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Abstract 

In this paper the problem of efficiently serving a sequence of requests presented 

in an on-line fashion located at points of a metric space is considered. We call this 

problem the On-Line Travelling Salesman Problem (OLTSP). It has a variety of 

relevant applications in logistics and robotics. 

We consider two versions of the problem. In the first one the server is not 

required to return to the departure point after all presented requests have been 

served. For this problem we derive a lower bound on the competitive ratio of 2 on 

the real line. Besides, a 2.5-competitive algorithm for a wide class of metric spaces, 

and a 7/3-competitive algorithm for the real line are provided. 

For the other version of the problem, in which returning to the departure point 

is required, we present an optimal 2-competitive algorithm for the above mentioned 

general class of metric spaces. If in this case the metric space is the real line we 

present a 1.75-competitive algorithm that compares with a ~ 1.64 lower bound. 
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routing. 
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1 Introduction 

The Travelling Salesman Problem (TSP) and in general vehicle routing and scheduling 

problems have been widely studied for more than three decades (see [14] for a survey 

on the subject). The input of an instance of the problem is generally a set of locations 

(points) in a metric space that are to be visited in such a way that the total distance 

travelled or the completion time is minimized. A common characteristic of almost all the 

approaches to the study of the problem is the off-line point of view. The input is known 

completely beforehand. 

However, in many routing and scheduling applications the instance becomes only 

known in an on-line fashion. In other words, the input of the problem is communi

cated in successive steps. Often it is even not possible to determine which is the last 

request, i.e. when the instance is completely known. Anyhow, if the goal is to minimize 

the completion time, waiting till all the information is available could imply a costly loss 

of time. 

In this paper we consider a class of on-line variations of TSP in a metric space: while 

the salesman is travelling, new sites to visit may be communicated to him. His goal is to 

visit all the sites, minimizing the completion time. 

This setting models many natural applications. Think for example of a salesman or a 

repairman with a cellular phone, or of a robot that has to serve locations of its working 

space (for example in the Euclidean plane) and of many other routing and scheduling 

problems on a transportation network modeled with a graph. We will refer to this problem 

as the On-line Travelling Salesman Problem (OLTSP). 

As the input to the salesman - from now on we will refer to him as the server is 

communicated in an on-line way, the scheduled route will have to be updated also in an 

on-line way during the trip. The fact that the schedule must be constructed based on 

incomplete information means that in general no algorithm (polynomial or otherwise) can 

be guaranteed to construct an optimal schedule on-line. 

The most widely accepted way of measuring the performance of on-line algorithms is 

competitive analysis. The quality of a certain on-line strategy is measured by the worst

case ratio between the time needed by the on-line algorithm for a sequence of requests 

and the optimal time needed by an algorithm that knows the sequence in advance. This 

ratio is called the competitive ratio of the on-line algorithm. Therefore, an algorithm 

is said to be p-competitive if for every input its completion time is at most p times the 

optimal completion time for the same input. The concept of competitive analysis has been 
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formalized in [18], although under the name of worst-case analysis of on-line algorithms 

it dates back at least until the work of Graham [10] and Johnson [11]. The performance 

of on-line strategies for a great variety of on-line problems has been analyzed according 

to this concept: performance analysis of computer systems, data structures, scheduling, 

motion planning, network management, financial decision making, etc. (for an overview 

of the subject we refer to [3]). 

We present algorithms for the OLTSP and study their competitive ratio by comparing 

their performance to the optimal solution of the corresponding off-line problem, which is 

called the Vehicle Routing Problem with release times [16]. 

In that problem, each site must be visited at or after a given release time. The release 

time of a request corresponds to the time in which the request is communicated to the 

on-line server. The problem is NP-hard since it contains the Hamiltonian Path problem 

as a particular case. 

Several off-line variations of the problem have been studied, in which additional con

straints are imposed and particular metric spaces are considered. In [16] it has been shown 

that if the metric space is a line the optimal solution may be found in quadratic time. 

In [12] the metric space is restricted to be a tree and each request has, besides a release 

time, an associated handling time that is the time needed to serve it. The problem is 

shown to be NP-hard in that context, and a 2-approximate solution is given. In general 

these problems are called routing and scheduling with time window constraints. Some

times more than one server is considered, and other restrictions are given by requiring 

that requests must be served before a specified deadline (see for example [20, 21]). Other 

related works are [2, 6, 7, 8]. 

A related on-line work [13] considers the problem of visiting the whole set of vertices 

of an unknown graph, when the set of edges leaving a node is revealed only once the node 

is visited. In our case, the metric space is completely known from the beginning, but 

what is revealed in an on-line way is the set of locations that must be visited. 

It is important to note that OLTSP is different from the famous k-server problem [15). 

In that problem the requests have to be served in the order in which they are presented, 

with the goal of minimizing the total distance travelled by the k servers. On the contrary, 

in OLTSP the task is precisely to decide the order in which the requests will be served. 

A recent paper [1) considers a fixed number of clients presenting sequences of requests 

in a metric space, that must be served by a single server. At any time, each client has 

at most one request to be served, after which a new one may be presented. The main 

2 



difference with our approach is that, in this case the request sequence is dependent on 

the behaviour of the algorithm. 

We consider two versions of the basic problem that requires that all points presented 

are visited. In the first version, that we call Nomadic-OLTSP (or simply N-OLTSP) this 

is the only requirement. Adding the constraint that the trip must end at its departure 

point defines the problem that we call Homing-OLTSP (or simply H-OLTSP). 

Addition of the constraint of ending the trip at the departure point changes the nature 

of the problem (and hence the ~ind of applications). Lower bounds and algorithms for 

the two versions are quantitatively and qualitatively different. In fact, knowing that the 

server has to return to the departure point provides additional information to the on-line 

algorithm, that allows it to achieve a better competitive ratio. 

In this work we propose on-line deterministic algorithms for both N-OLTSP and H

OLTSP, and show that they are p-competitive for suitable constants p. We establish such 

results for the problems defined on a wide class of metric spaces that we call the class M, 

whose precise definition can be found at the beginning of the following section. In the 

particular case in which the metric space is the real line different algorithms are devised 

and stronger ratios of competitiveness are derived. 

For N-OLTSP, no on-line algorithm can be better than 2-competitive, even for the 

line. For metric spaces belonging to the class M we propose a 2.5-competitive algorithm; 

for the line the best proposed algorithm has competitive ratio 7/3. 

For H-OLTSP we propose a best possible 2-competitive algorithm for metric spaces 

belonging to the class M, while for the line we devise a 1.75-competitive algorithm that 

compares with a ~ 1.64 lower bound. 

Our best algorithms for metric spaces belonging to M do not run in polynomial time 

unless P=NP, since they use subroutines for optimally solving the TSP. However, one can 

obtain almost as good performance from polynomial-time algorithms: we show how to 

obtain 3-competitive polynomial-time algorithms for both N-OLTSP and H-OLTSP. As we 

mentioned before, the on-line nature of the problem is a source of difficulty independent of 

its computational complexity, and therefore on-line algorithms achieving good competitive 

ratios are of interest also if their time requirements are not polynomially bounded. 

The paper is organized as follows. In Section 2 we formally define the model. In 

Section 3 we present our lower bounds for the different versions of the problem. Section 

4 contains our best algorithms for metric spaces belonging to M, while Section 5 deals 

with polynomial time algorithms. Section 6 proposes algorithms for the real line. To 
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facilitate the exposition, every section first describes results on N-OLTSP and afterwards 

for H-OLTSP. Finally Section 7 contains open problems and interesting related problems 

for future research. 

2 The model 

The input of OLTSP consists of a metric space M, from the class M defined below, a 

distinguished point 0 (the origin) of M, and a sequence of pairs < ti,Pi > where Pi is a 

point of M and ti is a number representing the moment in which the request is presented. 

The ti's form an ordered sequence in the sense that 0 :s; ti :s; tj if i < j. 

A server is located at the origin 0 of the metric space at time 0, and moves not faster 

than unit speed. 

We use the definition of metric space as a space M with the following properties: (1) 

It is symmetric, Le., for every pair of points x, y in M, d(x, y) = dey, x), where d(x, y) 

denotes the distance from x to y; (2) d(x, x) = 0 for any point x in M; (3) It satisfies the 

triangle inequality, i.e., for any triple of points x, y, and z in M, d(x, y) :s; d(x, z) d(z, y). 

Our class of metric spaces M contains all continuous metric spaces, i.e., every metric 

space M having the property that the shortest path from x E M to y E M is continuous, 

formed by points in M, and has length d(x, y). For continuous metric spaces the times 

at which a request can be made can be any non-negative real number. 

Next M contains discrete metric spaces representable by an underlying graph with all 

edges having unit length. The vertices are the points of the metric space. Working on 

such spaces time needs to be discretized, i.e., the times ti at which requests are made are 

non-negative integers, and the server determines its strategy at integer points in time. At 

each integer time, the server is at some point in the metric space (vertex in the graph) 

and either remains there or moves in one time step to a neighboring point in the metric 

space. 

Thus, an example of a model that we do not consider here is one in which the server 

moves on a road network of freeways and a request can arrive while he is moving between 

two exits and he has to proceed to the next exit before being able to change his strategy. 

In our model the server would be allowed to do a U-turn and return to the previous exit. 

For any path T in M, let ITI denote its length. Note that if T is a path from x to y, 

we must have ITI 2:: d(x, y) by the triangle inequality. 

As mentioned in the Introduction we consider two versions of the problem: 
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The Nomadic On-line Travelling Salesman Problem - (N-OLTSP), defined as mini

mizing the completion time required to serve all presented requests; 

The Homing On-line Travelling Salesman Problem - (H-OLTSP), defined as minimiz

ing the completion time required to serve all presented requests and return to the origin 

o. 

On-line algorithms for the problems N-OLTSP and H-OLTSP determine the behavior 

of the server at a certain moment t as a function of all requests < ti, Pi > such that ti ~ t. 

We will denote the completion time of the solution produced by an on-line algorithm 

OL by ZOL and that of the optimal (off-line) solution by Z*. An on-line algorithm for 

OLTSP is p-competitive if for any sequence of requests ZOL ~ pZ*. Let pOL(t) and p*(t) 

respectively denote the positions of OL's server and the optimal off-line server at time t. 

At time 0 the server is located at the origin 0, pOL(O) = p*(O) = o. 

3 Lower bounds 

In this section we derive lower bounds on the competitive ratio of anyon-line strategy for 

serving the requests in the versions of the problem. 

3.1 A lower bound for N-OLTSP 

We show that no on-line algorithm can achieve a competitive ratio smaller than 2 for 

N-OLTSP. With this aim, we provide a sequence of requests for which no algorithm can 

finish within less than twice the optimal off-line time. 

Theorem 3.1 Any p-competitive algorithm for N-OLTSP has p 2:: 2. The lower bound 

is achieved on the real line. 

Proof: The proof is derived from the following simple argument. Consider the prob

lem on the real line with the abscissa 0 as the origin. An adversary gives a request at time 

1 in either 1 or -1, depending on whether at time 1 the on-line server is in a negative or a 

positive position, respectively. Thus, the adversary has completed at time 1, whereas the 

on-line server needs at least 2, with 2 sufficing when it is at 0 at time 1. 0 

We observe that the former proof can be easily adapted to show that the same lower 

bound holds for randomized algorithms against an oblivious adversary. The same simple 

sequence can be used replacing the "position" of the on-line server by "expected position" . 

For the definition of oblivious adversary we refer to [4]. 
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3.2 A lower bound for H-OLTSP 

In this section we show a lower bound on the competitive ratio of any algorithm for 

H-OLTSP on metric spaces belonging to M. 

Theorem 3.2 For any € > 0, any p-competitive algorithm for H-OLTSP for metric spaces 

belonging to M has p 2: 2 - €. 

Proof: Take as the metric space the boundary of the unit square [0,1]2. We denote by 

(x, y) a point of abscissa x and ordinate y. Given two points of the square (Xl, Yl) and 

(X2' Y2), we denote by [(Xl, YI), (X2' Y2)] the segment that is obtained by traversing the 

square in clockwise direction from (Xl, Yl) to (X2' Y2). The distance between two points is 

defined as the length of the shorter of the two segments of the boundary of the unit square 

between the two points. As the origin we take the point (0,0). At time 0, for a fixed 

n 2: 1, requests are given at points of the square {(O, i/n), i = 0, ... , n} U {(I, i/n), i = 
0, ... , n} U {(i/n, 0), i = 1, ... , n I} U {(i/n, 1), i = 1, ... , n - I}. Thus (0,0), (1,0), 

(0,1) and (1,1) belong to this set of points. Notice that these requests can be served 

optimally in time Z* = 4. 

We first show that for some 0, with ° :::; 0 :::; 2, at time 2 + 0 anyon-line server must 

be in one of the two points at distance 2 - 0 from the origin (not necessarily requested 

points). For this purpose define the function f : [0,2] -+ [0,2] as the distance from the 

point (1,1) at time 2 + x. Then the function g(x) = f(x) - X has the property that 

g(O) 2: ° and g(2) :::; 0. Since 9 is continuous there must be at least one point 0 with 

° :::; 0 :::; 2 with g(o) 0. 

Take the smallest value of 0 for which this holds. Without loss of generality we assume 

that this point pOL(2+0) is on the path between (0,0) and (1,1) that passes through (0, 1). 

At time 2 + 0 the server has served the requests on the segment Tl = [(0, 0),pOL(2 + 0)]. 

Additionally, it may have visited requests on a segment 81 = [(Xl, Yl), (0,0)] and requests 

on a segment 8 2 = [pOL(2 + 0), (X2' Y2)] (see Figure 1). The total length of these latter 

two segments is no more than 0 since the server is at a distance 2 - 0 from the origin and 

must have travelled each of these segments at least twice. Thus, ITII + 1811 + 1821 :::; 2 

This implies that the on-line algorithm has not touched any requested point of a segment 

T2 [(X2, Y2), (x}, 0)] of length at least 2. 

Now, at time 2 + 8, a new set of requests is given in each of the points on the segment 

Tl = [(0, 0),pOL(2 + 8)] of length 2 - 8) that were requested before and visited by the 

on-line server. This new set of requests ends the sequence. The optimal completion time 
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for the whole sequence is still Z* 4 since an anti-clockwise tour of the square visits any 

request not earlier than its release time. Given the situation of the on-line server at time 

2 + 0 one of the two following options will give the best possible completion time: 

1. Traverse twice the segment [p0L(2 + 0), (Xl, YI)] with the exception of a segment 

[(Xl, YI), (X3, Y3)] of size at most lin. The traversed segment is therefore of size at 

least 2 - lin. After this traverse once the segment TI . The cost of the algorithm is 

in this case ZOL 2:: (2 0) (4 - 2/n) + (2 - 0) = 8 2/n. 

2. Traverse first twice the segment TI[(O, 0), (0, l/n)] and then once the segment [p0L(2+ 

0), (0, 0)]. The cost of the algorithm is in this case ZOL = (2 + 0) + (4 - 20 - 2/n) + 
(2 + 0) = 8 - 2/n. 

Therefore, for any arbitrarily small € > 0, the ratio between the on-line server's com

pletion time and the optimal completion time can be made 2 - € by choosing a sufficiently 

large value for n. 

o 

We emphasize that this theorem says that some metric spaces in M can induce any 

algorithm for H-OLTSP to be no less than 2-competitive. Therefore, better competitive 

ratios may be possible for particular metric spaces, for instance for the line, as we shall 

see in what follows. 

3.3 A lower bound for H-OLTSP on the line 

In this subsection we present a lower bound on the competitive ratio of algorithms for 

H-OLTSP defined on the real line. We study this case separately so as to compare the 

lower bound with the competitive ratio of an algorithm for the problem on the real line 

presented in Section 6.2. 

An argument similar to that used for the lower bound for N-OLTSP (Theorem 3.1) 

could be used to obtain a 3/2 lower bound for H-OLTSP, both for deterministic and 

randomized algorithms. However, a stronger lower bound for deterministic algorithms is 

proved below. 

Theorem 3.3 Any p-competitive algorithm for H-OLTSP on the real line has 

p 2:: (9 VPi)/8 ~ 1.64. 
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Proof: Suppose OL is a p-competitive on-line algorithm for H-OLTSP with p < (9 + 
Vl7)/8. An adversary could proceed as follows. Before time t = 1 no requests are 

presented. At that moment, the position pOL(l) of the server of the p-competitive on-line 

algorithm OL must be inside the interval [-(2p - 3), (2p - 3)], and note that 2p - 3 < 1 

since p < 2. notice that if pOL(l) > (2p- 3) the first (and unique) request of the sequence 

would be at point -1, giving ZOL > 1 + (2p - 3) + 2 = 2p, because OL has to travel from 

its current position to -1 and back to O. On the other hand, for this sequence Z* = 2, and 

therefore the algorithm would not be p-competitive. The case in which pOL(l) < -(2p-3) 

is symmetric. 

Thus, suppose that pOL(l) E [-(2p - 3), (2p - 3)]. Now, at time t = 1, the adversary 

presents two simultaneous requests at points -1 and 1. At time t = 3, the on-line server 

cannot have served both requests. Suppose, without loss of generality, that it has not 

served the request in -1. 

We now show that if -(7 -4p) < pOL(3) < (7 -4p), then OL can not be p-competitive. 

Note that 7 - 4p < 1 since p < 7/4. In this case the adversary could be in p*(3) = 1, 

present a new request in +1 and return to the origin with a completion time Z* = 4. 

OL, however, would still have to serve requests in both extremes, and hence ZOL > 

3 + 1 - (7 - 4p) + 3 = 4p, since starting at time t = 3 it would have to go to one of the 

extremes and then to the other and back to O. 

Note that since p < (9+ Vl7)/8, we have that the interval [-(7 -4p), (7 -4p)] strictly 

contains the interval [-(2p - 3), (2p - 3)]. 

Thus, we are left with two cases to be considered. 

1. At time t = 3 the on-line server has not yet served + 1, and -1 :::; pOL (3) :::; - (7 - 4p) 

or (7 - 4p) :::; pOL(3) :::; 1. 

2. At time t = 3 the on-line server has served +1, and (7 - 4p) :::; pOL(3) :::; 1. The 

server cannot be to the left of -(7-4p), since it started to move toward +1 after time 

1 from a position not to the right of (2p- 3), and 1 + (1- (2p- 3)) + (1 + (2p- 3)) = 3. 

We notice that in both cases the following situation occurs: the on-line server is within 

distance 1 - (7 - 4p) of the extreme on one side and has not served the extreme on the 

other side. This property is sufficient for the rest of the proof, where we will suppose 

that the on-line server is near 1 and has not served the request in -1 (the other case is 

symmetric) . 
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In this case the adversary has so far served -1, is at position p*(3) +1 and finishes 

with Z* = 4. Then, any p-competitive on-line algorithm has to pass point 0 no later than 

4p - 2. Let us denote the time at which the on-line server crosses the origin as 3 + q. 

Therefore we have 

q:::; 4p - 5 (1) 

At time (3 + q) the adversary can be in position (1 + q) and place a request at that 

point and return to O. For this sequence we have that ZOL = 7 + 3q and Z* = 4 + 2q, 

and therefore Z:*L !!~:. By hypothesis OL is p-competitive, so that 

> 7+3q 

p - 4+ 2q 

This is a monotonously decreasing function of q, and by inequality (1) we get 

7 + 3(4p - 5) 

P'2 4 + 2(4p - 5) 
(2) 

The least value of p that satisfies inequality (2) is the value that achieves equality, 

that is p = 9+f1. 0 

4 Algorithms for metric spaces in M 

In this section we will present cqmpetitive algorithms for metric spaces belonging to M. 

The first algorithm we will analyze is based on a greedy strategy. Essentially it follows at 

each time the shortest route that serves all the requests with, for H-OLTSP, the additional 

constraint of terminating at the origin of the metric space. For H-OLTSP we will also 

present a more complicated algorithm that attains the best possible competitive ratio by 

following different rules for requests "close" to the origin and for requests "far" from the 

origin. The reason is that requests close to the origin can be served when the server is 

on the way back to the origin, the endpoint of his route. Clearly, these considerations do 

not hold for N-OLTSP, where the server can end his work in any position of the metric 

space. 

The above mentioned strategies use super polynomial time, assuming that P#NP, since 

they need to compute an optimal path or an optimal tour over a set of points. We will also 

present polynomial-time strategies (see Section 5) with worse competitive ratios, based 

on polynomial approximation algorithms to compute a path or a tour over a set of points. 
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4.1 An algorithm for N-OLTSP 

For N-OLTSP we first analyze an algorithm based on a greedy strategy that follows a 

shortest Hamiltonian path on the set of requests that has not been visited yet. The 

route is re-computed each time a new request arrives. Clearly, each computation of a 

shortest Hamiltonian path may take exponential time. We will refer to this as the Greedy 

algorithm. The algorithm is defined for any metric space belonging to the class M. 

The algorithm is described completely by stating the action taken at any moment t, 

when a new request arrives. Let S be the set of all requests presented until t, including 

the new one and the origin o. 

In order to simplify matters, we restrict the greedy server to move only on the shortest 

path between pairs of points in S, and therefore we call the algorithm GTR, for "Greedily 

Travelling between Requests". Assume that at time t, when a new request is presented, 

the on-line server's position, pGTR(t), is on the shortest path between x and y in S. Then 

the algorithm computes and follows the shortest route that first visits either x or y and 

then the yet unserved requests. 

GTR achieves a competitive ratio of 5/2, as we establish in the following theorem. 

Theorem 4.1 GTR is a 5/2-competitive algorithm for N-OLTSP, and the ratio is tight. 

Proof: Let time t be the time at which the last request is presented. Let us first state 

two lower bounds on the optimal completion time required. First, Z* 2:: t since also in 

the optimal solution a request cannot be served before the time at which it is presented. 

For the second lower bound we define 7 as the optimal Hamiltonian path on the set S, 

constrained to have 0 as one of the 2 extreme points. Notice that 7 does not take the 

release times of the requests into account. Then, Z* 2:: 171 since any algorithm must visit 

all points in S. Thus, proving ZGTR ::; t + (3/2)171 proves the theorem. 

Let a be the endpoint of 7, the starting point is o. Observe that pGTR(t) , the position 

of GTR at time t, is somewhere on the shortest path between two points of S, say x and 

y. Assume that following 7 from 0 to a, x is visited before y. Then, min{d(pGTR(t) , x) + 
d(x, 0), d(pGTR(t) , y) + d(y, a)} ::; (1/2)171. Without loss of generality assume that the 

first term is smaller than the second one. Consider the route that goes from pGTR(t) to 

x, then to 0 and finally follows 7 until a. Its length is at most (3/2)171 and is also an 

upper bound on the length of the route followed by GTR starting at time t, and hence 

the on-line completion time is bounded from above by t + (3/2)171 proving the theorem. 
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The following example shows that the ratio of 5/2 is asymptotically tight. Note that if 

all the requests are located on the real line, GTR boils down to going always to the nearest 

extreme of the smallest interval containing the requests that are yet to be visited. Ties 

are broken in an arbitrary way. This is not a limitation since any choice can be enforced 

by displacing requests a negligible distance. The example is illustrated in Figure 2. 

Let 0 be the origin. Consider a sequence starting at time 1 with two requests, one in 

-1 and one in 1, and suppose without loss of generality that GTR first goes towards 1. 

At time 3 it will be back in 0 and the adversary may put a request at point 1 again. Let 

to = 3, Po = 1 and in general ti (5/3)t i - 1 - 2/3, and Pi = ti - 2, for i = 1,2,3, ... , n. 

The sequence continues with a request in point Pi at time ti. The adversary's completion 

time for this sequence will be exactly tn, since it can start going to -1 and then going 

always to the right arriving at each point Pi when the request is presented. As for the 

completion time of GTR, we will show that at time tn it is in the middle of the interval 

[-I,Pn]' and hence it must still travel 3/2 times the length of the interval, as it has not 

yet served the requests in the extremes. The total time needed will then be equal to 

tn (3/2)(Pn + 1) tn (3/2)(tn - 1), and hence the ratio between the solution value of 

GTR and that of the adversary tends to 5/2 as n tends to infinity. 

Let us show that for every i, at time ti the position of GTR is (ti - 3)/2, that is, 

the center of the interval it still has to visit. This is obvious for i = 0: pGTR(3) O. 

Assuming the hypothesis is true for i we will prove it for i + 1. At time ti it leaves 

(t i - 3)/2 towards the right extreme, where it arrives at time ti + (ti - 3)/2 + 1 = 
(3/2)ti 1/2. Then, it turns back towards -1, and at time tHl = {5/3)ti - 2/3 will be 

at point ti - 2 - [((5/3)ti 2/3) - ((3/2)ti 1/2)] = (ti+1 3)/2, the center of the new 

interval. 0 

4.2 An algorithm for H-OLTSP 

The greedy algorithm GTR presented for N-OLTSP, can be transformed in a direct way 

into a greedy algorithm for H-OLTSP, by replacing "paths" by "paths finishing in the 

origin 0". A similar analysis shows that GTR is 5/2-competitive for the H-OLTSP. It is 

not sure however that this ratio is tight in this case for the metric spaces belonging to 

M. For the real line it can be shown that its competitive ratio is precisely 2, although 

better algorithms for this case exist as we shall see in Section 6. 

However, for H-OLTSP we can exploit the requirement of having to return to the origin, 

within a greedy framework. This is done by making a difference between requests that 
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are relatively close and those that are relatively far from the origin, where we postpone 

serving the former set of requests. The algorithm that we devise, and which we call PAH 

(for Plan-At-Home) achieves a competitive ratio of 2 for any metric space belonging to 

M. We emphasize that this is equal to the lower bO'und derived in Section 3.2. We 

abbreviate the position pPAH(t) of the PAH algorithm by p. 

1. Whenever the server is at the origin, it starts to follow an optimal route that serves 

all the requests yet to be served and goes back to the origin. 

2. If at time t a new request is presented at point x, then it takes one of two actions 

depending on its current position p: 

2a. If d( x, 0) > d(p, 0), then the server goes back to the origin (following the 

shortest path from p) where it appears in a Case 1 situation. 

2b. If d( x, 0) ::; d(p, 0) then the server ignores it until it arrives at the origin, where 

again it reenters Case 1. 

Notice that requests that are presented between an occurrence of Case 2a and the 

arrival at the origin will not make the server deviate from his current shortest path back 

to the origin. 

Theorem 4.2 PAH is 2-competitive. 

Proof: Let t be the time of the last request, and let the position of this request be x. We 

show that in each of the three Cases 1, 2a and 2b, PAH is 2-competitive. 

Let T* be the optimal tour that starts at the origin, serves all the requests presented, 

and ends at the origin. Clearly, Z* :::: t since no algorithm can finish before the last 

request is presented. Also, trivially, Z* :::: IT* I. 

1. In Case 1 PAH is at the origin at time t. Then it starts an optimal tour that serves 

all the unserved requests and goes back to the origin. The time needed by PAH is 

ZPAH ::; t + IT*I ::; 2 Z*. 

If, when the new request arrives, PAH is not at the origin, we can distinguish two 

cases, corresponding to Cases 2a and 2b. 
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2a. d(o, x) > d(o,p). Then PAH goes back to 0, where it will arrive before time t+d(o, x). 

After this, PAH computes and follows an optimal tour through all the unserved 

requests. Therefore, ZPAH < t + d(o, x) + IT*I. 

Notice that Z* ~ t + d( 0, x), since from the time t the request is presented every 

algorithm has to travel at least the distance from the request to the origin. This, 

together with Z* ~ IT*I implies that ZPAH < 2 Z*. 

2b. d(o,x) s d(o,p). Suppose PAH is following a route 'R that has been computed 

the last time it was at the origin. Let Q be the set of requests that have been 

temporarily ignored since the last time PAH left the origin. Let q be the location 

of the first request in Q served by the adversary, and tq the time at which q was 

presented. Let PQ be the shortest path that starts at q, visits all the points in Q 

and ends at 0. Clearly, Z* ~ tq IPQI. 

At time tq , the distance that PAH still has to travel on the route 'R before arriving 

at ° is at most I'RI-d(o, q), since d(o,p(tq)) ~ d(o, q) implies that PAH has travelled 

on the route 'R a distance not less than d(o, q). Therefore, it will arrive at ° before 

time tq + I'RI - d(o, q). After that it will follow an optimal tour TQ that covers 

the set Q of yet unserved requests. Hence, the total time to completion will be 

ZPAH S tq + I'RI- d(o, q) + ITQI. Because ITQI s d(o, q) + IPQL we have ZPAH S 

tq I'RI- d(o, q) + d(o, q) + IPQI = tq + I'RI + IPQI. Since, obviously, Z* ~ I'RI and, 

as established before, Z* ~ tq IPQI we have that ZPAH S 2 Z*. 

o 

The competitive ratio of 2 achieved by PAR is the best possible for metric spaces 

belonging to the class M (see Section 3.2). It is tight even for the real line as will be 

seen from the following instance where as usual point 0 is taken as the origin o. The 

sequence of requests starts with a request at time 1 at position + 1. PAH remains at the 

origin until time 1 when it leaves towards 1. Then a sequence of requests is presented, one 

each time PAR arrives at point +€, at a point "slightly" to the left of -€, in such a way 

that PAR always turns back to O. This goes on until time 2 + €. The optimal strategy 

consists of serving first the request in + 1 and then all the requests to the left of 0 yielding 

a completion time arbitrarily close to 2 + 2€, while PAH will be to the left of +€ at least 

until time 2 €, yielding a completion time of at least 4. Making € arbitrarily small gives 

a ratio of 2. In Section 6.2 we will give a better algorithm for the real line. 
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5 Polynomial time algorithms for OLTSP 

We now turn the attention to polynomial time competitive algorithms for metric spaces 

belonging to M. Even though competitiveness and computational complexity are not 

related concepts, for practical applications it is obviously relevant to make available poly

nomial time algorithms with a good competitive ratio. 

In the following we will present 3-competitive polynomial time algorithms for met

ric spaces belonging to M that use two well-known approximation algorithms for the 

Euclidean TSP as subroutine. 

5.1 A polynomial time algorithm for N-OLTSP 

One known approximation algorithm for the Travelling Salesman Problem in which dis

tances satisfy the triangular inequality (.6.TSP) is the 2-approximate Minimum Span

ning Tree heuristic (e.g., see [14]). The MST heuristic provides a tour whose cost is at 

most twice the length of a minimum spanning tree. This heuristic also provides a 2-

approximation algorithm to the Hamiltonian Path Problem, since the size of a minimum 

spanning tree is a lower bound on the total length of an optimal Hamiltonian path. 

Let X be a set of points of the metric space M. We denote with MST(X) the size 

of the minimum spanning tree of the complete graph with set of vertices X, every edge 

between two points x, y in X is weighted with the distance d(x, y). 

Before presenting the algorithm, we give a preliminary lemma. 

Lemma 5.1 For every pair of points x and y in a set X, there exists a 2-approximate 

tour on X in which x and yare adjacent. 

Proof: Consider the minimum spanning tree over X. The MST heuristic consists of 

doubling all the edges of the tree, which yields an Eulerian graph, i.e., a connected graph 

in which all vertices have even degree. The total edge length of this graph is 2MST(X), 

which is at most twice the optimal tour length. We then use the fact that for any Eulerian 

graph and any edge in that graph, a standard short-cutti,ng argument based on the triangle 

inequality will construct a TSP tour that contains that edge and has length no more than 

the sum of the graph's edge lengths. Now note that starting from the doubled tree, we will 

still have an Eulerian graph if we replace a shortest path between x and y by a direct edge 

between x and y. This is because (a) all vertex degrees remain even (since the degrees of 

x and y remain unchanged and those of the internal vertices of the path are reduced by 
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2) and (b) the graph remains connected (one copy of the removed path must still remain 

in the graph). By the triangle inequality, the edge replacement cannot increase the total 

edge length of the graph, so by the above observation the lemma follows. 0 

Let S be the set of requests still to be served. Let L: be the set containing all presented 

requests and the origin 0, and 7 the shortest Hamiltonian path over L:. Let us assume 

that the on-line server is at position p on the shortest path from the last served request, 

x, to an unserved request, y, when a new request is presented. The algorithm that we 

propose using the MST heuristic is similar to the greedy algorithm described before in 

Section 4.1. Instead of the optimal route through all the requests that still have to be 

served, an MST through all these points and the last visited point x is computed. A 

2-approximate path starting with the route from x to y is now followed. 

Theorem 5.2 The algorithm that uses the MST heuristic is 3-competitive for N-OLTSP, 

and the ratio is tight. 

Proof: We first note that 

MST({x} U S) ::; MST(L:) ::; 171. 

Let t be the time the last request is presented. At t, the on-line server is on the path 

leading from x to a point yES. By Lemma 5.1 this is a legal start of a 2-approximate 

path on {x} U S. Hence, the on-line completion time is ZOL ::; t + 2M ST( {x} US). Since 

t and MST( {x} US) are both lower bounds on the optimal off-line completion time, 

the total cost of the on-line server is less than 3 times the cost of the optimal off-line 

algorithm. 

The following example on the real line shows that 3 is a tight bound on the competitive 

ratio. Let the origin 0 be at point O. At time 0 a request at point 1 is presented. At time 

E a request at point 0 is presented. The MST contains the segment 01, and the on-line 

server is at point E and continues to follow the segment 01 until 1. At time 1 + E the 

on-line server is at position 1 - E and a new request is given at point 1. Now the on-line 

server goes towards 0 and afterwards it goes back to 1. The total time is 3, while the 

optimal solution takes 1 + E. 0 

It is interesting to note that the competitive ratio 3 obtained by this strategy is exactly 

the sum of the factor 2 of the approximation ratio of the heuristic plus 1, the same that 

would be obtained following the heuristic path after the last request is presented. Such a 

strategy can not be considered because no information about which is the last request is 

given to the on-line algorithm. 
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5.2 A polynomial time algorithm for H-OLTSP 

In this section we present a 3-competitive polynomial algorithm for H-OLTSP that uses 

the 3/2-approximate polynomial algorithm by Christofides [14] for TSP on metric spaces. 

Observe that this heuristic has not been used for N-OLTSP since Lemma 5.1 does not 

hold for the 3/2-approximate algorithm. 

Let S be the set of requests that have not yet been served by the on-line algorithm 

plus the origin 0, CHR(S) be the length of a 3/2-approximate tour over the set S, and 

T be the optimal tour over S. Moreover, let L: be the set of presented requests plus the 

origin 0, and 7 be the optimal tour over L:. 

The algorithm will always move on a shortest route between pairs of points of L:. 

Assume that at time t, when a new request is presented, the server is travelling from 

point x to point y. The algorithm follows the shortest route to the origin 0 through x or 

y, and then a 3/2-approximate tour over S. 

Theorem 5.3 The algorithm that uses Christofides' heuristic is 3-competitive for H

OLTSP 

Proof: Let t be the time the last request is presented. Denote with pOL(t) the position of 

the on-line server that is travelling from point x to point y of L:. Clearly, both t and 171 are 

lower bounds on the optimal off-line completion time. Let D = d(o, x) + d(x, y) + d(o, y). 

Then we have Z* ;::: D by the triangle inequality, since the points 0, x and y must occur 

in that order in some orientation of the optimal tour. Furthermore, d(o,pOL(t)) :S D/2, 

again by the triangle inequality. Thus, ZOL :S t+d(O,pOL(t))+CH R(S) :S Z*+(1/2)Z*+ 

{3/2)171 :S 3Z*. 0 

We do not have a proof of the tightness of the competitive ratio for this heuristic. 

6 OLTSP on the real line 

In this section we consider the particular case in which the metric space is the real line. 

Clearly all the algorithms presented for metric spaces in M can also be applied to this 

case. Notice that the examples of tightness for the analysis of both the 5/2-competitive 

algorithm for N-OLTSP and the 2-competitive algorithin for H-OLTSP are given on the 

real line. Hence, there is no hope that those algorithms have better performance on the 

real line. 

16 



In order to obtain a better performance we have to design specific algorithms. In 

particular, a 7/3-competitive algorithm for N-OLTSP and a 7/4-competitive algorithm 

for H-OLTSP will be given. These competitive ratios are fairly close to the lower bounds 

for the problems on the real line presented in Section 3, 2 for N-OLTSP and ~ 1.64 for 

H-OLTSP. 

6.1 An algorithm for N-OLTSP on the line 

In this section we give an algorithm for N-OLTSP on the real line that achieves a com

petitive ratio of 7/3. As we did before, we will consider the origin 0 at point O. 

Let I be the smallest interval containing the presented requests not yet served. The 

algorithm, which we call END, for "serve Extreme Nearest to the Origin first", consists 

in visiting I always starting from its extreme that is nearer to the origin. 

Theorem 6.1 Algorithm END is 7!3-competitive, and the ratio is tight. 

Proof: As usual let us assume that time t is the time of the last request. 

Without loss of generality we suppose that of the two extreme requests not yet served 

at time t the leftmost one is nearest to the origin, and that the rightmost one, the one 

furthest from the origin, has positive abscissa. 

At time t the interval I = [x, X] is still to be served, with X > 0 and Ixl :5 X, where 

Ixl denotes in this proof the absolute value of x. Observe that if x > 0 then I does not 

include the origin. Moreover, let X be the rightmost request in the past and -Y be either 

the leftmost request in the past or 0 in case the leftmost request has positive abscissa. Let 

pENO(t) be the position of ENO at time t. Clearly, at time t the following holds: t:5 Z*, 

x ~ -Y, X :5 X and -Y :5 pENO(t) :5 X. We consider three cases depending on the 

position pENO: 

1. -Y:5 pENO(t) :5 x. ENO is to the left of x and will finish its work visiting once the 

interval that lies to its right. Since pENO(t) ~ -Y the total time needed by ENO is 

ZENO :S t Y + X. To serve the whole set of requests, the whole interval [-Y, Xl 
must be travelled at least once, whence Z* ~ Y + X. Therefore, the ratio in this 

case is 

ZENO (t+Y+X) Y X 
--< <1+ <2 

Z* - Z* - Y + X - , 

since Z* ~ t and X :S X. 
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2. x $ pENO(t) $ Ix!, with x < 0 (this case coincides with the previous one if x > 0). 

In the worst case ENO is in position Ixl and must visit first the leftmost extreme in 

position x. The time needed by ENO is ZENO $ t + 31xl X. The optimal time is 

at least Z* 2:: 21xl + X. From this and the assumption that Ixl $ X $ X we have 

ZENO < (t + 31xl + X) < 1 (31xl + X) < 7/3 
Z* - Z* - + (21xl + X) - . 

3. Ixl < pENO(t) $ X. We consider two different cases: 

, 

• In the optimal solution x is visited after X. Then we have Z* 2:: 2X - x. At 

time t ENO must cover at most twice the interval [x, X], in case it is very close 

to the rightmost extreme X. Then it will finish by ZENO $ t - 2x 2X time 

and the ratio is 

ZENO (-2x + 2X) 
-- < 1+ ) 7/3. 

Z* - (-x+2X 

• In the optimal solution X is visited after x. Suppose that the optimal off-line 

algorithm visits x at time d for the last time (with d 2:: lxi, obviously). Then, 

at time d it still has to travel at least from x to X. Thus, Z* 2:: d x + X . If 

d 2:: t we have that 

ZENO (d - 2x 2X) 
--< <2. 

Z* (d - x + X) -

Otherwise, if d < t, the following two claims'hold: 

Claim 6.2 At every time t', d ~ t' $ t, pENO(t') 2:: Ixl. 

Proof: We prove this by contradiction. The time at which the request in 

position x is presented is less than d since we assumed that at time d the 

optimal off-line algorithm has served x for the last time. Suppose ENO is in 

pENO (t') ~ x at time t'. This implies that at time t the request in x has already 

been served since pENO(t) 2:: x, which is a contradiction. This proves the claim 

for x 2:: O. For x < 0, suppose x < pENO(t') < Ixl. Because x remains unserved 

at time t, ENO must have remained to the right of x until that time. Thus, 

since x is the leftmost unvisited request at time t, it also must have been so at 

time d. For ENO to end up to the right of Ixl at time t, as we are assuming 

in this case, it would have to travel away from x. However, this could have 
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happened only so long as the rightmost unvisited request at the time was less 

than or equal to lxi, and so could not have caused ENO to be at the right of 

Ixl at time t, a contradiction. D 

Claim 6.3 Starting at time d ENO moves to the left until time t. 

Proof: From the previous claim we know that between time d and time t ENO 

is always to the right of Ixl. We notice that at any time during this period 

the extreme point of the interval of yet unserved requests that is nearest to 

the origin must be inside [-Ixl, Ixll, implying that ENO always moves to the 

left during this period. This can be readily seen from the fact that, given the 

previous claim, during the whole period x always remains the leftmost point 

not yet served, and the on-line server is to the right of Ixl at time t. D 

Thus, at time d ENO starts from a position pENO(d) ~ Ixl to travel to the left 

and at time t it is still to the right of Ixl. Therefore, ZENO :::; d + 2X - 2x 

yielding the ratio 

ZENO (d - 2x + 2X) 
--< <2 

Z* - (d - x X) - . 

We finally prove that there is a sequence of requests for which ENO achieves a ratio 

of 7/3. This case is illustrated in Figure 3. 

At time 1 two requests in -land 1/2 are presented. At time 1 ENO leaves 0 towards 

1/2 and arrives at the origin at time 2 when a new request is presented in 1 - e. Again, 

ENO goes to the right and arrives in 1 - e at time 3 - e. At that time a new request is 

given in 1 + e and ENO goes to the left since the extreme point in -1 is nearer to the origin 

than 1 + e. Altogether ENO takes time 7 - e to serve the requests, while the optimal 

off-line solution needs 3 + e. The ratio tends to 7/3 as € tends to .0. D 

6.2 An algorithm for H-OLTSP on the line 

In this section we present an algorithm for H-OLTSP on the real line whose competitive 

ratio is 7/4. We call this algorithm PQR (for Possibly-Queue-Requests). As in PAH, the 

2-competitive algorithm for any metric space in M (see Section 4), PQR is based on the 

idea of postponing requests close to the origin. 

At any point in time let S be the set of requests unserved by PQR and let Q, the 

queue, be the subset of S containing the requests that are temporarily ignored. PQR 
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always follows the shortest tour from its current position through the set P 8\ Q 

finishing at the origin, followed by the shortest tour serving the requests in Q. 

PQR works in phases. The first phase starts with the first request, and each successive 

phase starts when a new request is presented that is not on the currently scheduled tour 

and whose absolute value is bigger than that of any other unserved request. 

At the beginning of a phase, PQR schedules the shortest route that, starting from its 

current position pPQR(t) , serves all the unserved requests and goes back to the origin. We 

call this route the greedy route. Requests may be presented during the phase. Some of 

them may call for computation of a new greedy route, while others are simply added to 

Q and cause a recomputation of the shortest tour through Q. 

We denote the current route remaining to be traversed as R, with R being the con

catenation of Q, the part of the most recently computed greedy tour that remains to be 

traversed (and will visit all the cities in P) followed by '1/., the optimal tour for Q. 

During a phase, we refer to the long side as the half line from 0 on which the request 

whose presentation caused the start of the phase is located. The other side is then referred 

to as the short side. 

When a phase starts the set Q is empty. By the construction of our algorithm, Q will 

only contain requests on the short side. Requests are removed from Q as soon as they 

are served. 

PQR is described completely by its behavior when a new request is presented, say at 

time t. 

1. If the new request is on route R then proceed following R, add the request to P or 

Q, depending on whether it is first visited in Q or 1£, and serve the request when 

visited; else 

2. If the new request is on the long side, then empty the set Q and redefine R as the 

newly computed greedy route. If the new request is further from the origin than 

any unserved request then also a new phase starts; else 

3. If the new request is on the short side and it is further from the origin than any 

unserved request then a new phase starts, empty the set Q and redefine R as the 

newly computed greedy route; else 

4. The request is on the short side but no new phase starts. Insert the request in Q, 

redefine 1£ as the shortest tour that starts at the origin, visits all of Q, and returns. 
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Theorem 6.4 PQR is 7/4-competitive, and the ratio is tight. 

Proof: 

We show that PQR is 7/4 competitive. Suppose that the last request is presented 

at time t. Without loss of generality, we will suppose that at time t the long side is the 

right side, and the short side is the left side. Moreover, let -Y and X be, respectively, 

the leftmost and the rightmost request ever presented. When the time t is clear from the 

context we abbreviate pPQR(t) ~ith p. 

There are four cases, depending on which rule the algorithm applies. The proof is by 

induction on the number of requests, so we may assume that if this last request never 

arrived, PQR would be 7/4 competitive. The induction hypothesis trivially holds in case 

of no or 1 requests. 

1. In the first case, the new request is on the currently followed route n. ZPQR does 

not increase, and hence PQR remains 7/4 competitive. 

2. In case 2 the new request is on the right of the origin, at position X. After its 

presentation, X is the rightmost unserved request and p S X, since otherwise we 

would have had a Case 1 situation. Let -x be the leftmost unserved request. If 

there is no unserved request left of 0, we set -x = O. Two cases are distinguished: 

• In the first case -x < p. Since PQR follows the newly computed route starting 

at time t from p, we have that ZPQR S t + 2x + 2X. For the optimal algorithm 

Z* ~ t + X since the new request in X cannot be served before time t, and 

the algorithm must end the tour at the origin. We also have Z* ~ 2x 2X. 

Moreover, x S X since either the current request in X or a previous request 

on the right of the origin has started a new phase. We then conclude: 

ZPQR t+2x+2X t+X 2x+X < 1 2x+X <~. 
z;- < Z* = z;- + Z* - + 2x + 2X - 4 

• In the second case p S -x. The time needed by PQR to serve all the requests 

is then ZPQR S t + Ipl + 2X. As before we have Z* ~ t X. Moreover, the 

position p of PQR implies that there must have been a request at distance at 

least Ip!left from the origin, i.e., Y ~ Ipl. Obviously, Z* ~ 2Y + 2X. This 

implies that 

ZPQR < t+ Ipl+2X = t+X + Ipi X < 1+ Ipl+X <~. 
Z* - Z* Z* Z* 2Y + 2X - 2 
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3. In this case the new request is on the left of the origin at position -x. The new 

request is further from the origin than any other unserved request. Let X be the 

rightmost unserved request. Clearly, X < x. If there is no unserved request to the 

right of 0, we set X = O. At time t, p > -x, since otherwise we would have had a 

Case 1 situation. We distinguish two cases. 

• In the first case we have -x < p < X. Since PQR recomputes an optimal 

greedy route at time t, we have ZPQR ~ t+2x+2X. For the optimal algorithm 

Z* 2:: t + x since the new request at position -x cannot be served before time 

t. Moreover, Z* 2:: 2x + 2X. We then obtain that 

ZPQR t 2x+2X 
---- <---------

Z* Z* 

t+x 

Z* 

x + 2X 1 x + 2X < 7 
----- < + -. 

Z* - 2x+2X - 4 

• In the second case we have that p 2:: X. The time needed by PQR to serve all 

the requests and return to the origin is ZPQR ~ t + Ipi + 2x, with Ipi ~ X. For 

the optimal solution we have Z* 2:: t x and Z* 2:: 2x + 2X. We conclude that 

ZPQR t+ +2x 
--- < ---""-''---

Z* Z* 

t x 

Z* 
x Ipi <l+_x __ X",:",,:,<~. 

Z* - 2x 2X - 2 

4. In this case the request inserted into Q is further from the origin than any of the 

other unserved requests on the short side, but closer to the origin than the furthest 

unserved request on the long side. Let -x" be the position of this request, -x' and 

XI the leftmost and the rightmost unserved requests when the greedy tour was last 

computed, and -x and X the leftmost and rightmost unserved requests when the 

current phase started and so the current long side was declared to be such. Note 

that we must have x", Xl, X' ~ X. We consider two subcases: 

• In the optimal solution X' is served before -x". Let t' be the time at which the 

request in X' was presented, i.e., the time at which the current greedy route 

was computed. For the optimal solution we get Z* 2:: t' X' + 2X". 

Another two subcases are distinguished, depending on pPQR(t/), i.e., the posi

tion of PQR at time t', relative to the interval I = [-x', X']: 

- PQR was inside I at time tl. Notice that, at time t PQR is still working on 

the greedy tour that was computed last since the request at t did not cause 

a new phase. Therefore, Z PQR ~ t' + 2X' + 2X' + 2x", while Z* 2:: 2X' 2X. 
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In this case the ratio is 

ZPQR 

Z* 

< 1 

z* 
2x' + X' 7 
----<-
2X' + 2X - 4' 

X' + 2X" 2x' 
-----+---

Z* Z* 

t' X' 

since x', X' ~ X. 

PQR was outside I at time t'. Observe that it could not be to the right of 

XI, otherwise a Case 1 situation would have occurred. Therefore, it was 

necessarily to the left of -x'. This implies that ZPQR ~ t' + IpPQR(t')1 + 

2X' + 2X". Obviously, IpPQR(t') I ~ y, and Z* ;:::: 2Y 2X. Therefore, 

ZPQR 

Z* 

tf + IpPQR(t') I + 2X' + 2X" 
< 

Z* 
IpPQR(t') I + X' 3 

< 1 + 2Y + 2X ~ '2' 

f + X' + 2Xll IpPQR(t') I + X' 

Z* + Z* 

• In the "optimal solution -x" is served before X', Then, for the optimal solution 

we have Z* ;:::: t x" + 2X'. Again, two subcases: 

- PQR is to the right of -x' at time t (it is certainly to the left of X'). We 

consider two more su bcases: 

* x' < x", Then ZPQR ~ t + 2X' + 2X' + 2Xll while Z* ;:::: 2X" + 2X. In 

this case the ratio is 

ZPQR 

Z* 

t + 2x' + 2X' + 2X" 
< 

t + 2X' + x" 2X' x" 
-----+---

Z* Z* Z* 
2x' + x" 7 

< 1 + <-, 
2Xll 2X - 4 

* Xl ;:::: x", Since the request in -x" is not visited on the current route, 

PQR has already visited x' at time t and p > -x". Then, ZPQR < 

t + x" + 2X' + 2X" whereas Z* ;:::: 2X" + 2X. The ratio is 

ZPQR 

Z* 

since x" ~ X. 

t + x" + 2X' + 2X" t + 2X' + x"2x" 
< -------- + 

Z* Z* Z* 
2 /I 

< 1 + x < 3/2 
2x" + 2X - , 

- PQR is to the left of -x' at time t, p cannot be to the left of -x" because 

in that case -x" would be on the current route, and therefore we have 
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that x' < x" and P is inside the interval [-x", -x']. Thus, ZPQR ::; t + 

x" + 2X' + 2X". Since Z* 2:: t + x" + 2X' and Z* 2:: 2X" + 2X we have 

ZPQR t + x" + 2X' + 2X" 
----< --------------

Z* z* 
since x" ::; X. 

t + 2X' + x" 2X" 3 --------- + - < -
Z* Z* - 2' 

That the bound on the competitive ratio of 7/4 is asymptotically tight for PQR is 

proved by the following example. At time 1 requests are presented in both +1 and -1. 

PQR is at the origin until time 1, when it starts a greedy tour that without loss of 

generality serves +1 at time 2, -1 at time 4 and returns at the origin at time 5. However, 

at time 3, when PQR crosses the origin, a new request is presented at position 1 + E. This 

new request starts a new phase since it is the furthest request not yet served. Then a new 

greedy route is computed that starts from the origin at time 3, serves the two requests in 

-1 and 1 + E and returns back at the origin at time 7 + 2 E. As for the optimal algorithm 

it serves -1 at time 1, +1 at time 3, 1 + E at time 3 + E and returns at the origin at time 

4 + 2E. Making E arbitrarily small, the ratio is arbitrarily close to 7/4. D 

7 Concluding Remarks 

We have studied a classical routing problem from a new point of view that is natural 

and realistic, given the great quantity of applications in which travelling must be started 

before having complete information about the requests to be served. 

Vehicle routing problems have been often considered with time window constraints, 

i.e., each request has to be served between a given release time and a given deadline. With 

regard to release times observe that our lower and upper bounds hold also if we change 

the problem by allowing a release time different from the time in which the request is 

presented. Then the i-th request is specified by a triple < ti, Pi, ri >, and the relation 

ti ::; ri holds for every i, with the meaning that requests may be presented at any moment 

not later than their release times. In that case our algorithms will simply ignore the 

requests until their release times arrive, obtaining the same upper bounds. 

It is obviously an open problem to close the remaining gaps between lower and upper 

bounds: 5/2 vs. 2 for N-OLTSP on general metric spaces in the class M, and for the real 

line 7/3 vs. 2 for N-OLTSP and 7/4 vs. ~ 1.64 for H-OLTSP. 

It would also be interesting to study other particular metric spaces (such as trees, 

cycles, half-lines, etc.), to see if better bounds can be obtained (as we did for the real 
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line). 

An interesting extension of OLTSP is to crew scheduling in which more than one 

server is used to serve the requests. In this case a 2.5-competitive algorithm can be easily 

obtained for the Homing version of this on-line problem by the following strategy working 

in phases: Each time a new request is presented, all the servers return to the origin and 

plan an optimal tour for covering all the unserved requests, (and eventually end to the 

origin). However, improvements are certainly possible. 

Other possible extensions of the problems considered in this paper may take into 

account different objective functions. For instance consider the sum (or the average) over 

all the requests of the individual service times, defined as the time at which the request 

is served, or of the individual service delays, defined as the interval between the time at 

which the request is presented and the time at which the request is served. 

A second class of problems that may be considered is provided by the dial-a-ride 

scenario, in which each request consists of moving an item located at a certain position 

in the metric space to a second position in the metric space. Examples of such problems 

(with multiple servers) are a system of taxis in a city or a system of elevators. Notice 

that in those cases one might wish to impose an extra constraint covering the capacity of 

the server. 
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Figure 3: A worst-case sequence for the ENG algorithm 
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