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ALGORITHMS FOR THE ASSIGNMENT AND
TRANSIORTATION tROBLEMS*

JAMES MUNKRES

In this paper we presen algorithms for the solution of the general assign-
ment and transportation problems. In Section 1, a statement of the al-

gorithm for the assignment problem appears, along with a proof for the

correctness of the algorithm. The remarks which constitute the proof are

incorporated parenthetically into the statement of the algorithm. Follow-
ing this appears a discussion of certain theoretical aspects of the problem.
In Section 2, the algorithm is generalized to one for the transportation
problem. The algorithm of that section is stated as concisely as possible,
with theoretical remarks omitted.

1. THE ASSIGNMENT PROBLEM. The personnel-assignment problem is the

problem of choosing an optimal assignment of n men to n jobs, assuming
that numerical ratings are given for each man’s performance on each job.
An optimal assignment is one which makes the sum of the men’s ratings
for their assigned jobs a maximum. There are n! possible assignments (of
which several may be optimal), so that it is physically impossible, except
for very small n, to consider all the different assignments one-by-one.
The problem is to find a reasonably efficient algorithm for obtaining an

optimal assignment. Such an algorithm has been given by H. Kuhn [3];
another algorithm, which is a variant of Kuhn’s, appears in the present
paper.
A mathematical statement, of the problem follows: Let r. be the perform-

ance rating of manM for job Jj. A set of elements of a matrix are said to
be independent if no two of them lie in the same line (the word "line" applies
both to the rows and to the columns of a matrix). One wishes to choose a

set of n independent elements of the matrix (r.) so that the sum

of these elements is maximum. Let r max,, r., and let x r r.
An equivalent problem is to choose a set of n independent elements of
the matrix A (x.) such that the sum of these elements is minimum.
This is the problem we consider. We assume for the present that the ele-

ments of A are integers.
Two remarks are in order: (1) There is a theorem of K6nig which states:

If A is a matrix, and m is the maximum number of independent zero ele-
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merits of A, then there are m lines which contain all the zero elements of A.
(2) It is readily seen that the solution of our problem is not changed if we

replace the matrix (xi’) by the matrix (yi.), where y- xj u v.
(us and are arbitrary constants).
These facts provide a basis for Kuhn’s algorithm; M. Flood [1] has out-

lined it in the following form:
Step A. Subtract the smallest element in A from each element of A,

obtaining a matrix A1 with non-negative elements and at least one zero.

Step B. Find a minimal set $1 of lines, n in number, which contain all
the zeros of A1. If n n, there is a set of n independent zeros and the

elements of A in these n positions constitute the required solution.

Step C. If n < n, let h denote the sma,llest element of A1 which is not
in any line of $1. Then hi > 0. For each line in S, add hi to every element
of that line; then subtract h from every element of A. Call the new ma-

trix A..
Step D. Repeat Steps B and C, using A in place of A1. The sum of the

elements of the matrix is decreased by n(n n)hk in each application of

Step C, so the process must terminate after a finite number of steps.
To complete the algorithm, it is necessary to give a constructive procedure

for carrying out Step B, i.e., for finding (1) a minimal set of lines which

contain all zeros and (2) a maximal set of independent zeros. The present
algorithm differs from Kuhn’s at this point. Our algorithm follows.

In the course of the problem, certain lines will be distinguished; we will

speak of these lines as covered lines. An element of the matrix is said to be

non-covered, once-covered, or twice-covered, accordingly as it lies in
precisely none, one, or two covered lines. We will distinguish some zero

elements by means of asterisks and some by means of primes (we refer to
"starred zeros" and "primed zeros", respectively).

Preliminaries. No lines are covered; no zeros are starred or primed. Con-
sider a row of the matrix A; subtract from each element in this row the
smallest element of this row. Do the same for each row of A. Then consider

each column of the resulting matrix and subtract from each column its

smallest entry. [This is similar to Step A above.]
Consider a zero Z of the matrix. If there is no starred zero in its row

and none in its column, star Z. Repeat, considering each zero in the matrix

in turn. Then cover every column containing a starred zero. [These starred
zeros are independent.]

Step 1. Choose a non-covered zero and prime it. Consider the row con-

taining it. If there is no starred zero in this row, go at once to Step 2.

If there is a starred zero Z in this row, cover this row and uncover the col-
umn of Z.
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Repeat until all zeros are covered. Go to Step 3.
Step 2. There is a sequence of alternating starred and primed zeros,

constructed as follows: Let Z0 denote the uncovered 0. [There is only one.]
Let Z denote the 0* in Z0’s column (if any). Let Z denote the 0’ in Z’s
row (we must prove that it exists). Let Z denote the 0* in Z.’s column
(if any). Similarly continue until the sequence stops at a 0’, Z, which has
no 0* in its column (this we must also prove). [Note that no column con-

tains more than one 0* and no row more than one 0’, so that the sequence
is uniquely specified. The sequence may, however, contain only one ele-
ment. Now the column of Z is not covered, so its row must be covered;
hence there is a 0’ in this row (see Step 1). This 0’ serves as our Z. A similar
argument applies to show that, given Z_, Z. exists. Now let us index
the primed zeros 1, 2, 3, in the order in which we primed them during
Step 1. One sees readily from the directions in Step 1 that the index of

Z must be smaller than the index of Z_. It follows at once that the
sequence does stop and, furthermore, that all the elements of the sequence
Z0, Z are distinct elements of the matrix.]
Unstar each starred zero of the sequence and star each primed zero of

the sequence. [The resulting set of starred zeros is easily seen to be inde-

pendent. It is larger by one than the previous set of independent starred
zeros.] Erase all primes, uncover every row, and cover every column con-

taining a 0". If all columns are covered, the starred zeros form the desired
independent set. Otherwise, return to Step 1.

Step 3. [At this point, all the zeros of the matrix ure covered. Each 0*
is covered by precisely one line, so there are exactly as many covered lines
as there are starred zeros. Now it is clear that any set of lines containing
all the zeros of a matrix cannot contain fewer lines than the maximal number
of independent zeros of the matrix. It follows that at this point, the starred
zeros form a maximal set of independent zeros and the covered lines form a

minimal set of lines containing all the zeros. Thus Steps 1 and 2, repeated
several times perhaps, replace Step B of the previous outline.]

Let h denote the smallest non-covered element of the matrix; it will be
positive. Add h to each covered row; then subtract h from each uncovered
column. [This is the same transformation as is specified in Step C above.]
Return to Step I, without altering any asterisks, primes, or covered

lines. [One might think one should "erase all primes, uncover every row,
and cover every column containing a 0"" before returning to Step I, so

that the input of Step 1 is the standard one. That this is unnecessary may
be seen from the following argument: The effect of the transformation
specified above is to decrease each non-covered element of the matrix by
h, increase each twice-covered element by h, and leave each once-covered
element unaltered. Each 0* and 0 is once-covered, so each is still a zero
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after the transformation. (Incidentally, this shows that ni+1 >- nk, where

n denotes the maximal number of independent zeros of A. Ak denotes
the matrix before the transformation and A+I denotes the transformed

matrix.) Let us index the primed zeros 1, 2, 3,... in the order in which

they were primed previously. Imagine that we "erase all primes, uncover

every row, and cover every column containing a 0"" before returning to

Step 1. The directions in Step 1 tell us to find a non-covered zero, but do

not specify which one of possibly several non-covered ones we should

choose to prime. Hence we can consider the indexed zeros in the order of

their indices, priming each one in turn, without violating the directions in

Step 1. This will bring the configuration of asterisks, primes, and covered

lines back to precisely the same one we had at the beginning of this para-

graph. Hence there is no need to return to the standard input when passing

from Step 3 to Step 1; and indeed such a return would be foolish.]

As remarked previously, Step 3 (or Step C) decreases the sum of the

elements of the matrix, so that the algorithm has only a finite number of

steps. One may prove the following stronger result: If nk+l n, then

when one applies Step 1 to A+, Step 2 will not occur, and one will begin

Step 3 with more horizontal covered lines than in the application of Step 3

to A. [Every horizontal covered line of A is a covered line of Ak+l (see
the preceding paragraph). The transformation by which we pass from

A to Ak+ causes a zero Z to appear in some uncovered position. Z must

have a 0* in its row (since otherwise Step 2 would apply to A+ and we

would have n+ > n), so that this row is covered by the time we reach

the beginning of Step 3.]
From this result it follows that our initial assumption that the elements

of A were integers is not necessary to the operation of the algorithm. This

assumption was used only to show that the algorithm had a finite number

of steps. The result just proved shows that after at most n applications of

Step 3, the maximal number of zeros in the matrix must be increased. The

finiteness of the algorithm follows.
We may also use this result to obtain an absolute maximum for the

number of operations needed to solve completely any n X n assignment

problem, using the present algorithm. The operations considered ure the

following elementary ones: Scan a line, cover or uncover a line, add to or

subtract from a line, star or unstar a zero, prime or unprime a zero. The

maximum is obtained as follows" Suppose that we have a matrix with m

starred independent zeros. We find a maximum for the number of oper-

ations necessary to obtain a matrix with m -t- 1 starred independent zeros.

We assume the worst possible situation, in which each application of Step
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3 serves only to increase the number of horizontal covered lines by one on

the next repetition of Step 1, until finally one has all the covered lines

horizontal. We note first that after the Preliminaries, each row and column

of the matrix contains at least one zero and that this situation never changes.

[The transformation of Step 3 removes only those zeros which are twice-

covered. But each line containing such a zero contains also a 0", which

remains 0 after the transformation.]
In the worst situation, the Preliminaries require no more than 5n -t- 4

operations, at the end of which one has one starred zero.

Suppose we begin Step 1 with m starred zeros, and no primed zeros or

horizontal covered lines. The initial application of Step 1 requires at most
n -- 4 operations, ending with one horizontal covered line. (Each un-

covered column contains a zero, so there will be at least one such line. We
assume the worst situation, in which there is only one.) Step 3 can take no

more than 2n + m operations (of which n are "scan a column", m are "add

to a row", and n are "subtract from a column"), after which we apply
Step 1 and require n -- 4 operations to obtain a matrix with one more

horizontal covered line (again, this is the worst situation possible). This

repeats until we have m horizontal covered lines, at which point continu-

ation of Step 1 must lead to Step 2 (each uncovered row contains a zero).
This continuation requires at most n -t- 1 operations, and Step 2 takes at
most 7m -t- 3 operations (of which 2m are "scan a line", 2m -t- 1 are "erase
a prime or asterisk", m -t- 1 are "star a zero", and 2m -- 1 are "cover or

uncover a line"). Then after at most

(n -4-4) -t- (2n A-m)(m- 1) -t- (n + 4)(m- 1) -t- (n + 1) -4- (7m + 3)

operations, one has a matrix with m -+- 1 starred independent zeros.

Sum this expression from m 1 to m n 1, and add on the 5n A- 4

operations required initially. The final maximum on the number of oper-

ations needed is

(lln -- 12n -- 31n)/6.

This maximum is of theoretical interest, since it is so much smaller than

the n! operations necessary in the most straightforward attack on the

problem.

2. THE TRANSPORTATION PROBLEM. The transportation problem may be

stated as follows: Let D (di.) be an n X m matrix of non-negative in-

tegers and let ri (i 1, n) and cj (j 1, m) be positive integers

such that ri c. N. Determine values of the variables xi which

minimize the sum ,.x d., subject to the conditions

x" 0, =1x c, ’=1 xj ri.
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One may think of the following physical situation" There are N ships
placed at positions P1, P, and r denotes the number of ships at

position P. One wishes to move these ships to new positions Q1, Q,
so that there will be cj ships at position Q-. The number di" is the cost of

moving a ship from position Pi to position Q.. The number x- stands for
the number of ships we order to be moved from P to Q. ;it will be called
the quota assigned to d.. The problem is to choose these quotas so that
the total cost of moving the ships is as small as possible. Such a choice of
quotas will be called an optimal assignment. There is always an optimal

assignment for which the x. are integers, so that the troublesome question,
"How does one move one-half a ship fromP to Q. ?" need not arise. Our
algorithm enables us to obtain such an integral-valued solution.

This problem is also called the distribution problem; see [1] for other
interpretations of it. We note that L. Ford and D. Fulkerson have also

given a generalization of Kuhn’s method to this problem [2].
A statement of the algorithm follows. We work with the cost matrix

D (d). In the course of the problem, we will distinguish certain lines

of the matrix, calling them covered lines, and we will distinguish certain

zero elements of the matrix by means of asterisks and primes (as in the

preceding algorithm). In addition, we will assign to each element of the

matrix a non-negative quota xi., which may be changed in the course of

the problem. Each element of the matrix whose quota is positive will be

called essential (these elements will always be zeros). At any stage of the

problem, the number c. i xii will be called the discrepancy of the

jth column at that stage, and the number r ’.. x. will be called the

discrepancy of the it’ row. These discrepancies will always be non-negative;

when all of them vanish, the corresponding quotas are a solution to the

problem.

Preliminaries. All quotas are zero; no lines are covered; no zeros are

starred or primed. Subtract from each row of the matrix D its smallest

entry; then subtract from each column of the resulting matrix its smallest

entry.
Find a zero Z in the matrix. If the discrepancies of both its row and its

column are positive, increase the quota assigned to Z until the smaller of

these discrepancies is zero. Repeat, for each zero in the matrix. Then cover

every column whose discrepancy is zero.

Step 1. Choose a non-covered zero and prime it. Consider the row con-

taining it. If the discrepancy of this row is positive, go at once to Step 2.

Otherwise (if this discrepancy is zero) cover the row; then star each twice-

covered essential zero Z in the row and uncover Z’s column.

Repeat until all zeros are covered. Go to Step 3.
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Step 2. There is sequence of alternating starred and primed zeros,
constructed as follows: Let Z0 denote the uncovered 0’ (there is only one).
Let Z1 denote the 0* in Z0’s column (if any). Let Z2 denote the 0’ in Zl’s
row. Let Z3 denote the 0* in Z2’s column (if any). Similarly continue, until

the sequence stops at a 0’, Zk, which has no 0* in its column. (Since no

column contains more than one 0", and no row more than one 0’, this
sequence is unique. Note, however, that it may contain only one element.)
The discrepancy of Z0’s row is positive, the discrepancy of Zk’s column

is positive, and the quota assigned to each 0* of the sequence Z0,
is positive. Let h be the smallest of these positive numbers. Increase the
quota of each 0’ in the sequence by h, nd decrease the quota of each 0*

in the sequence by h.
Erase all asterisks nd primes, uncover every row, and cover every column

whose discrepancy is zero. Return to Step 1.

Step 3. Let h denote the smallest non-covered element of the matrix; it

will be positive. Add h to every covered row and subtract h from every
uncovered column. Return to Step 1, without altering any asterisks, primes,
or covered lines.

Note that in the case c r 1, the problem is the assignment problem,
and the algorithm reduces to our algorithm for that problem.
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