequences to the right of the anchor point.

Visualization of alignments

Sequence similarity is frequently measured by a numeric value as computed by

some algorithm. It is possible to represent the sequence visually in ways other

32

than a sequence of alphanumeric characters. Nucleic acid sequences are frequently

represented as four distinct colors when sequences are being aligned by hand to

take advantage of the human visual pattern recognition abilities.

In 1986, M. Gates [112] used a two dimensional representation of DNA

to make tandem repeats and other features obvious. The sequence of DNA is

plotted on a two dimensional grid, one axis designated the A{T axis, the other

axis designated the C{G axis. Assuming that the current position on the grid is

(x; y), if the next character in the DNA sequence is an A then a line is drawn to

position (x + 1; y). If the next character of the DNA sequence was a T then a

line is drawn to position (x� 1; y) on the grid. Similarly for G and C. Using this

type of display for DNA sequences causes certain structures, especially repeating

structures, of the sequence to become immediately obvious.

In 1990, H. Je�rey de�ned a representation of DNA sequences related to the

chaos game or Sierpinski triangle. Given a square with each vertex labeled with

one of the four bases and a current position of (x; y) within the square, move half

of the distance to the corner of the square whose label matches the next character

in the DNA sequence and place a dot at the new position. This procedure is

repeated for each base in the sequence. It is shown that visible patterns represent

both global and local patterns simultaneously.

Markov chain analysis and frequency analysis

Markov chain analysis of DNA sequences can be used to identify sequence simi-

larities that may be di�cult to �nd with other methods. In 1986, B. Blaisdell [42]

presented a method to classify DNA sequences based on the homogeneity of their

Markov chain representations. It was found that almost all of the sequences ex-

amined required at least a �rst order Markov chain for their expression. This

method has some advantages over the dynamic programming algorithms, it does

not require any preliminary alignment of the sets of sequences and it easily mea-

sures the global similarity between sets of more than two sequences. This method

33

does not discriminate between closely related sequences well and does not produce

an alignment of the sequences. H. Almagor [9], P. Garden [109], and others have

also modeled DNA with Markov processes.

A number of people, including B. Silverman [247], D. Benson [34], and E.

Cheever [52] have used Fourier transforms to measure similarities in sequences of

DNA.

Signi�cance

The algorithms that have been discussed to align sequences will generally align any

sequences that are given to them, whether they are related to one another or not.

Papers have been published that examine the statistical signi�cance of the align-

ments produced. As early as 1970, J. Haber & D. Koshland Jr. [129] developed a

procedure that grouped amino acids into groups with similar chemical properties

and used these groups to test the predictions of relatedness between proteins. The

idea of testing the signi�cance of an alignment between two sequences by using

a Monte{Carlo technique of sampling the sequences was introduced in 1973 by

D. Sanko� & R. Cedergren [232]. They compared the alignment of the original

sequence to alignments of random sequences with the same base composition as

the original sequences. If the alignment score of the original sequences was statis-

tically di�erent from the alignment scores of the random sequences, the alignment

was considered to be signi�cant. In 1983, W. Fitch [90] extended these results by

maintaining the nearest neighbor frequencies of the dinucleotides. It is shown that

maintaining the nearest neighbor frequencies can a�ect the probability of observ-

ing a signi�cant alignment. An algorithm given by M. Waterman, R. Arratia, & D.

Galas [286] can be used to con�rm or deny an alignment of sequences is di�erent

from an alignment of random sequences. More rigorous treatments of the signi�-

cance of sequence alignments have been given by S. Karlin & G. Ghandour [154],

I. Rinsma, M. Hendy, & D. Penny [226], and S. Karlin & S. Altschul [153]. In

a recent paper, R. Mott [200] described a Maximum{likelihood algorithm to test

34

the signi�cance of sequence alignments.

2.3.3 Sequence analysis

There are several questions besides sequence alignment between two or more se-

quences that are related to approximate string matching. In a series of papers S.

Karlin, G. Ghandour, F. Ost, & S. Tavare [155], S. Karlin, M. Morris, G. Ghan-

dour, & M. Leung [156], and S. Karlin, M. Morris, G. Ghandour, & M. Leung [157]

give algorithms to �nd the longest direct repeat, the highest frequency direct re-

peat of length k, dyad symmetries of length l, and other sequence patterns.

Biologists have described models of sequences for antigenic sites, amphi-

pathic structures, globular proteins, and others. One sequence could code a num-

ber of these structures and knowing the structures being coded for along the

sequence can be important in determining the three dimensional structure and

function of a molecule. In 1989, Auger [24] gave algorithms to construct a com-

posite model of a sequence.

2.4 Sequence searching

The algorithms that we have discussed to measure sequence similarity or to align

sequences can be used to search databases of sequences for sequences that are

close to the query sequence. Because of the size of the databases, algorithms such

as the dynamic programming algorithms that generally take time proportional to

the product of the length of the sequences being compared become impractical on

all but the smallest databases. Many algorithms have been developed to search

entire sequence databases for sequences similar to a query sequence and a few

of the algorithms are presented below. A review of sequence database searching

algorithms was given in 1985 by D. Davison [68].

35

2.4.1 Sequential algorithms

An algorithm given in 1983 by W. Wilbur & D. Lipman [292] �nds all k{tuple

matches between the two sequences of length m and n being compared. The k{

tuple matches are placed in an m by n matrix and any diagonal of the matrix

that contains many k{tuple matches is considered as a possible match. This

process is repeated for each sequence in the database. If k is chosen properly, the

time required by the algorithm will be related to the sum of the lengths of the

sequences being compared instead of the product of the sequence lengths. If the

sequences become too long then the word size of the computer limits the size of

k and the time the algorithm requires increases. Variants of this algorithm have

been presented by D. Lipman & Pearson [183], W. Pearson & Lipman [216], W.

Pearson [215].

B. Orcutt & W. Barker [214] gave an algorithm to quickly search an amino

acid database by preprocessing the database. An index of the locations in the

database of each tri{peptide is created. Given a query sequence, to search for

a similar sequence in the database the location of each tri{peptide of the query

sequence is looked up in the database index and any regions in the database with a

concentration of tri{peptide matches is considered as a possible similar sequence.

An algorithm presented by C. Lawrence, D. Goldman, & R. Hood [176]

builds directly from the algorithms of Altschul & Erickson [13] and Wilbur &

Lipman [292]. A similarity measure, s(l; c) inspired by [13], is the number of

standard deviations the alignment of length l with c mismatches is above a chance

alignment of length l. Many of the values of s(l; c) are precomputed so that they

do not need to be repeatedly computed during the alignment procedure. This

measure of similarity was combined with the substring searching ideas of Wilbur

& Lipman [292] to create a quick and sensitive sequence searching algorithm.

In a 1990 paper, D. Brutlag, J. Dautricourt, S. Maulik, & J. Relph [48]

gave a protein database searching algorithm that used PAM matrices to penalize

amino acid mismatches based on the physical and chemical di�erences between

36

the amino acids. The algorithm that they present also allows the matching of

k{tuples instead of individual amino acids to speed the search process.

S. Altschul, W. Gish, W. Miller, E. Myers, & D. Lipman[15] describe the

basic local alignment search tool (BLAST) algorithm to rapidly search DNA and

protein databases. This algorithm introduces a measure of local similarity, the

maximal segment pair (MSP) score, and an algorithm to approximate it. Using the

MSP allows a rigorous mathematical analysis of the signi�cance of the alignments

found.

2.4.2 Parallel and distributed algorithms

Using a large vector computer to compute diagonals of the matrix used in the

dynamic programming algorithm in parallel, O. Gotoh & Y. Tagashira [123] were

able to search large databases for query sequences of DNA or protein.

Using MIMD computers to search the DNA or protein databases for a

query sequence is simply supplying each of the processors with sequences from

the database to compare with the query sequence. Each processor can indepen-

dently compute the similarity scores of the query sequence and the sequences from

the database. In 1987, A. Coulson, J. Collins, & A. Lyall [59] gave an algorithm

to search large DNA and protein databases using the dynamic programming algo-

rithm. The algorithm was implemented on the distributed array processor (DAP),

a 64� 64 array of processors. Programs have been written by A. Deshpande, D.

Richards, & W. Pearson [72] for the Intel hypercube to search biological sequence

databases for a query sequence using either the fasta algorithm of Pearson & Lip-

man [216] or the dynamic programming algorithm. Each processor is give a set

of sequences from the database to compare with the query sequence and reports

back the alignment scores of the sequences. The fasta algorithm has also been

used by P. Miller, P. Nadkarni, & N. Carriero [194] to demonstrate the parallel

computer programming language, Linda.

In 1991, G. Barton [32] developed a system to distribute the search of

37

DNA and protein sequences over several computers connected to a network that

share a common �lesystem. The algorithm used to compare individual sequences

is the dynamic programming algorithm, but any algorithm could be used. The

sequences from the database are distributed to individual computers to compare

with the query sequence and the scores reported back to a central computer.

2.5 Motifs

There are small patterns in DNA and protein sequences that may indicate various

characteristics of the DNA or protein sequence, such as the start of a coding

regions or three dimensional structure. A frequently used example is the promoter

sequences in Escherichia coli. A promoter sequence speci�es the initiation site

of transcription. There are two regions upstream of the transcription start site

in E. coli that are highly conserved. Researchers are interested in automatic

detection of similar patterns or motifs that indicate other functions and work in

other organisms. These motifs are frequently small, less than twenty base pairs

in length.

R. Harr, H. Haggstrom, & P. Gustafsson [131], in 1983, developed an al-

gorithm that, when given a motif, would search a sequence for positions that

match the motif. Another algorithm to search for a speci�ed pattern was given

the following year by R. Abarbanel, P. Wieneke, & E. Mans�eld [1].

D. Galas, M. Eggert, M. Waterman [97] developed an algorithm to �nd pre-

viously unknown patterns in a set of sequences by searching for subsequences of

size k that di�er by at most w positions. The algorithm was used to discover pro-

moter sites in bacterial sequences. In 1990, R. Smith & T. Smith [252] developed

an algorithm to solve a similar problem using a clustering algorithm.

There have been several other interesting methods employed to specify and

�nd motifs in sequences. In 1990, A. Alexandrov & A. Mironov presented some

ideas for methods to learn, while being directed, a recognition matrix or discrimi-

nation vector to recognize E. coli promoter sites. The result of the learning phase

38

is a vector that can be applied to E. coli sequences that have not previously been

seen and predict the position of promoter sites in the sequence. G. Barton & M.

Sternberg [33] introduced the
exible pattern structure in 1990. This structure

is constructed from alternating character speci�cations and gap speci�cations. A

character speci�cation is a list of characters that can appear at the designated

position in the pattern. Associated with each character is a weight so that site

speci�c preferences may be speci�ed. A gap speci�cation is a de�nition of the

length of the gap that may appear between the previous and the following char-

acter speci�cations. Algorithms are presented that used this data structure to

search sequence for positions of the pattern or motif. A. Milosavljevic [198], in

a PhD thesis, investigated the use of minimal length encoding to discover new

motifs.

A. Danckaert, C. Chappey, & S. Hazout [67] proposed an interesting algo-

rithm using the Fibonacci series to �nd matches of increasing size. Initially all

matches of length Fi and Fi+1 are computed. To �nd matches of length Fi+2, any

pair of matches from the list of matches of length Fi and Fi+1 that are adjacent are

\joined" to be a match of length Fi+2. It is possible that a match of length Fi and

a match of length Fi+1 are not exactly juxtaposed, but could still be considered

an approximate match of length Fi+2. This algorithm, the size leap algorithm,

is used to construct the longest common motifs from a molecular sequence set.

P. Taylor, P. Rosenberg, & M. Samsonova [263] have developed an algorithm to

search for motifs by enumerating all possible strings that are consistent with the

motif being searched for. For each possible motif pattern, the sequences being

examined are compared at every position with this motif pattern and a similarity

score is computed for each position. This exhaustive algorithm will only be useful

for small motifs, less than ten to twelve DNA bases with the computers available

today.

People have used neural networks in an attempt to automatically recog-

nize promoter sequences. In 1991, K. Abremski, K. Sirotkin, & A. Lapedes [3]

39

have selected informative base positions that distinguish between promoter and

non{promoter sequences and then use those base positions to train both Percep-

tron nets and back propagation networks with hidden units. It is claimed that

both methods resulted in the successful prediction of new promoter sequences

more than 96.9% of the time. In the same year R. Rarber, A. Lapedes, & K.

Sirotkin [85] reported on using a neural network to �nd open reading frames

(ORF's) by looking at dicodons instead of individual codons. Their results sug-

gest that the relationship between adjacent codons is important in exons and less

important in introns.

2.6 Hardware for approximate string matching

The size of the DNA and protein databases requires that they be stored on sec-

ondary storage in all but the largest of computers. This means that the algorithms

that are used to search the entire database may need to read the database from

the disk. People have been investigating the possibility of constructing hardware

that could be added to the disk controller to \screen" the database so that only

the sequences that are su�ciently close to the query sequence are actually read

into the computer.

S. Pramanik & C. King [222] present hardware that can perform exact

pattern matching by using a set of cells, each capable of exactly matching a

pattern. N. Tewari & M. Wagh [264], in 1986, describe a bit{sequential array for

pattern matching problems. Using hardware that is proportional to the size of

the pattern, strings matching the pattern can be found in time proportional to

the size of the text or database being searched. A board that can be installed

in a Sun computer has been developed that can be loaded with a pattern and a

stream of characters can be passed by it. Each match between the pattern and

the characters streaming by the pattern will be reported [227]. A simulator has

been constructed by W. Isenman & E. Shasha [147] that compares strings with

variable length don't cares. Using this simulator, a piece of hardware has been

40

developed to do string matching as quickly as the disk can read characters.

The dynamic programming algorithms can be implemented in hardware

since each node in the matrix only needs to communicate with three other nodes

and we only need to remember two diagonals of the matrix to compute the next

diagonal. In 1989, A. Mukherjee [202] gave a systolic algorithm to �nd the length

of the longest common subsequence of two strings that runs in time proportional

to the sum of the lengths of the strings being compared. J. Smith [250], in 1991,

designed, implemented, and tested SEQWARP, a systolic array that can perform

the Smith{Waterman dynamic programming algorithm, as a masters thesis.

2.7 Shortest common superstrings and sequence overlaps

In 1980, F. Sanger, A. Coulson, B. Barrell, A. Smith, & B. Roe [230] developed a

method to sequence long stretches of DNA that is frequently referred to as shotgun

sequencing. Many identical copies of the DNA to be sequenced are cleaved by one

or more restriction endonucleases. These enzymes cleave the DNA sequence at

each occurrence of a speci�c six to eight base subsequence. This results in a

multiset of DNA fragments that is not ordered and essentially sampled at random

to be sequenced. The original DNA sequence is reconstructed by �nding overlaps

between the DNA fragments that have been sequenced. There is a similar problem

in computer science called the shortest common superstring problem. Garey &

Johnson [110] de�ne the shortest common superstring problem as

INSTANCE: Finite alphabet �, �nite set R of strings from ��, and a

positive integer K.

QUESTION: Is there a string w 2 �� with jwj � K such that each

string x 2 R is a substring of w, i.e., w = w0xw1 where each wi 2 ��?

Both the biological and computer science versions of the this problem are covered

thoroughly in the PhD thesis of J. Kececioglu [159].

41

A 1980 paper by J. Gallant, D. Maier, & J. Storer [107] showed that the

shortest common superstring problem and related problems are NP{complete. In
1983, J. Gallant [108] showed that the problem of reconstructing shotgun sequence

data from sequence fragments is computationally intractable to solve exactly.

In 1988, J. Tarhio & E. Ukkonen [262] gave a greedy heuristic to construct

an approximate shortest common superstring using the Knuth Morris Pratt string

matching algorithm and the greedy heuristic for �nding the longest Hamiltonian

path in a weighted graph. The heuristic ran in O(mn) time where m is the

number of strings and n is the sum of the length of the strings. The heuristic was

guaranteed to �nd a common superstring that had at least 1=2 of the compression

of the shortest common superstring. Compression is the di�erence between the

sum of the length of the fragments and the length of the common superstring.

J. Turner [269] improved the heuristic to run in O(n logm) time with the same

performance guarantee. In the following year, E. Ukkonen [273] further improved

the algorithm to run in O(n) time with the same performance guarantee. In 1990,

M. Li [181] gave the �rst algorithm guaranteed to �nd a common superstring with

length that is no more than O(s log s) where s is the length of the shortest common

superstring. In 1991, A. Blum, T. Jiang, M. Li, J. Tromp, & M. Yannakakis [43]

showed that the heuristics of J. Tarhio & E. Ukkonen [262], J. Turner [269], and E.

Ukkonen [273] actually found common superstrings that were at most four times

the length of the shortest common superstring. They also gave a modi�cation of

the algorithm that was guaranteed to �nd common superstrings that were at most

three times the length of the shortest common superstring. The similar problem

of �nding for all pairs of strings, the longest su�x/pre�x match is solved optimally

by D. Gus�eld, G. Landau, & B. Schieber [128].

In 1990, D. Foulser [93] gave a variant of the shortest common superstring

problem, the unique common superstring problem and an algorithm to solve it in

time proportional to the size of the input. In 1983, H. Peltola, H. Soderlund, J.

Tarhio, & E. Ukkonen [217] de�ned the shortest approximate superstring problem.

42

In this problem the superstring needs only to contain approximate copies of each

string in the set instead of exact copies. P. Cull & J. Holloway [64, 66, 65] have

considered a similar problem and constructed an algorithm based on su�x arrays

to solve the problem.

In 1967, M. Shapiro [246] gave an algorithm speci�cally designed to recon-

struct protein and RNA sequences from short fragment data. A complete system

to handle the data produced by shotgun sequencing is given by R. Staden [257].

Similar systems have been described by J. Clayton & L. Kedes [53], H. Peltola, H.

Soderlund, & E. Ukkonen [218], and R. Grymes, P. Travers, & A. Engelberg [127].

Probabilistic analysis of the problem has been carried out by L. Barnett [30] and

by J. Beran{Koehn & W. Gillett [35].

2.8 Gene rearrangement and inversions

In 1989, D. Sanko� & M. Goldstein [234] introduced a probabilistic model of

genome shu�ing. This was further considered in the 1990 paper by D. Sanko�, R.

Cedergren, & Y. Abel [233]. A basic assumption frequently made when considering

gene sequence evolution is that it can be modeled with the elementary operations

of inserting a base, deleting a base, and changing a base. Typically the sequence

comparison algorithms try to �nd an alignment of the sequences using a minimal

number of these operations. These papers proposes another model of genetic

evolution where not only do these local operations occur, but larger blocks of the

genome are rearranged.

The dynamic programming algorithms that are frequently used to align

sequences obey the non{intersection property, that is the order of the characters

in a sequence will not be changed as the sequences are aligned. Thus the dynamic

programming algorithms will not easily be well suited to align sequences with

inversions or rearrangements.

There have been a few attempts to include inversion as an operation in

the dynamic programming algorithms. In spelling error detection and correction

43

applications, the operation of reversing two adjacent characters is important. R.

Lowrance & R. Wagner [184] give, in 1975, an extension to the string to string

correction problem that allows the operation of interchanging adjacent characters.

An interesting bibliography on spelling error detection and correction was writ-

ten by J. Pollock [221]. In 1992, M. Schoniger & M. Waterman [238] described

a dynamic programming algorithm to �nd alignments of DNA sequences using

the operations of substitution, deletion, insertion, and non{intersecting inversion.

Although this algorithm does not completely eliminate the non{intersection prop-

erty since block rearrangements are not allowed, it does allow sequence alignments

with non{intersecting inverted segments.

In 1984, W. Tichy [267] de�ned the string to string problem with block

moves where the only operation available was to move a block of characters from

one string to cover a portion of the other string. The goal of the problem was to

completely cover one string with blocks from the other string. This problem and

its solution are not restricted by the non{intersection property since there is no

restrictions placed on where the blocks may be placed relative to one another.

2.9 Repeated substrings

There are several problems in the analysis of molecular sequences than can be

expressed as �nding repeats in strings. When aligning sequences or searching for

similar sequences, the �rst step may be to �nd all substrings that appear in both

sequences being examined. The problem of �nding the two dimensional structure

of RNA requires searching for inverted repeats in the sequence. The RNA sequence

and its inversion can be concatenated and then searched for repeated substrings.

In 1980, L. Jones [150] gave an algorithm and program to solve the problem:

given a text and an integer k �nd all substrings in the text of length at least k

and report how frequently they occurred. In 1982, J. Dumas & J. Ninio [74] gave

an algorithm to �nd all common subsequences in a sequence. They then use this

algorithm to predict RNA secondary structure. In the same year M. Main &

44

R. Lorentz [187] gave an O(n logn) algorithm based on the Knuth Morris Pratt

pattern matching algorithm to �nd the location of each repetition in a string.

A repetition is a non{empty string of the form xx. In 1983, H. Martinez [190]

gave an algorithm based on sorting the substrings of a sequence to �nd all of the

repeats. In the same year R. Nussinov [210] gave algorithms to search for exact

nucleotide sequence repeats.

By knowing the expected length of the longest common substring of two

unrelated strings it is easier to judge the signi�cance of long common substrings

found when comparing DNA and protein sequences. In 1990, R. Mott, T. Kirk-

wood, & R. Curnow [201] gave an accurate approximation of the distribution of

the length of the longest expected common substring between two random DNA

sequences.

2.10 Other interesting and related problems

There are many other areas that are related to searching for sequences in DNA and

protein databases and aligning similar genetic sequences. Several of the following

problems contain approximate string matching as a subproblem. Frequently the

people working in the area have come up with their own novel solutions to the

problems.

2.10.1 Tertiary structure

The problem of determining the tertiary structure of a protein given only the

primary DNA sequence is important since the relative cost of directly �nding the

three dimensional structure of a protein is much higher than inferring it given

the primary sequence. This is an extraordinarily di�cult computational problem,

particularly since the biology is not understood well enough to supply reliable

rules.

In 1987, R. Lathrop, T. Webster, & T. Smith [174] described Ariadne, an

45

AI blackboard system to generate possible three dimensional protein structures

when given a transfer RNA along with some other information. M. Zuker & R.

Somorjai [297], in 1989, applied the standard dynamic programming techniques

to align proteins in three dimensions. Neural networks have been used to try to

recognize subsequences coding for particular secondary structures in proteins by

P. Stolorz, A. Lapedes, & Y. Xia [258] in 1991. In the same year, J. Garnier

& J. Levin [111] published a paper titled \The protein structure code: What

is its present status?" wherein the current methods of prediction of the three

dimensional structure of proteins are reviewed.

2.10.2 Restriction map construction

Before large segments of DNA are sequenced, landmarks in the sequence are found

by constructing a restriction map. A restriction map is constructed by digesting

the DNA with a restriction enzyme and recording the lengths of the fragments

created. The DNA is digested with a second, di�erent, restriction enzyme and

the lengths of the fragments are recorded. Finally, the DNA is digested with both

restriction enzymes and the lengths of the fragments are recorded. With the frag-

ment length data it is possible to construct a map of the DNA with the positions

where each of the restriction enzymes cuts the DNA. This problem is complicated

by the fact that the fragment length data are frequently only approximate.

In 1983, W. Fitch, T. Smith, & W. Ralph [92] and 1988 M. Krawczak [163]

give algorithms to construct a restriction enzyme map given the fragment length

data. W. Miller, J. Barr, & K. Rudd [195] give an algorithm that, when given a

restriction map and a smaller probe map, �nds the position in the restriction map

that the probe map �ts best. In 1986, M. Waterman & J. Griggs [288] use interval

graphs to represent restriction maps. With this representation it is possible to use

the linear time algorithm of K. Booth & G. Lueker [44] to construct the restriction

map.

46

2.10.3 RNA secondary structure

The problem of �nding the secondary structure of RNA can make fundamental

use of the algorithm to solve two standard computer science problems, �nding

palindromic strings and matching parentheses. A abstract version of the RNA

folding problem is given by R. Nussinov, G. Pieczenik, J. Griggs, & D. Kleit-

man [212] in 1978. A dynamic programming approach that minimizes the free

energy in the folded structure is frequently used to �nd the secondary structure

of RNA. M. Kanehisa & W. Goad [152], M. Zuker [296], and L. Larmore [173]

gave dynamic programming algorithms to solve the problem using the dynamic

programming approach. This dynamic programming algorithm is actually similar

to the dynamic programming algorithms used to do sequence alignment. S. Le,

R. Nussinov, & J. Maizel [177], in 1989, describe a method to represent an RNA

sequence as a binary tree where the nodes represent a loop and the edges repre-

sent stems. Representing the secondary structure of RNA in this way is used to

facilitate the comparison and alignment of RNA sequences.

2.10.4 Phylogenetic reconstruction

One of the major reasons people align genetic sequences is to infer taxonomic rela-

tionships between the various taxa. There is a vast literature associated with the

construction of phylogenetic trees. An excellent, although somewhat out of date,

review of the methods used to construct phylogenetic trees has been published by

J. Felsenstein [86] in 1982.

2.10.5 Multi{dimensional matching

Some of the algorithms that have been developed to do approximate string match-

ing can also be used to do two dimensional (and higher dimensional) pattern

matching. In 1990 and 1991, A. Amir & G. Landau [18, 19] gave serial and par-

allel algorithms based on the k{mismatch problem to solve the multidimensional

array matching problem. Another solution to the two dimensional k{mismatch

47

pattern matching problem is given by S. Ranka & T. Heywood [224]. The di-

vide and conquer approach to approximate string matching given by P. Cull & J.

Holloway [63] can easily be extended to do multidimensional pattern matching.

48

Chapter 3

The Edit Distance Problem

The divide and conquer paradigm has been used to construct e�cient algorithms

for many problems. Typically, a problem of size n that is amenable to a divide

and conquer solution can be broken into k sub{problems of size n
k
, each of the

sub{problems solved, and the solutions for the sub{problems used to construct a

solution for the original problem.

Occasionally, it is not obvious how to decompose a problem of size n into

sub{problems of size n
k
, but it may be easy to decompose the problem into prob-

lems of size n� k. For problems of this type, it is often advantageous to compute

and store the results for all of the sub{problems and then use these results to

compute the answers for the original problem. This general method of computing

and storing small results for later use is referred to as dynamic programming.

3.1 Problem de�nition

The edit distance problem is: Given two strings � and � from the alphabet �

where j�j = m; j�j = n; n � m, �nd the minimum cost of a sequence of edit

operations that transforms � into a substring of �.

We must de�ne the edit operations and their cost. Since I am interested

in applying this algorithm to measuring the evolutionary distance between two

genetic sequences, I will choose the operations used in a simple model of the

evolution of genetic sequences [180]. Initially, I will only consider substitution,

49

deletion, and insertion of a single character in the sequence.

� The function substitute(�; x; c); 1 � x � m; c 2 �; transforms the string

�1�2 : : : �x�1�x�x+1 : : : �m into the string �1�2 : : : �x�1c�x+1 : : : �m.

� The function insert(�; x; c); 1 � x � m; c 2 �; transforms the string

�1�2 : : : �x�1�x : : : �m. into the string �1�2 : : : �x�1c�x : : : �m.

� The function delete(�; x); 1 � x � m; transforms the string

�1�2 : : : �x�1�x�x+1 : : : �m into the string �1�2 : : : �x�1�x+1 : : : �m:

A positive cost is assigned to the insertion, deletetion, or substitution of a char-

acter.

� The function C1(c1; c2) returns the cost of substituting c1 for c2. The cost

is typically 0 when c1 = c2.

� The function C2(c) returns the cost of inserting the character c.

� The function C3(c) returns the cost of deleting the character c.

The edit distance between � and � refers to the minimum cost of a sequence

of edit operations that transforms � into a substring of �. Note that this sequence

of edit operations is not necessarily unique.

3.2 The serial algorithm

In the early 1970's several people independently discovered a dynamic program-

ming algorithm that could be used to �nd the edit distance between two strings.

In sections 2.3.1 and 2.3.2 I reviewed the previous work on the edit distance and

closely related problems. The dynamic programming algorithms to solve the edit

distance problem were �rst proposed by Needleman & Wunsch [209], Ulam [274],

Sanko� [231], Sellers [240], and Wagner & Fischer [279]. Since the algorithms were

�rst introduced, many improvements and variants have appeared in the literature.

50

Erickson & Sellers [84] present an algorithm to solve the edit distance

problem that is representative of the several dynamic programming algorithms

found in the early 1970's. I brie
y review the algorithm here. An (n+1)�(m+1)

matrix M is constructed such that the value of M(i; j) is the minimum cost of

converting �1�2 : : : �j to �k�k+1 : : : �i; 0 � k � i.

It is assumed in this algorithm that we are searching for the substring of

� that is the smallest edit distance from �. To ensure that the alignment is not

penalized for events that occur before �k and after �i, row 0 and column 0 of M

are initialized as follows.

M(0; j) =
jX

h=1

C3(�h); 1 � i � n:

M(i; 0) = 0; 0 � i � m:

We can compute the value M(i; j) by �rst computing the values of M(i � 1; j);

M(i� 1; j � 1); and M(i; j � 1) and then adding the cost of moving to M(i; j).

� The cost of moving fromM(i�1; j) toM(i; j) is C2(�i), the cost of inserting

�i into �: Using the insert operation from M(i� 1; j), the cost at M(i; j) is

M(i� 1; j) + C2(�i).

� The cost of moving from M(i � 1; j � 1) to M(i; j) is C1(�i; �j), the cost

of changing �i to �j. Using the change operation from M(i � 1; j � 1), the

cost at M(i; j) is M(i� 1; j � 1) +C1(�i; �j).

� The cost of moving fromM(i; j�1) toM(i; j) is C3(�j), the cost of deleting

�j from �. Using the delete operation from M(i; j � 1), the cost at M(i; j)

is M(i; j � 1) +C3(�j).

M(i; j) is assigned the minimum of the three values computed above. The re-

mainder of the matrix M is computed inductively by letting each

M(i; j) = min

8>>>>><
>>>>>:

M(i� 1; j) + C2(�i)

M(i� 1; j � 1) +C1(�i; �j)

M(i; j � 1) + C3(�j)

(3:1)

51

for 1 � i � n; 1 � j � m.

The scores in column n of the matrixM; M(j; n); 1 � j � m, are the costs

to change � into some su�x of �1 � � � �j. The cost of the minimum cost sequence

of edit operations to convert � into a substring of � is the minimum value in the

last column of M . Once the matrix M has been computed, �nd each q such that

M(q; n) = min
1�h�m

M(h; n):

Each minimum value in column n of the matrix M represents one or more mini-

mum cost conversions of � to �. By �nding the values of M(q; n); we know the

minimum cost of converting � to �, but we do not know the sequence of opera-

tions used in the conversion. To �nd the sequence of edit operations used in the

minimum cost conversion of � to �, we can, as we compute the matrix M , also

compute a graph with a node representing each element of M and an arc from

the node representing M(a; b) to the node representing M(i; j) if

M(a; b) = min

8>>>>><
>>>>>:

M(i� 1; j) + C2(�i)

M(i� 1; j � 1) +C1(�i; �j)

M(i; j � 1) + C3(�j)

Any path in the graph from a node representing M(i; 0); 0 � i � m; to a node

representing M(q; n) represents a minimum cost sequence of edit operations to

convert � into a substring of �.

The algorithm as it has been outlined here requires O(mn) time since each

element of the matrix M is computed, there are O(mn) elements in M , and each

element inM can be computed in constant time. The space used by this algorithm

is also O(mn) since we store the entire m�n matrixM . If we are only interested

in the cost to convert � into a substring of �, and not the sequence of operations,

the space used by the algorithm can be reduced to O(m+n). Since each diagonal

of M is dependent only on the previous two diagonals, there is no need to store

more than the two most recently computed diagonals of M .

C. Wong & A. Chandra [294] and X. Huang [139] have shown an
(mn)

lower bound to �nd the minimum cost sequence of edit operations to convert

52

� into �. D. Hirschberg [132], and later E. Myers & W. Miller [206] gave an

algorithm to �nd the minimum cost sequence of edit operations to convert � into

�, simultaneously using O(m+ n) space and O(mn) time.

3.3 The parallel algorithm

Recently there have been several parallel algorithms to solve the edit distance

problem. In 1988 and 1990, O. Ibarra gave parallel algorithms to solve the

string edit distance problem for two strings of length n in O(log2 n) time us-

ing O(n3= log2 n) processing elements on a hypercube. In 1992, O. Ibarra [144]

gave an algorithm to solve the string edit distance problem using a linear array

of n identical �nite state machines in O(m) time. In 1989, N. Core, E. Edmiston,

J. Saltz, & R. Smith [56] gave a parallel implementation of the dynamic pro-

gramming algorithm to align two sequences using O(mn) space and O(m) time

on an O(n) processor shared memory computer, n � m. In the same year X.

Huang [140] gave a parallel algorithm that runs in linear time and used linear

space. The edit distance problem has been used by A. Singh & R. Overbeek [248]

and D. Sittig, D. Foulser, N. Carriero, G. McCorkle, & P. Miller [249] to demon-

strate the usefulness of general purpose parallel programming languages. At the

time the parallel algorithm in this chapter was developed (1988 and 1989), I was

not aware of the papers mentioned above and many had not been published.

The model of computation we will be assuming is the EREW PRAMmodel

as discussed in [77]. The PRAM model assumes an arbitrary number of identical

processors that each have constant time access to a shared memory. The EREW

version of the PRAM model assumes that a memory cell can be read by at most

one processor during one instruction cycle. Likewise a memory cell can be written

to by at most one processor during an instruction cycle. The EREW is the weakest

of the PRAMmodels so the algorithms developed here will run on stronger models

with, at most, the same upper bounds on time.

Notice that M(i; j) is dependent only on M(i� 1; j); M(i� 1; j � 1); and

53

compute matrix (�, �)

n = j�j
m = j�j
for (i = 1; i < n + m; i++)

if (i < n)
r = min (m, i)
matrix [0, r] = 0
for each 1 � j � r do in parallel

matrix [j, i - j] = compute element (j, i - j)
if (i < m)

matrix [i, 0] = matrix [n - 1, 0] + cost of delete (�[i])
else

for each (i - n) � j � m do in parallel
matrix [j, n - j] = compute element (j, n - j)

compute element (i, j)

min (
matrix [i-1, j] + cost of insert (�i),
matrix [i-1, j-1] + cost of substitute (�i, �j),
matrix [i, j-1] + cost of delete (�j)

)

Figure 3.1: A parallel dynamic programming algorithm to compute the minimum
edit distance between two strings.

M(i; j � 1). If the diagonals

M(1; p� 1); M(2; p� 2); : : : ;M(p� 2; 2); M(p� 1; 1)

M(1; p� 2); M(2; p� 3); : : : ;M(p� 3; 2); M(p� 2; 1)

have been computed, then every element in the diagonal

M(1; p); M(2; p� 1); : : : ;M(p� 1; 2); M(p; 1)

can be computed in parallel. This observation leads almost immediately to a

parallel algorithm to compute the matrix M .

Figure 3.1 is a parallel version of the dynamic programming algorithm given

by Erickson & Sellers [84] and many others. The outside for loop in the function

compute matrix is executed once for each diagonal in the matrix. The end points

54

of the diagonal are computed and the entire diagonal is computed in parallel in

the inside for loop. The function compute element implements the equation 3.1.

3.3.1 Parallel implementation

The parallel dynamic programming algorithm to compute the minimum edit dis-

tance between two strings has been implemented on a sequence balance 21000

with 28 processors and 24 Megabytes of memory. The number of processors that

the algorithm actually uses can be varied from one to sixteen. Since the length of

a diagonal is typically greater than the number of processors that are available,

each processor is assigned a region of the diagonal to compute. When all proces-

sors have completed computing their region of the diagonal, the computations of

the next diagonal are started. In this parallel implementation of the algorithm, I

compute the minimum cost of converting one string into a substring of the other,

not the edit script required to change one string into a substring of the other.

3.3.2 Performance

Theorem 3.1 The parallel dynamic programming algorithm runs in O(mn=p)

time using O(p); p � min(m;n) EREW PRAM processors.

Proof. The outer for loop of the function compute matrix executes once for each

of the m + n � 1 diagonals. If the diagonal is in the upper left corner of the

matrix then the argument of the �rst if statement will be true. Each statement

in the clause following the �rst if statement, except the parallel for loop, can be

computed using constant work. The parallel for loop will compute a diagonal with

at most min(m;n) elements. Each element can be computed independently and

if the reading of the three elements matrix [i-1, j], matrix [i-1, j-1], and matrix

[i, j-1] is synchronized, no cell will need to be read from simultaneously. Using

p; p � min(m;n) EREW PRAM processors, the diagonal will be computed in

O(min(m;n)=p) time. Similarly for the else clause of the �rst if statement. The

algorithm will use O((m+ n� 1)min(m;n)=p) time.

55

The algorithm was tested by computing the cost of the minimum cost edit

script required to convert one string into a substring of another string for several

pairs of strings. In the paper by Erickson & Sellers [84], two nucleotide sequences

from satellite DNA of Drosophila melanogaster (fruit
y) are aligned using the

dynamic programming algorithm. The �rst nucleotide sequence contained 359

base pairs and the second contained 254 base pairs. The parallel dynamic pro-

gramming algorithm was used to align these sequences varying the number of

processors from one to seven. Table 3.1 shows the running times used by the

program to compute the cost of the minimum cost edit sequence to convert one

sequence into a subsequence of the other while varying the number of processors

from one to seven. Since the overhead of starting a processor on its region of the

diagonal is large compared to the time it takes to do its share of the work, the

speedup is not ideal. The time used by one processor is about 4.7 times the the

time used by seven processors.

I have used these satellite DNA sequences to create, by concatenation,

longer sequences to give to the parallel dynamic programming algorithm. Ta-

bles 3.2 and 3.3 give the results of using this algorithm to compare various length

strings with either one, two, four, eight, or sixteen processors. The length of the

strings being aligned were approximately equal and the size is reported as the

product of the string lengths divided by 1000. The elapsed time, in seconds, used

by the parallel dynamic programming algorithm to �nd the minimum cost re-

quired to convert one string into a substring of the other is reported in Tables 3.2

and 3.3. The speedup for n processors is reported as the elapsed time used by one

processor to solve the problem, divided by the elapsed time used by n processors

to solve the problem. Tables 3.2 and 3.3 show that, although the elapsed time

generally decreases as processors are added, the e�ciency of using more than four

processors is low.

The size of the problem solved by the dynamic programming algorithm

is often limited by the O(mn) memory requirement of the algorithm. Memory

56

number of time percent
processors (seconds) speedup utilization

1 26.14 1.00 100.0
2 13.96 1.87 93.5
3 9.96 2.62 87.3
4 7.92 3.30 82.5
5 6.71 3.90 78.0
6 5.93 4.41 73.5
7 5.52 4.74 67.7

Table 3.1: Time to compute the edit distance between two satellite DNA sequences
from D. melanogaster using the parallel dynamic programming algorithm while
varying the number of processors.

Processors jstring1j�jstring2j
1000

Speedup Time (seconds)

1 20 1.0 5.23
2 20 1.75 2.97
4 20 2.72 1.92
8 20 3.19 1.64
16 20 2.84 1.84

1 40 1.0 10.19
2 40 1.82 5.61
4 40 2.89 3.52
8 40 3.82 2.67
16 40 3.79 2.69

1 57 1.0 14.40
2 57 1.83 7.88
4 57 2.99 4.82
8 57 4.01 3.59
16 57 4.11 3.50

1 92 1.0 23.20
2 92 1.86 12.46
4 92 3.27 7.08
8 92 4.99 4.65
16 92 5.89 3.94

Table 3.2: Speedup of parallel dynamic programming algorithm, part 1

57

Processors jstring1j�jstring2j
1000

Speedup Time (seconds)

1 130 1.010 32.11
2 130 1.87 17.20
4 130 3.31 9.70
8 130 5.18 6.20
16 130 6.35 5.06

1 183 1.0 45.95
2 183 1.88 24.48
4 183 3.39 13.57
8 183 5.49 8.37
16 183 6.90 6.66

1 259 1.0 63.48
2 259 1.88 33.78
4 259 3.41 18.65
8 259 5.61 11.32
16 259 7.36 8.63

1 366 1.0 91.47
2 366 1.89 48.48
4 366 3.46 26.45
8 366 5.81 15.74
16 366 7.80 11.72

Table 3.3: Speedup of parallel dynamic programming algorithm, part 2

58

requirements limit the size of the problem, and therefore the number of processors

that can be e�ectively used to solve the problem. If the alignment does not need

to be constructed, the similarity score can be reported using only O(m+n) space.

By storing only the two previously computed diagonals, instead of the complete

matrix, the similarity score of much large problems can be computed.

In this chapter I have reviewed the widely used dynamic programming

algorithm to align sequences. I have given a parallel algorithm to computer the

matrix used by the dynamic programming algorithms that runs in O(mn=p) time

using O(min(m;n)) EREW PRAM processors. The limitations of this algorithm

are discussed in chapter 7 where I give a divide and conquer algorithm to solve

similar problems.

59

Chapter 4

The Most Frequent Substring Problem

A biochemist requested a program that would print the number of times that each

possible substring of length m appeared in a string of length n. The biochemist

was interested in �nding small DNA or RNA substrings (six to �fteen nucleotides)

that were most frequently repeated in sequences that consisted of a few thousand

nucleotides. It is clear that simply enumerating all of the substrings of length m

and counting the number of times each substring appears in the sequence is not

feasible since there will be, in the case of RNA, 4m such substrings. Since there

are at most n�m+ 1 distinct substrings of length m in a string of length n it is

not necessary to enumerate all 4m possible strings of length m.

In this chapter I will give a simple algorithm to solve the most frequent

substring problem. I have implemented the algorithm and it has been used by

the biochemist that originally requested the program (and others) to investigate

the subsequence composition of certain RNA sequences. The main result in this

chapter is the optimal parallel algorithm to solve this problem using O(p); p �
n= logn or fewer EREW1 PRAM2 processors, that runs in O(mn=p) time. I have

implemented the sorting phase of the algorithm and present results of running the

program with various numbers of processors on various sized problems.

1exclusive read exclusive write

2parallel random access machine

60

4.1 Problem de�nition

The most frequent substring problem is: Given a string T of length n over the

�xed, �nite alphabet �; � = j�j; and an integer m, �nd the length m substring

P of T that occurs most frequently in T and the location of each occurrence of P

in T .

4.2 Sequential algorithm

Theorem 4.1 The most frequent substring problem can be solved in O(mn) time.

Proof. Create a list of the n�m+1 length m substrings of T and associate with

each substring its position in T . This can be done in O(n) time by creating an

array of n�m+ 1 pointers so that the jth element of the array points to the jth

character in T . Store with each pointer, the value j to indicate the position of

the substring in T .

Sort the list of substrings using radix sort. This can be done in O(mn)

time using � buckets by the well known algorithm presented in [6].

Scan the list of sorted substrings noting the longest run of identical sub-

strings. By comparing consecutive substrings in the sorted list and keeping track

of the longest run of equal substrings we can report the number and positions of

the most frequently occurring substring in T . Since there will be at most n�m

substring comparisons and each requires at most m character comparisons, this

�nal step can be completed in O(mn) time.

4.3 Parallel algorithm

The model of computation we will again be assuming is the EREW PRAM model

as discussed in [77]. The parallel algorithm uses the same three distinct steps that

the sequential algorithm used; create the list of strings, sort the list of strings, and

scan the list of sorted strings.

61

We will show that the most frequent substring problem can be solved in

O(mn=p) time using O(p); p � n= logn EREW PRAM processors. We use lem-

mas 4.1, 4.2, and 4.3 to show that the sorting phase of the algorithm can be

completed in O(mn=p) time using O(p) EREW PRAM processors. Lemma 4.4

will show that given a sorted list of strings, each of length m, we can �nd the

longest run of identical strings in O(mn=p) time using O(p) processors.

Lemma 4.1 The array of length m strings, As[1]; : : : ; As[n] can be ordered by the

dth character of the strings, 0 � d < m; in O(n=p) time using O(p) EREW PRAM

processors, p � n= logn.

Proof. Each element of the length n �� array Al is initialized to � 62 �. Each pro-

cessor, Pj ; 0 � j < p, sequentially writes � to Al[j � n=p � � + q], 0 � q < n=p � �.
Each Pj sequentiallymoves the n=p values fromAs[j � n=p+ q] to Al[ord(As[j][d]) � n+ j � n=p+ q]

where ord(x) returns the ordinal value of x. Note that Al[u � n+ j � n=p+ q],

0 � u < �, is written to exclusively by Pj.

In the following lemmas, Cr[x]; Dr[x], and Er[x] are used to represent the

values at the nodes of a full binary tree. Clogn[0] is the root of the tree C with n

leaves, Cr�1[2x] andCr�1[2x+1] are the children ofCr[x], andC0[0]; C0[1]; : : : ; C0[n�
1] are the leaves of the tree. The nodes at level r, 0 � r � logn, are Cr[x]; 0 �
x < n

2r
.

Lemma 4.2 Given a length n � � array, Al that contains n legal values (a legal

value is any string from �m), the legal values can be put in As[1]; As[2]; : : : ; As[n],

preserving the original order of the legal values of Al in O(n=p) time using O(p)

EREW PRAM processors, p � n= logn.

Proof. Let s = log�. First we compute Dr[x]; 0 � r � log(n � �), 0 � x < n��
2r
,

the number of illegal values in

Al[2
r � x]; Al[2

r � x+ 1]; : : : ; Al[2
r � (x+ 1)� 1]:

62

Each processor, Pj; 0 � j < p, writes the value 0 to D0[u � n+ j � n=p+ q],

0 � u < �, 0 � q < n=p, if Al[u � n+ j � n=p+ q] contains a legal value, otherwise

a 1 is written. D0 can be computed with each Pj performing n=p independent

operations. Again, notice that each element of D0 can be written to by exactly

one Pj and each element of Al is read by exactly one Pj . Let Dr[x] = Dr�1[2x] +

Dr�1[2x + 1]; 1 � r � log(n � �); 0 � x < n��
2r
. We will compute Dr; 0 � r �

(n=p+s), in two steps, Dr for 0 � r � log(n=p+s) and Dr for log(n=p+s) < r �
(n=p+ s). In the �rst step there are more elements in Dr than processors so we

can keep all of the processors busy. The time to computeDr; 0 � r � log(n=p+s)

is
log(n=p+s)X

r=0

(n=p+ s)

2r
< 2(n=p+ s):

While computing Dr; log(n=p+ s) < r � (n=p+ s) some of the processors will be

idle since there are more processors than elements in Dr and the computation of

Dr is dependent on Dr�1. Each Dr can be computed in constant time. The time

used to perform the second step is

(n=p+s)X
r=log(n=p+s)

c = c((n=p+ s)� log(n=p+ s) + 1):

Therefore, the total time to compute Dr; 0 � r � (n=p+ s), is O(n=p).

We will now compute Er[x], 0 � r � log(n ��); 0 � x < n��
2r
; a pair of values

Er[x]left and Er[x]right. Er[x]left is the number of illegal values in

Al[0]; Al[1]; : : : ; Al

�
x

n � �
2log(n��)�r

� 1
�
:

Er[x]right is the number of illegal values in

Al[0]; Al[1]; : : : ; Al

�
(x+ 1)

n � �
2log(n��)�r

� 1
�
:

The value E0[x]left is the number of illegal values in

Al[0]; Al[1]; : : : ; Al[x� 1]:

63

To computeE0[x] we letElog(n��)[0]left = 0 and Elog(n��)[0]right = Dlog(n��)[0]:

Now, for 0 � r � log(n � �) and 0 � x < n��
2r
, we let

Er�1[2x]left = Er[x]left

Er�1[2x]right = Er[x]left +Dr�1[2x]

Er�1[2x+ 1]left = Er[x]right �Dr�1[2x+ 1]

Er�1[2x+ 1]right = Er[x]right

The same arguments used to show that Dr; 0 � r � log(n � �); can be computed

in O(n=p) time can be used to show that Er; 0 � r � log(n ��); can be computed
in O(n=p) time using p � n= logn EREW PRAM processors.

Let � = u � n+ j � n=p+ q; 0 � u < �, 0 � q < n=p, 0 � j < p. Each pro-

cessor, Pj; sequentially moves the values in Al[�] to As[� �E0[�]left] if Al[�] is a

legal value. Since exactly one of Al[u � n+ x]; 0 � u < �; 0 � x < n; contains a

legal value for a given value of x, only one value will be written to each element

of As.

Lemma 4.3 An array of n strings, each of length m, over a �nite, �xed alphabet

can be sorted in O(mn=p) time using O(p) EREW PRAM processors, p � n= logn.

Proof. The standard radix sort as presented in [6] uses m iterations of ordering

the strings by position d; 0 � d < m; of the strings. Since, by Lemmas 4.1 and 4.2,

we can order the n strings by the character in position d in O(n=p) time, we can

sort the n strings in O(mn=p) time.

Lemma 4.4 Given a sorted array of strings, A[1]; A[2]; : : : ; A[n], each of length

m, the position e such that A[e] = A[e+1] = � � � = A[e+ d] that maximizes d can

be found in O(mn=p) time using O(p) EREW PRAM processors, p � n= logn.

Proof. We will compute the values of Cr[x]; 0 � r � log(n � �); 0 � x < n��
2r
;

the length of the longest run of equal strings in a region of A. Each Cr[x]

64

has four values associated with it: e; d; L; and R. The value e points to

the start of the longest consecutive run of equal strings, that is e such that

A[e] = A[e+ 1] = � � � = A[e+ d] that maximizesd in the rangeA[2r � x], A[2r � x+ 1]; : : : ;

A[2r(x+ 1)� 1]. L is the smallest value such that 2r � x � L < 2r(x+ 1) and

A[L] 6= A[L+ 1], or if no such L exists, L is assigned 2r(x+ 1)� 1. R is the

largest value such that

2r � x � R < 2r(x+ 1) and A[R� 1] 6= A[R];

or if no such R exists, R is assigned 2r � x. Each processor, Pj ; 0 � j < p,

sequentially computes C0[j � n=p+ q]; 0 � q < n=p. Cr[x]; 1 � r � n=p; 0 � x <

n��
2r
, is computed by

Cr[x] =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

X IF Cr�1[2x]d > Cr�1[2x+ 1]d AND

(Cr�1[2x]d > Cr�1[2x+ 1]L � Cr�1[2x]R OR

A[Cr�1[2x+ 1]L] 6= A[Cr�1[2x]R])

Y IF Cr�1[2x+ 1]d > Cr�1[2x]d AND

(Cr�1[2x+ 1]d > Cr�1[2x+ 1]L �Cr�1[2x]R OR

A[Cr�1[2x+ 1]L] 6= A[Cr�1[2x]R])

Z IF Cr�1[2x+ 1]L �Cr�1[2x]R > Cr�1[2x]d AND

Cr�1[2x+ 1]L �Cr�1[2x]R > Cr�1[2x+ 1]d AND

A[Cr�1[2x+ 1]L] = A[Cr�1[2x]R]

where

Xe = Cr�1[2x]e Ye = Cr�1[2x+ 1]e

Xd = Cr�1[2x]d Yd = Cr�1[2x+ 1]d

XL = Cr�1[2x]L YL = Cr�1[2x]L

XR = Cr�1[2x+ 1]R YR = Cr�1[2x+ 1]R

Ze = Cr�1[2x]R

65

Zd = Cr�1[2x+ 1]L � Cr�1[2x]R

ZL =

8><
>:

Cr�1[2x]L IF Cr�1[2x]R > Cr�1[2x]L

Cr�1[2x+ 1]L otherwise

ZR =

8><
>:

Cr�1[2x+ 1]R IF Cr�1[2x+ 1]L < Cr�1[2x+ 1]R

Cr�1[2x]R otherwise

The arguments used in lemma 4.2 can be used to show that O(p) EREW PRAM

processors can compute Clogn[0] in O(mn=p) time, p � n= logn.

Theorem 4.2 The most frequent substring problem can be solved in O(mn=p)

time using O(p) EREW PRAM processors, p � n= logn.

Proof. Using O(p) processors we can create the n �m+ 1 length m substrings

in O(n=p) time. By using lemma 4.3 we can sort the substrings in O(mn=p) time.

The �nal step is to �nd the longest run of identical substrings in the sorted array

As. By lemma 4.4 this can be done in O(mn=p) time using O(p) EREW PRAM

processors, p � n= logn.

It appears that a weaker model can be used by assuming that during each

instruction cycle each processor is executing the same instruction. If this is true,

it may be possible to adapt this algorithm to run on a vector processor or a SIMD3

machine.

4.4 Parallel implementation

The sorting phase of the algorithm was implemented in C on a Sequent B21000

with 28 processors and 24 Megabytes of memory.. Table 4.1 shows the time in

seconds used to sort various length substrings (2, 4, 8, and 16 characters) of a

string of length 215 The number of processors used were 2, 4, 8, and 16. Ideally,

the time to solve a problem of size n with p processors would be the time to

solve a problem of size n with one processor divided by p. Table 4.2 gives, Ep;s,
3Single Instruction Multiple Data

66

Number of Substring Size

Processors 2 4 8 16

1 45.5 89.0 176.6 351.8

2 24.4 47.8 92.8 183.3

4 13.4 25.4 49.7 99.6

8 7.9 13.8 27.1 54.6

16 5.1 8.9 17.9 32.4

Table 4.1: Elapsed time in seconds to sort substrings of a string of 215 characters

Number of Substring Size

Processors 2 4 8 16

1 100 100 100 100

2 93.2 93.1 95.2 96.0

4 84.9 87.6 88.8 88.3

8 72.0 80.6 81.5 80.5

16 55.8 62.5 61.7 67.9

Table 4.2: Percent processor utilization for a string of 215 characters

the percent of the available processing power that is e�ectively used to solve the

problem with this algorithm. Ep;s = t1;s
p�tp;s
�100 where p is the number of processors

and tp;s is the time used by p processors to solve the problem with substrings of

length s.

4.5 Space usage

This algorithm uses c1�n+c2 words of memory (c1 and c2 are constants). For large

alphabets, this algorithm will become impractical on a shared memory parallel

67

computer. The large memory needs would require that some of the information

be stored on a secondary device such as a disk. Since the secondary storage is

typically serial (i.e. one disk controller) and slow with respect to the processors,

the advantage of parallelizing the algorithm would disappear.

4.6 Related parallel bucket sort algorithms

Hirschberg [133] developed a parallel bucket sort algorithm to sort n numbers with

n processors in O(logn) time and O(mn) space. The numbers were required to

be in the range f1 : : :m� 1g and to be unique. The algorithm was generalized to

sort lists of numbers with duplicates. Using O(n1+1=k) processors, the generalized

algorithm could sort n numbers in O(k logn) time.

Nassimi & Sahni [208] developed a parallel radix sort algorithm that sorts

n elements using O(n1+1=k) processors in O(k logn) time. This algorithm is devel-

oped speci�cally for processors arranged in cube{connected cycles or in a perfect

shu�e structure.

Reif [225] presents an algorithm to sort n elements in the range f1 : : : logng
in O(logn) time using O(n= logn) processors. This algorithm is then generalized

to sort n numbers in the range f1 : : : (logn)cg in O(c logn) time using O(n= logn)
processors.

My algorithm uses the processors more e�ciently than the algorithm pre-

sented by Nassimi & Sahni [208] although they are designed for very di�erent

architectures. The algorithm presented by Reif [225] has the same time bounds as

my algorithm, although I used the weaker EREW PRAM model of computation.

The most frequent substring problem and a simple sequential algorithm to

solve it were introduces in this chapter. A parallel algorithm that can �nd the

positions of the most frequent lengthm substring of a length n string in O(mn=p)

time usingO(p); p � n= logn EREW PRAM processors. This algorithm required

the development of an e�cient parallel radix sort on a slightly weaker model of

parallel computation than has been done previously.

68

It may be possible to extend these results to the \most frequent motif

problem" searching for length m motifs, as discussed in chapter 8, instead of

length m substrings.

Chapter 5

Shotgun Sequencing

Biological and physical limitations require that DNA be sequenced in fragments.

Because of these limitations there are two approaches used to obtain the appro-

priate sized fragments of DNA to sequence.

One class of methods for sequencing DNA is loosely termed ordered se-

quencing. These methods use an oligonucleotide primer to initiate the DNA se-

quencing at a known point and the sequencing reaction proceeds from this point.

The leading several hundred bases of the DNA strand are sequenced and then re-

moved using exonucleases exposing the next segment of the DNA to be sequenced.

The process of sequencing several hundred bases and removing them is continued

until the entire DNA sequence has been determined. We will not consider ordered

sequencing in this paper.

Another class of methods for sequencing DNA is loosely referred to as

shotgun sequencing. Many identical copies of the DNA to be sequenced are cleaved

by one or more restriction endonucleases. A restriction endonuclease will cleave

the DNA sequence at each occurrence of a speci�c six to eight base subsequence

(sonication can also be used to create unordered fragments). This results in a

multiset1 of DNA fragments that are not ordered. DNA fragments are essentially

selected at random from this multiset and sequenced. A consensus sequence that

is believed to represent the original DNA sequence is assembled by �nding overlaps

between the DNA fragments that have been sequenced.

1A multiset is analogous to a set, but elements may appear more than once [160].

70

In this chapter we will present three algorithms that could be used to as-

semble the sequenced DNA fragments into a contiguous sequence. In section 5.1

we review the previous work done on the minimal length superstring problem.

Since the minimal length superstring problem is NP{complete, this section also

reviews several approximation algorithms. We de�ne the perfect string consen-

sus problem in section 5.2. Examining this problem will motivate some of the

assumptions that we will make later in this chapter. Finally, in section 5.3, we

de�ne the string consensus problem and present three algorithms to solve it.

We will use calligraphic letters such as S to represent multisets of strings.

Capital letters late in the alphabet will be used to indicate strings, while lower

case letters will be used for characters of a string such as S = s1s2 : : : sm. The

strings are composed of characters from the alphabet �. We will use the following

notation,

� n is the number of strings in the multiset S = fS1; S2; : : : ; Sng

� N =
Pn

i=1 jSij

� Lmin = length of shortest common superstring

� L = length of superstring found by heuristic

� C = compression = N � Lmin

� CH = N � L = compression found by heuristic.

� su�x (T; j) is the su�x of T that has length j, similarly for pre�x (T; j).

5.1 Previous work

In this section we will examine the work that has been done on reconstructing a

the original sequence from the individual sequence fragments. We use the term

consensus string as the name of the string that is reconstructed from the sequence

71

fragments. Several people have studied this problem from the biologist's perspec-

tive [53, 257, 149] and many people have studied similar problems in computer

science [186, 107, 217, 262, 269, 273, 181, 43].

In 1980 Gallant, Maier & Storer [107] showed that the shortest superstring

problem is NP{complete. They �rst de�ned superstring,

a superstring of a set of strings S = fS1; S2; : : : ; Sng is a string S

containing each Si; 1 � i � n; as a substring,

and then de�ned the shortest superstring problem,

Given a set of strings S and a positive integer l, does S have a super-

string of length l?

They showed that the shortest superstring problem is NP{complete even when

the alphabet is restricted to f0,1g. The NP{completeness result suggests that

there is no polynomial time algorithm for this problem. Therefore, one should

probably attack this problem in one of several ways:

1. Add assumptions about the substrings so that the approximate problem,

which is the original problem with the extra assumptions, is no longer NP{

complete.

2. Show that the hard instances of the problem are rare, so that the problem

can usually be solved quickly.

3. Instead of �nding the superstring with the minimum length, �nd a super-

string with a length that can be shown to be close to the minimum length.

Although we mention three approaches to deal with an NP{complete problem,

approximation has been used most frequently to solve this problem quickly. We

will assume that, given a minimum acceptable overlap, there is a unique construc-

tion of the superstring. This is an example of approach one, adding assumptions

so that the problem is no longer NP{complete.

72

In a paper by Peltola, S�oderlund, Tarhio & Ukkonen [217] a heuristic for a

generalized minimal length superstring problem is given. The problem is general-

ized by allowing errors in the string matching. They use a di�erent de�nition of

superstring, namely,

a superstring of a set of strings, S = fS1; S2; : : : ; Sng; is a string S

containing each Si; 1 � i � n; as an approximate substring.

An approximate substring Si of S with an error ratio � is de�ned to be,

a substring of S that can be transformed into Si with at most �jSij
delete, insert, replace, and transpose operations is an approximate

substring..

The minimum number of delete, insert, and replace operations needed to trans-

form one string into another is frequently called the minimum edit distance. They

then de�ne the generalized minimal length superstring problem,

Given a set of strings S, a positive integer l, and an error ratio �; 0 <

� < 1, does S have a superstring of length at most l?

A heuristic is given to solve the problem, although no performance guarantees are

given for the heuristic.

The heuristic has three basic steps. First a complete pairwise alignment

graph is computed using the standard dynamic algorithm of Sellers [240] and

others. Each node of the graph represents some Si 2 S. An edge exists between

Si and Sj i� the minimum edit distance is less than �jSj j. The value associated
with the edge is the minimum edit distance between Si and Sj. From this graph, a

global alignment is computed by essentially computing the minimal spanning tree

of the pairwise alignment graph. The minimal spanning tree provides an ordering

of the strings and the optimal alignment of adjacent strings, but does not provide

the optimal global alignment, or the optimal local alignment when more than

two strings overlap. The �nal step in the heuristic computes the consensus string

73

from the overlap graph and the minimal spanning tree. The running time of the

heuristic is O(�N2).

Papers by Tarhio & Ukkonen [262] and Turner [269] develop approximation

algorithms that they conjecture will �nd an approximate shortest superstring

that is, at worst, twice the length of the actual shortest superstring. Tarhio &

Ukkonen [262] analyzed their algorithm in terms of the compression of the strings

in S instead of the length of the shortest superstring of S. The main result of the
paper is that CH � 1

2
C. The running time of the algorithm presented by Tarhio

& Ukkonen is O(nN).

The algorithm computes the maximal overlap of all pairs of strings in S.
It then behaves in a greedy fashion to construct a short common superstring

by selecting the longest overlap between two strings. When a string has been

overlapped on both ends it is removed from S. The process of selecting the

longest overlap continues until no strings remain in S.
Turner [269] presents an algorithm to approximate the shortest superstring

with the same performance guarantees as the algorithmof Tarhio & Ukkonen [262].

Turner uses su�x arrays to reduce the number of su�x/pre�x comparisons that

need to be done. The running time of the algorithm is O(N logN) or O(N logn),

depending on whether direct indexing over the alphabet � is allowed.

Later, in a paper by Ukkonen [273], an O(N) or O(N min(logn; log j�j))
algorithm, depending on whether direct indexing over the alphabet � is allowed,

to solve the approximate shortest superstring problem is presented. This reduc-

tion in time is achieved by a clever use of the Aho{Corasick [4] string matching

automaton. This algorithm achieves the same compression ratio as the algorithms

of Tarhio & Ukkonen and Turner.

The �rst approximation algorithm that approximated the shortest super-

string of S instead of the maximal compression of the strings in S was given by

Li [181]. Li was able to give an algorithm to compute an approximate shortest

superstring of length O(Lmin logLmin). The algorithm is similar to the greedy

74

algorithms given above by Tarhio & Ukkonen, Turner, and Ukkonen. It di�ers

in that when the strings with the maximum overlap are joined, not only are the

strings that were joined removed from the set of strings, but all substrings of the

resulting joined string are removed from the set of strings. This results in the size

of the set of strings decreasing fast enough to show the O(Lmin logLmin) bound on

the length of the approximate shortest superstring. Although the running time of

the algorithm is not considered, it is clearly polynomial in the size of the input.

Blum et. al. [43] recently showed that the greedy algorithms of Tarhio &

Ukkonen [262] and Turner [269] do �nd superstrings that are, at worst, a multi-

plicative factor of four longer than the minimum length superstring. Blum et. al.

also give a modi�cation of the algorithm to get the multiplicative factor down to

three.

5.2 The perfect match string consensus problem

Previous work on �nding the shortest common substring problem has ignored

the process of generating the fragment strings. In this section we will look at a

problem similar to the shortest common superstring problem with some added

information about how the fragment strings were generated. In section 5.3 we

will make much more severe assumptions about how the fragment strings were

generated.

5.2.1 Problem de�nition

In the perfect match string consensus problem, I will assume that we start with

k copies of the string, each string is fragmented, and we are given the multiset

S that contains each fragment from the k copies of the string. We will use the

symbol
U
for multiset union. Let there be k identical copies of the stringW 2 �n,

W1;W2; : : : ;Wk. Associated with each Wi; 1 � i � k; is a multiset of substrings,

Si = fT1; T2; : : : ; Tlig, such that Wi = T1 � T2 � � � Tli . Let S =
U
1�i�k Si. The

75

perfect string consensus problem is to �nd all W that could generate S given the

multiset S and the integer k.

5.2.2 How many distinct common superstrings exist?

Given the multiset S, it is important to know if there exists a unique W that can

be constructed from the strings in S. If W is not unique, we should know how

many di�erent W would be of superstrings S. For the remainder of this section,
we will assume that we started with two copies of W , that is k = 2.

There are two simple situations that will result in W not being unique.

The �rst results when any two of the W 's are cleaved at the same position. W is

not unique if, for any h; i; and j, j 6= jW j

wiwi+1 � � �wj 2 S and

whwh+1 � � �wj 2 S

since

W = w1 � � �wi�1 wi � � �wj wj+1 � � �wjW j = w1 � � �wh�1 wh � � �wj wj+1 � � �wjW j

and

W = wj+1 � � �wjW j w1 � � �wh�1 wh � � �wj = wj+1 � � �wjW j w1 � � �wi�1 wi � � �wj

The second situation that will result in W not being unique can be de-

scribed as follows. If we have seven distinct strings,

R1; R2; R3; R4; R5; R6; R7 2 S
R1; R2; R3; R4; R5 2 S1; and

R6; R7 2 S2

such that

su�x(R1) �R2 � pre�x(R3) = R6

su�x(R4) � pre�x(R5) = R7

76

su�x(R1) = su�x(R4)

pre�x(R3) = pre�x(R5)

then there must be more than one arrangement of the R's to construct di�erent

W 's.

W = : : : R1 �R2 � R3 : : :R4 �R5 : : : = : : : :R6 : : : : : : : : : :R7 : : :

and

W = : : : R1 �R3 : : :R4 � R2 �R5 : : : = : : : R7 : : :R6 : : :

The �rst case is actually a special case of the second. This can be seen by letting

pre�x (R5) = R3 and noting that both R3 and R6 must end at the same position

in W .

In a similar way we can create a multiset of n strings that can be arranged

to form n! distinct W 's where, for k = 2, jW j = n2

2
+ 7n

2
+ 6. Let the multiset of

strings, Xn, be de�ned as

X0 = fxyyx; xy; yxxy; xyg
Xn = Xn�1] fyxn+1y; xyyx; xn�1g

The length of W is

jW j =

P
X2Xn jXj
k

=
n2

2
+
7n

2
+ 6

There are n! distinct arrangements of the strings in Xn that form W . The

form of these arrangements will be:

W = xyyx � xh1 � xyyx � xh2 � � � xyyx � xhn � xy = xy � yxxh1xy � yxxh2xy � � � yxxhnxy

where h1; h2; : : : ; hn are distinct integers, 0 � hi < n. The order of the n pairs xhi

and yxxhixy in the construction of W is arbitrary, so there are n! distinct strings

that can be W . Notice that in no case are the two constructions of W cleaved at

the same position (case 1). Similar arguments can be made for k > 2.

77

5.2.3 Algorithm to �nd the common superstrings

Since it is possible that so many di�erent W exist, if we must produce all possible

W then the best we can do is to search the entire space. Given two strings, U

and V; i = jU j; j = jV j; i � j; such that u1 = v1; u2 = v2; � � � ; ui = vi, we will

de�ne the extension of U to V to be the string vi+1 � � � vj . We can build candidate

strings, W1 and W2, from strings in S by choosing some string S1 2 S and letting

it be a pre�x of W1. We must then remove S1 from S so that it will not be reused

in the construction of W . W2 is initially the null string.

W1 = S1

W2 =

The extension of W2 to W1 is just S1. Next we compute S 0,

S 0 = fSj(S 2 S) ^ (pre�x(S) = extension(W1;W2) _
S = pre�x(extension(W1;W2)))g

We next pick some S2 2 S 0 and make it a pre�x of W2. We now have

W1 = S1

W2 = S2

The process of computing the extension of W1 to W2 and �nding the mul-

tiset of strings that could be used to extend the shorter of W1 and W2 is repeated

as long as it is possible to do so. When it becomes impossible to continue and

S is not empty, we must backtrack and pick some new Si from some S 0 and try

again.

The algorithm in Figure 5.1 assumes that k = 2, although the same ideas

will work for any k. Let E be the extension of the candidate strings for W1 and

W2. Let U be the submultiset of S whose elements have not been used in the

construction of W1 or W2. Let P be the submultiset of U whose elements have

pre�xes that exactly match E. The function pre�xq is true if either argument is a

78

�nd{W (E, U , P, Results)
if (U = �) ^ (jEj = 0)

Print reverse (Results)
else

if P = � backtrack
else

for each nextP 2 P
Results nextP

U
Results

newE extension (E, nextP)
newP fSjS 2 S ^ pre�xq (newE, S)g
�nd{W (newE, U - nextP, newP, Results)

Figure 5.1: An algorithm to compute all possible strings,W , that could have been
used to create the multiset S from two copies of W .

pre�x of the other. This algorithm has been implemented in lisp and has run on

various computers.

5.3 The string consensus problem

The perfect string match consensus problem is not a good abstraction of the prob-

lem biochemists are faced with when they need to produce a consensus sequence

from sequence fragments. In the perfect string consensus problem, every segment

of each of the k copies of W must be in S. In the process of shotgun sequencing,

many copies of the original sequence will be fragmented, but relatively few of the

fragments will actually be sequenced. We believe the string consensus problem,

de�ned below, is a better abstraction of the problem biochemists are trying to

solve.

Finding the minimum length superstring of a set of strings seems to require

us to look at many of the possible arrangements of the strings in the set. When

molecular biologists try to solve the similar problem of arranging their sequence

fragments into a contiguous sequence, they assume that pre�x/su�x matches

of a length greater than some constant are \signi�cant" and that all signi�cant

alignments are correct. In this section will use this assumption to construct an

79

algorithm to build a contiguous sequence. This assumption will allow us to �nd

alignments that are \good enough" and not require us to search the entire space of

alignments. We shall see that in these algorithms, the run time is directly related

to the compression.

If we let k be the minimum length match that we consider signi�cant, one

naive algorithm to solve this problem would compare the n(n+1)
2

pairs of strings to

pre�x/su�x matches of length k. If the n� 1 pre�x/su�x matches have not been
found, k is incremented and the process is repeated. Eventually, if it is possible

to align the sequences in a contiguous sequence, we will �nd it.

In this section we will present two new algorithms to solve the exact shotgun

sequencing problem. The �rst uses the ideas of Rabin{Karp [158] string match-

ing. The second algorithm sorts the strings and uses the sorted list to speed the

pre�x/su�x match searches.

5.3.1 Assumptions

We will make the following assumptions before we de�ne the exact shotgun se-

quencing problem.

1. An integer k can be supplied that de�nes the minimum acceptable overlap

between two strings.

2. There is a unique alignment of the strings in S such that all su�x/pre�x

overlaps are of length k or greater.

3. All su�x/pre�x overlaps are exact matches.

We feel that if k is chosen carefully, these assumptions are reasonable. For large

k, it will be very unlikely that any overlap other than overlaps that arise from

the shotgun procedure will appear. If these assumptions are too strong, a simple

modi�cation to the algorithms described here (essentially incrementally increasing

the value of k) will allow the algorithms to produce a series of alignments, each

successive alignment being more compressed than the previous.

80

5.3.2 The problem de�nition

We are given a multiset of strings, S = fS1; S2; : : : ; Sng, and an integer k. We

make the following assumptions about S and k

1. Si is not a substring of Sj for 1 � i; j � n; i 6= j.

2. An ordering, H, of the strings in S exists such that

81�i<n i 9j�k j su�x(SHi
; j) = pre�x(SHi+1 ; j):

The problem is, given the multiset S and the integer k, �nd the ordering H.

5.3.3 Naive algorithm

A naive algorithm to solve the string consensus problem is presented in Figure 5.2.

The length k pre�xes and su�xes of each pair of strings S1; S2 2 S are compared.

If a pre�x and su�x match, the strings S1 and S2 are removed from S and the

string that results when S1 and S2 are joined is added to S. Note that when a

string is added to S it will be used in future pre�x/su�x comparisons. When no

more pre�x/su�x matches of length k exist in S and jSj > 1, k is incremented

and the pre�x/su�x matching of the strings in S is repeated.

We will assign a comparison to the string S if a character in a su�x of

S is compared to a character in the pre�x of some T . For each iteration of the

outer for loop, each Sb 2 S, the pre�x of Sb will be compared to the su�x of Sa

and since the sum of the lengths of the length k pre�xes of the Sb's is less than

or equal to N , the number of comparisons done for each iteration of the outer for

loop will be O(N). The algorithm in Figure 5.2 has a worst case running time of

O(CHN).

In the average case we expect that almost all pre�x/su�x comparisons

either match, or disagree after looking at a small constant number of characters.

The expected time for the if statement in the inner for loop is constant. Since

81

consensus naive (S)
k minimum match length acceptable - 1
while jSj > 1

k k + 1
for each Sa 2 S

for each Sb 2 S
if su�x (Sa, k) = pre�x (Sb, k)

remove Sa and Sb from S
add (join (Sa; Sb)) to S

if su�x (Sb, k) = pre�x (Sa, k)
remove Sa and Sb from S
add (join (Sb; Sa)) to S

Figure 5.2: A naive algorithm that will solve the string consensus problem by
searching all possible pre�x/su�x matches.

there are n strings in S and the outer for loop will execute CH times, the expected

time for the algorithm in Figure 5.2 is O(nCH).

The algorithm in Figure 5.2 has been implemented in C on a Sun 3/260.

Figure 5.3 shows the results of running the program with strings of length 507.

The length of the overlaps between strings was between 180 and 200 characters.

The number of strings was varied between 25 and 500 and the amount of CPU time

used to compute the consensus string is plotted. Since the length of the strings

and the overlap was held constant we will get a constant amount of compression

for each string and therefore we expect the time to grow as O(n2). Figure 5.4

shows the square root of the running time plotted against the number of strings.

5.3.4 Rabin{Karp type algorithm

Given two strings S and T , i = jSj; j = jT j; i < j, the Rabin{Karp algorithm

for string searching computes a hash value for the shorter string, S and a hash

value for each length i substring of T . The hash value of S is compared with the

hash values for the substrings of T . By cleverly choosing the hashing function,

the hash value for the substring of T ending at position h can be computed from

the hash value for the substring of T ending at position h�1 and the character th.

82

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500
� � � � �

� �
� �

� �
� �

�
�
�
�
�
�
�

T
i
m
e

i
n

s
e
c
o
n
d
s

Number of strings

Figure 5.3: The running time in CPU seconds for the naive algorithm to solve the

string consensus problem.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450 500

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �S

q
u
a
r
e

r
o
o
t

o
f

t
i
m
e

Number of strings

Figure 5.4: The square root of the running time for the naive algorithm to solve

the string consensus problem.

83

The hash function Rabin and Karp [158] choose was hash(m) = m mod p where p

is a large prime and m is an integer representation of the string Th�i+1 : : : Th. To

compute the hash value of the length i substring of T ending at position h

hash(h) = ((hash(h � 1)� index(th�i) � �i�1) � � + index(th)) mod p

Associated with each c 2 � is a unique integer l; 0 � l < �. The function index(c)

returns the integer associated with c.

The probability of two strings drawn randomly from �i having the same

hash value is shown by Gonnet & Baeza{Yates [118] to be

1

p
+O

�
1

�i

�
:

With the appropriate choices of p and k, the frequency of collisions will be small.

The Rabin{Karp algorithm has two properties that make it particularly

well suited to the exact shotgun sequencing problem.

� The hash value for the pre�x and su�x of a string can be computed incre-

mentally. Given the hash value for the length i pre�x of a string, the hash

value for the length i + 1 pre�x can be computed with a constant number

of operations.

� The hash value of a substring can be incrementally computed equally well

from the right or the left end of the substring.

Figure 5.5 gives an algorithm based on the ideas of Rabin and Karp for the

exact shotgun sequencing problem. Since the strings we are comparing are always

pre�xes (su�xes), we do not need to subtract the value of the leading (trailing)

character of the string. The jth forward hash value of the string S, (fhv[S]), is the

hash value of the string s1s2 : : : sj. The function we use to compute the j
th fhv[S]

from the (j � 1)st fhv[S] is

fhv[S] = (fhv[S] � � + index(sj)) mod p:

84

consensus RK (S)
dm 1
k minimum su�x{pre�x length
compute initial values of fhv and bhv
while jSj > 1

hashtree nil
for each S 2 S

j jSj - k + 1
fhv[S] (fhv[S] * � + index (sk)) mod p
bhv[S] (bhv[S] + (index (sj)�dm)) mod p
if (fhv[S] 62 hashtree) add (fhv[S], hashtree)
else join (S, matched string from hash tree)
if (bhv[S] 62 hashtree) add (bhv[S], hashtree)
else join (S, matched string from hash tree)

dm (dm��) mod p
k k + 1

Figure 5.5: An algorithm based on Rabin{Karp style string matching to solve the
string consensus problem.

Let i = jSj � j + 1. The jth backward hash value of the string S, (bhv[S]), is the

hash value of the string sisi+1sjSj. The function we use to compute the j
th bhv[S]

from the (j � 1)th bhv[S] is

bhv[S] = ((index(si) � �j�1) + bhv[S]) mod p:

The initial length k forward and backward hash values are computed for

each S 2 S. Each fhv[S] and bhv[S] is added to a binary tree. Whenever the

hash value being added to the tree matches a hash value already in the tree, the

associated strings are compared. If the pre�x of one matches the su�x of the

other, the strings are removed from S and joined, the resulting string is added

back to S. When all of the possible pre�xes and su�xes of length k have been

joined, the value of k is incremented, the search tree is cleared, and the hash

values for the new value of k are computed.

If we assume that no collisions occur, the number of operations used by

the Rabin{Karp type algorithm for the exact shotgun sequencing problem is

O(CH � logn):

85

The lines of the inner for loop will be executed once for each position of com-

pression in the �nal consensus sequence. The \if (fhv[S] 62 hashtree) add (fhv[s],

hashtree)" and \if (bhv[S] 62 hashtree) add (bhv[s], hashtree)" lines take O(logn)

time to execute and each of the other lines of the inner loop takes constant time,

therefore the running time of the algorithm in Figure 5.5 is O(CH � logn).
The hash tree is set up as a binary tree. Associated with each node is a

hash value and a linked list of pointers to each string that has the hash value

associated with the node. When a string has the same hash value as a node, a

linear search is performed on the strings associated with the node and if a match

is found, it is returned. If no match is found, the string is added to the linked

list. In the extraordinary case where each string hashes to the same value, the

algorithm performs just as the naive algorithm does.

The algorithm in Figure 5.5 has been implemented in C on a Sun 3/260.

Figure 5.6 shows the results of running the program with strings of length 507.

The length of the overlaps between strings was between 180 and 200 characters.

The minimal acceptable overlap, k, was set to 20. The number of strings was

varied between 25 and 1000 and the amount of CPU time used to compute the

consensus string is plotted. Figure 5.7 shows the time divided by the log of the

number of strings as the number of strings was varied.

5.3.5 Algorithm based on sorting

In the naive algorithm, a great deal of time is spent searching for a string in S
with a particular pre�x. If the list of pre�xes were sorted, the time needed to

search S for a string with a particular su�x could be signi�cantly reduced. In

this section we will use a trie to speed the search.

By sorting the strings using a bucket sort and keeping track of the positions

of the buckets at each stage of the sort, we can �nd the strings with a pre�x of

length i using O(i) operations. During the standard bucket sort of the strings, we

will build a trie [161] where a node at depth i represents a bucket containing all

86

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

����
���
���
���
���
���
���
���
����

��
����

���
��

T
i
m
e

i
n

s
e
c
o
n
d
s

Number of sequences

Figure 5.6: The running time in CPU seconds for the Rabin{Karp based algorithm

to solve the string consensus problem.

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

���
���
���
���
���
����

���
���
����

��
����

����
�

T
i
m
e

/

l
o
g

n

Number of strings

Figure 5.7: The running time divided by the log of the number of strings for the

Rabin{Karp based algorithm to solve the string consensus problem.

87

consensus trie (S)
trie sort seqs (S, 0)
k minimum match length acceptable
while jSj > 1

for each S 2 S
R search (S, trie, k)
if R 6= �

T join (R, S)
add T to S
remove R and S from S

k k + 1
print one remaining entry in S

Figure 5.8: An algorithm based the the trie data structure to solve the string
consensus problem.

strings in S with a particular pre�x of length i. The children of a depth i node

represent the strings in S with pre�xes of length i+ 1 and the strings associated

with the parent node and child nodes agree in positions 1 through i.

The function sort seqs in Figure 5.9 recursively sorts the sequences and

builds the trie. When jSj > 1, the strings in S are sorted by the position indicated
by the variable \column". The strings are then divided into at most � groups, one

group for each distinct character appearing at position \column" in some S 2 S.
A node in the trie is created for each of the non{empty groups of strings. Each of

these nodes is a child of the node representing S. The function sort seqs is then

called recursively for each of the groups of strings.

The function sort by position orders the strings passed to it by the char-

acters in the position passed to it and returns a node of the trie that points

to the beginning of � buckets along with the size of each bucket. The function

sort by position takes time proportional to the number of strings being sorted. The

time to sort the strings and construct the trie is proportional to N , the sum of

the lengths of the strings, since each character of the strings in S is compared at

most once.

The algorithm used to search the trie is given in Figure 5.10. It is essentially

88

sort seqs (S, column)
/* column is the position in the strings that the strings are to be ordered by */

root nil
if jSj > 1

root sort by position (S, column)
for each i, 0 � i < �
Si root.bucket posi
root.childi sort seqs (Si, column + 1)

return root

Figure 5.9: An algorithm to sort the string and construct the trie as the strings
are being sorted.

search (S, trie, j)

/* Traverse trie */

while (trie 6= �) ^ (j > 0)
prev trie
c sjSj�j
trie trie.nextc
j j - 1

j j + 1
T prev.bucket posc
cs sjSj�j
h 0
ct th�j

/* Compare strings */

while (cs 6= ct) ^ (j > 1)
j j - 1
h h + 1
cs sjSj�j
ct th

if (cs = ct) ^ (j = 1) return T
else return nil

Figure 5.10: An algorithm to search the trie for a string.

89

just a �{ary tree search for the length j su�x of the string S. It assumes that you

can index by the characters in � in constant time. If it is not possible to index by

the characters in � then an O(log j�j) search would have to be used to index the

buckets and trie pointers. The worst case time required to determine if a pre�x

of length l exists in the jSj strings is O(l). This can be seen by noting that in the

search procedure, at most one comparison is done at each character position and

only characters in the pre�x are compared.

The algorithm to �nd the consensus sequence using the sorted list of strings

and the trie is given in Figure 5.8. For a given value of k, the algorithm searches

the sorted list of pre�xes for matching length k su�xes. If a match is found, the

strings are removed from S, joined, and the result of the join is added back to S.
When all of the the su�xes of length k have been searched for and more than one

string remains in S, k is incremented and the process is repeated.

In the worst case, the branching factor on the trie is nearly one and the

time to build the consensus string is

O(�nCH):

Each iteration of the inner loop results in one character of compression. When

the branching factor is near to �, the expected time to build the consensus string

is

O(CH logn):

The algorithm in Figures 5.8, 5.9 and 5.10 has been implemented in C with

a Sun 3/260. Figure 5.11 shows the results of running the program on strings of

length 507. The length of the overlaps between strings was between 180 and 200

characters. The minimum acceptable overlap, k, was set to 20. The number of

strings was varied between 250 and 10000 and the CPU time used to compute the

consensus string is plotted. Figure 5.12 shows the time divided by the log of the

number of strings as the number of strings was varied.

In this chapter I gave algorithms to assemble shotgun sequence data into

90

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

���
���
���
���
���
���
���
���
���
����

���
���
���

T
i
m
e

i
n

s
e
c
o
n
d
s

Number of strings

Figure 5.11: The running time in CPU seconds for the sort based algorithm to

solve the string consensus problem.

0

1

2

3

4

5

6

7

8

9

10

11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

���
���
���
���
���
���
���
���
���
�����

���
���
��

T
i
m
e

/

l
o
g

n

Number of strings

Figure 5.12: The running time divided by the log of the number of strings for the

sort based algorithm to solve the string consensus problem.

91

the original sequences. I have assumed that all overlaps between pre�xes and

su�xes of the seuqence fragment data are of length at least k and match exactly.

These assumptions allow me to construct algorithms that run in time proportional

to the product of the amount of compression and the log of the number of sequence

fragments. The algorithms that are given are capable of reconstructing sequences

from tens of thousands of sequence framents. In the following chapter I give

algorithms to reconstruct sequences from shotgun sequence data assuming the

overlaps do not match exactly.

92

Chapter 6

Log Inexact Shotgun Sequencing

6.1 Introduction

The process of sequencing DNA and RNA is not perfect and mistakes are occa-

sionally made in processing the gels, reading the gels and entering the data into a

database. In this section, we will not assume that all su�x/pre�x overlaps match

perfectly. Instead we will suppose that there are at most log(v) positions where

the su�x and pre�x do not match where v is the length of the overlap between

the two strings.

We will discuss three algorithms to solve the log inexact string consensus

problem. The �rst is a naive algorithm that we present for comparison. The

second algorithm is based on the Rabin{Karp string matching algorithm. The

�nal algorithm that we present is based loosely on the sorting algorithm presented

in section 5.3.5.

The algorithm based loosely on the Rabin{Karp string matching algorithm

returns, with high probability, the correct solution in

O(Cn(log log2 p) + n log p)

time where p is some large prime, usually chosen to �t in a small number of words

of memory. The worst case time bound for the Rabin{Karp based log inexact

string matching algorithm is

O(nCH log p)

93

The large table required by the Rabin Karp algorithm makes it useful only for

consensus sequences with very short pre�x/su�x overlaps.

The third algorithm, based very loosely on the sorting algorithm presented

in section 5.3.5, returns a correct answer in

O

N3 logk

k

!

worst case time and

O

0
@nN logk

j�j k
log k

+N

1
A

expected time. The sorting based algorithm for the log inexact consensus sequence

problem seems to be practical for a variety of problems.

We will say that the two length n strings S and T \log inexact match" or

S � T if
n�1X
i=0

(si � ti) � logn

where

si � ti =

8><
>:

0 if si = ti

1 if si 6= ti
:

6.1.1 Assumptions

We will make the following assumptions and then de�ne the log inexact shotgun

sequencing problem.

� An integer k can be supplied that de�nes the minimum acceptable overlap

between two strings.

� There is a unique alignment of the strings in S such that all su�x/pre�x

overlaps are of length k or greater.

� All su�x/pre�x overlaps are log inexact matches.

94

naive (S, k)
while jSj > 1

for each Si 2 S
for each Sj 2 fS � Sig

if verify (Si; Sj; k)
add (join (Si; Sj);S)
remove (Si;S)
remove (Sj ;S)

k k + 1

Figure 6.1: A naive algorithm that will check all length k pre�x/su�x overlaps to
solve the log inexact consensus string problem

6.1.2 Problem de�nition

We are given a multiset of strings, S = fS1; S2; : : : ; Sng, and an integer k. We

make the following assumptions about S and k

1. Si is not a substring of Sj for 1 � i; j � n; i 6= j.

2. An ordering, H, of the strings in S exists such that

81�i<n i 9j�k j su�x(SHi
; j) � pre�x(SHi+1; j):

The problem is, given the multiset S and the integer k, �nd the ordering H.

6.2 Naive log inexact algorithm

The naive algorithm presented in Figure 6.1 solves the log inexact consensus se-

quence problem. The algorithm simply tries all possible length k pre�x/su�x log

inexact matches, merges the log inexact matches that are found and increments k.

This process is iterated until the only string remaining in S is the single consensus

string.

Theorem 6.1 The algorithm presented in Figure 6.1 uses

O(nCHN)

95

time in the worst case to compute the log inexact consensus string.

Proof. Each iteration of the outer for loop increases the compression by one. The

time for verify(Si; Sj ; k) will be at most min(jSij; jSj j) since we can use a simple

character by character comparison of the strings to determine if they log inexact

match. The time to complete one iteration of the outer for loop will be no more

than nN . So the time to compute the log inexact consensus sequence will be

O(nCHN).

Theorem 6.2 The algorithm presented in Figure 6.1 uses

O(nCH logN)

time in the average case to compute the log inexact consensus string.

Proof. Each iteration of the outer for loop increases the compression by one.

The expected time for a verify call that fails is O(logN) since we need to �nd only

logk errors and k may be as large as the longest string in S. The total time spent
in successful calls to verify is O(CH). Since the outer for loop is iterated once for

each character of compression, the expected time is O(nCH logN).

If the overlap between adjacent strings in the log inexact consensus se-

quence and string length are both held constant, the worst case performance of

the naive algorithm is O(n3) and the expected case is O(n2 logn).

The naive algorithm was implemented in C and run on a Sun 3/260. Fig-

ure 6.2 shows the running time as the number of strings is varied from 4 to 120.

Each string was 100 characters long and had an overlap length of 50 with its

neighbor in the log inexact consensus sequence. The minimum overlap accepted

(k) was 24 characters. Figure 6.3 shows the square root of the running times

presented in Figure 6.2.

96

0

100

200

300

400

500

0 20 40 60 80 100 120

Number of strings

C
P
U
s
e
c
o
n
d
s

333333
3

3

3

3

3

Figure 6.2: The running time in CPU seconds used by the naive algorithm to

solve the log inexact consensus string problem.

0

5

10

15

20

25

0 20 40 60 80 100 120

Number of strings

s
q
r
t

C
P
U
s
e
c
o
n
d
s

33
33
3
3

3

3

3

3

3

Figure 6.3: The square root running time used by the naive algorithm to solve

the log inexact consensus string problem

97

enum{di�s (XOR{value, x, y, position)
if bitposition (position, XOR{value) is set

enum{di�s (XOR{value - 2position, x + 2position, y, position + 1)
enum{di�s (XOR{value - 2position, x, y + 2position, position + 1)

else if XOR{value > 0
enum{di�s (XOR-value, x, y, position + 1)

else if x > y
print (x - y)

Figure 6.4: An algorithm to convert the XOR value of two numbers to the di�er-
ences of two numbers that would result in the XOR value.

6.3 Rabin Karp log inexact algorithm

We can use the ideas developed in section 5.3.4 and extend the de�nition of string

equality to build an algorithm that will solve the log inexact shotgun sequencing

problem. Let the function F have the domain of all S 2 �� and the range of non{

negative integers. Let � = j�j. F (S) will be the base � integer representation of

the string S. Given two strings S and T , from �q we let

F (S) = index(s1) � �q�1 + index(s2) � �q�2 + � � � + index(sq)

F (T) = index(t1) � �q�1 + index(t2) � �q�2 + � � � + index(tq):

When there is exactly one position i such that si 6= ti, F (S) and F (T) will di�er

by d�q�i; 0 � d < �. If si 6= ti and sj = tj for all j; 0 � j < i; i < j � q, then

F (S) = F (T) + (index(si)� index(ti))�
q�i

If the two strings S and T di�er in positions i1 and i2 then F (S) and F (T) will

di�er by some additive combination of d1�
q�i1 and d2�

q�i2; 1 � d1; d2 � �; and

so on for larger numbers of di�erences.

Before the log inexact consensus string is computed, a table of di�erences

between F (S) and F (T) for all S � T must be computed. A list of integers,

XORlist, is generated. The binary representation of each integer in the list has at

most log p ones, each one representing the position of a mismatch between S and

T . Since the mod operator can be distributed over addition, but mod can not be

98

distributed over XOR, the XORlist must be converted into a list of di�erences.

For each integer in the XORlist, there may be several di�erent values of S and

T that will generate F (S) XOR F (T). The table of di�erences is the set of all

positive di�erences between F (S) and F (T) where F (S) XOR F (T) is in the

XORlist. The algorithm in Figure 6.4 will return the set of all possible values

F (S)�F (T) such that XORvalue = F (S) XOR F (T). The enum{di�s algorithm

in Figure 6.4 is initially called as

enum�di�s(F (S) XOR F (T); 0; 0; 0):

The RK log inexact algorithm presented in Figure 6.5 will �nd an ordering

of the strings in S that solves the log inexact consensus string problem. In this

algorithm, the length of the pre�x/su�x matches that are examined will be limited

to log p where p is the prime number chosen as the modulo for the hash values. The

algorithm �rst computes the forward and backward hash values for each S 2 S
for the length k pre�xes and su�xes modulo p (fhv[S] and bhv[S] respectively).

The while loop will proceed as long as two conditions hold, there is more than one

string in S and the length of the pre�xes being examined is less than log p times

some constant. Each iteration of the while loop looks for pre�x/su�x matches

of length one greater than the previous iteration and starts at k, the minimal

acceptable pre�x/su�x match length. The two for loops simply select pairs of

strings to be examined. The forward and backward hash values are computed

for strings being compared and then the di�erence between the two hash values

is computed. The errorlist is searched for the di�erence and if the di�erence is

found, it is veri�ed that the two strings do have a pre�x/su�x log inexact match

of length at least k. Once the pre�x/su�x log inexact match has been veri�ed,

the strings are removed from S, joined, and the joined string is returned to S.

6.3.1 Reliability

The algorithm in Figure 6.5 relies on the values F (S) mod p�F (T) mod p; S � T ,

to be sparsely distributed between 0 and p � 1. To estimate the running time

99

match (S, k, errorlist)
for each S 2 S

fhv[S] index(s1) � �k�1 + index(s2) � �k�2 + � � � + index(sk) (mod p)
bhv[S] index(sjSj�k+1) � �k�1 + index(sjSj�k+2) � �k�2 + � � � + index(sjSj)

(mod p)
dm 1
while (jSj > 1) ^ (k < c � log p)

k k + 1
for each S 2 S

fhv[S] fhv[S] � � + index(sk) (mod p)
for each T 2 (S � S)

bhv[T] bhv[T] + index(tjT j�k) � dm (mod p)
di� jfhv[S]� bhv[T]j
if di� 2 errorlist

if verify (S, T, k)
add (join (S; T), S)
remove (S, S)
remove (T , S)

dm dm * � (mod p)

Figure 6.5: An algorithm based on the Rabin{Karp method of strings matching
to solve the log inexact consensus string problem.

100

of this algorithms we need to know how frequently S 6� T and F (S) mod p �
F (T) mod p 2 errorlist. We will show that the number of error values when

S1 � S2 is small compared to the complete range of error values. Therefore, when

S1 6� S2, it is unlikely that F (S1) mod p� F (S2) mod p 2 errorlist.

Lemma 6.1 Given q pairs of strings, <S1; S2>, where S1 and S2 are randomly

selected from �logq such that S1 6� S2; we expect log log q � log qlog logq of the q pairs
to have F (S1)� F (S2) 2 errorlist.

Proof. We know that0
B@ x

logx

1
CA =

x � (x� 1) � � � � � (x� logx+ 1)

logx � (logx� 1) � � � � � 2 � xlogx

so the number of error values in the error list is at most

log log qX
i=0

0
B@ log q

i

1
CA � log log qX

i=0

0
B@ log q

log log q

1
CA � log log q � log qlog logq:

Since we are assuming that the hashing function is randomly distributing the hash

values from 0 : : : q � 1, the number of times that F (S1) mod p � F (S2) mod p 2
errorlist will be about the same as the number of values in errorlist.

6.3.2 Running time

The log inexact RK algorithm in Figure 6.5 does not build a tree of pre�x values

as the exact RK algorithm (See Figure 5.5) does, but must scan the entire list

of pre�x values sequentially since strings that are nearly the same may have very

di�erent hash values. If we let v be the maximum length su�x/pre�x overlap

and limit the number of mismatches to O(log v), the number of error values is at

most O(vlog v) since each error value is a combination of log v or fewer powers of

�; f�0; �1; : : : ; �v;��1; : : : ; ��vg multiplied by some i; i < �. These values

can be precomputed and sorted so that the time to search the list of error values

for a particular value is O(log2 v).

101

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120 140 160

Number of strings

C
P
U
s
e
c
o
n
d
s

Naive algorithm �
RK algorithm �

� � � �
�

�

� � � �

�

�

Figure 6.6: The running times in CPU seconds for the naive and RK algorithms

to solve the log inexact consensus string problem.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160

Number of strings

S
q
r
t

C
P
U
s
e
c
o
n
d
s

Naive algorithm �
RK algorithm �

� �
�

�

�

�

� �
�

�

�

�

Figure 6.7: The square root of running times for the naive and RK algorithms to

solve log inexact consensus string problem.

102

Theorem 6.3 The algorithm presented in Figure 6.5 uses

O(Cn(log log2 p) + n log p)

expected time to compute the log inexact consensus string when v, the maximum

overlap length between strings, is at most log p.

Proof. The for loop that initializes the forward and backward hash values exe-

cutes in O(nk). Each statement in the while loop will execute in constant time

with the exceptions of the \if di� 2 errorlist" statement and the \if verify (S, T,

k)" call. Since the number of values in the errorlist is O(vlog v) and v is at most

log p, the \if di� 2 errorlist" statement will execute in O((log log p)2) time. Each

iteration of the outer for loop will result in one character of compression. At most

n searches of the errorlist will be done for each character of compression. Since

there are CH characters of compression, the running time without the calls to

verify will be O(nCH(log log p)
2). By lemma 6.1 we see that if we let v = log p

then we expect log log p(log p)log logp incorrect inexact matches for every p pairs

of strings that we look at. Since we will be looking at nCH pairs of strings the

expected number of incorrect calls to verify will be O
�
nCH

(logp)log log p log logp
p

�
. The

expected time to discover that two strings do not log inexact match is O(log log p)

since there can be at most log log p mismatches and we expect to �nd each mis-

match by looking at a constant number of positions. The time contributed by

incorrect calls to verify will be O
�
(log log p)2

�
nCH

(logp)log log p

p

��
. Each of the

n � 1 correct calls to verify will take O(log p) time. The calls to verify will take

O
�
(log log p)2

�
nCH

(logp)log log p

p

�
+ n log p

�
time. Adding these times we get the

running time of the RK inexact match algorithm.

O

"
(log log p)2

nCH

(log p)log logp

p

!
+ n log p+ nCH(log log p)

2

#

Since (logp)log log p

p
� 1

n(log log p)2CH � (log log p)2

nCH

(log p)log logp

p

!

103

leading to the running time of

O(Cn(log log2 p) + n log p)

Theorem 6.4 The algorithm presented in Figure 6.5 uses

O(nCH log p)

worst case time to compute the log inexact consensus string when v, the length of

the overlap between strings, is at most log p.

Proof. The time used to initialize the forward and backward hash values and

the number of iterations of the for loops is O(nk). In the worst case, the \if di�

2 errorlist" statement is always true and verify must always be called. Therefore

there will be nC searches of the errorlist and calls to verify. Since each search of

the errorlist takes O ((log log p)2) time and each call to verify could, in the worst

case, take O(logp) time, the worst case time is

O(nCH(log log p)
2 + log p[nCH + n� 1]) or

O(nCH log p):

The algorithm given in Figure 6.5 to solve the log inexact string consen-

sus problem was implemented in C on a sun 3/260. The value of p was set to

33,554,393; the value of v, the maximum overlap was set to 16, and k, the mini-

mum acceptable overlap was set to 5. The running time of this algorithm, as well

as the running time of the naive algorithm, is shown in Figures 6.6. Figure 6.7

shows the square root of the running times.

6.3.3 Increased match length

We can increase the e�ective size of p by using the Chinese remainder theorem.

Let p1; p2 : : : ; pm be pairwise relatively prime positive integers, then the system

104

match (S, k, rprimes, errorlist)
for each S 2 S

for each pi 2 rprimes
fhv[S; i] index(s1) � �k�1 + index(s2) � �k�2 + � � �+ index(sk) (mod pi)
bhv[S; i] index(sjSj�k+1) ��k�1+ index(sjSj�k+2) ��k�2+ � � �+ index(sjSj)

(mod pi)
for each pi 2 rprimes dm[i] 1
while (jSj > 1) ^ (k < c � log p)

k k + 1
for each S 2 S

for each pi 2 rprimes
fhv[S; i] fhv[S; i] � � + index(sk) (mod pi)

for each T 2 (S � S)
for each pi 2 rprimes

bhv[T; i] bhv[T; i] + index(tjT j�k) � dm[i] (mod pi)
for each pi 2 rprimes

di�[i] jfhv[S; i]� bhv[T; i]j
if di� 2 errorlist

if verify (S, T, k)
add (join (S; T), S)
remove (S, S)
remove (T , S)

for each pi 2 rprimes
dm[i] dm[i] * � (mod pi)

Figure 6.8: The extended RK based algorithm for the log inexact match problem.

105

log-inexact-su�x-array (S, k)
Stot S1 �
 � S2 �
 � � � � �
 � Sn
build a su�x-array for Stot
for each string Si 2 S

position[i] search-su�x-array (Si, Stot, k, su�x array)

Figure 6.9: An algorithm to solve the log inexact match problem using su�x
arrays.

of congruences

x � a1 (mod p1);

x � a2 (mod p2);

...

x � am (mod pm);

has a unique solution modulo p = p1p2 � � � pm: [229] With a few simple modi�-

cations to the algorithm in Figure 6.5 we can construct an algorithm that takes

advantage of the Chinese remainder theorem. The extended RK inexact string

matching algorithm is given in Figure 6.8. The analysis of reliability does not

change since the system of congruences has a unique solution modulo p. The

running time of the extended RK inexact algorithm increases by a factor of m.

6.4 Su�x array based log inexact algorithm

Two strings, Si and Sj of length m, with at most logm positions that do not

match must have a common substring S 0, jS 0j � m
logm

. In this section we will

develop an algorithm based on this simple observation to solve the log inexact

shotgun sequencing problem.

6.4.1 Algorithm

Figures 6.9 and 6.10 give an algorithm for the log inexact shotgun sequencing

problem. Given the set of strings S = fS1; S2; : : : ; Sng and an integer k that

106

search-su�x-array (Si, Stot, k, su�x array)

ptr 0
blocksize

j
k

logk

k
while ptr < jSij
P = search (Si [ptr] : : : Si [ptr + blocksize - 1], su�x array)
for each Pj 2 P

if verify (Si, Stot [Pj - ptr])
return Pj - ptr

ptr ptr + blocksize
return nil

Figure 6.10: An algorithm to �nd log inexact matches using a su�x array.

speci�es the minimum length overlap, the algorithm computes the log inexact

consensus sequence. The string

Stot = S1 �
 � S2 �
 � � �
 � Sn;

where
 62 �, is composed and a su�x array is created for Stot (See [189]). Each

string Si 2 S is positioned in Stot so that a pre�x of Si log inexact matches a

pre�x of some su�x of Stot. The log inexact match must be at least k characters

in length and must not include the character
. Knowing the position of each Si

in Stot will allow us to easily construct a log inexact consensus sequence.

Positioning each Si 2 Stot is done using the algorithm in Figure 6.10. The

string Si is partitioned into jSij logk
k

substrings, each of length k
logk

. While a log

inexact match has not been found for Si, the su�x array is searched for the

substrings of Si. For each exact match between a substring of Si and a substring

of Stot, the location of the exact match is used to verify that a log inexact match

exist between a pre�x of Si and a su�x of some Sj in Stot.

6.4.2 Worst case running time

Theorem 6.5 The worst case running time of the algorithm in Figures 6.9 and

6.10 is O
�
O
�
N3 logk

k

��
.

Proof. The worst case time to build the su�x array is O(N logN) [189]. The

107

function verify can be computed in time linear in the size of the strings using a

simple character by character comparison. For each Si 2 S there will be at most

N jSij logk
k

calls to verify since there will be at most N substrings returned from the

function search and at most jSij logk
k

calls to search will be made. The total time

spent in the function verify will be at most

N jS1j jS1j log k
k

+N jS2j jS2j logk
k

+ : : :+N jSnj jSnj log k
k

=
logk

k

nX
i=1

N jSij2

= O

O

N3 logk

k

!!

Searching the su�x array (calling the function search) for Si takes O(jSij+
log jStotj) [189] time. For each Si there will be at most

jSij logk
k calls to search so

the total time spent in search will be at most

nX
i=1

" jSij
log jSij + log jStotj

! jSij log k
k

#
=

logk

k

nX
i=1

jSij2
log jSij +

nX
i=1

jSij logN
!

� O(
N3 logk

k
)

6.4.3 Expected running time

The expected running time is signi�cantly better than the worst case running

time. Before we give the expected running time we need to prove the following

lemma that will be used to show that we can expect to look at a constant number

of the P 0
js in Figure 6.10.

Lemma 6.2 Givenm urns and m�1 balls, each ball placed in a randomly selected

urn, the expected number of empty urns after each ball has been placed in an urn

is me�1 as m goes to in�nity.

Proof. Let Pi be the probability that urn Ui is empty.

Pi =
�
1� 1

m

�m�1

108

The expected number of empty urns is

mX
i=1

Pi = m
�
1� 1

m

�m�1

=
m

1� 1
m

�
1� 1

m

�m

lim
m!1

m

1� 1
m

�
1� 1

m

�m!
= me�1

Theorem 6.6 The expected running time of the algorithm in Figures 6.9 and

6.10 is

O

0
@nN logk

j�j k
log k

+N

1
A :

Proof. Si is segmented into logk pieces of length k
logk

. We are likely to �nd a

segment of Si that exactly matches some substring of Stot looking at a constant

number of segments. This can be seen by lemma 6.2, let m = logk, treat each

segment of Si as an urn, and each of the logk errors in the log inexact match as a

ball. From lemma 6.2 we expect logk
e

segments to contain none of the logk errors.

Therefore, since the expected ratio of segments with no errors to total segments

is a constant, we expect to look at a constant number of the segments to �nd a

match with no errors.

We expect that search will return

N

j�j k
log k

substrings of Stot since we are assuming that all length k
logk

strings are equally

likely to be substrings of Stot. Each call to search will take O
�

k
logk

�
time. We

expect each unsuccessful call to verify to take logk time since at each position of

the potential match there is a j�j�1
j�j

chance that the characters do not match and

we only need to �nd logk positions where the characters do not match. to verify

will take no more than comparisons. The total time spent in successful calls to

the function verify will be less than O(N). The time to build the su�x array is

expected to be O(N)[189]. So, the expected time to solve the log inexact match

109

0

400

800

1200

1600

0 500 1000 1500 2000 2500

Number of strings

C
P
U
s
e
c
o
n
d
s

Total time �
Search time �
Sort time ?

� � � �
� � �

� �
� �
� � �

� �
� �
� �
�
�
�
� �

� � � � � � � �
� � � �

� � �
�
� �
� � �

� �
� �

? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 6.11: The running time in CPU seconds of the su�x array algorithm to

solve the log inexact match problem while varying number of strings.

problem using the algorithm in Figures 6.9 and 6.10 is

O

0
@nN logk

j�j k
log k

+N

1
A

The seeming improvement as j�j ! 1 is an artifact of the assumption

that direct addressing via � is possible.

6.4.4 Implementation and Discussion

The algorithm discussed in section 6.4 has been implemented in C and run on

a Sun 3/260. Figure 6.11 shows the running time of the algorithm presented in

�gures 6.9 and 6.10 as the number of strings is varied from 100 to 2500 while

the length of the strings is 100, the minimum acceptable overlap is 24, and the

overlap between adjacent strings is 50. Figure 6.12 shows the running time of the

algorithm as the size of the strings is varied from 100 to 2000 characters while

the number of strings is 100, the minimal acceptable overlap is 24, and the actual

overlap is 50. Figure 6.13 shows the running time of the algorithm as the size of

110

0

200

400

600

800

1000

1200

0 400 800 1200 1600 2000

String size

C
P
U
s
e
c
o
n
d
s

Total time �
Search time �
Sort time ?

� � � �
� � �

� �
� �

�
� � �

� �

�
�
�

� � � � � � � �
� � �

� �
� �

� �
�
� �

? ? ? ? ? ? ? ? ? ? ?
? ?

? ? ? ? ? ? ?

Figure 6.12: The running time in CPU seconds of the su�x array algorithm to

solve the log inexact match problem varying size of strings.

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50

Minimal acceptable overlap

C
P
U
s
e
c
o
n
d
s

Total time �
Search time �
Sort time ?

�������������
����

��

�

�

�

�������������
����

��

�

�

�

??????????????????????

Figure 6.13: The running time in CPU seconds of the su�x array algorithm to

solve log inexact match problem varying size of minimum overlap.

111

-4

0

4

8

12

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�

l
o
g

C
P
U
s
e
c
o
n
d
s

333333
3333

3
3 3

33

33

3333

3333

33

3

3

3

3
33

Figure 6.14: The log of running time of the su�x array algorithm allowing n�

errors.

the minimum acceptable overlap is varied from 6 to 48. The number of strings is

200, the size of the strings is 200, and the actual overlap is 150.

The sets of strings are generated by initially generating a string that is the

length of the strings in S. Each successive string is generated by using a su�x

of the previous string as the pre�x of the current string. The length of the su�x

that is used as a pre�x of the current string is the length of the overlap between

strings. When generating data for the algorithms to solve the log inexact shotgun

sequencing problem the su�x from the previous string was modi�ed before being

used as the pre�x of the current string. Once all of the strings had been generated,

the order of the strings is randomized.

Although the su�x array based log inexact shotgun sequencing algorithm

was initially designed to construct a consensus sequence from sequence fragments,

it can be used to align similar sequences. As an example of this, we have used the

algorithm to align the following three sequences from GenBank [38].

1. Saccharomyces cerevisiae TATA-box factor (TFIID) gene, 50
ank. This

1157 base pair DNA sequence was published by Schmidt et. al. [237] and

112

has GenBank accession number M26403.

2. S. cerevisiae TATA-binding protein (TFIID) gene, complete cds. This 2439

base pair DNA sequence was published by Hahn et. al. [130] and has Gen-

Bank accession number M27135.

3. S. cerevisiae transcription initiation factor IID (TFIID). This 1140 base pair

DNA sequence was published by Horikoshi et. al. [136] and has GenBank

accession number X16860.

The sequences M26403 and M27135 can be aligned with 6 di�erences, the

sequences M26403 and X16860 can be aligned with 7 di�erences and the sequences

M27135 and X16860 can be aligned with 1 di�erence. Running the su�x array

based log inexact algorithm uses 2.62 CPU seconds to build the su�x array and

0.08 seconds to align the sequences with a minimum acceptable overlap (the value

k) of 24. The naive algorithm uses over 37 CPU seconds with the minimum

acceptable overlap set to 24. To help the naive algorithm we could remove the last

1000 base pairs of the sequence M27135 and set the minimum acceptable overlap

to 900. With this help the naive algorithm still takes over 11 CPU seconds to

compute the alignment.

6.4.5 Generalization

We have used logn errors in a match of length n simply because we used logn

errors in the RK log inexact shotgun sequencing algorithm in section 6.3. Any

function of n, f(n), such that f(n) � n could be used as the maximum number of

errors allowed in a length n match. Following the same arguments that were used

in sections 6.4.2 and 6.4.3 it can be shown that allowing f(n) errors in matches of

length n, the algorithm in Figures 6.9 and 6.10 uses

O

N3f(k)

k

!

113

worst case time and

O

0
@nN f(k)

j�j k
f(k)

+N

1
A

expected time.

We allowed n�; 0 < � < 1, errors for matches of length n. Figure 6.14 shows

the log of the running time of the algorithm in Figure 6.9 and 6.10 when allowing

n� errors in length n matches while varying �. The data shown in Figure 6.14 is

for 10 sequences, each 410 bases long with overlaps of 180 bases and a minimum

acceptable overlap of 40 bases.

Figure 6.14 shows a knee at about � = 0:45. As the number of errors allowed

increases, the likelihood that some substring of Stot will be falsely matched by the

string

R = Si[ptr] : : : Si[ptr + blocksize� 1]

(as used in Figure 6.10) increases. When the number of errors allowed is increased

by one, the number of substrings in Stot that falsely match R is expected to

increase by a factor of �. There is some value � of � where we expect there to be

one substring in Stot that falsely matches R. We expect the running time to be

constant for 0 < �� since we expect one call, the correct call, to verify for each

pair of strings that match. As � grows above � we expect false calls to verify. The

number of false calls to verify will grow by a multiplicative factor of � for each

additional error allowed in a match. This is seen in the exponential growth in

running time as � increases from � = 0:45 to � = 0:85 in Figure 6.14. Eventually,

as � grows, there will be so many errors allowed that nearly any pair of strings

will match and the number of calls to verify will fall.

In chapters 5 and 6 we have de�ned the consensus string problem and

presented two new algorithms to solve it. We let

� n be the number strings in the multiset S = fS1; S2; : : : ; Sng

� N =
Pn

i�1 jSij

� L = length of superstring found by heuristic

114

� CH be the compression, CH = N � L

� k be the minimum acceptable overlap length between strings

The �rst algorithm using ideas of Rabin{Karp exact string matching, is expected

to solve the problem in O(CH logn) time. The second algorithm developed to

solve the consensus string problem is also expected to run in O(CH logn) time,

but in practice runs faster than the Rabin{Karp type algorithm by a factor of

about ten.

We also de�ne a similar problem, the log inexact consensus sequence prob-

lem, and present two new algorithms to solve this problem. The �rst algorithm

used an extension of the ideas based on Rabin{Karp string matching developed

for the consensus string problem. This algorithm, although not practical in many

situations, is useful when the pre�x/su�x overlap is known to be small. The

algorithm is also easily parallelizable.

The second algorithm uses su�x arrays as developed by [189] and is ex-

pected to run in O

nN logk

j�j
k

log k
+N

!
time. This algorithm is generalized to allow not

only logk errors but any reasonable function of k errors. Finally, we give an exam-

ple of the use of this algorithm to align three nearly identical DNA sequences of

the TFIID gene in yeast, although this was not the intended use of the algorithm.

These algorithms allow a few bases to be transformed but do not allow

bases to be deleted. If, for example, a base is missed while reading a GC rich

region (an occasional problem) the algorithms presented in this paper will not

work since part of the match will be o�set by one position. One area of future

research will be designing algorithms for this problem that allows a small number

of deletions as well as the transformations.

115

Chapter 7

Divide and Conquer Approximate String Matching

7.1 Introduction

Approximate string matching has been used in a biological context to �nd se-

quences that are similar in order to infer homology. Approximate string matching

has also been used to search genetic sequence databases such as GenBank for se-

quences similar to the query sequence. There are a number of algorithms, many

based on the dynamic programming algorithms, to solve the edit distance prob-

lem and the longest common subsequence problem, that are used to determine

sequence similarity and search genetic sequence databases. The dynamic pro-

gramming algorithms require the non{intersection property; if the characters Ai

and Bj are aligned, Ak and Bl are aligned, and i < k, then j < l.

Gene rearrangements and inversions have been observed in many genes and

genome fragments such as the histone gene cluster. To use a model of evolution

that includes gene rearrangements and inversions when aligning or searching for

sequences, an abstraction of the problem must be made that does not require the

non{intersection property. We de�ne the string to string rearrangement problem

and corresponding algorithm that do not require the non{intersection property.

We give a divide and conquer algorithms to solve the string to string re-

arrangement problem. It is an improvement over previous dynamic programming

algorithms that solve similar problems in several ways:

1. Since our algorithms do not require the non{intersection property, they allow

116

operators such as swap substrings and invert a substring.

2. Our algorithms allow any positive, monotonically increasing function of n

to be used to penalize gaps of length n.

3. Our algorithms use O(p) or O(p logp) work space where p is the length of

the shorter string.

4. It is easy to parallelize our algorithms using a very simple model of parallel

computation.

7.1.1 Previous work

The edit distance problem is: given two strings, �nd the fewest number of edit

operations required to make the two strings identical. In chapter two, we noted

that this problem has been solved by several researchers. The operations allowed

are, delete a single character from either string and change a single character

in one string to match the corresponding character in the other string. The

dual of the edit distance problem is the longest common subsequence problem.

B = bx1bx2 � � � bxm is a subsequence of the string A = a1a2 � � � an when 1 � x1 <

x2 < x3 � � � < xm � n. The longest common subsequence problem is, given two

strings, �nd the longest string that is a subsequence of both strings given.

In 1970, Needleman & Wunsch [209] gave an algorithm to �nd the longest

common subsequence of two amino acid sequences. Although a detailed algorithm

is never explicitly stated, it is clear that the ideas of the dynamic programming al-

gorithms presented in later papers appear in this paper. The algorithm of Needle-

man & Wunsch was modi�ed slightly by Sanko� [231] in 1972 and shown to take

time and space proportional to the product of the length of the sequences being

aligned. This paper introduced the equation

W (i; j) = maxfW (i � 1; j); W (i; j � 1); W (i� 1; j � 1) + �(ai; bi)g (7:1)

that is the basis for many of the dynamic programming algorithms. Sellers [240]

generalized the algorithm of Sanko� to use a variety of distance functions in 1974.

117

Independently, in 1974, Wagner & Fischer [279] introduced the string to string

correction problem and a dynamic programming algorithm to solve the problem.

Although the terms are di�erent, the algorithm is similar to the algorithm pre-

sented by Sanko�.

All of the algorithms to solve the longest common subsequence and edit dis-

tance problems previous to 1974 and many since 1974 have used O(nm) time and

space. These algorithms are frequently impractical because of their space usage,

not their running time. In 1975 Hirschberg [132] introduced an algorithm to solve

the longest common subsequence problem in O(nm) time using only O(n + m)

space. Hirschberg's technique can be applied to many of the dynamic program-

ming algorithms used to �nd the longest common subsequence or the shortest

edit distance. This algorithm was frequently overlooked until 1988 when Myers

& Miller [206] introduced Hirschberg's algorithm to the computational biology

community.

When computing the edit distance between two strings, the insertion or

deletion (indel) of n consecutive characters is treated as n distinct operations.

It may be desirable to treat n consecutive indels as a single event when aligning

sequences of nucleic acids or amino acids. In 1976Waterman, Smith, & Beyer [289]

introduced a metric that allowed the computation of the distance between two

sequences when consecutive indels are treated as a single event. They gave an

algorithm that can use any monotonically increasing function of the length of

the indel, the gap penalty function, to penalize the indel. The algorithm runs in

O(n2m) time where n and m are the lengths of the sequences, n > m. In 1982,

Gotoh [119] developed an algorithm, based on Waterman's dynamic programming

algorithm, that runs in O(nm) time using an a�ne gap penalty function. In 1983,

Fitch & Smith [91], and 1985, D. Feng, M. Johnson, & R. Doolittle [88], examined

the e�ects of varying the parameters of the a�ne gap penalty function g+lr where

g is the penalty for the introduction of a gap, r is the penalty for each position of

the gap, and l is the length of the gap.

118

Several recent algorithms allowmore general gap penalty functions. In 1988

Miller & Myers [197], in 1989 Galil & Giancarlo [102], and in 1990 Eppstein, Galil,

& Giancarlo [80] developed several algorithms to improve the speed of the dynamic

programming algorithms allowing more general gap penalty functions. They are

able to reduce the time required to align two sequences from O(mn �max(m;n))

to O(mn logmn) if the gap penalty function is convex or concave, and to O(mn) if

the gap penalty function has the closest zero property. In 1990, Gotoh [122] gave

an algorithm that uses a piecewise a�ne gap penalty function to approximate a

concave gap penalty function. The algorithm uses O(Lmn) time where L is the

number of linear pieces that are used to approximate the concave gap penalty

function.

There are situations when we should consider rearrangements of the string

where the order of the characters in the string is not maintained. Spellingmistakes

are frequently caused by the transposition of adjacent characters. The model of

genome shu�ing as proposed by Sanko� and Goldstein [234] suggests that the op-

erations should not be limited to those that maintain the order of the characters

in the strings. The dynamic programming algorithms that we have discussed do

not produce an alignment that alters the order of the characters in the strings.

Lowrance & Wagner [184] added the operation of swapping two adjacent charac-

ters in one of the strings to the string to string correction problem of Wagner and

Fischer. They show that with the addition of the swap operation the algorithm

runs in O(nm) time. In 1990, A. Bertossi, E. Lodi, F. Luccio, & L. Pagli [37] con-

sidered context dependent approximate string matching and added the operation

of transposing two characters. In 1992, M. Schoniger & M. Waterman [238] gave

a dynamic programming algorithm that �nds local alignments with inversions al-

though the algorithm does not �nd inverted segments within another inverted

segment.

Tichy [267] gives an algorithm that converts one string to another using

only block move operations. Given a source string and a target string the algo-

119

rithm constructs a sequence of block moves from the source string to cover the

target string using a minimum of move substring operations. Unlike the dynamic

programming algorithms that solve the longest common subsequence problem and

the edit distance problem, this algorithm allows substrings from any position in

the source string to be used to cover any position in the target string. The algo-

rithm runs in time and space that is proportional to the length of the input.

Tyler, Horton, and Krause [270] review several of the dynamic program-

ming algorithms discussed here and many other interesting algorithms for database

searching and aligning sequences.

The divide and conquer algorithm to �nd the longest common subsequence

naturally leads to parallel and distributed implementations [32, 140, 146, 144]. By

noticing that in equation 7.1 W (i; j) is dependent only on the values of W (i �
1; j); W (i; j � 1); and W (i � 1; j � 1) it is easy to compute, in parallel, an

entire diagonal of the matrix W in one time step. Mukherjee [202] has exploited

the natural parallelism to construct a pipelined hardware algorithm suitable for

implementation in VLSI to �nd the longest common subsequence of two strings.

Isenman [147] has used simulations to investigate hardware to search databases

for strings that match query strings with variable length gaps.

7.1.2 Overview

In section 7.2 we will de�ne the string to string rearrangement problem. Sec-

tion 7.3 gives a basic divide an conquer algorithm to �nd an approximate so-

lution to the string to string rearrangement problem. Several modi�cations to

the algorithm are given that allow it to position gaps optimally, to construct the

alignment, to �nd inversions, to execute e�ciently on a parallel computer, and to

use similarity matrices to measure the similarity between characters. We exam-

ine the resource consumption of the basic divide and conquer algorithm and its

variants in section 7.4. In section 7.5 we will compare the alignments produced

by our divide and conquer algorithm with the alignments produced by the dy-

120

namic programming algorithm for a number of nucleic acid sequences retrieved

from GenBank. Finally, in section 7.6, we summarize and suggest possible areas

of future research.

7.2 Problem de�nition

We have two strings, the pattern, P , and the text, T , and we want to �nd the

pattern within the text. The string matching problem asks if P is a substring

of T ; the problem has been well studied [106]. In many cases we do not expect

to �nd P . Instead, we expect to �nd a string PT within T that is in some sense

similar to P . Traditionally one counts local changes such as insertion or deletion

of a character and replacement of one character with another to measure the

similarity of PT and P . In the edit distance problem we seek the substring PT

of T that can be transformed (edited) to P with the lowest cost sequence of

operations. Since blocks of characters can be deleted by specifying the beginning

and end of the block to delete, a gap penalty function is often introduced that

penalizes consecutive inserts and deletes less severely than individual insertions

and deletions.

We will allow the operations swap substrings and insert substring so that

we will be able to �nd P broken into pieces within T . These pieces might be in

a di�erent order within T than they are in P . To capture these intuitions we

de�ne an alignment of P within T , and de�ne a pro�t function which evaluates

the value of a given alignment. An alignment is a mapping that assigns each

character position in P to a character position in T . For example, the alignment

X = [x0; x1; : : : ; xp�1] assigns the character at position j in P to align with the

character at position xj in T .

To build the pro�t function F , we want a positive contribution when the

character at position i in P is aligned with a similar character at position xi in

T . Let �(pi; tx1) be the pro�t associated with the similarity of the characters pi

and txi . In the simplest case, we can use �(pi; txi) = 1 when the characters are

121

identical and �(pi; txi) = 0 when the characters di�er. In some applications we

have a measurable de�nition of similarity so that �(pi; txi) can have positive values

for pairs of distinct characters. This similarity might measure, for example (in

molecular biology), the pro�t of aligning a purine with another purine instead of

a pyrimidine. When aligning amino acid sequences, the function � could be used

to measure similarity in function or structure of di�erent amino acids [70, 11].

For the pro�t function, we want a negative contribution when the string

P is rearranged to match T . When substrings of P are rearranged, gaps are

introduced into the alignment and the pro�t of the alignment should be penalized

by a function of the sizes of the gaps that were introduced. Given the alignment

X, the size of the gap is jxi � xi�1 � 1j, e. g. the gap is zero when contiguous

characters in P are mapped to contiguous characters in T . Since we are using

absolute values to compute the size of the gap, we can use the same measure

for a \gap" when xi < xi�1. Insertions into P are represented by having a gap

between xi�1 and xi where xi > xi�1+1. Since there is no penalty for mismatched

characters, a deletion in P is handled by inserting a gap between xi�1 and xi where

xi < xi�1 + 1. We will use a monotonically increasing gap penalty function, G(l),
such that G(0) = 0. Our pro�t function, F , has the form

F(P; T;X) =
jP j�1X
i=0

[�(pi; txi)� G(jxi�1 � xi � 1j)] :

We will refer to the value of the pro�t function for a particular alignent of P in

T as the score of the alignment.

Finally, the string to string rearrangement problem is: given a similarity

function �, a gap penalty function G, a text string T , and a pattern string P , �nd
the alignment X that maximizes the pro�t function F .

7.3 Algorithm

We will �rst give an algorithm to �nd the score of an alignment that approxi-

mates the optimal alignment with no inversions. We will modify this algorithm

122

to produce an algorithm to compute the optimal placement of gaps, an algorithm

that constructs the alignment, an algorithm that allows inversions in the align-

ment, and a parallel version of the algorithm. Each of the extensions to the basic

algorithm may have a cost in terms of space or time that will be discussed in

Section 7.4. The extensions to the basic algorithm may be used individually or

they may be used in combination.

7.3.1 Alignments

Our algorithm computes the alignment of P at each position in T from jP j � 1

to jT j � 1. We will refer to these alignments as XjP j�1; XjP j; : : : ; XjT j�1 where

Xi = [xi1 ; xi2 ; : : : ; xijpj�1
]. Element j; 0 � j < jP j; of Xi is the position in T that

Pj is mapped to. Our algorithm iterates log jP j times to compute the alignment of
P at position i in T . In the �rst iteration Pj; 0 � j < jP j, is compared with Tl+j

where l = i � jP j + 1. In successive iterations, gaps may be introduced into the

alignment so that Pj no longer aligns with Tl+j. When the iteration completes we

have computedXi, the alignment of P in T at position i. Many of the substrings of

P , Pa : : : Pb; 0 � a; b < jP j; a � b, may not align with Ti�jP j+a+1 : : : Ti�jP j+b+1 but

with TXi[a] : : : TXi[b]. In our terminology, in an alignment of Pa : : : Pb at position i,

Pa aligns with TXi[a], Pa+1 aligns with TXi[a+1], : : :, Pb aligns with TXi[b].

7.3.2 Basic algorithm

Our algorithm uses a binary tree that we refer to as the distance tree. The

algorithm initially �lls the leaves of this tree. It then successively �lls in the

higher level nodes so that eventually the root of the tree contains the information

about the optimal alignment of P in T . The distance tree has jP j leaves, one
for each character in P . Following the divide and conquer form of our algorithm,

the tree is a binary tree with log jP j levels. The jP j
2k

nodes at level k of the tree

represent P broken into jP j
2k

length 2k non{overlapping, adjacent substrings, e. g.

123

2kz }| {
1 2 jP j

2k
� � �

P =

The initial values to be stored at the nodes of the distance tree are com-

puted in the �rst stage of computation. These values indicate the best way to

align P in the �rst jP j positions of T . Subsequently, the distance tree will con-

tain the information about the best alignment of P within the �rst i positions of

T . At the i + 1st stage, the information in the distance tree from the ith stage

and information about position i+ 1 of T are used to recompute the information

in the distance tree. At the end of the i + 1st stage, the distance tree contains

information about the best alignment of P within the �rst i+ 1 positions of T .

Each node of the distance tree represents a substring of P . The jth node

of height k represents the substring

pj2kpj2k+1 � � � p(j+1)2k�1

of P and each leaf node (height 0) represents a single character of P . We will use

V to represent the distance tree rooted at Vroot. Each of the nodes of V represents

a substring of P and can be used to root a distance tree for that substring of P .

At stage i, the node associated with the substring pj2kpj2k+1 � � � p(j+1)2k�1 contains

the values

� score { The maximumalignment score of the substring pj2kpj2k+1 � � � p(j+1)2k�1

minus the gap penalty G(i� l) when its last character is aligned at position

l; l � i; of T .

� max { The maximumalignment score of the substring pj2kpj2k+1 � � � p(j+1)2k�1

when its last character is aligned at position l of T , l � i, such that max -

G(i� l) � score.

� max pos { l, the position which produces max.

124

search (P; T)

h jT j � jP j+ 1
i 0
max score �1
while (i < h)

compare elements(P; Ti : : : Ti+jP j�1; leaves of(V); i)
�lter up(V; i)
if (Vroot:score > max score)

max score Vroot:score
max pos i

i i+ 1
return (max score, max pos)

Figure 7.1: A divide and conquer algorithm to �nd an approximate alignment of
P in T .

The basic algorithm starts by initializing the leaves of the distance tree,

then this information is �ltered up until a score is computed for the root of the

tree. With this initialized tree, the algorithm moves on to the next position,

recomputes the information at the leaves by comparing the scores of the matches

at the new position with the best scores found so far, again this information is

�ltered up the tree until the root contains the score for the best alignment of the

string P found so far. The algorithm repeats these steps until all of the positions

in T have been considered.

The procedure search in Figure 7.1 gives the overall structure of the algo-

rithm as a loop that computes the distance tree and records the maximum score

found. The procedure compare in Figure 7.2 computes the information stored in

the leaves of the distance tree. The �rst time compare is called, it simply com-

pares the elements of P with the corresponding elements of T and saves the score,

initializes max as score, and saves the position as max pos. On subsequent calls,

if compare �nds a match of the current character in P with the corresponding

character in T , compare saves the information about this match. The procedure

compare sets score to 0, and max pos to the current position if the characters of

P and T do not match and the best previous match was too far from the current

125

compare elements(S1; S2; L; i)

| leafj is the j
th leaf of the tree V |

for each j, 0 � j < jS1j
if (S1j = S2j)

leafj:score c
leafj:max c
leafj:max pos i

else
leafj:score max(0; leafj:max� G(i� leafj :max pos))
if (leafj:max � G(i� leafj:max pos))

leafj:max 0
leafj:max pos i

Figure 7.2: The characters of the pattern, S1, are compared to the corresponding
characters of the text, S2, and the results stored in the leaves of the distance tree.

�lter up(node; i)

1 if node is not a leaf
2 �lter up(node:left child; i)
3 �lter up(node:right child; i)
4 L node:left child
5 R node:right child
6 Zl G(i� L:max pos) + G(jL:max pos� R:max posj)
7 Zr G(i�R:max pos) + G(jR:max pos� L:max posj)
8 Zn G(i� node:max pos)
9 node:score max(L:max +R:max�min(Zl; Zr); node:max� Zn)
10 if node:score > (node:max� Zn)
11 node:max node:score
12 node:max pos i

Figure 7.3: An algorithm to compute the values of the internal nodes of the
distance tree.

126

position as measured by the gap penalty function.

The recursive procedure �lter up in Figure 7.3 computes the best alignment

of the substring of P represented by each node for the internal nodes of the

distance tree. Speci�cally, it computes a new score and if this new score is larger

than the previous best score minus a gap penalty, the new score and max pos are

remembered. This new score is either the best previous score minus a gap penalty,

or the sum of the scores for the best alignments of the two half size substrings

minus a gap penalty dependent on the relative positions of the half size substrings.

Zl; Zr; and Zn in the procedure �lter up are gap penalties. Zn is the penalty

incurred if we keep the previous best alignment of the substring of P represented

by the node. Zl is the penalty if we introduce a gap in the middle of the substring

of P and hold the left half of the substring in place and allow the right half to go to

its maximum scoring position. Zr is the penalty if we introduce the gap and hold

the right half of the substring in place and allow the left half of the substring to

go to its maximum scoring position. Note that we do not need to simultaneously

let both the left and right halves of P go to their maximum scoring positions since

this alignment would have been considered previously when one of the halves was

held in place.

7.3.3 A simple example

Figure 7.4 shows a high level execution trace of the algorithm as the alignment

of P = ABCD in T = ABXXCD is computed. The �gure is divided into three

sections, the �rst section shows the distance tree when ABCD is aligned with

ABXX, position 1. Section two shows the distance tree when P is aligned at

position 2, and section three shows the distance tree when P is aligned at position

3 of T . For this example we let the scoring function � be �(pi; txi) = 3 if pi = txi

and 0 otherwise. A gap of length n will be penalized by n+ 1,

G(n) =
8><
>:

n+ 1 if n > 0

0 if n = 0

127

A node in the distance tree is (score, max, max pos).

In the �rst section of Figure 7.4, P is aligned at position 1 of T . The leaves

of the distance tree have score = 3 if ti = pi and 0 otherwise. Since this is the �rst

position that P has been aligned in T , max score = score and max pos = 1. The

internal nodes are simply the sum of their children since there are no previous

maximum values.

In the second section of Figure 7.4, P is aligned at position 2 of T . At

this position none of the characters of P match the corresponding characters of

T . Consider the value of the leftmost leaf node, (1; 3; 1). The score = 1 since, at

the current position p1 6= t2, but p1 = t1. If we introduce a gap of length one, p1

will align with t1. The score, if we introduce the gap of length 1, will be 3�G(1)
or 1. Since 1 is greater than 0, the value of aligning p1 with t2, the gap is inserted.

Notice that the score in the leftmost node on level 1, (4; 6; 1) is not the sum of the

scores of its children because the cost of introducing a single gap of length one for

the substring AB is less than introducing two gaps, one for the substring A and

another for the substring B. The result is that the substring AB of P is treated

as a block and a single gap of length 1 is inserted.

In the third section of Figure 7.4, P is aligned at position 3 of T . The

su�x CD of P matches the su�x of T . The root of the tree, (9; 9; 3), tells us that

the maximum score of 9 occurred at position 3 of T . The value 9 is the result of

each character of P matching a character of T with the insertion of one gap of

length two between the characters B and C of the pattern.

7.3.4 Optimal gap positions

In the previous section we used the algorithm to align the string \ABCD"

in the string \ABXXCD" and the algorithm placed a gap between the 'B' and `C'

in the string \ABCD". If we use the algorithm to align the string \ABCDEF" in

the string \ABCXXDEF" we will see that the gap is placed between 'B' and 'C',

not between 'C' and `D' as we expect. This is a result of the divide and conquer

128

A B X X
A B C D

(3,3,1) (3,3,1) (0,0,1) (0,0,1)
(6,6,1) (0,0,1)

(6,6,1)

B X X C
A B C D

(1,3,1) (1,3,1) (0,0,2) (0,0,2)
(4,6,1) (0,0,2)

(4,6,1)

X X C D
A B C D

(0,0,3) (0,0,3) (3,3,3) (3,3,3)
(3,6,1) (6,6,3)

(9,9,3)

Figure 7.4: The distance tree at stages one, two, and three while aligning the

pattern P = ABCD and the text T = ABXXCD. A node in the distance tree is

(score, max, max pos).

optimal �lter up(W; i)

1 if (W 6= �)
2 optimal �lter up(W:left child; i)
3 optimal �lter up(W:right child; i)
4 L W:left child
5 R W:right child
6 �GAP MAX(max gap(Pl; Tl; Tr; jW:left childj; 1);

max gap(Pl + 1; Tl + 1; Tr + 1; jW:left childj;�1))
7 Zl G(i� L:max pos) + G(jL:max pos� R:max posj)
8 Zr G(i�R:max pos) + G(jR:max pos� L:max posj)
9 Zn G(i�W:max pos)
10 W:score max(L:max +R:max�min(Zl; Zr) + �GAP ;W:max� Zn)
11 if W:score > (W:max� Zn)
12 W:max W:score
13 W:max pos i

Figure 7.5: An algorithm that places gaps optimally while computing the internal
nodes of the distance tree.

129

max gap(Pl; Tl; Tr; D; v)

�s = �0s = maxs = 0
while (D > 0)

D D � 1
if (Pl = Tl) �

0
s �0s + 1

if (Pl = Tr) �s �s + 1
if (�s � �0s > maxs) maxs �s � �0s
Pl Pl + v; Tl Tl + v; Tr Tr + v

return maxs

Figure 7.6: The procedure max gap �nds the optimal position of a gap.

?

 #66 6 66 6

�

�

�

T =

P1 = P2 =

Pl

Tl Tr

Figure 7.7: The procedure max gap will move the gap, in this case to the left, and

compute the change in alignment score as characters are moved form the tail of

P1 to the head of P2.

130

nature of the basic algorithm presented in the previous section. In this section, we

will present a modi�cation to the basic algorithm that will allow us to optimally

place the gaps in the alignment.

When a gap exists in an alignment, the position of the gap is placed between

the substrings of P represented by two adjacent nodes of the distance tree by the

basic algorithm. Let N1 and N2 be the nodes in V that represent the substrings

P1 = Pj2kPj2k+1 � � � P(j+1)2k�1 and P2 = P(j+1)2kP(j+1)2k+1 � � � P(j+2)2k�1. The basic

algorithm places the gap between P(j+1)2k�1 and P(j+1)2k. This choice may be

incorrect, but we will see in section 7.4 that this placement of the gap is a good

approximation. To �nd the optimal placement of the gap we slide the gap back

and forth by prepending su�xes of P1 to P2 and appending pre�xes of P2 to P1.

The procedure max gap in Figure 7.6 returns the maximum increase in alignment

score found by moving the gap in one direction. This value is computed by moving

one character at a time over the gap. If the character being moved contributes

a positive score in its current position, that score is subtracted from the overall

score of moving the gap. If the character being moved has a positive contribution

to the alignment score in its new position that contribution is added to the overall

score of moving the gap.

The algorithm in Figure 7.5 rede�nes the procedure �lter up to compute

the optimal placement of gaps in the alignment of P in T . Line 6 of the function

optimal �lter up searchs for the optimal placement of the gap found between the

substrings P1 and P2. The following de�nitions of Pl, Tl, and Tr are also shown in

Figure 7.7. Let Pl = P(j+1)2k�1, the right most character of the string P1. Let Tr

be the character in the text immediately preceding the character in the text that is

aligned by the basic algorithm with P(j+1)2k. Tr is the right most text character of

the gap. Let Tl be the character in the text that is aligned by the basic algorithm

with Pl. Let D be the maximum distance that we can move the gap. In line 6

of optimal �lter up, the function max gap is �rst called to �nd the maximal score

increase possible by moving the gap to the left. The function max gap is called

131

construct �lter up(W; i)

1 if W is not a leaf node
2 construct �lter up(W:left child; i)
3 construct �lter up(W:right child; i)
4 L W:left child
5 R W:right child
6 Zl G(i� L:max pos) + G(jL:max pos� R:max posj)
7 Zr G(i�R:max pos) + G(jR:max pos� L:max posj)
8 Zn G(i�W:max pos)
9 W:score max(L:max +R:max�min(Zl; Zr);W:max� Zn)
10 if W:score > (W:max� Zn)
11 W:max W:score
12 W:max pos i
13 W:X L:X �R:X

Figure 7.8: A divide and conquer version of the algorithm that will construct the
alignment.

again to �nd the maximal score increase possible by moving the gap the the right.

The largest increase in score possible by moving the gap is stored in �GAP. In line

10 of optimal �lter up, the increase in score that is possible by moving the gap is

added to the value used to score the cost of inserting a gap between L and R.

7.3.5 Constructing the alignment

The basic algorithm reports the score and position of the approximate

alignment, but does not give enough information to construct the alignment. Us-

ing a factor of log jP j more space we can construct the approximate alignment.

The �eld X is added to each node of the distance tree. For node N of height k,

the array X contains the alignment of the string P 0 represented by N . Element

i, 0 < i < 2k, of X contains the position in the text that the ith character of the

string P 0 should be aligned with.

The function construct �lter up, shown in Figure 7.8, was created by adding

line 13 to the function �lter up in Figure 7.3. If the score of the alignment of the

132

invert search (P; T)

l jT j � jP j + 1
i 0
max score �1
I invert(P)
while (i < l)

compare elements(P; Ti : : : Ti+jP j�1; leaves of(V); i)
compare elements(I; Ti : : : Ti+jP j�1; leaves of(IV); i)
invert �lter up(V; IV; i)
if (Vroot:score > max score)

max score Vroot:score
max pos i

i i+ 1
return (max score, max pos)

Figure 7.9: A Divide and Conquer algorithm to �nd an approximate alignment of
P in T allowing inversions in the alignment.

string P 0 at position i of T is the maximum in positions 0 to i, then we save the

score and the current alignment. Note that we must save the entire alignment

and not just pointers to the alignments of the children since the maximum scoring

alignments of the children may change without the maximum scoring alignment of

P 0 changing. When the function construct �lter up completes, the alignment that

produces the score max in the root node of the alignment tree will be stored in

the X �eld of the root node. We must also modify the function compare elements

in Figure 7.2 to set Vj:X[0] to i whenever Vj:max pos is set to i.

7.3.6 Inversions

The basic algorithm can be modi�ed to �nd alignments when parts of

the pattern are inverted. The idea is to invert the pattern and compute a dis-

tance tree of the inverted pattern in parallel with the distance tree of the origi-

nal pattern. Let W be the node in the distance tree representing the substring

P 0 = Pj2kPj2k+1 � � �P(j+1)2k�1. Let IW be the node in the inverted distance tree

representing the substring P 0 = P(j+1)2k�1P(j+1)2k�2 � � �Pj2k where Pi is the in-

verse of Pi. We use IZ as the penalty associated with inverting P 0. IZ could be

133

invert �lter up(W; IW; i)

1 if W is not a leaf node
2 invert �lter up(W:left child; IW:left child; i)
3 invert �lter up(W:right child; IW:right child; i)

| Compute score for substring of P |

4 L W:left child
5 R W:right child
6 Zl G(i� L:max pos) + G(jL:max pos� R:max posj)
7 Zr G(i�R:max pos) + G(jR:max pos� L:max posj)
8 Zn G(i�W:max pos)
9 W:score max(L:max +R:max�min(Zl; Zr);W:max� Zn)
10 if W:score > (W:max� Zn)
11 W:max W:score
12 W:max pos i

| Compute score for the inverse of the substring of P |

13 L IW:left child
14 R IW:right child
15 Zl G(i� L:max pos) + G(jL:max pos� R:max posj)
16 Zr G(i�R:max pos) + G(jR:max pos� L:max posj)
17 Zn G(i� IW:max pos)
18 IW:score max(L:max +R:max�min(Zl; Zr); IW:max� Zn)
19 if IW:score > (IW:max� Zn)
20 IW:max IW:score
21 IW:max pos i

| Swap inverted scores if they are good enough |

22 if W:score < (IW:score� IZ)
23 W:max score IW:score� IZ
24 W:score W:max score
25 if IW:score < (W:score� IZ)
26 IW:max score W:score� IZ
27 IW:score IW:max score

Figure 7.10: An algorithm to compute the internal nodes of the distance tree when
inversions are allowed in the alignment.

134

a constant or the result of some function similar to a gap penalty function. If the

alignment score of P 0 is less than the alignment score of P 0�IZ then the inverted

substring P 0 is used in the alignment instead of the substring P 0.

The algorithm, modi�ed to �nd inverted segments, is given in Figures 7.9

and 7.10. The function invert search uses the variable I to store inverse string of

P . The root of the distance tree for the inverted pattern is stored in IV . Since

the function invert �lter up handles the incorporation of inverted segments into

the distance tree, the alignment score, including possible inversions, is stored in

V:score.

The function invert �lter up in Figure 7.10 di�ers from the function �lter up

in Figure 7.3 in two ways. First, a score is computed for both nodes W and IW .

Second, in lines 22 { 27 of the function invert �lter up, the larger of the scores

W:score and IW:score, if it is more than IZ larger, is stored in both W:score and

IW:score. An inversion is included in the alignment score if and only if it increases

the alignment score. Note that inversions are incorporated into both the distance

tree W and the inverted distance tree IW so that it is possible to have \locally

inverted" substrings within a larger inverted substring.

7.3.7 Parallel algorithm

The parallel algorithm presented in Figures 7.11, 7.12, 7.13 and 7.14 will compute

the approximate alignment of P in T using a data structure and algorithm similar

to the basic algorithm. We use the EREW1 PRAM2 model of parallel computation

although we do not need to assume the shared memory of the EREW PRAM

model. We will show that local memories and limited communication are su�cient

for our algorithm to function correctly.

We have added the two �elds updated and pos to the data structure that

was used in the basic algorithm. The parallel algorithm uses two copies of the

1Exclusive Read Exclusive Write

2Parallel Random Access Machine

135

search(P; T)

l jT j � jP j + log(jP j) + 1
a 0
i 0
max score �1
while (i < l)

if (a = 1) a 0 else a 1
compare elements(P; Ti : : : Ti+jP j�1; leaves of(Va); i)
�lter up(Va; Va)
update(V0; V1)
if (Va; root:score > max score)

max score Va; root:score
max pos Va; root:max pos

i i+ 1
return (max score, max pos)

Figure 7.11: A Parallel divide and conquer algorithm to �nd an alignment of P
in T .

compare elements(S1; S2;W; i)

for each 0 � j < jS2j do in parallel
if S1j = S2j

Wj:score c
Wj:max c
Wj:max pos i
Wj:updated true

else
Wj:score 0
if Wj :max � P(i �Wj :max pos)

Wj:max 0
Wj:max pos i
Wj:updated true

else
Wj:updated false

Wj:pos i

Figure 7.12: An algorithm to compute the leaves of the distance tree in parallel.

136

�lter up(V 1; V 2)

1 for each non{leaf node j, do in parallel
2 Nj V 1j
3 Lj V 2j:left child
4 Rj V 2j:right child
5 Nj:pos Lj:pos
6 Zlj P(Nj :pos� Lj :max pos) + P(Lj :max pos�Rj:max pos)
7 Zrj P(Nj :pos�Rj:max pos) + P(Rj :max pos� Lj:max pos)
8 Znj P(Nj :pos�Nj :max pos)
9 Nj:score max(Lj :max +Rj:max�min(Zlj; Zrj); Nj :max� Znj)
10 if Nj:score > (Nj :max� Znj)
11 Nj :max Nj :score
12 Nj :max pos Nj:pos
13 Nj :updated true
14 else
15 Nj :updated false

Figure 7.13: An algorithm to compute the internal nodes of the distance tree in
parallel.

update(V 1; V 2)

for each 0 � j < jV 2j do in parallel
if V 1j:updated

V 1j:updated false
V 2j V 1j

if V 2j:updated
V 2j:updated false
V 1j V 2j

Figure 7.14: An algorithm to reconcile the internal nodes of the two distance trees
in parallel.

h hPPP
PPP

��
��

��

h hPPP
PPP

��
��

��

h
h h((((

((((
(((

hhhh
hhhh

hhh

F(P0; T0:::Tk; Xk) F(P1; T0:::Tk; Xk) F(P2; T0:::Tk; Xk) F(P3; T0:::Tk; Xk)

F(P0P1; T0:::Tk�1; Xk�1) F(P2P3; T0:::Tk�1; Xk�1)

F(P0P1P2P3; T0:::Tk�2; Xk�2)

Figure 7.15: Tree used by parallel algorithm

137

distance tree to eliminate read write con
icts. To allow us to keep both copies of

the tree current, every time a change is made to a node of one tree, it is marked

by setting that node's updated �eld to true. In the basic algorithm, all nodes

in the tree represent substrings of P being aligned at the position in T . In the

parallel version of the algorithm, each level of the tree represents an alignment of

P at a di�erent position in T . The �eld pos, associated with each node of the

tree, stores the position in T that P was aligned.

The parallel algorithm di�ers from the basic algorithm in the method used

to compute the values of the internal nodes of the tree. In the basic algorithm, all

of the internal nodes of the tree are computed immediately following the compu-

tation of the leaves. This will not work in the parallel algorithm since the value

of an internal node is dependent on the values of all of the node's descendants. In

the parallel algorithm, each level of the tree holds the score for a di�erent position

of the alignment of P in T . For example, if the leaves of the tree hold the values of

the comparison of P with ti�p+1 : : : ti, nodes at height h hold the values computed

for the comparison of P with ti�p+1�h : : : ti�h (see Figure 7.15). Since each level

of the tree holds the values for di�erent positions of P in T , the values stored in

each node of the tree are dependent only on that nodes children, not on all of its

decendents. To avoid simultaneous reads and writes we maintain two copies of

the tree, V0 and V1, reading from one tree and writing to the other. This allows

us to compute the value of each node of the distance tree in parallel with no read

or write con
icts.

The procedure search in Figure 7.11 takes a pattern, P , and a text, T , and

will compute the alignment score for each of the positions the pattern P can be

placed in text T . It will then return the score and position of the approximate

best alignment of P in T . The while loop is iterated jT j � jP j + log(jP j) + 1

times, the extra log(jP j) iterations are needed to insure that the results of the

�nal comparison, P with tjT j�jP j � � � tjT j�1 travel to the root of the distance tree

(Va; root). At the end of each iteration of the while loop the procedure update

138

modi�es the trees V0 and V1 to make them identicle.

The procedure compare elements in Figure 7.12 does a character by char-

acter comparison of the characters in P and ti � � � ti+jP j�1 and stores the results

in the leaves of the distance tree. If the characters match, the value c is stored

as the current and maximum values, the position is saved and this leaf is marked

as having been modi�ed. If the characters do not match, the score is set to zero,

and the maximum value is checked to see if it is still valid. If the maximum value

is less than the gap penalty then the maximum value of the leaf is set to zero,

the position of the maximum value is set to the current position, and the leaf is

marked as having been modi�ed. Finally, the alignment position of the character

represented by each leaf node is set to the current position Note that the values

of each leaf node are computed in parallel.

The combination of the leaf values into a score for the alignment is done

by the procedure �lter down in Figure 7.13. The variable Nj represents the parent

node, Lj and Rj represent the left and right children of Nj . Notice that Nj is

read from the V 1 copy of the tree and the children are read from the V 2 copy

of the tree. Although all of the internal nodes of the tree are being computed in

parallel, no node is being written to and read from simultaneously since all of the

nodes that are being written to are from the V 1 copy of the tree and all of the

nodes that are being read from are from the V 2 copy of the tree and each node

is written to or read from by one processor. Since each level of the tree contains

the partial results of an alignment at di�erent positions in T , the position of the

comparison that is being computed is recorded in N:pos. The remainder of the

procedure is similar to the procedure given in Figure 7.3.

We maintain two copies of the distance tree so that no two processors ever

need to access the same node simultaneously. When a change is made to one of

the trees, the other tree needs to be updated to re
ect the change before the next

iteration of the while loop in the procedure search can be executed. Each time a

change is made to a node in the tree, the node is marked as having been updated.

139

The procedure update, shown in Figure 7.14, will examine the corresponding nodes

of each tree and modify them, if necessary, to make them identical. Only one of

the trees could have been written to, and if node j from that tree was updated,

the node j in the other tree is modi�ed to re
ect the update. All of the nodes

in the trees are updated in parallel. When the procedure update completes, the

distance trees are identical.

7.4 Resource use

We have given a basic algorithm to �nd an approximate solution to the string

to string rearrangement problem and three extensions to that algorithm. The

basic algorithm runs in O(tp) time using O(p) work space. This algorithm can be

modi�ed to �nd alignments with inversions that also runs in O(tp) time and O(p)

work space. The basic algorithm can be modi�ed to place the gaps optimally using

O(tp log p) time and O(p) work space. We have also modi�ed the basic algorithm

to construct the alignment. This algorithm takes O(tp log p) time and O(p log p)

work space.

7.4.1 Basic algorithm

In this section we will prove a number of theorems about the resource usage and

performance of the basic algorithm.

� The algorithm executes in time proportional to the product of the length of

the text and the length of the pattern.

� The work space used by the algorithm is proportional to the length of the

pattern. Work space is independent of the length of the text.

� The algorithm underestimates the actual alignment score of a pattern at a

given position in the text by, at most, the sum of the gap penalties in the

alignment at that position.

140

Theorem 7.1 The algorithm presented in Figures 7.1, 7.2, and 7.3, when given

T , a text string of length t, and P , a pattern string of length p, �nds the score

and position of the approximate alignment of P in T using O(tp) operations.

Proof. The time used by each call to the function compare elements is

O(p) since the for loop is executed once for each character in P and each line in

the for loop can be executed in constant time. There are p� 1 internal nodes in

the distance tree, V , passed to the function �lter up. For each internal node, W ,

we compute the score and update W:max and W:max pos. Each of the lines 6

through 14 in the function �lter up can be computed in constant time. The time

used by each call to �lter up is O(p). Since the while loop in the function search

is iterated O(t) times and the functions compare elements and �lter up each take

O(p) time, the total time used by the algorithm is O(tp).

Theorem 7.2 The algorithm presented in Figures 7.1, 7.2, and 7.3, when given

T , a text string of length t, and P , a pattern string of length p, will �nd the score

and position of the approximate alignment of P in T using O(p) words of working

memory.

Proof. The only data in the function search are P , T , and V . P , by

de�nition, is O(p). Since V is a binary tree, each node of the tree has constant

size, and the tree has 2p � 1 nodes, the size of V will be O(p). During iteration

i of the while loop in the function search we only need the length p substring

Ti�p+1 � � � Ti of T . The function �lter up is recursive and will be called once for

each node in the tree V . Each stack frame has constant size so the stack will use

O(p) space.

We will use the following two lemmas to show that the score of the approx-

imate alignment of P in T that is found by the basic algorithm underestimates

the score of the optimal alignment by at most the sum of the gap penalties in the

approximate alignment of P in T . We �rst show that if the optimal alignment

141

contains no gaps, our algorithm returns the score of the optimal alignment. We

then show that if a gap is introduced into an alignment, our algorithm reduces

the alignment score by at most two times the penalty for the gap.

Lemma 7.1 If the optimal alignment of P in T contains no gaps, the algorithm

given in Figures 7.1, 7.2, and 7.3 will correctly return i, the position of the optimal

alignment and the optimal alignment score.

Proof. We will use induction on the levels of the distance tree. The

leaves, level 0, are the base case. If the optimal score is at position i, then when

compare elements is called at position i, the sum of the scores at the leaves of the

tree must be equal to the optimal score. This is because, if the optimal alignment

contains no gaps, then all scoring must come from the leaves. If no gaps are

introduced, the function �lter up simply �nds the sum of the leaf node scores.

The only way the line

if (Lj :max � G(i� Lj :max pos))

of compare elements could be false is if we introduce a gap of length (i�Lj :max pos).

This gap would be introduced only if it increased the score, but this can't be since

we know the optimal score contains no gaps. For every j that S1j 6= S2j, the if

statement

if (Lj :max � G(i� Lj :max pos))

of compare elements is true, Lj :max is set to 0, and Lj:max pos will be set to i.

Therefore, for each j; Lj :score = Lj:max and Lj :max pos = i; the position of the

optimal alignment score.

If each node at level k�1 of the distance tree has been computed correctly,
then the algorithm computes the nodes at level k correctly. For each node at level

k we compute W:score in the function �lter up. We know the following

� Neither the alignment represented by the node L nor the alignment repre-

sented by the node R contain gaps.

142

� L:max pos = i and R:max pos = i so Zl = 0 and Zr = 0.

� The sum of the scores on level k must equal the optimal score since if the

optimal alignment contains no gaps, all scoring must ultimately come from

the alignments represented by the nodes on level k. If no gaps are introduced,

the function �lter up simply �nds the sum of the nodes at level k. It must

be true that L:max+R:max �W:max�Zn since, if this were not true, the

score at position W:max pos would be larger than the score at position i,

but we assumed the maximum score occurred at position i.

With the above observations, we can see that the algorithm does not introduce

any gaps on level k of the tree. Since W:score > (W:max � Zn), the maximum

score, W:max, is set to the score at position i and the position of the maximum

score,W:max pos, is set to i. Also note that when the function �lter up completes,

the score stored in the root of the tree will be the score of the alignment of P in

T at position i. The function search compares the score stored in the root with

the previous largest score and then correctly records the score at position i as the

maximum.

Lemma 7.2 Given a pattern P , a text T , an alignment Xi, and a score, s, for

the alignment of P in T at position i; adding a block of characters B, of length b,

to T (potentially adding a length b gap to the alignment) causes the algorithm in

Figures 7.1, 7.2, and 7.3 to reduce the score for the alignment by at most 2G(b).

Proof. Assume that B was inserted into the substring of T that P aligns

with in the alignment Xi, otherwise the alignment score would not be reduced

at all. Let T 0 = T0 � � � TjB0 � � �Bb�1Tj+1 � � � Tt�1. When the gap is introduced

following position j in T we must consider the substring of P; Pl�2k+1 � � � P(l+1)2k,

that contains Ph where Xi[h] = j. If B was inserted into a gap in the alignment

Xi then we will increase the length of the gap by b and let Ph be the last character

in P before the gap that was aligned with some character in T . Let X 0
i be the

alignment produced by our algorithm after the insertion of B. We will consider

143

two cases, �rst when X 0
i[h] = j and second, when X 0

i[h] = j + b. In either case, if

the gap were placed optimally, it would be placed following Ph, but our algorithm

will place the gap between the characters Pl�2k+2k�1 and Pl�2k+2k�1+1.

Case 1: X 0
i[h] = j (See Figure 7.16). In this case h � l � 2k + 2k�1 and the

substring Ph � � � Pl�2k+2k�1 is misaligned.

Let e = l � 2k + 2k�2

f = l � 2k + 2k�1

Let A1 = F(Ph+1 � � � Pf ; TXi[h+1] � � � TXi[f]; Xi)

A2 = F(Pe � � �Ph; TXi[e] � � � TXi[h]; Xi)

A3 = F(Pl�2k+1 � � �Ph; TXi[l�2k+1] � � � TXi[h]; Xi)

First we note that

A1 + A3 � A2 � G(b) < 0

otherwise the gap would have been inserted between Pe and Pe+1. Rearranging

we get

A1 +A3 < G(b) +A2: (7:2)

We know that

A3 > G(b) +A1 > A2

otherwise the gap would not have been placed following Pl�2k+2k�1. Since A3 > A2

we know that A1 < G(b). Since A1 is the only scoring section in Xi that is not in

X 0
i and the penalty for the gap is G(b), the score for the alignment X 0

i is at most

2G(b) less than the score for the alignment Xi.

Case 2: X 0
i[h] = j + b (See Figure 7.17). In this case Xi[j] � l � 2k + 2k�1

and the substring Pl�2k+2k+1 � � � PX0
i
[h] is misaligned.

Let e = (l + 1) � 2k � 2k�2

f = l � 2k + 2k�1

144

Let A1 = F(Pf � � � Ph; TXi[f] � � � TXi[h]; Xi)

A2 = F(Ph � � �Pe; TXi[h] � � � TXi[e]; Xi)

A3 = F(Ph � � �P(l+1)2k; TXi[h] � � � TXi[(l+1)2k]; Xi)

First we note that

A1 + (A3 � A2)� G(b) < 0

otherwise the gap would have been inserted between Pe and Pe+1. rearranging we

get

A1 +A3 < G(b) +A2: (7:3)

We know that

A3 > G(b) +A1 > A2

otherwise the gap would not have been placed following Pl�2k+2k�1. Since A1 is the

only scoring section in Xi that is not in X
0
i and the penalty for the gap is G(b), the

score for the alignment X 0
i is at most 2G(b) less than the score for the alignment

Xi.

Theorem 7.3 Given T , P , and an alignment Xi for position i computed by the

basic algorithm, the approximate alignment score computed by the algorithm will

underestimate the actual alignment score by at most

iX
j=1

G(jXi[j � 1]�Xi[j] + 1j)

if G(n) is a convex function.

Proof. We will show this by using induction on k, the number of gaps in

the alignmentXi. For the base case, k = 0, we note that if the optimal alignment

contains no gaps, lemma 7.1 shows that our algorithm �nds the optimal alignment.

Assume that for all optimal alignments with k � 1 gaps and a total gap

penalty of g, our algorithm computes an alignment with a total gap penalty of at

most 2g. Lemma 7.2 showed that we can add a gap of length n to an alignment and

145

Pl�2k+2k�1+1 � � �P(l+1)2kPl�2k+1 � � � Pl�2k+2k�1

B

j

b
| {z }

A3

| {z }

A2z }| { A1z }| {

Figure 7.16: A diagram of a gap insertion for case 1 of Lemma 3.

Pl�2k+2k�1+1 � � �P(l+1)2kPl�2k+1 � � � Pl�2k+2k�1

B

j

b
| {z }

A3

| {z }

A2z }| {A1z }| {

Figure 7.17: A diagram of a gap insertion for case 2 of Lemma 3.

reduce the score by no more than 2G(n), an underestimate of, at most, G(n). So,
for an alignment with k gaps and an optimal alignment score with gap penalties

of g+G(n), our algorithm �nds an alignment with gap penalties of no more than

2g + 2G(n).
This bound on the error allows us to report not only an approximate align-

ment and its score, but also a bound on the error of the score if the gap penalty

function is convex.

7.4.2 Optimal gap placement

We saw in the last section that our basic algorithm places gaps close to their proper

positions. By searching in the vicinity of the position that the basic algorithm

places gaps we can �nd the position of the optimal placement of gaps. The cost

of �nding the optimal placement of gaps is a factor of log p increase in running

time.

146

Theorem 7.4 The algorithm to compute the position of the alignment with opti-

mal gap positioning runs in O(tp log p) time when given T , a text string of length

t and P , a pattern string of length p.

Proof. The basic algorithm is modi�ed by using the function optimal �lter up

in place of the function �lter up. The function optimal �lter up was created by

adding line 8 to the function �lter up. Line 8 makes two calls to the function

max gap in Figure 7.6. The function max gap will use time proportional to the pa-

rameterD. Consider the nodes of the distance tree V of height k. These nodes rep-

resent the substrings P0P1 � � � P2k�1, P2kP2k+1 � � �P2k+1�1, : : :, Pp�2kPp�2k+1 � � �Pp�1.
The sum of the length of the substrings represented by the nodes of height k in

the distance tree V is p. The function optimal �lter up is called once for each node

in the distance tree. The calls to max gap are made with D set to the length of the

substring of P represented by the nodes children. The calls to max gap use O(p)

time to operate on the nodes at height k of the distance tree. Since the height

of the distance tree is log p, the time used by the calls to max gap is O(p log p).

The remaining lines in the function optimal �lter up each require constant time

and the function is called O(p) times so the total time required by the function

optimal �lter up when called from search is O(p log p). We have already seen that

the function compare elements uses O(p) time and the function search is iterated

O(t) times giving the running time of O(tp log p).

The following lemma may be used in place of lemma 7.2 to show that the

algorithm given in Figure 7.5 will place gaps optimally.

Lemma 7.3 Given a pattern P , a text T , an alignment Xi, and a score, s, for

the alignment of P in T at position i; inserting a block of characters of length b,

to T (potentially adding a length b gap in the alignment) will cause the algorithm

to reduce the score of the alignment by at most G(b).

Proof. Assume that B was inserted into the substring of T that P aligns

with in the alignment Xi, otherwise the alignment score would not be reduced

147

at all. Let T 0 = T0 � � � TjB0 � � �Bb�1Tj+1 � � � Tt�1. When the gap is introduced

following position j in T we must consider the substring of P; Pl�2k+1 � � � P(l+1)2k,

that contains Ph where Xi[h] = j. Let X 0
i be the alignment after the insertion of

B.

In the function optimal �lter up, Zl is the penalty for inserting the gap be-

tween Pl�2k+2k�1�1 and Pl�2k+2k�1 and anchoring the substring Pl�2k+2k�1 � � �P(l+1)�2k�1.

The variable Zr is the penalty for inserting the gap at the same position, but an-

choring the substring Pl�2k � � � Pl�2k+2k�1�1. The �rst call to the function max gap

on line 8 of the algorithm in Figure 7.5 will compute the change in score when

the gap is optimally placed in the substring Pl�2k � � �Pl�2k+2k�1�1 and the second

call to the function max gap will compute the change in score when the gap is op-

timally placed in the substring Pl�2k+2k�1 � � � P(l+1)�2k�1. Since we know the align-

ment scores of the strings Pl�2k � � � Pl�2k+2k�1�1 and Pl�2k+2k�1 � � � P(l+1)�2k�1, the gap

penalty when the gap is placed between Pl�2k+2k�1�1 and Pl�2k+2k�1, the change in

score when the gap is placed optimally, and the alignment score when no gap is

inserted between the two halves of P we can compute the optimal alignment score

of P in T when a single gap is inserted into P .

7.4.3 Constructing the alignment

Theorem 7.5 The algorithm to construct the alignment runs in O(tp log p) time

when given T , a text string of length t and P , a pattern string of length p.

Proof. The basic algorithm was modi�ed by adding lines 15 and 16 and

since these lines use no iteration involving other lines we can add the time to

execute lines 15 and 16 to the time of a call to construct �lter up. In the worst

case lines 15 and 16 will be executed once during each call to the function con-

struct �lter up. Line 15 executes in constant time and line 16 executes in time

proportional to the length of the substring represented by the internal node W

that construct �lter up was called with. We saw in the proof of Theorem 7.4 that

148

the sum of the length of the substrings represented by the nodes of height k in the

distance tree V is p. Lines 15 and 16 use O(p) time for each level of the distance

tree V . Since the height of the distance tree is O(logp) and the the function

construct �lter up is called O(t) times, the time used to construct an approximate

optimal alignment using the algorithm we presented is O(tp log p).

Theorem 7.6 The algorithm to construct the alignment will use O(p log p) work

space when given T , a text string of length t and P , a pattern string of length p.

Proof. We added the �eld max array to each node of the distance tree.

The length of max array is proportional to the length of the substring of P rep-

resented by the node of the distance tree. We know that the sum of the length of

the substrings represented by the nodes of height k in the distance tree V is p and

the height of the distance tree is log p so the size of the distance tree is O(p log p).

7.4.4 Inversions

By computing a distance tree for both the string and the inverse of the string we

have modi�ed the basic algorithm to �nd alignments with inversions. The order of

time and space used by the algorithm to align strings with inversions remains the

same. Since we are computing two distance trees the constant of proportionality

increases by about a factor of two.

Theorem 7.7 The algorithm to compute the alignment score allowing inversions

will run in O(tp) time when given T , a text string of length t and P , a pattern

string of length p.

Proof. During each of the O(t) iterations of the while loop in the function

invert search, compare elements will be called twice and invert �lter up once. Each

call to the function compare elements will use O(p) time so each call to the function

invert �lter up will examine each of the nodes in the distance trees V and IV .

There are O(p) nodes in the distance trees V an IV . Each of the lines 6 through

149

29 in Figure 7.10 can be executed in constant time. Each call to invert �lter up

from invert search will use O(p) time. The algorithm to compute the alignment

score allowing inversions will use O(tp) time.

Theorem 7.8 The algorithm to compute the alignment score allowing inversions

will use O(p) work space when given T , a text string of length t and P , a pattern

string of length p.

Proof. The data structures in the function invert search are P , T , V , and

IV . P , by de�nition, is O(p). Since V and IV are binary trees, each node of the

trees has constant size, and the tree has 2p� 1 nodes, the size of V and IV will

be O(p). During iteration i of the while loop in the function search we only need

the length p substring Ti�p+1 � � � Ti of T .

7.4.5 Parallel algorithm

Lemma 7.4 The function �lter up in �gure 7.13, when given two complete binary

trees, V 1 and V 2, with 2p�1 nodes each, executes in O(1) time with O(p) EREW
PRAM processors.

Proof. Let processor j perform the computations of the jth iteration of

the parallel for loop. Node Nj of V 1 is accessed only by processor j so the tree V 1

is never written to or read from by more than one processor at one time. Similarly

for the nodes of the tree V 2. Each of the variables Zlj, Zrj, and Znj are dependent

only on Nj , Lj, and Rj, variables that can be stored locally on processor j. Since

all of the information needed to update node j of V 1 is stored locally on processor

j, each iteration of the parallel for loop can be done independently. Each iteration

can be computed in constant time since each of the lines in the parallel for loop

can be done in constant time.

150

Theorem 7.9 The algorithm presented in Figures 7.11, 7.12, 7.13, and 7.14,

when given T , a text string of length t, and P , a pattern string of length p, t > p,

will �nd i, the position of the approximate alignment of P in T using O(t) time

and O(p) words of working memory with O(p) EREW PRAM processors.

Proof. The function compare elements can be computed in constant time

with p EREW PRAM processors. Processor j will compute the jth leaf value of

V and the values stored in the leaves of V are dependent only on the values of

S1j and S2j. By lemma 7.4 we know that the function �lter up can be computed

in constant time with O(p) EREW PRAM processors. In the function update, we

know that at most one of V 1j and V 2j for each 0 � j < jV 1j has been updated.

Therefore only one of the \if" statements in the function update will be true and

there will be no time when we are trying to access the same location in memory

with more than one processor. The function update can be computed in constant

time with O(p) EREW PRAM processors. Since each statement in the while loop

of the function search can be done in constant time with O(p) EREW PRAM

processors and the number of iterations of the while loop is jT j + jP j + log(jP j),
the function search can be done in O(t) time with O(p) EREW PRAM processors.

The following theorem shows that the EREW PRAM model of computa-

tion is stronger than we need. If we can arrange the processors as a tree with

communication links from children to parents and an extra link between each

adjacent pair of leaves of the tree, then we do not need shared memory.

Theorem 7.10 The algorithm presented in Figures 7.11, 7.12, 7.13, and 7.14,

when given T , a text string of length t, and P , a pattern string of length p, will

�nd i, the position of the approximate string alignment of P in T using O(1) space

on each of O(p) EREW PRAM processors.

Proof. In the function compare elements each of the O(p) processors needs

to access one character from P , one character from T , one node from the tree, and

151

a local copy of i, the position that P is being aligned with in T . In the function

update, each processor needs to have access to one node of each of the trees V 1

and V 2. The function �lter up requires access to three nodes of the tree V 1 and

V 2 and uses the local variables Nj ; Lj; Rj; Zlj; Zrj; and Znj. The function

search has the local variables l; a; i; max score, max pos and also needs to access

the roots of the trees V 1 and V 2. The locations of the characters of P are static

and can be stored in prede�ned locations associated with the processors that need

them.

The nodes of the trees and the text, T , are not static. At iteration i of

the while loop in search, the value of Tj is dependent only on the value of Tj�1

at iteration i � 1 for i � p+ 1 < j � i. At the end of iteration i, each processor

associated with at leaf node needs to communitate with the processors associated

with the adjacent leaf nodes. This communication is a \left shift" of the text,

T . The values of a particular node in one of the distance trees at iteration i is

dependent only on the value of its two children nodes stored in the other distance

tree at iteration i � 1. The processor associated with an internal node needs to

communicate with the two processors associated with the children.

7.5 Examples and comparisons

We align several pairs of sequences retrieved from GenBank[38] using our di-

vide and conquer algorithm and the dynamic programming algorithm of Myers &

Miller [206]. We will see that both algorithms perform well when the alignment

requires only the insertion of gaps. The dynamic programming algorithm will fail

to �nd a good alignment if segments of the sequences have been rearranged or

inverted. Our algorithm will �nd a good alignment in both cases.

7.5.1 Triosephosphate isomerase gene

152

G. gallus A. nidulans

Exon Start End Exon Start End

1 324 435 1 309 346

2 1269 1392 2 468 747

3 1487 1571 3 803 877

4 1707 1839 4 975 1087

5 2070 2155 5 1150 1364

6 2292 2379 6 1425 1453

7 2634 2752

Table 7.1: The starting and ending position of each exon in the TIM genes of G.

gallus and A. nidulans.

To compare the algorithms when aligning sequences with gaps we have chosen the

triosephosphate isomerase (TIM) gene. The TIM gene codes for a well character-

ized, highly conserved, and ancient protein and has therefore been used by several

researchers to study the evolution of gene structure. [259] We have chosen the TIM

gene because, although the protein is well conserved, the number and position of

the introns vary from species to species. We will use the alignment algorithms

to align the TIM genes from Aspergillus nidulans (fungus), a 1900 bp sequence

with GenBank accession number M13362, and Gallus gallus (chicken), a 3900 bp

sequence with GenBank accession number M11941. The TIM gene from G. gallus

is composed of seven exons (coding regions) separated by six introns (non{coding

regions). The exons are concatenated to form the speci�cation of the protein. The

TIM gene in A. nidulans has six exons separated by �ve introns. Table 7.1 gives

the starting and ending positions of the exons in the TIM gene from G. gallus

and A. nidulans. Since the exons code for a protein that must be functional if

the organism is to survive, there is selective pressure to conserve the information

in the exons. The introns of the gene are not subjected to this selective pressure

and may therefore be modi�ed at a higher rate. Using the assumptions that

153

1. The TIM genes from G. gallus and A. nidulans evolved from a common

ancestor.

2. The introns are evolving at a higher rate than the exons.

we expect the exons from the TIM genes of G. gallus and A. nidulans to align with

one another rather than with introns. Using the TIM genes from these organisms,

we will see that both algorithms produce reasonable alignments while introducing

gaps.

Both of the algorithms that we investigate penalize gaps. Each algorithm

requires a penalty to \break" the sequence, a penalty that is dependent on the

length of the gap, and a scoring matrix. Since we know approximately where

each exon from A. nidulans should align in G. gallus, we used these alignments

calibrate the gap penalty function for each algorithm. The penalty function that

we used in our divide and conquer algorithm was 1+ log(jgapj). The gap penalty

function that we used for the dynamic programming algorithm was 4 + jgapj.
For both algorithms, we assigned the score of 2 for an exact match and 0 for all

mismatches.

Initially, each exon from A. nidulans was individually aligned with the

entire TIM gene from G. gallus. The results of aligning each exon using the

dynamic programming algorithm and the divide and conquer algorithm are given

in Table 7.2. Since the divide and conquer algorithm is most easily applied to

pattern strings of length 2k, we choose fragments that contained all or nearly

all of a particular exon from A. nidulans. The �rst and second columns of the

table give the starting and ending position used for each exon in the 1900 bp

TIM gene from A. nidulans. We aligned each exon from A. nidulans with the

entire 3900 bp TIM gene from G. gallus. Columns three and four of the table

give the positions in the complete G. gallus TIM gene that fragments of the exon

from A. nidulans aligned using the divide and conquer algorithm. An exon from

A. nidulans frequently did not align with a single subsequence in the G. gallus

sequence, but with a couple of separate subsequences. These are reported as a

154

Divide and Conquer Dynamic Programming

A. nidulans G. gallus G. gallus

Exon Exon Match Match Match Match

Start end Start End Start End

309 346 324 357 330 373

850 878 1483 1498

468 723 1200 1450 366 421

718 731

1268 1400

1425 1452

1524 1547

803 866 1707 1770 323 333

690 712

1743 1771

975 1102 2024 2154 2090 2120

2330 2343

1150 1405 2119 2134 2121 2156

2262 2381 2293 2381

2637 2700 2636 2720

2602 2654 2845 2889

1425 1456 1289 1320 2727 2742

2755 2767

Table 7.2: Positions of the TIM gene from G. gallus that align the with exons

of the TIM gene from A. nidulans. Each exon from A. nidulans was aligned

seperately in the entire TIM sequence of G. gallus using both algorithms.

155

G. gallus A. nidulans

Exon Start End Match Match Comment

Number Position Position Start End

1 324 435 157 217 intron

2 1269 1392 538 663 exon 2

3 1487 1571 700 747 exon 2

4 1707 1839 804 885 exon 3

5 2070 2153 1046 1113 exon 4

6 2292 2379 1187 1273 exon 5

7 2634 2752 1277 1366 exon 5

Table 7.3: Results of aligning the complete TIM gene from A. nidulans with the

complete TIM gene from G. galus using the Myers & Miller dynamic programming

algorithm.

set of starting and ending positions in the G. gallus columns for the given A.

nidulans exon. The �nal two columns of the table give the same information for

the dynamic programming algorithm. Examining Table 7.2, we can see that with

the exception of the �nal short exon placed by the divide and conquer algorithm,

each of the exons from A. nidulans are placed reasonably well in the G. gallus

sequence by both algorithms.

We used each algorithm to align the complete TIM gene from A. nidulans

with the complete TIM gene from G. gallus. To have some gross measure of the

quality of the alignment, we examine how the exons are aligned. Table 7.3 gives

the alignment produced using the dynamic programming algorithm of Myers &

Miller. The �rst three columns of the table refer to the exons from the G. gallus

TIM gene giving the exon number and its starting and ending position. The last

three columns of the table refer to the TIM gene from A. nidulans. The match

start and match end columns give the position in the A. nidulans gene that the

exon from G. gallus aligned with. The comment column lists exon numbers from

156

A. nidulans G. gallus

Exon Start End Match Match Comment

Number Position Position Start End

1 < 309 346 338 364 exon 1

2 468 747 1306 1385 exon 2

1487 1571 exon 3

3 803 877 2555 2618 intron

4 975 1087 2675 2809 exon 7

2087 2118 exon 5

5 1150 1364 2321 2382 exon 6

2639 2702 exon 7

6 1425 > 1453 intron

Table 7.4: Results of aligning the complete TIM gene from A. nidulans with the

complete TIM gene from G. galus using our divide and conquer algorithm.

A. nidulans that correspond with the matched region. Exon 1 from G. gallus and

exon 6 from A. nidulans are not aligned with their corresponding exons. This is

not unexpected since the matches between both the �rst exons and the last exons

are short, less than 40 base pairs. A large segment of exon 4 from G. gallus is

aligned with an intron in A. nidulans.

Table 7.4 gives the alignment produced using our divide and conquer algo-

rithm. The �rst three columns of the table refer to the exons from the A. nidulans

TIM gene giving the exon number and its starting and ending position. The last

three columns of the table refer to the TIM gene from G. gallus. The match start

and match end columns give the position in the G. gallus gene that the exon from

A. nidulans aligned. The comment column lists exon numbers from G. gallus that

correspond with the matched region. Exons 3 and 6 of A. nidulans are aligned

with introns in G. gallus and a large segment of exon 4 from G. gallus is aligned

with exon 7 of A. nidulans. The alignments produced by both algorithms clearly

157

P. miliaris (V01143) P. miliaris (V01144)

Exon Start End Exon Start End

H4 305 616 H1 875 1444

H2B 1609 1980 H4 2280 2591

H3 2598 3008 H2B 3832 4203

H2A 3688 4062 H3 5098 5508

H1 4899 5468 H2A 6416 > 6700

Table 7.5: Exon positions in two alleles of the Psammechinus miliaris histone

complex.

show that the complete TIM genes from A. nidulans and G. gallus are similar.

7.5.2 Histone gene cluster of P. miliaris

To examine the performance of the algorithms when segments of the sequences are

rearranged, we aligned two alleles of the histone gene cluster from two individuals

of Psammechinus miliaris (sea urchin). The histone genes in P. miliaris are in

the order fH1 H4 H2B H3 H2Ag and are repeated about 450 times [245]. Two

alleles for this gene cluster are in the GenBank database with accession numbers

V01143 and V01144 [39]. In the 6000 bp sequence with accession number V01143,

the genes are in the order fH4 H2B H3 H2A H1g, and in the 6700 bp sequence

with accession number V01144, the genes are in the order fH1 H4 H2B H3 H2Ag.
Table 7.5 gives the beginning and ending position of each exon in the histone gene

cluster for both alleles, V01143 and V01144.

We have used the dynamic programming algorithm to align the two P.

miliaris histone gene clusters and the results of the alignment are presented in

Table 7.6. The �rst three columns give the exon names and positions of the exons

in the V01143 allele. The last three columns give the position in the V01144 allele

that exons from the V01143 allele aligned. The comment column is the region

(exon name) in the V01144 allele that was matched. The dynamic programming

158

V01143 V01144

Exon Start End Match Match Comment

Name Position Position Start End

H4 305 616 909 1190 In H1

H2B 1609 1980 2134 2496 Part in H4

H3 2598 3008 3109 3520 Intron

H2A 3688 4062 4016 4389 Part in H2B

H1 4899 5468 5218 5709 Part in H3

Table 7.6: Results of the alignment of the complete histone complex sequences

of P. miliaris V01143 and P. miliaris V01144 using the dynamic programming

algorithm.

algorithm fails to properly align any of the genes, but it should not be surprising

since the dynamic programming algorithm was not intended to align sequences

that have been rearranged in this way.

We have also used our divide and conquer algorithm to align the two P.

miliaris histone gene clusters and the results of the alignment are presented in

Table 7.7. The divide and conquer algorithm does properly align the exons in the

V01143 sequence with the corresponding exons in the V01144 sequence, despite

the rearrangement of the exon positions within the gene cluster. The H2B gene

was not aligned correctly, but only the �rst 15 of 370 base pairs of the H2B gene

in V01144 are known.

If the dynamic programming algorithm had been used naively to align the

two complete histone gene clusters from P. miliaris it might be wrongly concluded

that the sequences are not similar. Using our divide and conquer algorithm, it is

clear that the sequences are similar.

7.5.3 Histone gene cluster of X. laevis

159

V01143 V01143

Exon Start End Match Match Comment

Name Position Position Start End

H1 875 1444 4899 5140 H1

5415 5468 H1

H4 2280 2591 329 399 H4

440 456 H4

H2B 3832 4203 Intron

H3 5098 5508 2620 3008 H3

H2A 4616 > 6700 3688 3971 H2A

Table 7.7: Results of the alignment of the complete histone complex sequences

of P. miliaris V01143 and P. miliaris V01144 using our divide and conquer algo-

rithm.

X. laevis (X03017) X. laevis (X03018)

Exon Start End Exon Start End

H3 1 228 H1A 615 1244

H4 1422 1730 H2B 1695 2072

H2A 2351 2740 H2A 4372 4761

H2B 3120 3497 H3 5555 5962

H1B 10902 11561 H4 6949 7257

H3 12726 13133

H4 14290 14598

Table 7.8: Exon positions in two alleles of the X. laevis histone complex.

160

Dynamic programming Divide and conquer

3017 3018 3017 3018

Exon Match Match Comment Exon Match Match Comment

Name Start End Name Start End

H1B 671 1222 exon H1A H4 6948 7255 exon H4

H2B 1695 2071 exon H2B H2A 4760 4372 exon H2A

H2A fragments H2B 1694 2070 exon H2B

H3 fragments H1B 614 1239 exon H1A

H4 6948 7256 H4 H3 5961 5555 exon H3

Table 7.9: Results of aligning the individual exons from the histone gene cluster in

X. laevis X03017 in the full histone gene cluster sequence from X. laevis X03018

using both algorithms.

We use two histone gene clusters from Xenopus laevis to demonstrate aligning

sequences with inversions. The histone gene cluster from X. laevis with GenBank

accession number X03017 is 14942 base pairs in length and the histone gene clus-

ter from X. laevis with GenBank accession number X03018 is 8592 base pairs

long. [220] In these two sequences, the inverse of H2A in X03017 will match H2A

in X03018 and the inverse of H3 in X03017 will match H3 in X03018. Table 7.8

shows the starting and ending positions of the genes in the histone gene clusters

of the two sequences of X. laevis that we are interested in.

The algorithms were used to align individual genes from the X03017 se-

quence in the complete X03018 sequence. Table 7.9 shows the results of using both

algorithms to do the alignments. The dynamic programming algorithm �nds the

alignments for the genes H1B, H2B, and H4, but the alignments for H2A and H3

are missed. If the genes from the inverse of the X03017 sequence were aligned with

the X03018 sequence, the H2A and H3 genes would be aligned properly but the

genes H1B, H2B, and H4 would be missed. Using our divide and conquer algo-

rithm to align the individual genes from the X03017 sequence with the complete

161

X03018 X03017

Exon Exon Exon Match Match Comment

Name Start End Start End

H1A 615 1244 2079 2688 partially in H2A

H2B 1695 2072 3117 3493 H2B

H2A 4372 4761 5713 6057 intron

H3 5555 5962 6801 7198 intron

H4 6949 7257 8117 8379 intron

Table 7.10: Positions of the histone gene cluster from X. laevis X03017 that match

the exons from the histone gene cluster from X. laevis X03018. The alignment

was done using the complete histone gene cluster from each X. laevis sequence

using the Myers & Miller dynamic programming algorithm.

X03018 sequence, each of the genes is properly aligned.

Tables 7.10 show the results of aligning the complete X03017 and X03018

sequences using the dynamic programming algorithm. The �rst three columns

show the exons and their starting and ending positions of the gene from the X03018

sequence. The last three columns give the positions in the X03017 sequence that

the exons from the X03018 sequence aligned with. The comment column given the

name of the region of alignment. Table 7.10 shows that the dynamic programming

algorithm fails to align the histone gene clusters from the X03017 and X03018

sequences. Again, this is not surprising since the algorithm was not designed to

�nd alignments with inversions and rearranged segments.

Our divide and conquer algorithm �nds the alignment given in Table 7.11.

The divide and conquer algorithm aligned the genes from the X03017 sequence

with the segment of the X03018 sequence as indicated by the match start and

match end columns of Table 7.11. The comment column indicates the gene at

the location from match start to match end in the sequence X03018. Each gene

from the X03017 sequence is properly aligned with the corresponding gene from

162

X03017 X03018

Exon Exon Exon Match Match Comment

Name Start End Start End

H3 1 128 5774 5553 H3

H4 1422 1730 6949 7256 H4

H2A 2351 2740 4702 4370 H2A

H2B 3120 3497 1697 2072 H2B

H1B 10902 11561 615 1241 H1A

Table 7.11: Positions of the histone gene cluster from Xenopus laevis X03017

that match the exons from the histone gene cluster from X. laevis X03018. The

alignment was done using the complete histone gene cluster from each X. laevis

using our divide and conquer algorithm.

the X03018 sequence. Notice that the alignments of the genes H3 and H2A start

at a position greater than they end, this is because it is actually the inverse of the

gene that matched.

The X. laevis histone gene cluster example shows that the dynamic pro-

gramming algorithm can fail to properly align sequences that contain inverted

segments. The divide and conquer algorithm properly aligns the histone gene

clusters from X. laevis since it is capable of inverting subsequences in the align-

ment that it creates.

7.5.4 Running Time

The basic algorithm and its variants that have been developed in this paper are

simple to implement and can be used to solve problems that are large enough to

be of practical interest. The basic algorithm can be used alone, or in combination

with one or more of the extensions that are discussed in section 7.3. In this section

we have seen the algorithm used to align the TIM genes from G. gallus and A.

nidulans, two alleles for the histone gene cluster from P. miliaris, and two alleles

163

Optimal Constructive Inversions Time

213
p

397
p

297
p p

556
p

517
p p

1021
p p

603
p p p

1153

Table 7.12: Running time in CPU seconds to compute an alignment of A. nidulans

with G. gallus using several variants of our divide and conquer algorithm.

1900

x G. gallus x

3900 2048

148

A. nidulans y

1900

Figure 7.18: Schematic representation of input used to time the divide and conquer

algorithm.

for the histone gene cluster from X. laevis.

We have measured the CPU time used to compute the alignment of the

TIM genes from G. gallus and A. nidulans using the basic divide and conquer

algorithm. Each of the extensions to the basic algorithm can be used individually

or in combination and the CPU time used by each of the combinations was also

measured. Table 7.12 gives the running time of the basic algorithm with all

possible combination of the optimal, constructive, and inversion extensions. All

times were measured on a Sun IPC with 8 Mb of memory.

The current implementation of the algorithm requires that the length of

164

Number of Run Percent

Processors Time Speedup Utilization

20 140 16.7 83.5

16 172 13.6 85.0

12 224 10.5 87.5

8 323 7.26 90.8

4 612 3.83 95.8

2 1191 1.97 98.5

1 2344 1.0 100.0

Table 7.13: Speedup of the parallel divide and conquer algorithm to align a string

of lengh 4096 within a string of length 8192.

one of the sequences be a power of two. This is easily accomplished by padding

one of the sequences. Since our algorithm allows rearrangement of the sequences

in the alignment, the sequences need to be padded to allow the pre�xes of one

string to be aligned with the su�xes of the other. Figure 7.18 represents the input

that we used to time the algorithm. The G. gallus sequence was padded with a

1900 character pre�x and and 2048 character su�x and the A. nidulans sequence

was padded with a 148 character su�x. The characters used to pad the G. gallus

sequence are distinct from the characters used to pad the A. nidulans sequence

and none of the characters used to pad the sequences appear in the sequences.

The dynamic programming algorithm of Myers & Miller was used to align

the TIM genes from G.gallus and A. nidulans. Their algorithm used 148 CPU

seconds to align the sequences and used 298 CPU seconds to align the input given

to our divide and conquer algorithm.

A simple version of the divide and conquer approximate string matching

algorithm has been implemented on a sequent balance 21000 parallel computer

with 28 processors. The program was asked to align a string of length 4096 within

165

a string of length 8192 using a varying number of processors from one to twenty.

Figure 7.13 gives the number of processors used to align the sequences, the time in

CPU seconds, the speedup achieved by using multiple processors, and the percent

utilization of the processors. Using twenty processors decreases the time required

to align the strings by a factor of 16.7 from the time used by one processors.

7.6 Summary and future work

There is evidence that evolution may proceed by moving and inverting segments

of a genome in addition to changing, inserting, and deleting individual bases in

the genome. The algorithms that are currently in use to align genetic sequences

frequently fail to consider the move and invert operations. We have introduced the

string to string correction problem to allow the comparison of gene sequences using

both types of operations; the change, insert, and delete operations on individual

bases, and the move and invert operations on segments of the sequences.

We have described a simple algorithm to �nd an approximate solution to

the string to string correction problem. This is followed by several variations of

this algorithm including a version to construct the alignment, a version to place

the gaps optimally, and a parallel version of the algorithm. The algorithm runs

quickly, in time proportional to the product of the length of the sequences being

aligned and uses a very small amount of work space, proportional to the length

of the shorter sequence.

It may be possible to construct a \smart" disk controller based on our

parallel divide and conquer algorithm. The parallel algorithm uses only a few

simple operations and never needs to back up in the text. Each processor would

need a small, constant sized memory, and would need to communicate with at

most four other processors. Such a disk controller would allow database search

algorithm to start with only the sequences that are similar to the query sequence.

The divide and conquer approach should be easy to apply to multi{dimensional

approximate matching. The idea of inverted substrings in the one dimensional case

166

can be extended to transformations of sub{patterns in the multidimensional case.

We wish to thank Gene Myers and Webb Miller for kindly providing the source for

their excellent implementation of the dynamic programming algorithm to �nd optimal

alignments. We also thank Charlotte Rasmussen for suggesting to us that alignments

should include inversions.

167

Chapter 8

Ideas for Future Research

During the course of completing the research presented in this thesis, a number

of interesting problems arose that I did not pursue. In this chapter I describe a

few of the problems and present my ideas for possible solutions to the problem.

8.1 Nucleotide / amino acid alignment with frame shifts

Sequencing a speci�c gene that has previously been sequenced in several other

organisms can be done more e�ciently by using the homologous sequences to

help select the speci�c gene of interest in the new organism. Once the DNA

coding for homologous proteins has been sequenced from several organisms, it

may be possible to �nd regions of the DNA that are conserved in most or all of

the organisms. Using these conserved regions it may be possible to construct a

piece of tagged DNA that is used as a probe to mark similar sequences in the new

organism. The DNA segment of interest is isolated, cloned, and sequenced. When

reconstructing the original DNA sequence from the sequence data, we not only

have the overlap information, but also the homologous sequences to guide us.

Once a preliminary sequence has been reconstructed from the sequence

fragment data, this preliminary sequence can be alignedwith a homologous protein

sequence. Since three consecutive bases code for a single amino acid in the protein,

the nucleotides are divided into triples, translated into amino acids, and aligned

with the amino acid sequence. The translation can begin at position one, two, or

168

three of the nucleotide sequence, each generating a di�erent amino acid sequence

(the three reading frames). If there are insertion or deletion errors in the nucleotide

sequence, the reading frame will shift at that position. Knowing the position

of insertions or deletions in the nucleotide sequence relative to the amino acid

sequence can allow the researcher to reexamine the data in the proximity of the

insertion or deletion to insure that no nucleotides were missed or added while

reading and entering the data.

The standard dynamic programming algorithm to align sequences can be

used to align nucleotide sequences with amino acid sequences, but the standard

operations of insert a character, delete a character, and substitute a character do

not allow the reading frame to shift. In 1986, H. Peltola, H. Soderlund, & E.

Ukkonen [219], and later in 1992, M. Masreliez & J. Holloway [192], described

a modi�cation to the dynamic programming algorithm that allows the reading

frame to shift. M. Masreliez & I are further modifying the algorithm to \adjust"

the reading frame as the alignment is constructed so that a reading frame shift

is penalized only once, not each time a nucleotide triplet in a shifted segment is

aligned with the corresponding amino acid.

The algorithms of H. Peltola, H. Soderlund, & E. Ukkonen [219] and M.

Masreliez & J. Holloway [192] run in O(mn) time and use O(mn) space. Since

the sequences being aligned can be several thousand bases long, these algorithms

can quickly exhaust available memory. The method of D. Hirschberg[132] and

E. Myers & W. Miller [206] to reduce the space used by the standard dynamic

programming algorithms to solve the edit distance problem from O(mn) to O(m+

n) may be applicable to the problem of aligning nucleotide sequences with amino

acid sequences with frame shifts.

The algorithms of H. Peltola, H. Soderlund, & E. Ukkonen [219] and M.

Masreliez & J. Holloway [192] align a nucleotide sequence with a single amino acid

sequence. In the process of �nding conserved regions of the amino acid sequence,

the amino acid sequences are frequently aligned. It could be more informative

169

to align the nucleotide sequence with the group of aligned amino acid sequences

instead of an individual amino acid sequence.

8.2 Divide and conquer multi{dimensional matching

The ideas that were developed in chapter 7 allowed us to �nd an alignment of a

pattern string within a text string when substrings of the pattern string could be

rearranged, inverted, and gaps inserted. These ideas can be extended to two or

more dimensional approximate pattern matching. In the one dimensional case,

the alignment of a string is found by aligning each half of the string and then

constructing an alignment of the entire string by possibly placing a gap between

the halves. In the case of d dimensions, the d{dimensional pattern is broken into

2d parts by dividing the pattern in half along each of the d axes. Once each of

the parts is aligned using this same procedure, a score for the whole pattern is

computed by comparing the score for the pattern with no gaps between the parts

and the score of the optimal alignment of the parts minus any gap penalties.

Once the basic d{dimensional approximate alignment algorithm has been

completed, the idea of an inverted pattern can be considered. Any transformation

that can be applied and results in another pattern with the same size and shape can

be used as the inverted strings were used in the one dimensional case. There is no

reason to limit the number of transformations to one, so we could align patterns

with di�erent pieces transformed in di�erent manners. In the two dimensional

case, this might be a pattern with two parts that have been rotated independently.

8.3 Updating su�x arrays

Su�x arrays are a space e�cient data structure that enables questions of the

form \Is the pattern string P a substring of the text string T?" to be answered

in O(jP j+ log jT j) time. Storing a large text that needs to be searched frequently

in a su�x array is one way of providing very quick response to substring queries.

170

If the text changes frequently we need some way of quickly updating the su�x

array. The algorithm given by U. Manber [189] to construct a su�x array of T

will take O(jT j) expected time. If T is large and updated frequently, the cost of

recomputing the su�x array after each update of T may be prohibitive.

One possible alternative to recomputing the su�x array for T after each

update is to modify the su�x array or some similar data structure to re
ect the

changes. The updates to T could be restricted to additions of text, no deletions

or changes, since adding text is the only operation that happens to the genetic

sequence databases that I am interested in.

Another alternative is to recompute the su�x array in parallel. Parallel

algorithms for constructing su�x trees, a data structure similar to su�x arrays

have been given [21]. Although I have started working on parallelizing the se-

quential algorithm of U. Manber [189], it is not clear yet if this algorithm can be

e�ciently parallelized.

8.4 Chaos game theory and approximate string matching

In 1990, H. Je�rey published the paper \Chaos game representation of gene struc-

ture" that described an algorithm to construct a visual representation of a nu-

cleotide sequence. Label the four vertices of a square with A, C, G, and T and set

the current position to be the center of the square. Moving from left to right in

the nucleotide sequence, for each nucleotide in the sequence, move from the cur-

rent position in the square halfway to the vertex labeled with the nucleotide that

is being examined and place a dot at this new position. Using this algorithm to

view nucleotide sequences reveals recurring patterns and regions of self similarity.

Each point in the pattern is the result of a particular pre�x of the sequence.

If we think of each point in the pattern as a substring of the sequence, in some

sense similar substrings will cluster in similar positions in the square. For example,

if the upper right corner of the square is labeled with 'G', all substrings that end

with \GG" appear in the upper right quadrant of the upper right quadrant (the

171

upper right 1=16th) of the square. Similarly, any length three substring that has

\GG" as a pre�x appears in the upper right quadrant of the upper right quadrant

of whatever quadrant is associated with the third character of the substring. By

using these regions of similar strings, it should be possible to search sequences

or databases for approximate matches with short sequences. Studying the one

dimensional case with two vertices and the characters '0' and '1' in the sequence

might facilitate the development of algorithms.

It may be possible to apply the ideas of Je�rey to visualizing amino acid

sequences. Since there are 20 amino acids commonly used to construct proteins,

using a dodecahedron (20 vertices) instead of a square and applying a similar

algorithm may produce interesting representations of amino acid sequences. One

immediate problem with this approach is that results are in three dimensions and

must be viewed in two dimensions.

8.5 Comparing a sequence against a database of motifs

In 1975, A. Aho & M. Corasick [4] described an algorithm that searches a text

string for the occurrence of any pattern in a set of pattern strings in time pro-

portional to the length of the text string. The algorithm constructs a pattern

matching machine from the set of patterns and then uses the text as input to the

pattern matching machine. The construction of the pattern matching machine

can be done in time proportional the sum of the lengths of the patterns in the set

of patterns.

PROSITE is a database of several hundred amino acid motifs that is main-

tained by A. Bairoch [29]. Each of the motifs is expressed as a set of amino acids

that may occur at each of the positions in the motif. For example, the motif

C{X{fPg{X5{[GS]{X2{C

speci�es that a cysteine (C) be in the �rst position, any amino acid may be in

the second position, any amino acid except a proline (P) may be in the third

172

position, the fourth through eighth positions may contain any amino acids, the

ninth position may contain either a glycine (G) or a serine (S) followed by any

two amino acids and then a �nal cysteine (C).

It may be easy to apply the Aho{Corasick key word searching algorithm

to the problem of locating motifs from the PROSITE database in an amino acid

sequence.

173

Bibliography

[1] R. M. Abarbanel, P. R. Wieneke, E. Mans�eld, D. A. Ja�e, and D. L. Brut-
lag. Rapid searches for complex patterns in biological molecules. Nucleic
Acids Research, 12:263{280, 1984.

[2] K. Abrahamson. Generalized string matching. SIAM Journal of Computing,
16:1039{1051, 1987.

[3] K. Abremski, K. Sirotkin, and A. Lapedes. Application of neural networks
and information theory to the identi�cation of e. coli transcriptional pro-
moters. Technical Report LA{UR{91{729, Los AlamosNational Laboratory,
1991.

[4] A. V. Aho and M. J. Corasick. E�cient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18:333{340, 1975.

[5] A. V. Aho, D. S. Hirschberg, and J. D. Ullman. Bounds on the complexity
of the longest common subsequence problem. Journal of the Association for
Computing Machinery, 23:1{12, 1976.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison{Wesley, Reading, MA, 1974.

[7] L. Allison, C. S. Wallace, and C. N. Yee. Induction inference over macro{
molecules. Technical Report 90/148, Monash University, Clayton, Victoria,
Australia, 3168, 1990.

[8] L. Allison and C. N. Yee. Minimum message length encoding and the com-
parison of macromolecules. Bulletin of Mathematical Biology, 52:431{453,
1990.

[9] H. Almagor. A Markov analysis of DNA sequences. Journal of Theoretical
Biology, 104:633{645, 1983.

[10] S. F. Altschul. Gap costs for multiple sequence alignments. Journal of
Theoretical Biology, 138:297{309, 1989.

[11] S. F. Altschul. Amino acid substitution matrices from an information the-
oretic perspective. Journal of Molecular Biology, 219:555{565, 1991.

174

[12] S. F. Altschul and B. W. Erickson. Locally optimal subalignments using
nonlinear similarity functions. Bulletin of Mathematical Biology, 48:633{
660, 1986.

[13] S. F. Altschul and B. W. Erickson. A nonlinearmeasure of subalignment sim-
ilarity and its signi�cance levels. Bulletin of Mathematical Biology, 48:617{
632, 1986.

[14] S. F. Altschul and B. W. Erickson. Optimal sequence alignments using a�ne
gap costs. Bulletin of Mathematical Biology, 48:606{616, 1986.

[15] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215:403{410,
1990.

[16] S. F. Altschul and D. J. Lipman. Trees, stars and multiple biological se-
quence alignment. SIAM Journal of Applied Mathematics, 49:197{209, 1989.

[17] S. F. Altschul and D. J. Lipman. Protein database searches for multiple
alignments. Proceedings of the National Academy of Science, 87:5509{5513,
1990.

[18] A. Amir and G. M. Landau. Fast parallel and serial multidimensional ap-
proximate array matching. In R. M. Capocelli, editor, Sequences, combina-
torics, compression, security and transmission, pages 3{24. Springer{Verlag,
1990.

[19] A. Amir and G. M. Landau. Fast parallel and serial multidimensional ap-
proximate array matching. Theoretical Computer Science, 81:97{115, 1991.

[20] J. Aoe. An e�cient implementation of static string pattern matching ma-
chines. IEEE Transactions on Software Engineering, 15:1010{1016, 1989.

[21] A. Apostolico. Parallel log{time construction of su�x trees. Technical Re-
port CSD{TR{632, Purdue, 1986.

[22] A. Apostolico, S. Browne, and C. Guerra. Fast linear{space computations
of longest common subsequences. Theoretical Computer Science, 92:3{17,
1992.

[23] P. Argos. A sensitive procedure to compare amino acid sequences. Journal
of Molecular Biology, 193:385{396, 1987.

[24] I. E. Auger and C. E. Lawrence. Algorithms for the optimal identi�cation of
segment neighborhoods. Bulletin of Mathematical Biology, 51:39{54, 1989.

[25] D. J. Bacon and W. F. Anderson. Multiple sequence alignment. Journal of
Molecular Biology, 191:153{161, 1986.

175

[26] R. A. Baeza-Yates. Improved string searching. Software Practice and Expe-
rience, 19:257{271, 1989.

[27] R. A. Baeza-Yates and M. Regnier. Average running time of the Boyer{
Moore{Horspool algorithm. Theoretical Computer Science, 92:19{31, 1992.

[28] A. Bairoch. Prosite: a dictionary of protein sites and patterns. Nucleic
Acids Research, 19:2241{2245, 1991.

[29] A. Bairoch. SEQANALREF: a sequence analysis bibliographic reference
databank. Computer Applications in the Biosciences, 7(2):268, 1991.

[30] L. J. Barnett. Probabilistic analysis of random clone restriction mapping.
Master's thesis, Washington University in St. Louis, 1990.

[31] S. Barron, M. Witten, R. Harkness, and J. Driver. A bibliography on com-
putational algorithms in molecular biology and genetics. Computer Appli-
cations in the Biosciences, 7(2):269, 1991.

[32] G. J. Barton. Scanning protein sequence databanks using a distributed
processing workstation network. Computer Applications in the Biosciences,
7(1):85{88, 1991.

[33] G. J. Barton and M. J. E. Sternberg. Flexible protein sequence patterns: a
sensitive method to detect weak structural similarities. Journal of Molecular
Biology, 212:389{402, 1990.

[34] D. C. Benson. Digital signal processing methods for biological sequence
comparison. Nucleic Acids Research, 18:3001{3006, 1990.

[35] J. C. Beran-Koehn and W. D. Gillett. Information theoretic estimation of
clone overlap probabilities. Technical Report WUCS{90{27, Washington
University in St. Louis, 1990.

[36] M. P. Berger and P. J. Munson. A novel randomized iterative strategy
for aligning multiple protein sequences. Computer Applications in the Bio-
sciences, 7(4):479{484, 1991.

[37] A. A. Bertossi, E. Lodi, F. Luccio, and L. Pagli. Context{dependent string
matching. In R. M. Capocelli, editor, Sequences, combinatorics, compres-
sion, security and transmission, pages 25{40. Springer{Verlag, 1990.

[38] H. S. Bilofsky and C. Burks. The genbank genetic sequence data bank.
Nucleic Acids Research, 16:1861{1863, 1988.

[39] M. Birnstiel, R. Portmann, M. Busslinger, W. Scha�ner, E. Probst, and
A. Kressmann. Functional organization of the histone genes in the sea urchin
psammechinus: a progress report. In Alfred Benzon Symposium, volume 13,
pages 117{132, 1979.

176

[40] Bishop and Rawlings. Nucleic Acid and Protein Sequence Analysis. A Prac-
tical Approach. IRL Press, Oxford, 1987.

[41] M. J. Bishop and E. A. Thompson. Maximum likelihood alignment of DNA
sequences. Journal of Molecular Biology, 190:159{165, 1986.

[42] B. E. Blaisdell. A measure of the similarity of sets of sequences not requir-
ing sequence alignment. Proceedings of the National Academy of Science,
83:5155{5159, 1986.

[43] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approxi-
mation of shortest superstrings. In Proceedings of the ACM Symposium on
Theory of Computing, pages 328{336, Baltimore, MD, 1991. ACM press.

[44] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ{tree algorithms. Journal of
Computer and System Sciences, 13:335{379, 1976.

[45] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communi-
cations of the ACM, 20:762{772, 1977.

[46] J. H. Bradford. Sequence matching with binary codes. Information Pro-
cessing Letters, 34:193{196, 1990.

[47] D. Breslauer and Z. Galil. An optimal O(log logn) time parallel string
matching algorithm. SIAM Journal of Computing, 19:1051{1058, 1990.

[48] D. L. Brutlag, J. P. Dautricourt, S. Maulik, and J. Relph. Sensitive similarity
searches of biological sequence databases. Computer Applications in the
Biosciences, 6:237{245, 1990.

[49] G. N. Cameron. The EMBL data library. Nucleic Acids Research, 16:1865{
1867, 1988.

[50] H. Carrillo and D. Lipman. The multiple sequence alignment problem in
biology. SIAM Journal of Applied Mathematics, 48:1073{1082, 1988.

[51] W. I. Chang and E. L. Lawler. Approximate string matching in sublin-
ear expected time. In IEEE Symposium on the Foundations of Computer
Science, pages 116{124, 1990.

[52] E. A. Cheever, G. C. Overton, and D. B. Searls. Fast Fourier transform{
based correlation of DNA sequences using complex plane encoding. Com-
puter Applications in the Biosciences, 7(2):143{154, 1991.

[53] J. Clayton and L. Kedes. Gel, a DNA sequencing project management
system. Nucleic Acids Research, 10:305{321, 1982.

177

[54] L. Colussi, Z. Galil, and R. Giancarlo. On the exact complexity of string
matching. In IEEE Symposium on the Foundations of Computer Science,
pages 135{143, 1990.

[55] C. Consel and O. Danvy. Partial evaluation of pattern matching in strings.
Information Processing Letters, 30:79{86, 1990.

[56] N. G. Core, E. W. Edmiston, J. H. Saltz, and R. M. Smith. Supercomputers
and biological sequence comparison algorithms. Computers and Biomedical
Research, 22:497{515, 1989.

[57] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
McGraw{Hill, New York, 1990.

[58] F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic
Acids Research, 16(22):10881{10890, 1988.

[59] A. F. W. Coulson, J. F. Collins, and A. Lyall. Protein and nucleic acid se-
quence database searching: a suitable case for parallel processing. Computer
Journal, 30:420{424, 1987.

[60] M. Crochemore. Constant{space string{matching. In R. M. Capocelli,
editor, Sequences, combinatorics, compression, security and transmission,
pages 25{40. Springer{Verlag, 1990.

[61] M. Crochemore. String{matching on ordered alphabets. Theoretical Com-
puter Science, 92:33{47, 1992.

[62] M. Crochemore and D. Perrin. Two{way string matching. Journal of the
Association for Computing Machinery, 38:651{675, 1991.

[63] P. Cull and J. Holloway. A divide and conquer approach to approximate
string matching. Technical Report TR{91{50{1, Oregon State University,
Department of Computer Science, Corvallis, OR. 97331, 1991.

[64] P. Cull and J. L. Holloway. Algorithms for constructing a consensus se-
quence. Technical Report TR{91{20{1, Oregon State University, Depart-
ment of Computer Science, 1991.

[65] P. Cull and J. L. Holloway. Reconstructing sequences from shotgun data.
In Sequences: Combinatorics, Compression, Security, and Transmission.
Springer{Verlag, 1991.

[66] P. Cull and J. L. Holloway. Optimistically building a consensus sequence
using f{inexact matches. In Proceedings of the Hawaii International Con-
ference on System Sciences, volume 1, pages 643{652, 1992.

178

[67] A. Danckaert, C. Chappey, and S. Hazout. 'size leap' algorithm: an e�cient
extraction of the longest common motifs from a molecular sequence set.
Application to DNA sequence reconstruction. Computer Applications in the
Biosciences, 7(4):509{513, 1991.

[68] D. Davison. Sequence similarity (homology) searching for molecular biolo-
gists. Bulletin of Mathematical Biology, 47:437{474, 1985.

[69] D. Davison and K. H. Thompson. A non{metric sequence alignment pro-
gram. Bulletin of Mathematical Biology, 46:579{590, 1984.

[70] M. O. Dayho�, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary
change in proteins. In M. O. Dayho�, editor, Atlas of Protein Structure, vol-
ume 5(Suppl. 3), pages 345{352. National Biomedical Research Foundation,
Silver Spring, Md., 1979.

[71] C. DeLisi. Computers in molecular biology: Current applications and emerg-
ing trends. Science, 240:47{52, 1988.

[72] A. S. Deshpande, D. S. Richards, and W. R. Pearson. A platform for bio-
logical sequence comparison on parallel computers. Computer Applications
in the Biosciences, 7(2):237{247, 1991.

[73] R. F. Doolittle. Of URFs and ORFs. University Science Books, Mill Valley,
CA, 1986.

[74] J. Dumas and J. Ninio. E�cient algorithms for folding and comparing
nucleic acid sequences. Nucleic Acids Research, 10:197{206, 1982.

[75] T. Eilam-Tzore� and U. Vishkin. Matching patterns in strings subject to
multi{linear transformations. Theoretical Computer Science, 60:231{254,
1988.

[76] D. Eppstein. Sequence comparison with mixed convex and concave costs.
preprint.

[77] D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial
computation. Annual Review of Computer Science, 3:233{283, 1988.

[78] D. Eppstein, Z. Galil, and R. Giancarlo. Speeding up dynamic programming
with application to the computation of RNA structure. preprint.

[79] D. Eppstein, Z. Galil, and R. Giancarlo. Speeding up dynamic programming.
In IEEE Symposium on the Foundations of Computer Science, pages 488{
496, 1988.

[80] D. Eppstein, Z. Galil, and R. Giancarlo. E�cient algorithms with appli-
cations to molecular biology. In R. M. Capocelli, editor, Sequences, com-
binatorics, compression, security and transmission, pages 59{74. Springer{
Verlag, 1990.

179

[81] D. Eppstein, R. Giancarlo, Z. Galil, and F. Italiano. Sparse dynamic pro-
gramming. preprint.

[82] D. Eppstein, R. Giancarlo, Z. Galil, and F. Italiano. Sparse dynamic pro-
gramming I: linear cost functions. preprint.

[83] D. Eppstein, R. Giancarlo, Z. Galil, and F. Italiano. Sparse dynamic pro-
gramming II: convex and concave cost functions. preprint.

[84] B. W. Erickson and P. H. Sellers. Recognition of patterns in genetic se-
quences, pages 55{91. Addison{Wesley, Reading, MA, 1983.

[85] R. Farber, A. Lapedes, and K. Sirotkin. Determination of eukaryotic pro-
tein coding regions using neural networks and information theory. Technical
Report LA{UR{90{4014, Los Alamos National Laboratory, Theoretical Di-
vision, MS B213, Los Alamos National Laboratory, Los Alamos, NM, 87545,
1991.

[86] J. Felsenstein. Numerical methods for inferring evolutionary trees. The
Quarterly Review of Biology, 57:379{404, 1982.

[87] J. Felsenstein, S. Sawyer, and R. Kochin. An e�cient method for matching
nucleic acid sequences. Nucleic Acids Research, 10:133{139, 1982.

[88] D. F. Feng, M. S. Johnson, and R. F. Doolittle. Alignment of amino acid
sequences: Comparison of commonly used methods. Journal of Molecular
Evolution, 21:112{125, 1985.

[89] J. W. Fickette. Fast optimal alignment. Nucleic Acids Research, 12:175{179,
1984.

[90] W. M. Fitch. Random sequences. Journal of Molecular Biology, 163:171{
176, 1983.

[91] W. M. Fitch and T. F. Smith. Optimal sequence alignments. Proceedings
of the National Academy of Science, 80:1382{1386, 1983.

[92] W. M. Fitch, T. F. Smith, and W. W. Ralph. Mapping the order of DNA
restriction fragments. Gene, 22:19{29, 1983.

[93] D. E. Foulser. A linear time algorithm for DNA sequencing. Technical
Report YALEU/DCS/RR-812, Yale University, Department of Computer
Science, 1990.

[94] M. L. Fredman. Algorithms for computing evolutionary similarity measures
with length independent gap penalties. Bulletin of Mathematical Biology,
46:553{566, 1984.

[95] T. Friedemann. Alignment of multiple DNA and protein sequence data.
Computer Applications in the Biosciences, 4:213{214, 1988.

180

[96] P. Friedland and L. H. Kedes. Discovering the secrets of DNA. Communi-
cations of the ACM, 28:1164{1186, 1985.

[97] D. J. Galas, M. Eggert, and M. S. Waterman. Rigorous pattern{recognition
methods for DNA sequences. Journal of Molecular Biology, 186:117{128,
1985.

[98] Z. Galil. Optimal parallel algorithms for string matching. In Proceedings of
the ACM Symposium on Theory of Computing, pages 240{248, 1984.

[99] Z. Galil. On the exact complexity of string matching: lower bounds. SIAM
Journal of Computing, 20:1008{1020, 1991.

[100] Z. Galil. A constant time optimal parallel string matching algorithm. In
Proceedings of the ACM Symposium on Theory of Computing, pages 69{76,
Baltimore, MD, 1992. ACM press.

[101] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applica-
tions to molecular biology. Technical Report 110{87, Columbia University
Department of Computer Science, 1987.

[102] Z. Galil and R. Giancarlo. Speeding up dynamic programming with ap-
plications to molecular biology. Theoretical Computer Science, 65:107{118,
1989.

[103] Z. Galil and K. Park. An improved algorithm for approximate string match-
ing. SIAM Journal of Computing, 19:989{999, 1990.

[104] Z. Galil and K. Park. A linear{time algorithm for concave one{dimensional
dynamic programming. Information Processing Letters, 33:309{311, 1990.

[105] Z. Galil and K. Park. Dynamic programming with convexity, concavity and
sparsity. Theoretical Computer Science, 92:49{76, 1992.

[106] Z. Galil and J. Seiferas. Time{space{optimal string matching. Journal of
Computer and System Sciences, 26:280{294, 1983.

[107] J. Gallant, D. Maier, and J. Storer. On �nding minimal length superstrings.
Journal of Computer and System Science, 20:50{58, 1980.

[108] J. K. Gallant. The complexity of the overlap method for sequencing biopoly-
mers. Journal of Theoretical Biology, 101:1{17, 1983.

[109] P. W. Garden. Markov analysis of viral DNA/RNA sequences. Journal of
Theoretical Biology, 82:679{684, 1980.

[110] M. R. Garey and D. S. Johnson. Computer and Intractability. W. H. Free-
man and Company, New York, 1979.

181

[111] J. Garnier and J. M. Levin. The protein structure code: what is its present
status? Computer Applications in the Biosciences, 7:133{142, 1991.

[112] M. A. Gates. A simple way to look at DNA. Journal of Theoretical Biology,
119:319{328, 1986.

[113] A. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge Uni-
versity Press, New York, 1988.

[114] W. Gilbert. Genome sequencing: Creating a new biology for the twenty{�rst
century. Issues in Science and Technology, 3:26{35, 1987.

[115] T. R. Gingeras. Computers and DNA sequences: A natural combination. In
B. S. Weir, editor, Statistical analysis of DNA sequence data, pages 15{43.
Marcel{Dekker, New York, 1983.

[116] W. B. Goad. Computational analysis of genetic sequences. Annual Review
of biophysics and biophysical chemistry, 15:79{95, 1986.

[117] W. B. Goad and M. I. Kanehisa. Pattern recognition in nucleic acid se-
quences. I. a general method for �nding local homologies and symmetries.
Nucleic Acids Research, 10:247{263, 1982.

[118] G. H. Gonnet and R. A. Baeza-Yates. An analysis of the Karp{Rabin string
matching algorithm. Information Processing Letters, 34:271{274, 1990.

[119] O. Gotoh. An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology, 162:705{708, 1982.

[120] O. Gotoh. Alignment of three biological sequences with an e�cient traceback
procedure. Journal of Theoretical Biology, 121:327{337, 1986.

[121] O. Gotoh. Consistency of optimal sequence alignments. Bulletin of Mathe-
matical Biology, 52:509{525, 1990.

[122] O. Gotoh. Optimal sequence alignment allowing for long gaps. Bulletin of
Mathematical Biology, 52:359{373, 1990.

[123] O. Gotoh and Y. Tagashira. Sequence search on a supercomputer. Nucleic
Acids Research, 14:57{64, 1986.

[124] M. Gribskov and M. Devereux. Sequence analysis primer. Stockton Press,
New York, 1991.

[125] M. Gribskov, M. McLachlan, and D. Eisenberg. Pro�le analysis: detection of
distantly related proteins. Proceedings of the National Academy of Science,
84:4355{4358, 1987.

[126] R. Grossi and R. Luccio. Simple and e�cient string matching with k mis-
matches. Information Processing Letters, 33:113{120, 1989.

182

[127] R. A. Grymes, P. Travers, and A. Engelberg. Gel { a computer tool for
DNA sequencing projects. Nucleic Acids Research, 14:87{99, 1986.

[128] D. Gus�eld, G. M. Landau, and B. Schieber. An e�cient algorithm for
the all pairs su�x{pre�x problem. To appear in Sequences: Combinatorics,
Compression, Security and Transmission, 1991.

[129] J. E. Haber and D. E. Koshland Jr. An evaluation of the relatedness of
proteins based on comparison of amino acid sequences. Journal of Molecular
Biology, 50:617{639, 1970.

[130] S. Hahn, S. Buratowski, P. A. Sharp, and L. Guarente. Isolation of the gene
encoding the yeast TATA binding protein TFIID: A gene identical to the
SPT15 suppressor of ty element insertions. Cell, 58:1173{1181, 1989.

[131] R. Harr, H. Haggstrom, and P. Gustafsson. Search algorithm for pattern
match analysis of nucleic acid sequences. Nucleic Acids Research, 11:2943{
2957, 1983.

[132] D. S. Hirschberg. A linear space algorithm for computing longest common
subsequences. Communications of the ACM, 18:341{343, 1975.

[133] D. S. Hirschberg. Fast parallel sorting algorithms. Communications of the
ACM, 21:657{661, 1978.

[134] J. L. Holloway. An annotated bibliography of algorithmsapplicable to molec-
ular biology. Technical Report 92{50{01, Oregon State University, Corvallis,
OR. 97331, 1992.

[135] L. Hood and L. Smith. Genome sequencing: How to proceed. Issues in
Science and Technology, 3:36{46, 1987.

[136] M. Horikoshi, C. K. Wang, H. Fujii, J. A. Cromlish, P. A. Weil, and R. G.
Roeder. Cloning and structure of a yeast gene encoding a general tran-
scription initiation factor TFIID that binds to the TATA box. Nature,
341:299{303, 1989.

[137] R. N. Horspool. Practical fast searching in strings. Software Practice and
Experience, 10(3):501{506, 1980.

[138] W. J Hsu and M. W. Du. New algorithms for the LCS problem. Journal of
Computer and System Sciences, 29:133{152, 1984.

[139] X. Huang. A lower bound for the edit{distance problem under an arbitrary
cost function. Information Processing Letters, 27:319{321, 1988.

[140] X. Huang. A space{e�cient parallel sequence comparison algorithm for a
message{passing multiprocessor. International Journal of Parallel Program-
ming, 18:223{239, 1989.

183

[141] X. Huang, W. Miller, S. Schwartz, and R. C. Hardison. Parallelization
of a local similarity algorithm. Computer Applications in the Biosciences,
8(2):155{165, 1992.

[142] A. Hume and D. Sunday. Fast string searching. Technical Report Computing
Science Technical Report Number 156, AT&T Bell Labs, 1991.

[143] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20:350{353, 1977.

[144] O. H. Ibarra, T. Jiang, and H. Wang. String editing on a one{way linear
array of �nite state machines. IEEE Transactions on Computers, 41(1):112{
118, 1992.

[145] O. H. Ibarra, T. Pong, and S. M. Sohn. Hypercube algorithms for some string
comparison problems. In Proceedings of the 1988 International Conference
on Parallel Processing, volume 3, pages 190{193, 1988.

[146] O. H. Ibarra, T. Pong, and S. M. Sohn. String processing on the hypercube.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 38:160{164,
1990.

[147] M. E. Isenman and D. E. Shasha. Performance and architectural issues for
string matching. IEEE Transactions on Computers, 39:238{250, 1990.

[148] M. S. Johnson and R. F. Doolittle. A method for the simultaneous alignment
of three or more amino acid sequences. Journal of Molecular Evolution,
23:267{278, 1986.

[149] R. E. Johnston, J. M. Mackenzie Jr., and W. G. Dougherty. Assembly of
overlapping DNA sequences by a program written in BASIC for 64k CP/M
and MS-DOS IBM{compatible microcomputers. Nucleic Acids Research,
14:517{527, 1986.

[150] L. P. Jones. Portrep: A portable repeated string �nder. Software Practice
and Experience, 19:63{77, 1980.

[151] J. R. Jungck and R. M. Friedman. Mathematical tools for molecular genetics
data: An annotated bibliography. Bulletin of Mathematical Biology, 46:699{
744, 1984.

[152] M. I. Kanehisa and W. B. Goad. Pattern recognition in nucleic acid se-
quences. II. an e�cient method for �nding locally stable secondary struc-
tures. Nucleic Acids Research, 10:265{278, 1982.

[153] S. Karlin and S.F. Altschul. Methods for assessing the statistical signi�cance
of molecular sequence features by using general scoring schemes. Proceedings
of the National Academy of Science, 87:2264{2268, 1990.

184

[154] S. Karlin and G. Ghandour. Comparative statistics for DNA and protein
sequences: single sequence statistics. Proceedings of the National Academy
of Science, 82:5800{5804, 1985.

[155] S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn. New approaches
for computer analysis of nucleic acid sequences. Proceedings of the National
Academy of Science, 80:5660{5664, 1983.

[156] S. Karlin, M. Morris, G. Ghandour, and M. Leung. Algorithms for iden-
tifying local molecular sequence features. Computer Applications in the
Biosciences, 4(1):41{51, 1988.

[157] S. Karlin, M. Morris, G. Ghandour, and M. Y. Leung. E�cient algorithms
for molecular sequence analysis. Proceedings of the National Academy of
Science, 85:841{845, 1988.

[158] R. M. Karp and M. O. Rabin. E�cient randomized pattern{matching algo-
rithms. IBM Journal of Research and Development, 32:249{260, 1987.

[159] J. D. Kececioglu. Exact and Approximation algorithms for DNA sequence
reconstruction. PhD thesis, The University of Arizona, Tucson, Arizona,
1991.

[160] D. E. Knuth. The art of computer programming: fundamental algorithms,
volume 1. Addison{Wesley, 1973.

[161] D. E. Knuth. The art of computer programming: searching and sorting,
volume 3. Addison{Wesley, 1973.

[162] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal of Computing, 6:323{350, 1977.

[163] M. Krawczak. Algorithms for the restriction{site mapping of DNA
molecules. Proceedings of the National Academy of Science, 85:7298{7301,
1988.

[164] S. Kuo and G. R. Cross. An improved algorithm to �nd the length of the
longest common subsequence of two strings. SIGIR Forum, 23:89{99, 1989.

[165] G. M. Landau and U. Vishkin. E�cient string matching in the presence of
errors. In IEEE Symposium on the Foundations of Computer Science, pages
126{136, 1985.

[166] G. M. Landau and U. Vishkin. E�cient string matching with k mismatches.
Theoretical Computer Science, 43:239{249, 1986.

[167] G. M. Landau and U. Vishkin. Introducing e�cient parallelism into ap-
proximate string matching and a new serial algorithm. In Proceedings of the
ACM Symposium on Theory of Computing, pages 220{230, 1986.

185

[168] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string
matching. Journal of Algorithms, 10:157{169, 1989.

[169] G. M. Landau, U. Vishkin, and R. Nussinov. An e�cient string matching al-
gorithm with k di�erences for nucleotide and amino acid sequences. Nucleic
Acids Research, 14:31{46, 1986.

[170] G. M. Landau, U. Vishkin, and R. Nussinov. An e�cient string matching
algorithm with k substitutions for nucleotide and amino acid sequences.
Journal of Theoretical Biology, 126:483{490, 1987.

[171] G. M. Landau, U. Vishkin, and R. Nussinov. Fast alignment of DNA and
protein sequences. Methods in Enzymology, 183:487{502, 1990.

[172] A. M. Landraud, J. F. Avril, and P. Chretienne. An algorithm for �nding
a common structure shared by a family of strings. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11:890{895, 1989.

[173] L. L. Larmore. On{line dynamic programming with applications to the
prediction of RNA secondary structure. Journal of Algorithms, 12:490{515,
1991.

[174] R. H. Lathrop, T. A. Webster, and T. F. Smith. Ariadne: Pattern{directed
inference and hierarchical abstraction in protein structure recognition. Com-
munications of the ACM, 30:909{921, 1987.

[175] C. B. Lawrence. Use of homology domains in sequence similarity detection.
Methods in Enzymology, 183:133{146, 1990.

[176] C. B. Lawrence, D. A. Goldman, and R. T. Hood. Optimized homology
searches of the gene and protein sequence data banks. Bulletin of Mathe-
matical Biology, 48:569{583, 1986.

[177] S. Y. Le, R. Nussinov, and J. V. Maizel. Tree graphs of RNA secondary
structures and their comparisons. Computers and Biomedical Research,
22:461{473, 1989.

[178] T. Lecroq. A variation on the Boyer{Moore algorithm. Theoretical Computer
Science, 92:119{144, 1992.

[179] A. M. Lesk, editor. Computational Molecular Biology. Oxford, New York,
1988.

[180] B. M. Lewin. Genes II. John Wiley & Sons, New York, 1985.

[181] M. Li. Towards a DNA sequencing theory. In IEEE Symposium on the
Foundations of Computer Science, pages 125{134, 1990.

186

[182] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple se-
quence alignment. Proceedings of the National Academy of Science, 86:4412{
4415, 1989.

[183] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227:1435{1441, 1985.

[184] R. Lowrance and R. A. Wagner. An extension of the string to string cor-
rection problem. Journal of the Association for Computing Machinery,
23(2):177{183, 1975.

[185] M. Maes. On a cyclic string{to{string correction problem. Information
Processing Letters, pages 73{78, 1990.

[186] D. Maier. The complexity of some problems on subsequences and superse-
quences. Journal of the Association for Computing Machinery, 25:322{336,
1978.

[187] M. G. Main and R. J. Lorentz. An �(n logn) algorithm for �nding all repeti-
tions in a string. Technical Report CU{CS{241{82, University of Colorado,
1982.

[188] U. Manber and R. Baeza-Yates. An algorithm for string matching with a
sequence of don't cares. Information Processing Letters, 37:133{136, 1991.

[189] U. Manber and G. Myers. Su�x arrays: A new method for on{line string
searches. In Proceedings of the First Annual ACM{SIAM Symposium on
Discrete Algorithms, pages 319{327. SIAM, 1990.

[190] H. M. Martinez. An e�cient method for �nding repeats in molecular se-
quences. Nucleic Acids Research, 11:4629{4634, 1983.

[191] W. J. Masek and M. S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20:18{31, 1980.

[192] A. M. Masreliez and J. L. Holloway. Calculation of the minimal{cost path
seperating a DNA strand and a protein sequence. Class project, 1992.

[193] E. M. McCreight. A space{economical su�x tree construction algorithm.
Journal of the Association for Computing Machinery, 23:262{272, 1976.

[194] P. L. Miller, P. M. Nadkarni, and N. M. Carriero. Parallel computation
and FASTA: confronting the problem of parallel database search for a fast
sequence comparison algorithm. Computer Applications in the Biosciences,
7(1):71{78, 1991.

[195] W. Miller, J. Barr, and K. E. Rudd. Improved algorithms for searching re-
striction maps. Computer Applications in the Biosciences, 7:447{456, 1991.

187

[196] W. Miller and E. W. Myers. A �le comparison program. Software{Practice
and Experience, 15:1025{1040, 1985.

[197] W. Miller and E. W. Myers. Sequence comparison with concave weighting
functions. Bulletin of Mathematical Biology, 50:97{120, 1988.

[198] A. D. Milosavljevic. Categorization of macromolecular sequences by minimal
length encoding. PhD thesis, University of California at Santa Cruz, 1991.

[199] J. F. Moore and C. Burks. The genbank nucleic acid data bank. Focus,
11(4), 1991.

[200] R. Mott. Maximum{likelihood estimation of the statistical distribution of
Smith{Waterman local sequence similarity scores. Bulletin of Mathematical
Biology, 54:59{75, 1992.

[201] R. F. Mott, T. B. L. Kirkwood, and R. N. Curnow. An accurate approxima-
tion to the distribution of the length of the longest matching word between
two random DNA sequences. Bulletin of Mathematical Biology, 52:773{784,
1990.

[202] A. Mukherjee. Hardware algorithms for determining similarity between two
strings. IEEE Transactions on Computers, 38:600{603, 1989.

[203] M. Murata, J. S. Richardson, and J. L. Sussman. Simultaneous comparison
of three protein sequences. Proceedings of the National Academy of Science,
82:3073{3077, 1985.

[204] E. W. Myers. An O(ND) di�erence algorithm and its variations. Algorith-
mica, 1:251{256, 1986.

[205] E. W. Myers. Incremental alignment algorithms and their applications.
SIAM Journal of Computing, 1989. to be published.

[206] E. W. Myers and W. Miller. Optimal alignments in linear space. Computer
Applications in the Biosciences, 4:11{17, 1988.

[207] E. W. Myers and W. Miller. Approximate matching of regular expressions.
Bulletin of Mathematical Biology, 51:5{37, 1989.

[208] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and
a new generalized connection network. Journal of the Association for Com-
puting Machinery, 29:642{667, 1982.

[209] S. B. Needleman and C. D. Wunsch. A general method applicable to the
search of similarities in the amino acid sequence of two proteins. Journal of
Molecular Biology, 48:443{453, 1970.

[210] R. Nussinov. E�cient algorithms for searching for exact repetition of nu-
cleotide sequences. Journal of Molecular Evolution, 19:283{285, 1983.

188

[211] R. Nussinov. Theoretical molecular biology: prospectives and perspectives.
Journal of Theoretical Biology, 125:219{235, 1987.

[212] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithm for
loop matchings. SIAM Journal of Applied Mathematics, 35:68{82, 1978.

[213] S. G. Oliver and J. G. Sgouros et. al. The complete DNA sequence of yeast
chromosome III. Nature, 357:38{46, 7 May 1992.

[214] B. C. Orcutt and W. C. Barker. Searching the protein sequence database.
Bulletin of Mathematical Biology, 46:545{552, 1984.

[215] W. R. Pearson. Rapid and sensitive sequence comparison with fastp and
fasta. Methods in Enzymology, 188:63{98, 1990.

[216] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence
comparison. Proceedings of the National Academy of Science, 85:2444{2448,
1988.

[217] H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algorithms for some
string matching problems arising in molecular genetics. In Information Pro-
cessing 83, pages 53{64, 1983.

[218] H. Peltola, H. Soderlund, and E. Ukkonen. SEQAID: a DNA sequence as-
sembling program based on a mathematical model. Nucleic Acids Research,
12:307{321, 1984.

[219] H. Peltola, H. Soderlund, and E. Ukkonen. Algorithms for the search of
amino acid patterns in nucleic acid sequences. Nucleic Acids Research,
14:99{107, 1986.

[220] M. Perry, G. H. Thomsen, and R. G. Roeder. Genomic organization and
nucleotide sequence of two distinct histone gene clusters from xenopus laevis.
Journal of Molecular Biology, 185:479{499, 1985.

[221] J. J. Pollock. Spelling error detection and correction by computer: some
notes and a bibliography. Journal of documentation, 38(4):282{291, 1982.

[222] S. Pramanik and C. T. King. A hardware pattern matching algorithm on a
data
ow. The Computer Journal, 38:264{269, 1985.

[223] R. W. Quong. Fast average{case pattern matching by multiplexing sparse
tables. Theoretical Computer Science, 92:165{179, 1992.

[224] S. Ranka and T. Heywood. Two{dimensional pattern matching with k mis-
matches. Pattern Recognition, 24:31{40, 1991.

[225] J. H. Reif. An optimal parallel algorithm for integer sorting. In IEEE
Symposium on the Foundations of Computer Science, pages 496{504, 1985.

189

[226] I. Rinsma, M. Hendy, and D. Penny. Distribution of the number of matches
between nucleotide sequences. Bulletin of Mathematical Biology, 52:349{
358, 1990.

[227] L. Roberts. New chip may speed genome analysis. Science, 244:655{656,
1989.

[228] L. Roberts. The worm project. Science, 248:655{656, 1989.

[229] K. H. Rosen. Elementary Number Theory and Its Applications. Addison{
Wesley, Reading, MA, 1984.

[230] F. Sanger, A. R. Coulson, B. G. Barrell, A. J. H. Smith, and B. A. Roe.
Cloning in single{stranded bacteriophage as an aid to rapid DNA sequenc-
ing. Journal of Molecular Biology, pages 161{178, 1980.

[231] D. Sanko�. Matching sequences under deletion/insertion constraints. Pro-
ceedings of the National Academy of Science, 69:4{6, 1972.

[232] D. Sanko� and R. J. Cedergren. A test for nucleotide sequence homology.
Journal of Molecular Biology, 77:159{164, 1973.

[233] D. Sanko�, R. J. Cedergren, and Y. Abel. Genomic divergence through gene
rearrangement. Methods in Enzymology, 183:428{438, 1990.

[234] D. Sanko� and M. Goldstein. Probabilistic models of genome shu�ing.
Bulletin of Mathematical Biology, 51:117{124, 1989.

[235] D. Sanko� and J. B. Kruskal. Time warps, string edits, and macromolecules:
the theory and practice of sequence comparison. Addison{Wesley, Reading,
MA, 1983.

[236] R. Schaback. On the expected sublinearity of the boyer{moore algorithm.
SIAM Journal of Computing, 17:648{658, 1988.

[237] M. C. Schmidt, C. Kao, R. Pei, and A. J. Berk. Yeast TATA-box transcrip-
tion factor gene. Proceedings of the National Academy of Science, 86:7785{
7789, 1989.

[238] M. Schoniger and M. S. Waterman. A local algorithm for DNA sequence
alignment with inversions. Bulletin of Mathematical Biology, 54(4):521{536,
1992.

[239] R. Sedgewick. Algorithms. Addison{Wesley, Reading, MA, 1983.

[240] P. H. Sellers. An algorithm for the distance between two �nite sequences.
Journal of Combinatorial Theory (A), 16:253{258, 1974.

[241] P. H. Sellers. On the theory and computation of evolutionary distances.
SIAM Journal of Applied Mathematics, 26:787{793, 1974.

190

[242] P. H. Sellers. Pattern recognition in genetic sequences. Proceedings of the
National Academy of Science, 76:3041{3041, 1979.

[243] P. H. Sellers. The theory and computation of evolutionary distances: pattern
recognition. Journal of Algorithms, 1:359{373, 1980.

[244] P. H. Sellers. Pattern recognition in genetic sequences by mismatch density.
Bulletin of Mathematical Biology, 46:501{514, 1984.

[245] D. Sellos, S. A. Krawetz, and G. H. Dixon. Organization and complete nu-
cleotide sequence of the core{histone{gene cluster of the annelid platynereis
dumerilii. European Journal of Biochemistry, 190:21{29, 1990.

[246] M. B. Shapiro. An algorithm for reconstructing protein and RNA sequences.
Journal of the Association for Computing Machinery, 14:720{731, 1967.

[247] B. D. Silverman and R. Linsker. A measure of DNA periodicity. Journal of
Theoretical Biology, 118:295{300, 1986.

[248] A. K. Singh and R. Overbeek. Derivation of e�cient parallel programs: An
example from genetic sequence analysis. International Journal of Parallel
Programming, 18:447{484, 1989.

[249] D. F. Sittig, D. Foulser, N. Carriero, G. McCorkle, and P. L. Miller. A paral-
lel computing approach to genetic sequence comparison: The master{worker
paradigm with interworker communication. Computers and Biomedical Re-
search, 24:152{169, 1991.

[250] J. K. Smith. Seqwarp: A low{cost linear systolic array for biological se-
quence comparison. Master's thesis, The University of Utah, 1991.

[251] P. D. Smith. Experiments with a very fast substring search algorithm.
Software{Practice and Experience, 21:1065{1074, 1991.

[252] R. F. Smith and T. S. Smith. Automatic generation of primary sequence
patterns from sets of related protein sequences. Proceedings of the National
Academy of Science, 87:118{122, 1990.

[253] T. F. Smith and M. S. Waterman. Identi�cation of common molecular
subsequences. Journal of Molecular Biology, 147:195{197, 1981.

[254] E. Sobel and H. M. Martinez. A multiple sequence alignment program.
Nucleic Acids Research, 14:363{374, 1986.

[255] J. L. Spouge. Improving sequence{matching algorithms by working from
both ends. Journal of Molecular Biology, 181:137{138, 1985.

[256] J. L. Spouge. Fast optimal alignment. Computer Applications in the Bio-
sciences, 7(1):1{7, 1991.

191

[257] R. Staden. Automating of the computer handling of gel reading data pro-
duced by shotgun method of DNA sequencing. Nucleic Acids Research,
10:4731{4751, 1982.

[258] P. Stolorz, A. Lapedes, and Y. Xia. Predicting protein secondary structure
using neural net and statistical methods. Technical Report LA{UR{91{
15, Los Alamos National Laboratory, Theoretical Division, MS B213, Los
Alamos National Laboratory, Los Alamos, NM, 87545, 1991.

[259] D. Straus and W. Gilbert. Genetic engineering in the precambrian: Struc-
ture of the chicken triosephosphate isomerase gene. Molecular and Cellular
Biology, 5(12):3497{3506, 1985.

[260] S. Subbiah and S. C. Harrison. A method for multiple sequence alignment
with gaps. Journal of Molecular Biology, 209:539{548, 1989.

[261] D. M. Sunday. A very fast substring search algorithm. Communications of
the ACM, 33:132{142, 1990.

[262] J. Tarhio and E. Ukkonen. A greedy approximation algorithm for construct-
ing shortest common superstrings. Theoretical Computer Science, 57:131{
145, 1988.

[263] P. Taylor, P. Rosenberg, and M. G. Samsonova. A new method for �nding
long consensus patterns in nucleic acid sequences. Computer Applications
in the Biosciences, 7:495{500, 1991.

[264] N. Tewari and M. D. Wagh. Bit-sequential array for pattern matching.
Proceedings of the IEEE, 74:1465{1466, 1986.

[265] J. L. Thorne, H. Kishino, and J. Felsenstein. Inching toward reality: An
improved likelihood model of sequence evolution. submitted to the Journal
of Molecular Evolution.

[266] J. L. Thorne, H. Kishino, and J. Felsenstein. An evolutionary model for
maximum likelihood alignment of DNA sequences. Journal of Molecular
Evolution, 33:114{124, 1991.

[267] W. F. Tichy. The string to string correction problem with block moves.
ACM Transactions on Computer Systems, 2(4):309{321, 1984.

[268] D. C. Torney, C. Burks, D. Davison, and K. M. Sirotkin. Computation of
d2: A measure of sequence dissimilarity. In G. Bell and R. Marr, editors,
Computers and DNA, pages 109{125, New York, 1990. Sante Fe Institute
studies in the sciences of complexity, vol. VII, Addison{Wesley.

[269] J. Turner. Approximation algorithms for the shortest common superstring
problem. Information and Computation, 83:1{20, 1989.

192

[270] E. C. Tyler, M. R. Horton, and P. R. Krause. A review of algorithms
for molecular sequence comparison. Computers and Biomedical Research,
24:72{96, 1991.

[271] E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100{118, 1985.

[272] E. Ukkonen. Finding approximate patterns in strings. Journal of Algo-
rithms, 6:132{137, 1985.

[273] E. Ukkonen. A linear{time algorithm for �nding approximate shortest com-
mon superstrings. Algorithmica, 5:313{323, 1990.

[274] S. M. Ulam. Some ideas and prospects in biomathematics. In M. F. Morales,
editor, Annual Review of Biophysics and Bioengineering. Annual reviews
Inc., Palo Alto, CA, 1972.

[275] U.S. Department of Health and Human Services and U.S. Department of
Energy. Understanding our genetic inheritance. the u.s. human genome
project: The frist �ve years, fy 1991{1995. Technical Report NIH 90{1590,
U.S. Department of Health and Human Services and U.S. Department of
Energy, 1990.

[276] M. Veldhorst. Parallel dynamic programming algorithms. In CONPAR
86. Conference on Algorithms and Hardware for Parallel Processing, pages
393{402, Berlin, 1986. Springer{Verlag.

[277] U. Vishkin. Optimal parallel pattern matching in strings. In Proceedings of
the 12th ICALP, Lecture Notes in CS 194, pages 497{508, New York, 1985.
Springer{Verlag.

[278] G. von Heijne. Sequence analysis in molecular biology. Academic Press,
New York, 1987.

[279] R. A. Wagner and M. J. Fischer. The string{to{string correction problem.
Journal of the Association for Computing Machinery, 21:168{173, 1974.

[280] M. S. Waterman. Sequence alignments in the neighborhood of the opti-
mum with general application to dynamic programming. Proceedings of the
National Academy of Science, 80:3123{3124, 1983.

[281] M. S. Waterman. E�cient sequence alignment algorithms. Journal of The-
oretical Biology, 108:333{337, 1984.

[282] M. S. Waterman. General methods of sequence comparison. Bulletin of
Mathematical Biology, 46:473{500, 1984.

[283] M. S. Waterman. Multiple sequence alignment by consensus. Nucleic Acids
Research, 14:9095{9102, 1986.

193

[284] M. S. Waterman. Computer analysis of nucleic acid sequences. Methods in
Enzymology, 164:765{795, 1988.

[285] M. S. Waterman. Forward to 1989 special issue on molecular sequence
analysis. Bulletin of Mathematical Biology, 51:1{4, 1989.

[286] M. S. Waterman, R. Arratia, and D. J. Galas. Pattern recognition in sev-
eral sequences: consensus and alignment. Bulletin of Mathematical Biology,
46:515{527, 1984.

[287] M. S. Waterman andM. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA{rRNA comparisons. Journal of Molecular
Biology, 197:723{728, 1987.

[288] M. S. Waterman and J. R. Griggs. Interval graphs and maps of DNA.
Bulletin of Mathematical Biology, 48:189{195, 1986.

[289] M. S. Waterman, T. F. Smith, and W. A. Beyer. Some biological sequence
metrics. Advances in Mathematics, 20:367{387, 1976.

[290] P. Weiner. Linear pattern matching algorithms. In Conference Record,
IEEE 14th Annual Symposium on Switching and Automata Theory, pages
1{11, 1973.

[291] W. J. Wilbur. On the PAM matrix model of protein evolution. Molecular
and Biological Evolution, 2:434{447, 1985.

[292] W. J. Wilbur and D. J. Lipman. Rapid similarity searches of nucleic acid
and protein data banks. Proceedings of the National Academy of Science,
80:726{730, 1983.

[293] W. J. Wilbur and D. J. Lipman. The context dependent comparison of
biological sequences. SIAM Journal of Applied Mathematics, 44:557{567,
1984.

[294] C. K. Wong and A. K. Chandra. Bounds for the string editing problem.
Journal of the Association for Computing Machinery, 23:13{16, 1976.

[295] S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence compar-
ison algorithm. Information Processing Letters, 35:317{323, 1990.

[296] M. Zuker. On �nding all suboptimal foldings of an RNA molecule. Science,
244:48{52, 1989.

[297] M. Zuker and R. L. Somorjai. The alignment of protein structures in three
dimensions. Bulletin of Mathematical Biology, 51:55{78, 1989.

[298] M. Zuker and P. Stiegler. Optimal computer folding of large rna sequence
using thermodynamics and auxililary information. Nucleic Acids Research,
9:133{148, 1981.

Appendix

194

Appendix A

Glossary

Base One of four molecules that make up the backbone of DNA. They are adenine

and guanine (the purines) and cytosine and thymine (the pyrimidines), often

represented as A, G, C, and T respectively.

Cloning The process of inserting a segment of foreign DNA into a plasmid and

then into a host organism, usually for the purpose of highly expressing (mak-

ing many copies of) the segment of foreign DNA.

Codon Three nucleotides that represent an amino acid or a stop signal.

Dicodon Two adjacent codons.

DNase I An enzyme that randomly cleaves DNA, independent of the position

or composition of the site being cleaved.

Eukaryote Organism that have cells with nuclear membranes.

Exon Any segment of a gene that is represented in the �nal RNA copy of the

gene.

Fingerprint See motif.

GenBank Database of DNA and RNA sequences.

Homologous A group of organisms or molecules are homologous if they have

evolved from a common ancestor. Homology is frequently inferred from

similarity.

195

Intron A segment of a gene that is transcribed into the initial copy of the RNA,

but removed from the �nal RNA copy by splicing together the exons on

either side of the intron.

Mapping, Genetic Determining the order of genetic markers by data gathered

from the recombination of the DNA. The markers are frequently genes or al-

leles of the same gene. The unit of measure is the centimorgan. A distance

of one centimorgan indicates that two markers are separated by recombi-

nation one percent of the time when the traits are passed from parent to

children.

Mapping, Physical Determining the physical position of regions of interest in

the DNA such as genes. The unit of measure if frequently the number of

base pairs between points of interest.

Messenger RNA (mRNA) A transcription of the DNA used to move the spec-

i�cation for one or more proteins from the nucleus to the cytoplasm.

Motif A pattern of nucleic acids or amino acids that is associated with a speci�c

structure or function of the molecule.

Nucleotide A subunit of DNA composed of a base, a sugar, and at least one

phosphate group.

Phylogenetic tree A bifurcating tree that describes the evolutionary history

of a group of organisms. In some phylogenetic trees the distance from a

branch point represents the time since the two groups diverged, in other

phylogenetic trees only the branching order is signi�cant.

Polymerase Chain Reaction (PCR) A method of amplifying speci�c regions

of DNA. Sequence speci�c primers are created that bind to the ends of the

region of DNA to be ampli�ed. By repeating a cycle that causes the the

region of DNA between the primers to be duplicated, the number of copies

of the region of DNA that is of interest increases exponentially.

196

Primer A short sequence that pairs with a strand of DNA to initiate the synthesis

of a copy of the DNA.

Reading Frame One of the three possible ways of reading a nucleotide sequence

as a series of triplets representing amino acids. Each reading frame will pro-

duce a di�erent sequence of amino acids from the same nucleotide sequence.

Restriction Enzyme A molecule that recognizes a short speci�c sequence of

DNA and cleaves the DNA at that or nearby site. Also referred to as a

restriction endonuclease.

Ribosomal RNA (rRNA) RNA that is an integral part of ribosomes, particles

that translate Messenger RNA to produce a protein.

Sequence A string of characters representing the nucleic acids or amino acids of

a strand of DNA, RNA, or protein.

Sequencing Gel A material that when an electric current is run through, allows

DNA fragments to travel at di�erent rates depending on the length of the

fragment. Used to determine the order of bases in DNA.

Sequencing The process of determining the order of bases in a DNA or RNA

sequence.

Shotgun sequencing A method of determining the order of bases in a DNA

sequence. The DNA of interest is fragmented into random subsequences,

the subsequences are sequenced, and the overlaps in the subsequences are

used to reconstruct the original sequence.

Structure, Primary The order of the nucleotides in DNA and RNA, or the

order of the amino acids in a protein.

Structure, Secondary In RNA, the pattern of stems and loops (see Figure 1.3).

In protein, the basic structures such as helix, � sheet, and turns.

197

Structure, Tertiary In protein, the three dimensional structure of the molecule.

Template See motif.

Transfer RNA (tRNA) A small RNA molecule that binds an amino acid on

one end and recognizes an mRNA triplet on the other end. Used to transport

amino acids to construct a protein.

Watson{Crick Base Pairing In DNA, adenine will pair with thymine and gua-

nine will pair with cytosine to form base pairs.

