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ALGORITHMS FOR THE LINEAR
COMPLEMENTARITY PROBLEM WHICH ALLOW

AN ARBITRARY STARTING POINT*

by

Dolf Talman®™* and Ludo Van der Heyden

1. Introduction

The linear complementarity problem with data q ¢ R® and M e %

consists in finding two vectors s and 2z in R® such that

(1.1) 5 =Mz +q,
(1.2) s, z >0,
(1.3) 8,2, = 0, i=1, 2, ..., n.

We denote this problem LCP or LCP(q,M)}). Two vectors s and =z satis-

fying (1.3) are said to be complementary.

The LCP is an important problem in mathematical programming [see,
e.g., Garcia and Gould (1980) for references]. Lemke (1965) first pre-
sented a solution for this problem. His ideas were later exploited by
Scarf (1967) in his work on fixed point algorithms. The relationship
between the LCP and the fixed point problem is well described by Eaves

and Scarf (1976) and by Eaves and Lemke (1979).
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Contract Number NOD014-77C-0518,

**pepartment of Econometrics, Tilburg University, Tilburg, The Netherlands.



Recently, van der Laan and Talman (1979, 1981) proposed a class of
variable dimension restart algorithms for approximating fixed points.
These methods allow a start at an arbitrary point in the domain of the
fixed point problem. One among several directions is followed to leave
the starting point. These directions at the starting point define a
collection of cones of variable dimensions in which the search for an
approximate fixed point takes place. Properties of the function govern
the movement of the procedure between the conical regions. In each region
movement occurs through simplicial pivoting, but continuous path-feollowing
could be applied too [see Allgower and Georg (1980)].

The intimate relation between the fixed point problem and the LCP
ralses the question of the significance of wvan der Laan and Talman's work
for the LCP. This paper shows that the main features of the variable
dimension fixed-point algorithms developed by van der Laan and Talman
(1981) can be adapted to the linear complementarity problem. One dis-
tinguishing feature of the resulting algorithms is that they allow an
arbitrary starting point 2z > 0 whereas most LCP algorithms start at
the origin z = 0 . The only other algorithms sharing this feature are
the homotopy procedure of Garcia and Gould (1980) and two algorithms
sketched by Reiser (1978) in the appendix to his dissertation. In fact,
one of the Reiser algorithms appears as a speclal case in our framework,
while another special case of our framework is very similar to Reiser's
second algorithm. This relationship is not surprising because of the
similarity between Reiser's and one of van der Laan and Talman's fixed
point algorithms [see Reiser (1981)]. Ome of the merits of our framework
is that it encompasses both of Reiser's algorithms. Another interesting

feature of our class of algorithms is that they coincide with Lemke's



original algorithm when they are started at the origin z = 0 . Finally,
our framework cam be motivated by considering the artificial columm of
Lemke's algorithm as a measure of infeasibility when a solution has not
yet been reached.

The paper is organized as follows. In Section 2 we define the line
segments that are followed by the procedure and the typical positions
of the algorithm. The procedure itself is explained in Section 3 which
algso deals with convergence issues., The implementation of the algorithm
can be found in Section 4. Finally, Section 3 contains our concluding

remarks.

2, Movement and Positions of the Algorithm

We only consider points (s,z)} in R2n satisfying

(2.1) s=Mz+q, z>0,
A measure of infeasibility for such points is

-8, for i e N={1, 2,...,n},
(2.2) ty = max +
55 for 1 e N = {je N: zj > 0} .

This measure checks for the nonnegativity of s and for its complemen-
tarity with z . It is clear that 2z 1is a solution if and only if
ty < 0 . The measure t, can be negative only at z = 0 when q has

all its coordinates positive (q > 0) . A positive value for t, cor-

0
responds to the value of the leading infeasibility or infeasibilities at

z ., Starting at the arbjitrary starting peint 20 , our algorithm increases

0
zy if -8, = t, at z , or decreases =z if =

i i

In other words, each term in maximand (2.2) is associated with a direction

0
to with zg >0 .



parallel to a coordinate axis {either ei or -ei , 1eN, ei being
the ith unit vector). The direction followed to leave zo is that
associated with the leading infeasibility--assumed unique~-at z0 . The
algorithm maintains this property: 1t only moves into regions associated
with leading iInfeasibilities. For example, when the algorithm moves into

0

1 2. 3 .
the region z =2z + e Y1 + e Yo = €Y, with Yis Yo V3 2 0 , then

it will be true that tg = -8y = =8, = sq - This complementarity between
directions incident at zo and leading infeasibilities is central to

our procedure, and will be shown to identify a path of line segments which
starts at zO and under certain conditions converges to a solu-

tion for the LCP. Before formalizing this complementarity, we slightly
generalize expression (2.2) and define directions corresponding to the
terms in the new expression. Our exposition will also be simplified by
assuming that z0 has only positive coordinates (z0 > 0) . The general
case (zo.i 0) will be discussed in Section 5.

Given a partitition {Ij + =1, 2,...,k} of the index set N ,

and given that all coordinates of zo are positive, we generalize the

definition of to at z = z0 :
-sj for jeN,
{(2.3) to = max
Z 8y for jeK=1{1, 2,...,k} .
iel
h|
Again, we can write that z0 is a solution if and only if t, < 0 at

0
z= z0 . The above measure of infeasibility is wvalid at every z > 0,
but will be modified on the boundary of the nonnegative orthant, With

each of the n+k terms in (2.3) we assoclate a direction which can be

i
used to leave the starting point z0 . The directions (d°, 1 € N)



assoclated with the first n terms are still the ones mentioned earlier:

al < el for 1eN.

Leaving z0 along di » 1€ N, amounts to increasing =z

g ° With the
(n+j)th term, E 8y » we associate direction dn+j where:
iel
3
oty _ 0
di zg for 1 ¢ Ij ’

= 0 for 41 e N - Ij

If we leave z0 along dn+j » Wwe simultaneously decrease all coordinates

nt

of z with indices in Ij . The specific choice for d J derives from

a requirement by the procedure that, leaving zo along direction dn-'-:I .

all coordinates with index in I, should simultaneously become equal

h

to zero, The different directions are illustrated in Figure 1.
The figure illustrates well that the starting point zo and the

directional matrix D = (dl, dz, ey dn+k) partition the nonnegative

orthant of z-space into relatively open areas {z ¢ RE 1z = z0 + Dy,

Yy e szk, yj >0 for j e P}, where P 1is a feasible subset of

NO = {1, 2, ...,ntk} . A subset P 1is said to be feasible if, for any
j e K, 1if does not contain both index n+j and all indices in Ij

An infeasible P leads to multiple representations for a vector =z in

terms of the y—coordinates. If we consider only y-vectors with feasible

subsets of positive coordinates, the correspondence between vectors

zZ € Ri and vy € R2+k » with yj <1 for ntl < j <n+k , is one-to-

one. We will equivalently refer to z or to its representation in
terms of vy .

Qur algorithm maintains a generalized form of complementarity, called
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FIGURE 1. The directions o+ , 1 <j<ntk, in three special cases
of our algorithm (n =3 ; k=1, 2, and 3).



to—cogplementarity, between leading infeasibilities in maximand (2.3)

and directions represented as columms of the matrix P . tO*complementarity

is more easily explained by introducing a vector whose components are the

terms in maximand (2.3). let ¢t = (tl’ Loy eeast be defined as:

n+k)

(2.4) tj = -sj for je N,

t - Z s; for ] eXK,
n+j ite i

With this notation, (2.3) can be rewritten

(2.5) ty = max(tj i je NO)

with No = {1, 2, ..., n+k} .

It will also be convenlent to partition No into sets Nl = N and
N2 = {n+l, n+2, ..., n+k} . Except for boundary issues, to-complementarity

means that if yj >0, jeN We now motivate the

0’ j°

changes to to—complementarity on the boundary of the nonnegative orthant

then t0 =t

in z=-space.

Asgsume that initially t.=t, >0 for 3 e N

0 i 27
to—complementarity, the algorithm leaves 2z along direction dj . The

Maintaining

coordinates of zg with 1 e Ih and j = nth , are decreased along

this line. In later stages, other directions are considered by the algorithm

and larger dimensional regions explored. If at some point, one or more

coordinates i eI , become equal to zero-—-implying ¥ 1

2i h

—-further movement along direction dn+h is excluded for we don't want

n+h =

to leave the nonnegative orthant. Variable Yot is then fixed at 1,

while tn+h is free again to differ from t0 although Yn+h > 0 . This



is achieved by completing the definition of to on the boundary in the

following way:

{2.6) ty I*ma:x{l:j : J € Ny, ¥y < 1 1if j e N2} .

Hence, on the boundary we delete from maximand (2.5) any term t asso-

+h

ciated with a zero coordinate =z i eI, . Notice that yj <1

i’ h

2 implies that z, > 0 for all 1i ¢ Ih .

Definition (2.6) presents one complication in that tO can vary

discontinuously when reaching the boundary. For example, assume that

after leaving z0 along direction dn+h

with j e N

(t0=tn+h) , We reach the boun-

dary where vy =1 and z, =0 for 1 e I_ . Following (2.6) t
n+h i h 0

then decreases discontinﬁously--if all other t.,'s are smaller than

3
t ih ——and becomes equal to the second leading infeasibility. At the

boundary point t . > t, and t j= ty for some j e Nj - {o+th} . On
the boundary to—complementarity thus takes a different form: the pair

(yn+h' tn+h) is said to be to-complementary also when vy 1, although

n+h =

>ty and vy 0 . It is interesting to observe how the algorithm

tn+h n+h >

continues. With Youh = 1, the pair (yn+h’ tn+h) is to-complementary,

and so is the pair (yj, t.) , where vy = 0 and where to just became

3
equal to tj . Moving so as to maintain to-complementarity, the algorithm
then makes yj positive. Notice that in this movement toth > to . It
is important to observe that while Ynih = 1 the latter inequality will

be maintained. If ¢t

a+h becomes equal to t again, the algorithm con-

tinues by decreasing Yo4n 2vWaY from 1, so that to-complementarity is
maintained.
We now formalize to-complementarity by introducing basic and nonbasic

variables.



Definition 2,1. A wvariable yj s J € Nl , 1s sald to be nonbasic if
yj = (0 . A variable yj s J € N2 » 1is said to be nonbasic 1f yj =0
or 1. With t, as defined in (2.5), t is said to be nonbasic if

b
tj =t . tO is nonbasic if to = 0 ., When not nombasic, & variable

is said to be basic.

Notice that one among the variables tj s J e NO » 1s nonbasic
by definition. At first glance, the above definition may not appear similar
to the conventional one of linear programming. The link with linear pro-

gramming will be clarified later in this paper.

Definition 2.2. A pair (t,y) is to-complementary if for every j ¢ N

0
either or both vy and t, are nonbasic. We also call the point (s,2z)

]

to-complementary when the corresponding pair (t,y) is t,-complementary.

A technical point has to be dealt with in order to have a well defined
algorithm, The following assumption entails no loss of generality as a

slight perturbation of the data will be shown to yield nondegeneracy.

Nondegeneracy Assumption 2.1. Among the 2(n+k)+1 wvariables (to, t, v)

at most n+k+l are nonbasic at any given time.

The algorithm can now be described more precisely. The starting
point z0 is to—complementary as yo = 0 ., The nondegeneracy assump-

tion ensures that there is exaetly one nonbasic wvariable tj s J e NO .

To leave zo while maintaining to-complementarity means that we can move

only by increasing yj_. We thus either increase =z if j e Nl or

3

decrease the z,'s with {1 ¢ I with j = nth . We pursue

i h 2

this movement until one—precisely one by the nondegeneracy assumption

if j e N

—basic variable becomes nonbasic. As long as to >0, a solution has
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has not yet been reached and there is precisely one pair of nonbasic var-
iables (tj’ yj) . The algorithm makes one of these variables basic and
continues its movement aleng another line of to-complementary points
where precisely one variable in each pair (th, yh) is nonbasic.

We formally introduce the lines followed by the algorithm. Recall
that on the boundary of the nonnegative orthant yj =1 for some j e N, .
For that j , the requirement along the line is tj > t, . Figure 2

0

identifies the nonbasilc t-variables in different regions of z-space for

the case n = 2 ,

Definition 2.3. A line of our algorithm consists of points on a line of

solutions for (2.1) such that:
a. exactly one variable in each pair (tj, yj) is nonbasic
(to-complementarity);
b. tj > t0 if yj =1 and j e N2 :

c. t, >0 .

0

The number of free {or basic) y-variables is equal to the number of
constraints on the s-variables minus one (one t-variable is always non-
basic by definition; alternatively, eliminate t0 and count the number
of constraints--all independent——imposed on the s-variables). Hence,

a set of to-complementary solutions for (2.1) is indeed a line segment
if the set of nonbasic variables is fixed. The line segment is relatively
open if exactly one variable in every pair (tj, yj) is nonbasic,

Let us examine the endpoints of the lines of our algorithm. An end-
point is reached when the set of nonbasic variables changes. If there
is no discontinuity in the value of ty s and if t, 1is still basic,

0

there is exactly one palr of to—complementary variables which are both
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51+52>-92=t0 —52=sl+52=t0 -sl=—sz=t0

1
a, n=2; k=1,
z, I
2% %
A
51>—52=t0 sl=—32=t0 —Sl=—82=t0
s, =t 0
1 0 z
g =8, =t,
sl>52-t0 sl=sz=t0 -slws2=t0
527 %o
z
0 52>sl=t0 52>—sl=t0 1l

FIGURE 2. The constraints imposed on the s-variables in different regions
of z-space for a 2-dimensional example. Notice that we have omitted the
inequalities that are implicit in the definition of tg «
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nenbasic. This gives rise to two types of positions for the algorithms.

At a position of type a we have that, for some J ¢ No s yj = 0 and

tj =ty > 0 . At a position of type b we have that, for some J € N2 .

yj =1 and tj = to >0 . If an endpoint is reached where t is non-
basic, then the endpoint will be shown to be a solution. The same is
true if tO becomes nonpositive during a discontinuocus decrease at the
endpoint., A discontinuity in t0 arises if yj sy J € N2 » Iincreases

to 1 with yj being the only nonbasic variable along the line. Upon

reaching this endpoint, t is no longer considered in the determination

j

of t. . t then decreases discontinuously since no other variable t

0
is equal to tg along the line leading to the endpoint. If after the

h

discontinuous decrease to is still positive, there is one nonbasic pair
(Yh, tn) with t, =t 2 0 and Y = 0 for some h ¢ N0 . Such an
endpoint is a position of type a . This completes our classification

of endpoints into positions of type a or b and to-complementary points

with t,. < 0 .

00—

We now prove the important fact that if to becomes nonpositive

(to-i 0) at an endpoint, then a solution has been found. Since

ty g.max(ti = -5, :1iegN), it is clear that s > 0 at such an endpoint.

i

We still need to argue that 5, = 0 whenever z; > 0 . We distinguish

two cases., If Y 1, with 1 ¢ Ih s, then

+h < 8; = 0 easily follows
from the fact that 0 > tO‘z tn+h = ig& 8, > 0. If Yoth = 1, then
h

the positivity of =z, requires the positivity of Yy along the line

i

leading to the endpoint. Hence, ti is nonbasic along the line:

-8, =t, 2 0 (since ty > 0 along the line). This inequality is still

valid at the endpoint and implies 8; = 0 at the endpoint.

As a way of summary, we illustrate the incidence between positions
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-l 3 o

i. Position of type a: at least one y-variable is basic. No dis-
continuity in value of t, .

0

ii, Position of type a: all y-variables are nonbasic. Let

n+h = argmin(t

value of t

nH : yn+j = 1) ., Discontinuous increase’in

when leaving position along line drawn at the

right of the position.

¥j<l szl t.>t0

J——
-l

iii. Position of type b: J ¢ N2 . No discontinuity in value of t,

for there is another th = to .

FIGURE 3. The incidence between positions (with ty > 0 ) and lines

of our algorithm.

Notice that in case ii, the line drawn at the right

of the position is defined only if {n+i : y_,, = 1} 1is nonempty.

1f the set is empty, we are at the initial position. The initial posi-
tion is the only position (with to > 0 ) incident to only one line

of our algorithm.
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and lines of our algorithm in Figure 3. The algorithm leaves the initial
position along the unique line incident to it. Every other position,
which is not a solution, has two lines incident to it. 1If the position
is reached along one line, then the algorithm leaves it along the other
line, Solutions can be shown to be incident to only one line of our

algorithm.

3. Convergence Issues

The previous section set the stage for an application of the well-
known Lemke-Howson argument. The initial position is incident to one
line of the algorithm. Every other position which is not a sclution is
incident to two lines of our algorithm., The Lemke-Howson argument proves
that under these conditions no position will ever be visited twice.
The number of lines 1s finite, hence, so is the number of positionms.
The algorithm thus either stops at a sclution for the LCP or follows
an unbounded line. Following Lemke (1965), we present a class of matrices
—-characterized by Garcia (1973)--for which the algorithm fi ds a solution
for any right-hand side vector gq . We then show that for copositive
plus matrices [Lemke (1965)] the existence of an unbounded line implies
that the LCP is not feasible. Of course, the point behind both results
n

is that they hold for every initial starting point z0 in R+ . [Garcia
and Gould (1980) discuss the possibility of convergence for a particular

set of starting points.]

Theorem 3.1. Let M satisfy the property that LCP(q,M) admits the unique
golution z = 0 bothwhen q =0 and when g = e , where

e={(,1,..., 1)t . Then no line of our algorithm is unbounded.
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Proof. An unbounded line of our algorithm implies the existence of a

(2n+1)-directional vector (-t_o, 8, z) verifying the following conditions:

a. 8 = Mz with ;3_0;

b. if z, >0 then -s, =t 3

(3.1) t 0
c. if z; = 0 then -84 < to H
d. t5>0.

(Notice that the directional vector y associated with z always has

fr-j =0 for je N2 » for we can't leave the nonnegative orthant in 2-

space., Hence, ;i =z for 1 e N.) It is clear from (3.1) that =z
is nonzereo. If -t_o =0 then s is nonnegative and complementary with

z , which itself is nonnegative. z represents a nontrivial solution

for LCP(0,M), which is impossible. If .EO >0, we rescale s and =z

so that ?0 =1, 2z then satisfies the inequalities Mz +e > 0 , where
h

the it inequality is an equality if =z

1> 0 . This shows that LCP(e,M)

admits a nonzero solution, again contradicting our assumption,

Theorem 3.2. Let M be copositive plus: utHu >0 when u> 0, with
utMu = 0 implying that (M+Mt)u = 0 ., If the algorithm generates an

unbounded line then the LCP is infeasible.

Proof. The LCP is infeasible if s =Mz +q, s and 2z > 0, is an in-
feasible linear system. Farkas's lemma states that this infeasibility is
equivalent .with the existence of a nonnegative vector u such that
utMiO and utq<0.

The arguments of Theorem 3.1 show that an unbounded line implies
the existence of a vector (?0, s, z) verifying (3.1). If t.> 0,

0

then z'Mz = z's = -—('Ete)?o < 0 since 2z 1is nonzero. This contradicts
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the copositive plus character of M . Hence t, =0 .

0
A zero value for tO implies that Z°Mz = 0 and, hence, that
Mz = Mz <0, since Mz = JE_g_Ebe = 0 . Obviously, 2z is our
candidate for the Farkas direction. To conclude our proof, we only

need to show that th <0,

Consider the unique endpoint of the unbounded line, say

(t;, s*, z*) , where

(3.2) s* = Mz* + q, 2* >0, and tg >0,

Premultiplying (3.2) with z' yields

Zts* = Z2tMz* +'th

= —giz* +';tq .

Because of t,-complementarity at (s*, z*) and along the lines of our

algorithm, we have —s: = tg whenever .Ei >0, for even if Yy is
*

not basic at z" , 1t is made basic along the line. Hence

Ets* = -(Ete)t; < 0 implying that

Jgtz* + ;tq <0,

1f we can argue that Btz* = 0 , then our result is obtained.

If ;i>0"_-t_0!

path (;i = E; = 0) . At the same time,

then it must be that Vg is nonbasic along the

3.3) ) Eh_>_Ei>o=t0,
]

where 1 ¢ Ij . The first inequality follows from the nonnegativity of
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‘s . Inequality Z Eh > Eb implies that yn+j = ] along the unbounded

hel
3

line, and thus at its endpoint z* . Since Ynti = 1 and y, =0 along
the line, we have z; = 0 along the line, and hence zz = () at the end-

point. This concludes the argument establishing that sz¥ =0 .

4., Implementation

We first introduce a matrix E = (Ei ) to identify the partition

3

{Ii : 1 K} of N:

E

g1 if Jel

i iek,

0 otherwise.
Vector t can be expressed in matrix form as

-5 -M -q
(4.1) t = = z + .
Es EM Eq

It is also convenient to introduce a vector to represent the deviations
of the components of t from L

+
t =t.e-t¢.

-+
By definition of ¢t at least one component of t  must be zero and

0 ?

tI_z 0 unless £ ¢ N2 and y; = 1 . Introducing t+ and y , (4.1)
becomes

-M -M -q
(4.2) tye - ¢t - Dy + 20 + R

EM EM Eq

which can be written more simply as
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(4.3) t,e - tt - Ay + a
-1 0 0o_.0
with [A,a] = [MD, g7} , where q =Mz +q . to-complementarity
E

between t and y requires that in every pair (tj’ yj) at least one

variable be nonbasic:

+
yj =0 or tj =0 for j ¢ Nl .

+

. =0orl or t,_ =0 for £ N, .
73 J .
The definition of nombasic variables given in Definition 2.1 thus coin-
cides with the conventional one of linear programming when upper bounds
are imposed on some of the variables. WNondegeneracy Assumption 2.1 then
entails no loss of generality as the classical perturbation technique

of linear programming applied to linear system (4.3) yields nondegeneracy.

A line of our algorithm consists in a partition Nll’ le of Nl and
a partition NZl’ N22, N23 of N2 guch that:
> 0 and tf=0 for jeN
yj an i or 11 *
vy, =0 and tT >0 for j e N
3 i 12
+
1> yj> 0 and tj =0 for j e Noy s
vy, =0 and t+ >0 for JeN
j 3 22
=0 and t+ <0 for jJeN
Y3 3 23 *

The algorithm starts with y = 0 , ty = max(ai L O > NO) , and
t+ = toe - a>0. By nondcgeneracy, t+ has only one zero coordinate,
say t; = 0 ., The first step of the algorithm increases ¥y until a

new position is reached. The signal for that is when, for some J € NO .
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both yj and t; become nonbasic. The algorithm leaves a position by
making basic the variable which was nonbasic along the line that was followed
to reach the position. All steps involve pivot steps of linear program-

ming except that the pivot rules need to pay attention to basic variables

of both positive and negative sign. Introducing t+i = (t; A T Ni) ,

i=1, 2, it is easy to see that the last k equations in (4.3) are

equivalent to

1

(4.4) -(Ee +e2)t0 +et+t =0

1 2 !

where el and e2 are vectors of ones of dimensions n and k respec-

tively. These equations are of the GVUB type [Schrage (1978)] since every

variable with a positive coefficient appears only once in {(4.4)., At every

position (t0 > 0) at least one among the variables t:;j and

(tI :1ie Ij) is basic. This implies that the basic matrix, after suitable

permutation of its columns, contains an identity submatrix of order k .

Schrage shows that this property allows an implicit treatment of the last

k equations of (4.3). Every step then involves the updating of a basic

submatrix of order n rather than n+k 1in an explicit treatment of (4.4),
Between successive LP-like pivot steps, there may be intermediary

steps of a different kind due to a discontinuity in the value of ty -

First, a discontinuous decrease in t_. may occur when reaching the boun-

0
dary of Rz where yj becomes equal to 1 for some j € NZ . The term
tj , nonbasic along the line leading toward the boundary, drops from

maximand (2.5). This causes a discontinuity in ts if all other coor-

dinates of t are basic along the line, 1In that case, to is reduced

by an amount
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+
Ato = min(ti : 1€ NO’ ¥y = 0) >0

L
and becomes equal to té = to - Ato , while (t+) = t+ - Atoe . Notice
+,! +,! + .
that (tj) = -Ato < 0 1is now basic while (ti) = ti - Ato is still

tco » 1€ N2 . Assuming t6 > 0, a new nonbasic var-

i
L
iable has been generated, say (t;) = 0, and the algorithm leaves the

negative if t

position by increasing ¥y, -

The reverse movement of that described in the preceding paragraph
causes & discontinuous increase in the value of ty - This discontinuity
occurs whenever yj becomes zero and the algorithm calls for the increase
of t; where t; is the only nonbasic t+—variab1e at the position.

Such increase violates the constraint that at least ome t -variable be
nonbasic. This situation is described in Figure 3 (case ii) when one

reaches the position along the line drawn at the left. Leaving along the
other line, the algorithm first increases to by Ato = min(-t; : yi=1J >0
and updates (t+)‘ = t+ + Atoe . The algorithm then leaves the position

by decreasing Vg from 1 where Aty = —t; and (t;)' =0 .

The most interesting cases in our class of algorithms appear to be
k=1 and k=n . In these two extreme cases, the algorithm treats
all coordinates symmetrically, which is a desirable property unless the

matrix M presents very special structure. For k = n , the appropriate

linear system is

(4.5) t.e - = +

0¢ 42 2 0

where after rescaling the bounds on y2 can be written 0O j_yz‘g z0

Since y;yﬁ = () we can omit y2 by allowing yl to take on negative
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values. The bounds on yl then are —zo‘i yl and y; is nonbasic when
equal to 0 or -zg . The case k =n 1is analogous to one of Reiser's
algorithms [Reiser (1978)].

For k=1, 1linear system (4.3) becomes

t+1 M —Mzo y1 _qO
(4.6) t.e - = + ,
0 2 efu  —etmg® y2 er
where t+2 and y2 are two scalars, and q0 = Mzo + q . The second

Reiser algorithm, considers only the first n equations of (4.6). That
algorithm corresponds to movements along to-complementary lines where

ty = max(—sl, =523 ses =S, 0) as compared with

ty = max(—sl, ™S9y cees B, Z si) for our algorithm. The complementarity

ieN

conditions along a line in Reiser's algorithm are

t

(4.7) ¢y vl =0 and t.y?

oy = 0.

In this setting t_ = 0 no longer identifies a solution. The algorithm

0

terminates either when y2 reaches its upper bound of 1 or when an end-

point is reached where the variables t0 and t+1 are all nonbasic.

In the first case, ty = 0 by complementarity along a line and the first
n equations of (4.6) can be written t+1 = Myl +q . This, along with

(t+1, yl) is a solu-

the complementarity conditions (4.7), shows that
tion for the LCP. In the second case, (to, t+1) = 0 and it is easily

seen that (s,z) = (0, y1-+(1-y2)zo) is a solution for the LCP.
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5. Concluding Comments

The ideas central to the van der Laan and Talman fixed point algorithms
have been shown to yield a class of algorithms for the LCP. Similar ideas
can be applied to modify other LCP algorithms, like the variable dimension
algorithm of Van der Heyden (1980) [see also Yamamoto (1981)]), to accept
an arbitrary starting point. flexibility in the choice of the starting
point is desirable, e.g., in solving nonlinear complementarity problems
via a succession of approximating LCP's [Josephy (1979)].

So far we assumed the starting point to have only positive coordinates.
For an initial z0 on the boundary, definition (2.4) is modified for an

index n+j ¢ N, to

2

they = L Sy
te1’
h|
+ 0 n+j
where Ij = {1 ¢ Ij Pzy e 0} . The associated direction d is left
unchanged. 1If I; is empty, the term tn+j disappears from the maximand

n+j

defining to(d = 0) . The number of rows in linear system (4.3) then

alsc decreases by one. If zo =0, then D=1 and z = zo + Dy =vy

so that (4.3) can be rewritten

Mz + toe +q-= t+ .
Since N2 is empty, t+ is always nonnegative and tovcomplementarity
takes the form (t+)tz = 0 . Our algorithms thus all generalize Lemke's
original algorithm.
The relation of our algorithms with Lemke's algorithm reminds us
that we can scale each coordinate of t before taking the largest one

which defines ty - A vector of scaling factors f = (fl, f2""’ f ,)y>0

n+k
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leads us to rewrite (4.3) as

tof - t+ = Ay + a .

Due to the possibility of this scaling, the vector e 1in the statement
of Theorem 3.1 need no longer be a vector of l's, but instead can be a
vector with positive but otherwise arbitrary coordinates.

Another way of generalizing our algorithms is to consider different
directional matrices D . However, in order to have an algorithm which
generalizes that of Lemke, one needs n positive unit directions at zO
Other reasonable choices for the remaining k directions, all pointing
towards the boundary, could not be found. Different directions, however,

could lead to new convergence conditions.
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