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ABSTRACT 
 
The resizing of data, either upscaling or downscaling based on need for increased or decreased resolution, is an 
important signal processing technique due to the variety of data sources and formats used in today’s world.  Image 
interpolation, the 2D variation, is commonly achieved through one of three techniques: nearest neighbor, bilinear 
interpolation, or bicubic interpolation.  Each method comes with advantages and disadvantages and selection of the 
appropriate one is dependent on output and situation specifications.  Presented in this paper are algorithms for the 
resizing of images based on the analysis of the sum of primary implicants representation of image data, as generated by 
a logical transform.  The most basic algorithm emulates the nearest neighbor technique, while subsequent variations 
build on this to provide more accuracy and output comparable to the other traditional methods.  Computer simulations 
demonstrate the effectiveness of these algorithms on binary and grayscale images. 
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1. INTRODUCTION 
 
With the recent integration of multimedia into almost every aspect of daily lives, consumers are viewing images, video, 
and other visual data on a wide variety of products, ranging from televisions to computer screens to a large selection of 
hand-held devices.  The diversity among the end users’ display is far beyond what content providers can predict, thus 
introducing the need for algorithms capable of performing corrective signal processing to properly adapt input data to 
the appropriate output format [1].  Further, as more and more devices become connected to the internet, additional 
manipulation of the data may be necessary to overcome concerns about bit-rate and bandwidth limitations during 
transmission. 
 
Image interpolation, both downspampling and upsampling, is necessary when resizing the data to match either the 
specifics of the communication channel or the output display.  While it is more efficient to transmit low-resolution 
versions (often combined with data compression) to the client [2], an approximation of the high-resolution original may 
be necessary when presenting the final visual data.  Thus, the accurate resizing of image data is an essential step in 
many applications, ranging from several consumer products to critical functions within the medical, security, and 
defense sectors. 
 
To resize data, several techniques have been developed [3][4][5][6][7][8].  The most basic method commonly used is 
nearest neighbor, a procedure that is not only fast but doesn’t introduce any artificial data into the final output.  
However, despite the speed with which is can be calculated, this procedure suffers from the fact that the resulting image 
often contains block artifacts,  which are not only very visually noticeable but typically also can drastically negatively 
affect error calculations used to compare methods.  Two additional techniques commonly used are bilinear and bicubic 
interpolation [9].  These procedures examine the points surrounding the missing data to mathematically approximate the 
needed values.  This estimation produces smoother output that is often both visually close and quantitatively a better 
representation of the actual data.  However, this is at the expense of computational complexity (required for performing 
the mathematical evaluation) and often a blurring of edges and edge details [10].  In figure 1, 1D interpolation examples 
are shown through a series of points to demonstrate these common techniques.  Note that the bilinear and bicubic 
interpolation for 2D images are called linear and cubic interpolation respectively for 1D data. 



 
Figure 1: One-dimensional interpolation for a set of points: nearest neighbor (left), linear (middle), and cubic (right) examples. 

 
Additional work has been done in the area of wavelet-based image interpolation [11] to try and overcome the effects of 
blurred edges resulting from the bilinear and bicubic methods.  While success has been demonstrated by employing this 
technique, there are certain limitations to due the restriction that input data must be multi-bit (grayscale, for images).  
Thus, these methods aren’t as versatile, as binary input data can not be processed as well. 
 
This paper introduces new algorithms for the resizing of images using a logical transform.  The sum of primary 
implicants representation is derived via a logical transform for blocks of data within the image.  Analysis and 
manipulation of the terms found within the representation, as detailed in this paper, results in the desired scaling of the 
image.  An initial simple algorithm duplicates the performance of the nearest neighbor method.  Block mapping and 
edge classification result in two additional variations, improving this initial method.  Initially designed for the resizing 
of binary data, an extension to all three algorithms introduced allow the techniques to be applied to grayscale data as 
well, making them functional under a wide range of input data types.  Using mean squared error (MSE), the output from 
the algorithms can be shown to be comparable to the commonly used nearest neighbor, bilinear interpolation, and 
bicubic interpolation methods. 
 
This paper is organized as follows.  Section 2 details the logical transform and sum of primary implicants representation 
for blocks of data within the image.  Section 3 presents the algorithms introduced by this work.  Sections 4 and 5 
provide computer simulations demonstrating the algorithms on binary and grayscale images respectively.  A conclusion, 
found in section 6, ends the paper. 
 

2. LOGICAL TRANSFORM 
 
Binary data can be converted into a sum of primary implicants using a logical transform.  The sum of primary 
implicants includes don’t-care conditions for the minimized terms, which provide a more generalized representation of 
the data.  Other logical transforms exist [12] that transform the data into minimized forms, but not into the sum of 
primary implicants and not always incorporating don’t care conditions.  Some image processing techniques employing 
Boolean functions [13], but not utilizing the sum of primary implicants minimized form of the data, require extensive 
pattern matching and other computationally intense operations due to the more complex raw data.  Thus, the sum of 
primary implicants is incorporated here as a representation of the block data that is both minimized and includes the 
don’t-care values [14].  Classical methods of generating this Boolean minimized form include using Boolean algebra, 
Karnaugh Maps, or the Quine-McCluskey method [15], all of which can be computationally intensive operations. 
 
2.1 The logical transform 
 
The logical system transform was introduced in [12] as a method for converting binary data into a sum of primary 
implicants representation.  The logical transform, useful for quickly determining the Boolean minimized form (vector y) 
from an input signal f, is 
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where δp is the Kronecker Delta function which accepts and returns a 1D vector where p-valued elements are set to 1 
and all others to 0 and where the matrices A and B are defined as  
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Unlike other common transforms, the inverse operation of the logical transform is not a mirror image of the forward 
transform.  Instead, the original binary data is generated from the sum of primary implicants through a process called 
implicant expansion.  Equation (4) formulates one method [16] in which this can be achieved.  It should be noted that 
the inverse operation has a much lower computational requirement than the forward logical transform.  
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For the previous equation, mi is the ith digit of the base-2 representation of the index m. 
 
2.2 Logical transform examples 
 
The following example demonstrates this process for a particular 1D input vector of length N = 8 (or 23). 
 

( ) [ ]Txxx 01001111f 321 =,,  (5) 
 
After performing the calculations in equation (1), the resulting y-vector (length 33 = 27) has one-valued entries at 
indices 8 (“022” in base-3) and 21 (“210” in base-3), which translates to a sum of primary implicant representation of: 
 

( ) 321321  "210"  "022" ,,f xxxxxx +=+=  (6) 
 
For 2D data, such as images, blocks are scanned in a top-to-bottom, alternating left-right/right-left manner to convert 
them into 1D vectors for processing by the logical transform.  After a gray-code reordering the indices, this vector is 
passed into the logical transform and again the resulting y-vector indicates the sum of primary implicants representation.  
Several examples are included in figure 2 showing binary blocks, the sum of primary implicants representation, and a 
count of the number of terms and number of don’t care’s present in each. 
 

 
Figure 2: Sum of primary implicants representation for example 2D binary blocks. 

 
2.3 Computational complexity 
 
Based on fast implementations of the A and B matrix multiplication from [12] used for the calculation of the logical 
transform, the computational requirements for performing this operation are detailed in (7).  Given N data points in the 



signal, a logical transform window size of MLT, and r as the number of bit planes necessary to break the original multi-
bit data into binary form, the logical transform requires 
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where n is the log2 of MLT (and equivalent to the number of literals in the sum of primary implicants). 
 

3. INTERPOLATION ALGORITHMS 
 
3.1 Algorithm 1: nearest neighbor emulation  
 
The following figure (figure 3) shows the block representations for a 2x2 window (input) and a 4x4 window (resulting 
output from input being scaled up by a factor of 2).  The pixel values are labeled by the variables A, B, C, and D, 
showing how the values are related in each window during the nearest neighbor scaling. 
 

x1 \ x2 0 1 
0 A B 
1 C D 

 
 

       A = x1’x2’ 
       B = x1’x2 
       C = x1x2’ 
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          C = x1x3’ 
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Figure 3: Nearest neighbor scaling (factor of 2) showing associated pixels from 2x2 block (left) up to 4x4 block (right). 
 
Because the two window sizes are related, it is possible to develop a connection between the terms in the small window 
and the terms found in the larger nearest neighbor scaled window.  For a factor of two (the same as in figure 3) and for a 
factor of four (2x2 window scaled to 8x8 window), this association is shown in the following diagram. 
 

Scale factor: 2  Scale factor: 4 
Input window: 2x2  Output window: 4x4  Input window: 2x2  Output window: 8x8 

    x1 Ö x1 
x1 Ö x1  [don’t care value] Ö x2 

[don’t care value] Ö x2  [don’t care value] Ö x3 
x2 Ö x3  x2 Ö x4 

[don’t care value] Ö x4  [don’t care value] Ö x5 
    [don’t care value] Ö x6 

Figure 4: Association between literals in terms of input window to literals in terms of output window. 
 
Based on this relationship, the algorithm for performing nearest neighbor emulation using the logical transform is 
presented in figure 5.  Due to the simplicity of the association previously shown, during implementation the procedure 
can be achieved either through term manipulation (software), via look-up table entries (software or hardware), or by 
direct literal linking/connecting (hardware).  Note that since this algorithm emulates nearest neighbor exactly, the results 
(and resulting error) produced by this technique are identical to the output from resizing by nearest neighbor. 



 
Figure 5: Algorithm 1 – nearest neighbor emulation. 

 
3.2 Algorithm 2: term mapping 
 
For more accurate results, a variation of this method is presented.  In order to perform the resizing of the images, terms 
within the sum of primary implicants found within the small input data are mapped to terms within blocks of the larger, 
output image.  This is done statistically based on a test set of representative input images.  This algorithm is shown in 
figure 6. 
 

 
Figure 6: Algorithm 2 – term mapping. 

 
There are two possible block orientations: direct mapping and center mapping.  Direct mapping uses block sizes whose 
relationship is equal to the scale factor, resulting in an equivalent association between input block and output block (and 
results in non-overlapping block calculation during evaluation).  One major disadvantage of this method is there can be 
negative edge-effects due to limited window size.  To counter this, although at the cost of added computation, the center 
mapping method uses input blocks that are larger in size with only the center portion being directly associated to the 
output block.  This alternative orientation allows more information regarding surrounding pixels to be incorporated into 
the term mapping analysis.  However during evaluation the blocks are now overlapping, requiring additional 
calculations along the block edges.  Figure 7 shows the relationship between these two alternatives, both for a scale 
factor of two (2x2 input block mapped to 4x4 output block). 
 

 
Figure 7: Comparison of direct mapping (left) to center mapping (right). 

 
3.1 Algorithm 3: edge classification 
 
As can be observed in the results presented later, the greatest amount of error resulting from the resizing (by the 
algorithms introduced in this work, as well as by those traditionally used) is found in the edge areas.  For nearest 
neighbor, this is due to the “jagged edges” produced during scaling (see figure 10).  For bilinear and bicubic 
interpolation, this is due to the smoothing that occurs during the approximation process. 
 
The third algorithm variation presented here treats edge portions of the image differently than the rest of the image.  
This segmentation allows different approximations to be applied to the final output dependant on what portion of the 
image they are found.  Termed “edge classification,” this third variation of the algorithm performs edge detection within 
the image to identify and classify the edge areas of the data.  This allows more precise scaling of those sections, in an 



attempt to reducing blurring while still accurately approximating the correct output.  Figure 8 shows this additional step 
in the scaling procedure. 
 

 
Figure 8: Algorithm 3 – edge classification. 

 
4. COMPUTER SIMULATIONS: BINARY 

 
To demonstrate the algorithms on binary data, a set of ten images (4 synthetic and 6 natural) of various resolutions is 
selected.  This group is considered the ground truth to which the output of the algorithms is compared.  Each initial 
image is scaled down to generate a set of input images to be passed into the various methods.  Figure 9 shows the ten 
original images.  Below the images are individual monikers used to reference each and the initial resolution in pixels. 
 

   
Square (64x64) Triangle (64x64) Circle (64x64) 

 

    
Shapes (256x256) LenaSmall (128x128) Splash (256x256) Peppers (256x256) 

 

   
Barbara (512x512) Lena (512x512) Mandrill (512x512) 

 
Figure 9: Synthetic and natural binary images used in computer simulations.  The size resolution for each is shown in pixels. 



The first algorithm presented here, nearest neighbor emulation, duplicates the output of nearest neighbor exactly.  
Therefore, visual and numerical results associated with that method are not included.  For the second algorithm, term 
mapping, both direct mapping and center mapping windows were used, with the more accurate output selected for 
comparison.  Finally, the edge classification in the third algorithm was achieved though use of the Canny edge detector 
[17][18], producing a binary edge map identifying edge locations as an intermediate step in the resizing process.  Table 
1 contains the mean squared error (MSE) values from the final images scaled with algorithms 2 and 3 (term mapping 
and edge classification respectively) as compared to the bilinear and bicubic interpolation methods. 
 

Table 1. Binary resizing results (scale 2) comparing output MSE for various interpolation techniques 
Resizing Method Square Triangle Circle Shapes LenaSm Splash Peppers Barbara Lena Mandrill 

Bilinear Interpolation 0.0041 0.0029 0.0026 0.0118 0.0404 0.0137 0.0296 0.0724 0.0289 0.1312 
Bicubic Interpolation 0.0041 0.0029 0.0026 0.0118 0.0403 0.0137 0.0296 0.0727 0.0289 0.1312 
Algo 2: term mapping 0.0000 0.0015 0.0025 0.0115 0.0382 0.0136 0.0326 0.0715 0.0281 0.1350 
Algo 3: edge classification 0.0000 0.0007 0.0024 0.0109 0.0379 0.0126 0.0278 0.0683 0.0280 0.1289 

 
For binary images resized at scale 2, the outputs of bilinear and bicubic are almost equivalent.  Algorithm 2 (term 
mapping) outperforms the two traditional interpolation techniques in almost every case.  Algorithm 3 (edge 
classification) succeeds in equaling or improving the algorithm 2 results for every image included here.  Of particular 
note: the square image, where the edges aligned along the window boundaries perfectly, was reconstructed exactly, 
resulting in zero error within the output images. 
 
Figure 10 shows details of an edge along of the triangle image.  This simple example shows an enlarged area with 
jagged nearest neighbor output vs. the smoother result derived from algorithm 3 (edge classification). 
 

 
 

Figure 10: Triangle image (left) with highlighted area; enlarged versions show output from (A) nearest neighbor and (B) algorithm 3. 
 
Figure 11 provides additional details from the Mandrill binary image.  Close-up inspection of the eye portion of this 
image highlights the scaling differences produced by bicubic interpolation compared to the output from algorithm 2 
(term mapping). 

 

 
 

Figure 11: (A) Close-up of Mandrill eye and enlargements by (B) bicubic interpolation and (C) algorithm 2 (term mapping) 



5. COMPUTER SIMULATIONS: GRAYSCALE 
 
The algorithms introduced in this work were initially designed for binary data.  However, an extension to grayscale is 
possible, allowing the same technique to be applied to a wide range of input data.  Through bit plane decomposition, a 
grayscale image is broken into a series of binary data sets.  Each set is then processed independently, and reassembled 
back into the final image at the end of the process.  Figure 12 depicts this generalized procedure used in each instance. 
 

 
Figure 12: Grayscale image processing, depicting the decomposition of image into bit planes (shown for 8-bit input data). 

 
Six grayscale images are selected to demonstrate the algorithms.  This collection is shown in figure 13. 
 

   
Shapes (256x256) Splash (256x256) Peppers (256x256) 

 

   
Barbara (256x256) Lena (256x256) Mandrill (256x256) 

 
Figure 13: Synthetic and natural grayscale images used in computer simulations.  The size resolution for each is shown in pixels. 

 
As mentioned before, the results for the first algorithm (nearest neighbor emulation) are not shown, as those duplicate 
the output of the nearest neighbor technique exactly.  Algorithms 2 and 3 (term mapping and edge classification 
respectively) are performed as described previously, with the MSE output values shown in table 2 as compared to 
bilinear and bicubic interpolation. 
 

Table 2. Grayscale resizing results (scale 2) comparing output MSE for various interpolation techniques 
Resizing Method Shapes Splash Peppers Barbara Lena Mandrill 

Bilinear Interpolation 0.00201 0.00035 0.00096 0.00366 0.00038 0.00666 
Bicubic Interpolation 0.00203 0.00027 0.00084 0.00411 0.00033 0.00705 
Algo 2: term mapping 0.00179 0.00107 0.00135 0.00568 0.00159 0.00497 
Algo 3: edge classification 0.00172 0.00091 0.00020 0.00261 0.00121 0.00243 

 



For grayscale images, algorithm 2 (term mapping) did not outperform the traditional interpolation methods, except in 
the cases of the Shapes and Mandrill input images.  However, when edge classification was introduced to the procedure, 
as in the algorithm 3 specification, the resulting output was the best in every case (except for the Lena image). 
 
Figure 14 shows details for the sequence of the Barbara images.  From the close-up inspection of the results, one can see 
the blurring caused by the bicubic method as compared to the sharpness maintained by the edge classification technique 
(algorithm 3). 
 

 
Figure 14: Barbara image showing (left to right) original, small, edge map, bicubic interpolation, and logical transform output. 

 
6. CONCLUSION 

 
This paper introduced three algorithms for the resizing of binary and grayscale images using a logical transform.  Based 
on analysis of the sum of primary implicants representation of blocks within the input images, scaling techniques were 
applied to generate output data that is comparable to bilinear and bicubic interpolation, two commonly used methods.  
The first algorithm, nearest neighbor emulation, is capable of duplicating the output generated by the nearest neighbor 
technique.  Using this as a basis, the second algorithm variation uses term mapping, where statistical analysis of a set of 
test images generates a mapping between input terms and output terms.  Finally, the third algorithm produces further 
improvements through edge classification, by segmenting the data and providing more precise scaling around the edge 
areas in the image, thus resulting in sharper output that doesn’t suffer from blurring often seen in bilinear and bicubic 
interpolation.  Although not demonstrated here, the same concepts presented can be extended further to 1D signals 
(audio, for example) and to both color images and video data as well. 
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