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ALGORITHMS FOR THE SOLUTION OF SYSTEMS OF

LINEAR DIOPHANTINE EQUATIONS
Tsu-Wu Joseph Chou
Under the supervision of Professor George Edwin Collins
ABSTRACT

A general theory of systems of 1inear Djophantine equations is
described. Two algorithms for the solution of linear Djophantine
systems, which well restrain intermediate expression swell, are
presented. One, called LDSSBR, is based on ideas of Rosser which were
originally used in finding a general solution with smaller coefficients
to a linear Djophantine equation and in computing the exact inverse of
a non-singular square integral matrix. A hypothetical worst case for
this algorithm is analyzed. The other, called LDSMKB, is an extension
and improvement of Kannan and Bachem's algorithm for the Smith and the
Hermite normal forms of a non-singular square integral matrix. The
complexity of this algorithm is investigated and a polynomial time
bound is derived. Also a much better coefficient bound is obtained
compared to Kannan and Bachem's analysis. These algorithms are
implemented by using the infinite precision integer arithmetic

—————capabitities—of-the-SAC-2-system—Their-performances—are—compared—m———

Finally future studies are mentioned.



CHAPTER 1.  INTRODUCTION

Section 1.1. Problem Description and Background

Given the following system of m Tlinear equations in n variables

with integer coefficients

+
st}
>
1]
o

a]’.lx1 + a]’zx2 S

8y Xyt 2 Xp ..t Ay X, = by

am’]x] + am,zx2 + ...+a x =0b

one may be interested in finding integral solutions for the variables

Xy i=1,2,...,n. Such a system is referred to as a linear Diophantine

system. For short, this system can be written in matrix form

Ax = b

x integer,

where A and b are m by n and m by 1 integral matrices re-

spectively. In fact, A and b can be rational matrices. For if A

and b are rational, one can always transform the system Ax = b, with-

out changing its solutions, into a linear Diophantine system by multiply-

ing  this system with the least common multiple of the denominators of
—————glements in—A—and—b——Inthis—thests—we—shati—assume—A—and—b—are———

integral for simplicity.

If the system is consistent, then there exists a vector y 1in

" , the set of all integral n-vectors, such that Ay =b , y s called



a particular solution of the system or a particular solution. Let $

be the set of all the solutions of the homogeneous Diophantine system
Ax = 0 . Then S 1is an additive Abelian group. Since any solution y*
of the Diophantine system Ax = b can be expressed as a sum of ¥ and
some s* din S and vice versa, the pair (y,S) represents all the

solutions of the system and is called a general solution of the system

or a general solution. Let Y129 ¢ S and a; 5 3y € Z , the ring of
integers. Let "+" be the operator of integer by vector multiplication,
Since a1-(y1+y2)=a]-y]+a]-y2 , (a]az)'y]=a]-(a2vy]) and  (ajtay)eyy=
ape¥qtastyy s (S,») 1is a Z-module. Let N={N],N2,...,Np} , p=0 , be a
basis of the module, We shall use the pair (¥,N) instead of the pair
(v,S) to represent the general solution due to complication that 3

may be an infinite set,

Theories of systems of linear Djophantine equations can be found in
the papers by Charnes and Granot [CHG75] and Hurt and Waid [HUY70] and
the book by Newman [NEW72]. They give necessary and sufficient condi-
tions for the existence of a solution to a given linear Diophantine
system and also formulate a general solution in cass the system is con-
sistent. Their formulations involve finding unimodular matrices, U
and V , i.e., integral square matrices whose determinants are either 1

or -1, such that UAY is a diagonal matrix or, more restrictively, in

the Smith normal form (see LNEW7Z] for the defimitiom of the Smithmor=
mal form) of the coefficient matrix A , Algorithms for computing U,
V and the Smith normal form of A are found in [BRA71a] and [KAB78].

Algorithms for solving a system of linear Diophantine equations can



be found in [BLA66], [KNU69], [BRA71a] and [FRU76]. The basic idea used

in these algorithms except the one in [FRU76] is to triangularize or
diagonalize the augmented coefficient matrix of the system by a sequence
of the following elementary column operations: (1) multiplying a column
by -1, (2) adding an integer multiple of a column to another column and
(3) interchanging two columns. After transforming the augmented
coefficient matrix into a triangular or diagonal matrix one can either
determine that the system is inconsistent or get a general solution of
the system by performing some simple matrix operations. This will be
discussed in Chapter 2.

The main difficulty in solving systems of linear Diophantine
equations is the very rapid growth of the intermediate results. This

effect is called intermediate expression swell [MCC73]. Frumkin [FRU76]

has observed that the order of intermediate expression swell in the
algorithm by Bradley [BRA71a] can be exponential in the number of
equations. Such an algorithm will be jmpractical even for large
computers.

In Chapters 4 and 5 we shall present two algorithms which control
intermediate expression swell very well. One algorithm is based on the
jdeas of Rosser [ROS41] and [R0S52]. His ideas were originally used to
find a better general solution of a linear Diophantine equation and to

— control-integer-coefficient-growth in an integral matrix inversion
algorithm. Another algorithm is a modification and extension of the
algorithm which computes the Hermite normal form of a non-singular square

integral matrix by Kannan and Bachem [KAB78]. These two algorithms are



described as SAC-2 algorithms in the ALDES language; SAC-2 and ALDES are
briefly described in Section 1.3. Analyses of these algorithms are also

developed in Chapters 4 and 5.




Section 1.2,  Some Applications

One important application of linear Diophantine equations is in the
theory of equivalent integer programs [BRA71b]. The theory shows that
every integer program is equivalent to infinitely many other integer
programming problems, The solution to any one problem in this equiva-
lence class is sufficient to determine the solution to every other pro-
blem in the class. However, to solve some problems in an equivalent
class may be more difficult than to solve other problems in the same
class, Given an integer programming problem, one may be interested in
constructing an equivalent integer programming problem which has some
computational advantages over the original problem,

Consider the integer programming problem

(1P1) maximize cX
subject to Ax < b
x =0
X integer,

where A is an m by n integral matrix, b 1is an integral m-vector
and c {is an integral n-vector, By introducing slack variables
(IP1) can be rewritten as the integer programming problem with equality

constraints

(1P2) maximize cX
subject to Ax + Is =b
X, $20

X, s 1integer,



where 1 is an identity matrix. If we have an algorithm for solving
systems of linear Diophantine equations, then we can use it to decide

whether the system

Ax + Is = b

X , s integer

is consistent. If it is, then the solution of the system is given by

(1.1) x=y+ Nz
s =t+ Kz
z integer

for some integral matrices N and K and integral vectors y and t
(which will be computed by our algarithm). z 1is a vector of integral
variables which range over all the integers, Incorporating (1.1) with
(1P2) , (IP2) , and hence (IP1) , is equivalent to the integer program-

ming problem

(1P3) maximize cy + (cN)z
subject to y + Nz 220
t + Kz

v

0

z integer .

x . . : i}
solution to (IP1).
The variables in (IP1) are restricted to be non-negative, How-

ever, the variables in (IP3) are arbitrary integers, Conceivably



(IP3) is easier than (IP1) . One possible way to solve (IP3) s to
solve the system of linear inequality constraints over the integers
first, then to optimize the objective function over the set of solutions.

The theory of linear Diophantine equations is closely related to
the works of Hermite [HER51] and Smith [SMI61]. The ideas employed in
this thesis to restrain the intermediate expression swell while solving
a system of linear Diophantine equations can be app1igd to the construc-
tion of the Hermite normal form [NEW72] or the Smith normal form of an
integral matrix. The constructions have application to many mathemat-
ical problems, such as: elementary divisors of polynomial matrices
[GAN59], system theory [ZAP69] and triangular bases for lattices in the
geometry of numbers [CASS59],




Section 1.3.  The SAC-2 System and the ALDES lLanguage

Due to the inherent integral property of systems of 1inear Diophan-
tine equations, exact arithmetic must be used in any algorithm for
solving such systems. As mentioned in Section 1,1, the problem of
solving systems.of linear Diophantine equations is exposed to intermedi-
ate expression sweli. At the present time most computers provide only
finite-precision arithmetic. These computers will be overwhelmed very
quickly before the parameters, such as the numbers of equations and
variables and the sizes of coefficients, of these systems become very
large, To overcome this problem, infinite-precision arithmetic should
be used. One system which provides infinite-precision arithmetic is the
SAC-2 system [COL79a]. The algorithms presented in this thesis are im-
plemented in the SAC-2 system.

The SAC-2 system is a computer-independent system for Symbolic
Algebraic Calculation. Its predecessor is the SAC-1 system [C0S76a]
which is operational on many different computers [COS76b]., The capabil-
jties of the SAC-1 system include 1ist processing, infinite-precision
integer and rational number arithmetic, modular arithmetic, integral
polynomial greatest common divisor and resultant calculation, integral
polynomial real root calculation, integral polynomial factorization over
the ring of integers, rational function partial fraction decomposition

——————————and—imtegration;Gausstan—potynomial-complex—root-cateulation,readl —
algebraic number arithmetic and solution of systems of linear equations
with polynomial coefficients. The SAC-2 system is stii1 developing. At

this writing it contains only partial capabilities of the SAC-1 system.



However, it will contain all the SAC-1 capabilities, and more, when it

is fully developed.
SAC-2 differs from SAC-1 in several ways. First, SAC-1 uses the

reference count method to reclaim available cells, while SAC-2 uses the

garbage collection method. In the reference count method a reference

counter is associated with each cell, which counts the number of refer-
ences to the cell. When the reference count is zero, the corresponding

cell is no long used and hence is returned to the available cell list.

In the garbage collection method, cell reclamation will not occur until
the available cell list becomes null. When cell reclamation, which 1is
called garbage collection, is invoked, free cells are marked and col-
lected together to form the available cell list. More detailed descrip-
tions and comparisons of these two methods can be found in [KNU73] and
[coL79a].

Secondly, the data structures in SAC-2 are different from those in-
SAC-1. In SAC-1 the atom set, that is, the set of all valid atoms, con-
sists of all the single-precision integers on the particular computer of
implementation. The location of a 1ist is the location of the first
cell of the 1list, The null list is represented by zero. In SAC-2 the
atom set consists of all the single-precision integers whose moduli are
less than a pre-selected single-precision positive integer 8, a power of

—_—  tWo.—p-is—also-used-as—the radixof infinite-precision integers. The
Tocation of a list is g plus the index, in the available spéce array, of
the first cell of the 1ist. The null Tist is represenfed by 8.

Let a be a non-zero g-integer, that is, a =0 and Ja] < B8 .
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In SAC-1 a 1is represented by the 1ist (a) of length one, while in
SAC-2 a s represented by the atom a .

Let R be an arbitrary ring. Let A(x) = Z?=1 aixei be a non-zero
polynomial in R[x] where a; * 0 for 1=1,....n and 0 <ey <e,<
cee In SAC-1 A(x) 1is represented by the Tist (X, P IPPRPIL P
e]), while in SAC-2 A(x) 1is represented by the 1list (en,an,...,e],a]).
These changes of data structures make SAC-2 somewhat more efficient and
convenient than SAC-1.

Third, the host language for SAC-1 is ANSI Fortran [FOR64], while
SAC-2 uses ALDES [L0076], [COL79a], which stands for ALgorithm DEScrip-
tion language. ALDES has several advantages over Fortran, For example,
ALDES s block structured, hence ALDES programs are clearer than Fortran
programs, ALDES allows direct recursion. This makes programming re-
cursive algorithms in ALDES much easier than in Fortran.

The ALDES language is designed by R. Loos, with some of its fea-
tures suggested by G. E, Collins, to describe algebraic algorithms.
However, it is quite general in nature and can be used to describe many
other kinds of algorithms as well. There are two forms of ALDES, namely

publication ALDES and imnlementation ALDES. These two forms differ only

in the respect that implementation ALDES has a more restricted character

set. In fact, implementation ALDES uses the same character set as ANST
—~—________—______FaFfFEﬁ_aﬁég___H@ﬁf@j‘ﬁtﬁﬁg‘pYUgTHmS‘CHH“ﬁE‘tTHﬂS+ated—Tﬁ%0—Fﬁf%r&ﬁ—ﬁfﬁ*——————~———

grams and run on most computers. Publication ALDES uses a larger char-

acter set and increases the readability of ALDES algorithms. Algorithms

presented in this thesis are written in publication ALDES.
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The following is an example of an ALDES algorithm. Each Tine is
prefixed with a line number (not part of the algorithm) for explanation

purpose. Line 1 is the algorithm declaration., a is the input. n is

1 n « EXTENT(a)

2 [Extent, a is an object, n is the extent of a,

3 that is, n =0 if a 1is an atom or n is the
4 number of cells used by a if a is a Tist.]

5 safe ay.

6 (1) [ a an atom.] n<0; if a<g then return,

7 (2) [a a list.] a'«a; while a'z() do { ADV(a';
8 aT,a'); n+n+EXTENT(a1)+1 }; return

the output. An ALDES algorithm can be a main program, a function sub-

program or a subroutine subprogram. The declaration of a main program

is the algorithm name followed by a period. The declaration of a func-
tion subprogram is illustrated by the above example. A function sub-
program can have only one output. The declaration of a subroutine sub-
program is the algorithm name followed by input and output arguments
enclqsed by parentheses. Inputs (which occur first) and outputs are
separated by a semicolon. If the above algorithm is written as a sub-

routine subprogram, the declaration will be "EXTENT(a3;n)". In SAC-2 a

subprogram is always written as a function subprogram, Tt hasonty
one output argument, Lines 2 through 4 are a comment. Comments can be
anywhere statements or declarations are allowed. Line 5 declares a; a

safe variable. The main purpose in declaring a variable safe is to
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jmprove the efficiency of the translated algorithm. The value of an
unsafe variable will be stored in a global stack. Accessing its value
will usually entail the loading of an index register. Storing the value
of a variable in the stack makes the value accessible to the garbage
collector and allows the resumption of an interrupted execution of a
recursive algorithm, Lines 6 through 8 are the body of the algorithm.
The body is composed of sévera1 steps, which end with periods except
that the last step ends with the end-of-algorithm mark "O" . Each step
is composed of several statements which are separated by semicolons, A
formal specification of the ALDES language can be referred to in

[Lo076].
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Section 1.4. Computing Time Analyses

The computing times of algorithms in this thesis will be analyzed
by employing the concept of dominance and codominance introduced by
Collins [COL71].

Let f and g be real-valued functions defined on a common domain

S . We say that f 1is dominated by g » and write f £ g , in case

there is a positive real number c such that f(x) < c-.g(x) for all x
in S . Note that f and g are not restricted to functions of one
vafiab]e since the elements of S may be n-tuples, If f £g and

g £ f , then we say that f and g are codominant, and write f~g .
Codominance is clearly an equivalence relation. If f <g but not

g £ f , then we say that f is strictly dominated by g , and write

f<£g.

Dominance and codominance have the following fundamental properties,

fheorem 1.1. Let f, f1, fz, ds 9y and 95 be non-negative real-valued
functions on S , and let ¢ be a positive real number. Then
(a) f ~cf;
(b) if fp<Lgy and f, L9, , then f; + ) <29y +49; and
f1f2 £ 919,
(¢) if f1-__<_g and fzﬁg,then f]+f2§g;

(d)  max(f,g) ~f+qg;

(e) if 1<Lf and 1<g, then f+ g <£fg;
(f) if 14f, then f~f+c;
(g if S=S;uS,,then f4g on Sy and fLg on 5,
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implies f 4£g on S
Proof. See [COL74] for a proof O

Let A be any algorithm and let S be the set of all the valid
inputs to A . Define the computing time function of A , tA(x) , to be
the number of basic operations performed by the algorithm A when its
input is x ¢ S . The computing time function depends on the choice of
basic operations. Let B and B be two finite sets of basic op-

-erations such that each operation in B can be realized by a finite
sequence of operations in B' , and vice versa. Llet t, and tA be

" the computing time functions of A associated with B and B' respec-
tively. Then, for some ¢ >0 , tA(x) < ctA(x) for all x e S since
each operation in B can be realized by no more than ¢ operations in
B' . Hence, tA is dominated by tA . Similarly tA is dominated by
ty . Therefore, t, and t; are codominant. ‘e will only be inter-
ested in the codominance equivalence class of tA without worring about
the choice of a specific set of basic operations.

In SAC-2 an integer is represented in radix form with radix 8.

More precisely, if a {is any positive integer, then there exist some
unique positive integer n and non-negative g-integers 3gs A7seees
?;8 ai-si and a

integer, then we require instead that a, be non-positive and a

a. 3 such that a = 7§ >0, If a is any negative

n-1

n~1<0 :

It is natural to define the length of an integer a to be the number of

g-digits in its g-radix representation and denote it by L (a) , or

8

just L{a) if B 1is fixed in the context, LB(a) can be expressed by
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the formula

(1.2) (2) 1 if a=20
1. L = 3
' L1098(1al)l + 1 if a=0

where |x] s the floor function of the real number x , that is, the

largest integer n such that n < x, Also,

1 if a=20
(1.3) Ls(a) = : - ' ’
{ [Tog (lal + )T if a=0 }

where [x] 1is the ceiling function of the real number x , that is, the
smallest integer n such that n 2 x .

The length function has the following properties:

(1.4) L(a £ b) < L(a) + L(b) ,
(1.5) L(a + b) ~ L{(a) + L(b) for ab =20,
(1.6 L(ab) ~ L(a) + L(b) if ab=20,

)
(1.7) L(TTS oy a5) = T4aq Llag) s
(1.8) L(TTL1 ai) ~ Z?=] L(a;) if la;l >1 for T<is<n.

(1.7) and (1.8) hold with n variable, not just for each fixed n .
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CHAPTER 2.  THEORY OF SYSTEMS OF LINEAR DIOPHANTINE EQUATIONS

Let Z be the ring of integers, Let Z(m,n), m,n>0, denote the
ring of m by n matrices over Z . The determinant of a matrix A e
Z(n,n) , denoted by det(A) , is the integer ZwaP a(m) TT?=1 ai,ki ,
where P 1is the set of all permutations of {1,2,....,n} , 7w = (k],kz,
...,kn) is a permutation in P , of(s) is 1 if = is even, -1 if
r is odd, and ai,j is the element in the izh row and jEﬁ column of
A . The determinant has the property that det(AB) = det(A)det(B) for
AB ¢ Z(n,n) . A matrix A of Z{(n,n) is called unimodular if its
determinant is 1 or -1 . Unimodular matrices have the following pro-

perties.

Theorem 2.1. Let A e Z(n.,n). If A 1is unimodular, then there exists

a unimodular matrix B e Z{n,n) such that AB =1 , the identity matrix

of Z(n,n) .

i

Proof. It is well known that A-adj(Ad) = det(A)I , see [HOK71], where

adj(A) is the adjoint of A . Let B = det(A)adj(A) . Clearly B e
Z(n,n) and AB = det(A)-A-adj(A) = (det(A))?I =1 . Since 1=
ldet(1)] = |det(AB)| = |det(A)|-ldet(B)| = |det(B)| , B {is unimodular.

This completes the proof [

Z{pn)—~—IFf A and B are unimodular, then

so is AB ,

Proof. Clearly AB ¢ Z(n,n) . Since |det(AB)] = [dét(A)}v}det(B)] =

1«1 =1, AB 1is unimodular O
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Corollary, Let A], AZ""’ Ak e Z{n,n) ., If Ai are unimodular,
then so is A1A2...Ak .

Consider the following elementary column operations performed on a

matrix A of Z(m,n):

(M multiplying column i by -1 , denoted by c](i) ,

(2) adding k times column j to column 1 for any integer

k , denoted by cz(i,j,k) R

(3) interchanging columns i and Jj , denoted by c3(i,j) .
Performing the operation c](i) on A is equivalent to postmultiplying
A by the matrix [e],...,ei_T,-ei,ei+1,...,en] , where e, e Z(n,1)
and the only non-zero element of e is the h&h component, whose value
is equal to 1 . Similarly, performing cz(i,j,k) and c3(i,j) )
assuming i < j , is equivalent to postmultiplying A by the matrices
[e],.,.,ei+kej,...,e.,...,en] and [e],,..,e.,,..,ei,...,en] respec-

J J
tively, Elementary row operations are similarly defined and denoted by

r](i), rz(i,j,k) and r3(i,j) correspondingly. Performing elementary
row operations on A is equivalent to premultiplying A by some
matrices of Z{m,m) . Matrices which effect elementary operations are

called elementary matrices. Clearly elementary matrices are unimodular.

Let A and B be matrices of Z(m,n) . We say that B s

column_{row) equivalent to A if there exists a unimodular matrix U e

Z(n,n) (Z(m,m)) such that B = AU (B = UA) . Clearly column (row)
equivalence is an equivalence relation. HWe say that B is equivalent

to A if there exist unimodular matrices U e Z(m,m) and Ve Z(n,n)
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such that B = UAV,

Theorem 2.3. Let A,B e Z(m,n) ., If B «can be obtained from A by a

finite sequence of elementary operations, then B is equivalent to A.
Proof. Suppose B can be obtained from A by a sequence of K
elementary operations, Then B = F]"'FrAE1"'Ek-r , where F. and Ej
are elementary matrices which effect corresponding elementary operations.
Let U= F,...F, and V= Eq. By By the corollary of Theorem 2.2,

U and V are unimodular, Therefore, B is equivalent to A0

Corollary. Let A,B e Z(m,n) . If B can be obtained from A by a
finite sequence of elementary column (row) operations, then B is

column (row) equivalent to A.

Let 8yseees A be linearly independent real vectors in n-
dimensional real Euclidean space, that is, t1a] +,,.t tnan =0 with
t]""’tn real implies ty =...% t, = 0 . The set L of all points

= Uqaq t,.H U
X = Ugag t a

nn with Upseres u, integers is called a lattice.

The set {a],,..,an} is called a basis of lattice L . A lattice which
particularly interests us is the lattice Z" consisting of all the
integral n-vectors , Obviously {e],‘..,en} is a basis of Z", where
e. dis the n-vector whose components are zero except that the iiﬁ com-

i
ponent—is—one—The bases of the lattice 7" have very close relations

with unimodular matrices,

Theorem 2.4. Let {a],...,an} be a basis of lattice L , Then {b],
veesbo} is a basis of L if and only if [b1""’bn] = [a],...,an] v
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for some unimodular matrix V e Z(n,n) ., |

Proof. Let A =[aj,...,a ] and B = [byse.isb ] with bys...sby € L.
Since {a],...,an} is a basis of L and each bi e L , each bi is an

integral linear combination of CEPPRRPL N Therefore, B = AV for some
Ve Z(n,n) .

If {b1,...,bn} is a basis of L , then A = BU =AVU for some
Ue Z(n,n) . Since @1s..058, are linearly independent, VU =1 so
det(V)det(U) = det(VU) = det(I) =1, Since V and U are integral
matrices, |det(V)] =1 . Therefore, V is unimodular.

If V is unimodular, then b],..,,bn are linearly independent
since |det(B)] = [det(A)]+ldet(V)| = ldet(A)] = 0, By Theorem 2.1,
there exists a matrix U e Z(n,n) such that VU=I , Hence, A = Al =
AVU = BU , Let L' be the lattice with basis {b],...,bn}. For any xelL',
X = on for some X, € Z(n,1) . So x = A(on) and x 1is an integral
Tinear combination of CEPRRREL S Hence x el , Forany yel,

n
y = Ayy for some yq € Z(n,1) . So y = B(Uyo) and y e L' . This

implies L' =1L and {b],...,bn} is a basis of L O

Let L=2" and a, = e; . Then we have the following corollary

i
immediately from Theorem 2.4,

Corollary. {bj,...,b } fis a basis of 2" if and only if [by,...,b ]

s unimodutar,

Let R be a commutative ring with identity. A module over R, or

a R-module, is an additive Abelian group M together with a binary
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operation "«" from RxM into M such that, for all r,s e R and X,y ¢

M, (r+s)ex =rex+sx, re{x+y)=rx+ry, (rs)ex = re(s+x)
and 1+x = x , where 1 is the identity of R . Let B = (b1,...,bn) be

a finite sequence of elements of M . Then M 1is said to be finitely

generated by B if M 1is equal to the set {Z?=] rib; | ry e Ry of

all the linear combinations of b],...,bn . Furthermore, if b],...,bn

are linearly independent, then B {s called a basis of M . The rank

of a finitely generated module is the unique cardinality of any basis.
Let A= [a1,...,an] be a matrix of Z(m,n) , and let S =

{ kla] to..t kna | k; e Z } , the set of all the integral Tinear com-

n
binations of columns of A . Clearly the set S s a Z-module. Ye

will call S the column module of matrix A .

In the following we will prove a slight generalization of a theorem
of Hermite [HERS51]. The proof is based on integral matrices. However,

{t can be generalized to matrices over any principal ideal ring.

Theorem 2.5. (Hermite normal form) Every matrix A e Z{(m,n) of rank r

is column equivalent to a matrix H = [h1,...,hr,0,...,0] such that if

hk i the kiﬁl element of hi , is the first non-zero element of hi ,
i,

a9l

then k1 < k2 <"'<kr and 0 < hki’j < hk1 . for 1=sj<isr.

Such a matrix is unique,

Proof. First we will prove the existence of such a matrix H by

induction on m . Let A= [a],...,an] ., If m=1, then the rank of
A s either O or 1. If rank(A) =0, then A =0 and, trivially,

H=0,. If rank(A) =1, then there exists at least one non-zero
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element of A . H can be constructed by the following elementary col~

umn operations:

(1) For i=1,...,n, if a; is negative (since m=1,

each column consisting of one integer can be treated

as an integer), then multiply column i of A by -1.
(2) Let a be the smallest non-zero element of A .

Interchange columns 1 and k . Such an ay exists,

since the rank of A is one.

(3) If for some i ,2=<is<n,a;= 0 then subtract

Lai/a]J , the floor function of ai/a] , times column 1

from column i and go back to step 2. If a; = 0 for

i=2,,..,n , then the construction terminates.
Clearly this construction involves only elementary column operations.
And it will terminate, since each time step 2 is executed, except the
first time, 3y is decreased at least by 1. At termination of the
construction A 1is of the form [h],O,...,O] R h] >0 , Therefore, the
existence part of the theorem is true for m = 1.

Now assume that the Hermite normal form exists for all matrices in
Z(m,n) . Let A e Z(mt1,n) , and let A' be the submatrix consisting
of the first m rows of A . Then A' is column equivalent to its
Hermite normal form H' = [h‘,...,h;.,O,...,O] , r' is the rank of

— Al and-there-exists—a-unimodular matrix V' e Z(n,n) such that
H' = A'Y' . Let A" be the submatrix consisting of the last row of
A, Then
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r

- =

A" Ay hi ees bl 0 e 0
AV = v =
AII AHVI b

_l LA br‘ br‘+1 e 00 bn

If rank(A) , the rank of A , is equal to r' , then bi =0 for

i =vyr'+l,...,n . In this case, H =AV' s clearly the Hermite normal
form of A . If rénk(A) 2 ' , and hence rank(A) = r'+1 , then

bi 20 forsome i>r'. Let B= [br'+1""’bn] e Z(1,n-r') . Then
B is column equivalent to the matrix G = [h,0,,..,0] , h >0, and

G = BU for some unimodular matrix U e Z(n-r',n-r') . Let Ut be the

n by n matrix

where I is the r* by r* identity matrix. Obviously U' 1is unimodu-
lar., Let H" = AY'U' , then
- h] ces hr' 0 0.+ 0

b_l se 0 br' h 0 e O .
The next thing to do is to subtract Lbi/hJ times column r'+1 of H"
from column 1 for 1 = 1,...,r‘ﬁ. After this has been done, H" is
in Hermite normal form. This completes the proof of the existence part

of this theorem.

Now we will prove the uniqueness of matrix H. Suppose A s
column equivalent to G and H which satisfy the hypotheses of this
theorem, Let G = [g],...,gr,o,...,OJ and H = [h],...,hr,O,...,O] .
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Let J, and k., , 1=<1<r,be the row indices or tne first non-zero

elements of 9 and hi respectively. We claim that ji = ki for 1=
Toeeosr o Since gqp,...,9, are linearly independent and any integral
Tinear combination of P ERRRR: M is an integral linear combination of

COPRRRRL B and vice versa, {g],...,gr} is a basis of the column

n
module of A . Similarly {h1,...,hr} is a basis of the column module
of A . Hence, each 9; js an integral linear combination of h]""’hr’
and vice versa. Suppose j1 = k1 . e can assume j1 < k] without

loss of generality. In this case, g; can not be expressed as an
integral linear combination of h]""’hr , a contradiction. Therefore,
j1 = k] . Now assume ji = ki for 12 1. Then 9541

1inear combination of hi+1""’hr and hi+] is an integral linear

is an integral

combination of 9ipqre--29 By the same argument as for j.l and

.
k] R j1.+1 = ki+l . This proves ji = ki for i=1,...,r . Now we

1F% = ] = Vo= L S
claim 9; hj for j =T1,.,.,r . Let G [91,...,gr] and H

[h1""’hr] . Since j; = ki for 1 =1,...5r , hj is an integral

Tinear combination of gj,...,gr for 1 <j < r . Therefore, there
exists a lower triangular integral matrix V such that H' = G'V .
Similarly there exists a lower triangular integral matrix U such that
G' = H'U . Since G' =H'U=G'VU and 9yseses9, are 1inearly indepen-
dent, VU =1, let u, ., Vi,j and w. . be the elements in the 1Lh

153 1,
th a i ;
row and j— column of U, Vv amd

fwin Than Auf .3
i 0

Yo—respectivety

[ L= ¢! W.i’.‘
Vi iYi. =1,1<is<r,since U and V are lower triangular and
3 )
VU =1 ., This implies that each us 4 and Vii is either 1 or -1 .
3 H

Since gki.i and hk.,i are both positive, ui,i and vy ; are 1

2
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R -t = 5r =
By the definition of U, gy Lioy ug sy = Dj=g Uj,5 Ny =0y #

r - . - tr -
Liajst Up,g My o Lot Fy=gy =y = diogy Uy g hy o Then Fie g
LS D Diiaq Uy Mo g = Useq 5 My gaq + Since

j+1 N j+1 2J J sd j+1? JT1,] j+1 »J
| f 1= 1g ;= h .| <h ; Usyq » =0 . Now assume
= ; s _tr L
uj 5 = 0 for j+1 < i<p . Then fj i=pt1 Yi,j hy « Bya similar
argument, up+1,j = 0 . This implies Ui 5 = 0 for j<isr.,
Therefore, gj = hj for j=1,...,r . This completes the proof. O

Constructions of the Hermite normal forms of the coefficient
matrices of systems of linear Diophantine equations have been major parts
of many algorithms for solving ?hese systems. The performances of these
algorithms heavily depend on what construction techniques they use. In
the rest of Chapter 2 we would like to discuss how the construction of
Hermite normal form can be used in solving systems of linear Diophantine
equations. Specific algorithms for solving systems of linear Diophan-
tine equations will be given and analyzed in Chapters 4 and 5.

Consider the system of linear Diophantine equations

Ax

b,
(2.1)
X integer ,

where A = [a],...,an] e Z{m,n) , b e Z{(m,1) , Performing a finite
sequence of elementary row operations on the augmented .coefficient
matrix [A,b] will not change the solution of the system. Performing

a finite seguence of elementary column operations on A will change the
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solutions of the system. However, there exists a_one-to-one relation
between the solutions of the original system and the transformed system.
Let

By = b,
(2.2)

y integer ,
where B = AU for some unimodular matrix, be the transformed sytem,
Since U is unimodular, there exists a V ¢ Z{n,n) such that UV =1 .
Let x* be a solution of (2.1), Then b = Ax* = AUVX* = B(yx*) , that
is, Vx* 1is a solution of (2.2), If y* is a solution of (2.2), then
b = By* = A(Uy*) , that is, Uy* 1is a solution of (2.1). So we have

the following theorem,

Theorem 2.6, Let AB e Z(m,n) and b e Z(m,1) . If B =AU for

some unimodular matrix U , then Ax = b has an integral solution if
and only if By = b has integral solution. Furthermore y* 1is an
integral solution of By =b 1if and only if Uy* is an integral solution

of Ax = b,

The basic idea of solving a system of linear Diophantine equations
is based on Theorem 2.6. First, we transform the original system to a

new system which can be easily solved. Then we solve the new system and

transform the solutions of the new system back to the solutions of the

original system. For example, let B = [h],,“,hr’o,!",o] be the

Hermite normal form of A , where r = rank(A) . If Ax =D has an

integral solution, then there is an integral vector y* = (yf,...,y;)
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n

such that By* = }i_y v¥hy = E:=] y¥h, = b, Llet kg be the row index

of the first non-zero element of hi for i=1,...,r . Then yT,...,

y: can be determined inductively by the formulas
(2.3) yf = bk / hk R
1 1
= i=1 .
(2.4) y?-(bki— Lo 3 hkj,j)/hki’i , T<isr,

y§ , r<is<n, can be any integers. Choose y? =0, r<isn,
arbitrarily. Then y* = (yf,...,y; ,0,...,0) s a particular solution
of the Diophantine system By = b . Hence, Uy* 1s a particular
solution of the Diophantine system Ax =b . Note that B 1s not
necessarily in Hermite normal form. Formulas (2.3) and (2,4) will work
well as long as [h1""’hr] is in column echelon form.

Let A e Z(m,n) . Let S be the set of all the solutions to the

homogeneous linear Diophantine system

i

Ax = 0,
(2.5)

X integer .

Then S is a Z-module. Ue will call S the solution module of system

(2.5). The next theorem tells us how to find a basis of a homogeneous

linear Diophantine system.

”

Theorem 2.7. Let A e Z{m,n) , and let U = [u1,...,un] be a uni-

modular matrix such that AU = [hl,...,hr,O,...,Oj and h]""’hr are

1inearly independent. Then N = {Ur+1""’un} is a basis of the
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solution module of the homogeneous 1inear Diophantine system Ax =-0

Proof. Let M be the column module of [ur+],,..,un] ., Since U is
unimodular, ur+1""’un are linearly independent, Therefore, N is a
basis of M . Let S be the solution module of the linear Diophantine
system Ax =0 ., Let xeS . Then x 1is an element of the lattice
v By the corollary of Theorem 2.4, {ul,...,un} is a basis of yAL

Hence, X = 2?=] Xs Us Since xeS , 0=Ax= ? R (Au ) =

1 =1 X h since Aui =h, if 1 <1i<r and Aui =0 if r<1i<n,

Since the hi's are linearly independent, X; = 0 for 1=T,...57 .

Hence, x = IT_ . %;u; €M . This implies S M. Let xe M,
= n = n - 3 =
Then x 21 o] X U and Ax iert] Xi(Aui) 0 , since Au, 0

for r<1is<n. Hence, x ¢S . This jmplies M < S . Therefore,

S =M and N 1is a basis of SO

To compute N , one can construct the matrix C by adjoining the

n by n identity matrix I to the bottom of A ,

o
]

then perform a sequence of elementary column operations on C such that

ey fAUT_ fhp,.hr 0 ...0
o Ll L 1

u L L A *
1 Up Upsr o Uy ’

where U 1is the unimodular matrix which effects the sequence of elemen-

tary column operations and h1,...,hr constitute a column echelon
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matrix. Two such sequences will be given in Sections 4.2 and 5,2. By
Theorem 2.7, N = {ur+],...,un} is a basis of the solution module of the
Diophantine system Ax =20 .

'To compute a particular solution x* , if one exists, of the Dio-
phantine system Ax = b , one can construct the matrix B by adjoining

the n by 1 zero matrix to -b,

-b
O .

If any y? , defined by (2.3) and (2.4), is not an integer, then no
solution exists. Otherwise add y? times column i of C' to B for
i=1,....,r . The first m elements of B must be zero, And B is

of the form

0
b* | .

Since Ab* = A [Ty vt uy = [iy vi(Auy) = Doy vihy=b, x*=0b* is

a particular solution,
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CHAPTER 3.  AUXILIARY ALGORITHMS

In this chapter we will present subalgorithms used by the main
algorithms for solving linear Diophantine systems. These algorithms
will be described in publication ALDES. For those algorithms previously
existing in the SAC-2 system we will list their specifications only.

The algorithm descriptions for these algorithms will be available soon

in [COL79b]. The computing times for these algorithms will be given
without proofs, which will be in [COL79a]. The computing times for
algorithms in this thesis do not include the time for garbage collections.
Ignoring the time for garbage collections will not change the codominance
equivalence class of the computing time of any main program as explained
in [COL79a].

Algorithms presented in this thesis can be divided into four
categories: list processing algorithms, integer arithmetic algorithms,
integral vector algorithms and integral matrix algorithms.

Let S be an arbitrary set called an atom set. Elements in S

are called atoms. A Tist over S 1is recursively defined to be a finite

sequence COERRRFLM ) » n=0, such that each a is either an atom
in S or a list over S. The length of a 1ist a , written as
length{a) , is the length of a as a sequence. The 1ist of lengtn zero
1
,‘Is---:n ] =
Then the inverse of a , written as inv(a) , is the list (an,...,a1).

Let a be the non-null list (a],az,...,an) , n>0 . Then the

reductum of a , written as red(a) , is the list (a2,...,an). If a
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is the 1ist (al,...,a ) ,m20 ,and b is the list (b],...,bn) s

m
n >0, then the concatenation of the lists a and b , written as

conc{a,b) , is the list (a],...,am,b],...,bn) . An object is either an
atom or a list. Let a be an object and let b be the list
(b1,...,bn) . Then the composition of a and b , written as comp(a,b),
is the list (a,b1,...,bn) , Let a be the non-null list (a1,...,an) ,
n>0. Then the first of a , written as first(a), is the object a; -
Now we shall discuss how SAC-2 lists are represented in a computer.
Let M be any positive integer. An integer m is called an M-integer
if Im| <M . Let 8 be a preselected positive power of 2, say 2%
for some ¢z > 0. The atom set in the SAC-2 system is the set of B~
integers. In order to represent the 47 characters in the ANSI Fortran
character set, one must choose ¢ = 6 . In order to represent atoms as
g~integers and include as many atoms in the atom set as possible, one
should choose <z as large as possible but not greater than or equal to
£ , the number of bits in a computer word in implementation. In general
one may choose ¢ =£. - 3 . One bit is reserved for the sign of a
8-integer and two bits are reserved for overflows in B8-integer
arithmetic. The null Tist is represented by the integer 8 . A non-
null 1ist is represented by linked cells from a large linear array

called SPACE. Each cell consists of two consecutive elements in the

array SPACE. The location of a cell is g plus the index in the array

SPACE of the first of the two array elements. The location of a list

L is the location of the first cell of L 1if L 1is a non-null list,

or the integer 8 if L s the null Tist. After defining the location
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of a list the representation of a non-null i1st L in a computer can be

described inductively as follows: the first array element of the first
cell of L stores the location of red(L) , and the second array element
of the first cell of L stores first(L) if first(L) 1is an atom or
the location of first(L) if first(L) is a list.

Following are specifications, descriptions and computing time

analyses of the 1ist procéssing algorithms used in this thesis.

a«FIRST(L)

[First. L is a non-null Tist. a is the first element of L.]

L'<RED(L)

[Reductum. L is a non-null Tist. L' is the reductum of L.]

SFIRST(L,a)
[Set first. L is a non-null 1ist. a is an object. The first

element of L is changed to a.]

SRED(L,L')
[Set reductum. L is a non-null Tist. L' is a list. The

reductum of L is changed to L'.]

ADV(Lja,L')
[Advance. L is a non-null list. a=first(L). L'=red(L).]

MCOMP(a,L)
[Composition. a is an object. L is a list. M is the

composition of a and L.]
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Theorem 3.1. The computing times of the algorithms FIRST, RED, SFIRST,

SRED, ADV and COMP are all codominant with 1.

n«LENGTH(L)
[Length. L is a list. n=length(L).]

M<INV(L)
[Inverse. L is a list. M is the inverse of L. The Tist L is

transformed into M.]

L'<SUFFIX(L,b)
[Suffix. L is a list (a],...,an), n=0. b is an object. L'

is the Tlist (a],...,an,b). L is modified to produce L'.]

Theorem 3.2. Let L be a 1ist of length n and et b be any

object. Then tLENGTH(L) ~ tINV(L) ~ tSUFFIX(L’b) ~n+ 1.

L+C0NC(L],L2)
[Concatenation. L] and L2 are lists. L is the concatenation

of L-l and L. The Tist L is modified.]

Theorem 3.3. tCONC(Ll’LZ) ~1 if L, is a null list; tCONC(Ll’LZ) ~

1ength(L]) +1if L, is a non-null list.

a<LELT(A,1)

[List element. A is a list. 1<i<length(A). a is the izﬁ

element of A.]

Theorem 3.4. tLELT(A,i) ~ i,
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L<LEINST(A,1i,a)

[List element insertion. A is the list (al,...,an) of objects.
i is a g-integer, O<isn. a is an object. If i=0, then L=
(a,a],...,an). If i=n, then L=(a],...,an,a). Otherwise, L=
(a],...,ai,a,a1+],...,an). A is modified.]

safe j.
(1) [i=0.] 1if i=0 then { L<COMP(a,A); return }.
(2) [i>0.] L<A; A'<A; for j=2,...,1 do A'<RED(A'); A"«

RED(A'); A"«COMP(a,A"); SRED(A',A"); return [0

Theorem 3.5. tLEINST(A’i’a) ~1+ 1.

Proof. Let t1 and t2 be the computing times of steps 1 and 2
respectively. Clearly ty ~ 1 and, if i >0 , then ty ~ i. If
i=0 , then tLEINST(A’i’a) =t~ 1=1+1. If i>0, then

M<LEROT(L,i,Jj)
[List element rotation. L is a Tist (a],...,an) of objects,
n>0. i and j, 1sisj<n, are g-integers. If i=J, then M=L.
Otherwise M=(a],...,ai_],aj,ai,...,aj_],aj+1,...,an). L is
modified.]

safe LEROT,

(=3 T M= if = themrreturm

(2) [i<j.] for k=1,...,i-1 do L<RED(L); ADV(L;a,L'); for
k=i,...,j-1 do { b«FIRST(L'); SFIRST(L',a); a<b;
L'«RED(L') }; SFIRST(L,a); return O
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2’ LY ~ - - = [3 da / . » A ~ - -
Theorem 3.6. tLEROT(L,1,J) T 9f =3 LLEROT\L,w,J) jif

i<d.
Proof. Let t1 and t, be the computing times of steps 1 and 2
respectively. Then t1 ~1 and t, ~ (i-1) + (§=i) +1 . Ifi=]

then tLEROT(A,i,j) =t~ 1. 1f i< J then tLEROT(A,i,j) =ty ty
~ 14+ (i-1) + (3-1) + 1

i+i~3§ .0

B«REDUCT(A,1)
[Reductum, A is a 1ist. 1 1is a non-negative g-integer not
greater than length(A). B=A if i=0. Otherwise, B is the izh
reductum of A.]
safe REDUCT.

(1) B<«A; for j=i,...,i do B«RED(B); return

Theorem 3.7. Ai) ~ i+ 1.

trepuctt
Proof. Obvious. O

Let a be an integer. For lal <8 , a s represented as a

g-integer. For lal 28 , let 2?;& a; 8! be the g-radix representation

of a , that is, ags....a, 7 are g-integers such that a, = 0 for

i=0,...,n-2 and a,_, >0 if a is positive, or a; <0 for

i=0,..., n-2 and a <0 if a is negative. Then a is

n-1
represented by the 1ist (3psdqseeesdy)e

Following are specifications, descriptions and computing time

analyses of integer arithmetic algorithms.
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s<ISIGNF(A)

[Integer sign function. A is an integer. s=sign(A).]

Theorem 3.8.  tysgyr(A) < L(A).

B<INEG(A)

[Integer negation. A is an integer. B=-A.]

Theorem 3.9. tINEG(A) ~ L(A).

C«ISUM(A,B)

[Integer sum. A and B are integers. C=A+B.]

Theorem 3.10. (A,B) < L(A) + L(B) ~ max {L(A),L(B)} .

t1sum

C<IDIF(A,B)
[Integer difference. A and B are integers. C=A-B.]

Theorem 3.11.  t;p;p(A,B) L L(A) + L(B) ~ max {L(A),L(B)} .

s«ICOMP(A,B)

[Integer comparison. A and B are integers. s=sign(A-B).]

Theorem 3.12. tICOMP(A,B) < L(A) + L(B) ~ max {L(A),L(B)} .

C<IPROD(A,B)

[Integer product. A and B are imtegers:. E=A+B+1

Theorem 3.13. tIPROD(A’B) ~1 if AB =0 ; tIPROD(A’B)7$ L(A)L(B)

if AB = 0.
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IQR(A,B;Q,R)

[Integer quotient and remainder. A and B are integers, B=0.

Q is the quotient [A/B] and R=A-B-Q.]

Theorem 3.14. tIQR(A,B) ~ L(B) , if L(A) <L(B) ; tIQR(A’B)<ﬁ
L(B) { L(A)-L(B)*+1 } , if L(A) = L(B).

C+IQ(A,B)
[Integer quotient. A and B are integers, B=0, C is the

quotient [A/B].]

Theorem 3.15. tIQ(A,B) ~ L(B) , if L(A) < L(B) ; t,n(A,B) X

L(B) { L(A)-L(B)+1 } , if L(A) = L(B) .

IQ(

IDEGCD(a,b;c,u1,v],uz,vz)
[Integer doubly extended greatest common divisor algorithm.

a and b are integers. c=gcd(a,b). au1+bv]=c and au2+bv2=0.

If a=0 and b=0 then u]s Ibi/2¢c, Vis lat/2¢c, u2=—b/c and

v2=a/c. Otherwise u]=v2=sign(a), v]=sign(b) and u2=—sign(b).]

Theorem 3.16. (a,b) < n(m-k+1) where m = max {L(a),L(b)} ,

t1pEGCD
n =min {L(a),L(b)} and k = L({gcd(a,b)) .

Let V be a vector in Z" . e shall represent V by the Tist

(v ""’Vn) , where each vy is the integer representation of the 13&

1

component of V . The norm of a vector V = (V1""’Vn) e , denoted
by norm(V) or |V| , is defined to be the non-negative integer
MaX §ejen Vil -

Following are descriptions and computing time analyses of integral
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vector algorithms.

B<VIAZ(A,n)
[Vector of integers, adjoin zeros. A is the vector (a],...,am).
n is a non-negative g-integer. B is the vector (a],...,am,
0,...,0) of mkn components. A is modified.]
safe k.

(1) B<«(); for k=1,...,n do B<«COMP(0,B); B<«CONC(A,B); return O

Theorem 3.17. Let A e Z" . Then tVIAZ(A,n) ~m+n.

Proof. Constructing the zero vector in " requires computing time
~n . By Theorem 3.3, it requires computing time ~m to concatenate

A and the zero vector. Thus, tVIAZ(A,n) ~m+n .0

B<VINEG(A)
[Vector of integers negation. A is an integral vector. B=-A.]
safe a,A'.
(1) B«(); A'«A; repeat { ADV(A';a,A'); beINEG(a); B<COMP(b,B) }
until A'=(); B«INV(B); return [

Theorem 3.18. Let A e Z' . Then tyryen(A) £ nL(1AI) ,

VINEG
Proof. The computing time of each execution of the repeat-loop is

< L(IA]) . The repeat-loop will be executed n times. The computing

time for inverting the intermediate st B 15 ~n . Therefore,

tVINEG(A):ﬁ nL(1Al) + n~nL(]A]) . O
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C+VISUM(A,B)

-7n

[Vector of integers sum. A and B are vectors in-Z . C=A+B.]
safe a,A',b,8',

(1) C«(); A'<A; B'<B; repeat { ADV(A';a,A'); ADV(B';b,B');
c+ISUM(a,b); C<COMP(c,C) } until A'=(); C«INV(C); return O

Theorem 3.19. Let A, B ¢ z" . Then tVISUM(A,B);ﬁ n{L(JA1)+L(IBI)} .
Proof. The computing time of each execution of the repeat-loop is

< L(IAl) + L(IBI) . The repeat-Toop will be executed n times. The
computing time of inverting the intermediate 1ist C is ~n.

Therefore, tVISUM(A,B);ﬁ n{L(JAD+L(IB])} + n ~ n{L(IA1)+L(IB1)} . O

C<VIDIF(A,B)
[Vector of integers difference. A and B are vectors in 7.
C=A-B.]
(1) C+VISUM(A,VINEG(B)); return O

Theorem 3.20. Let A, B e Z" . Then ty;pc(A,B) 2n {L(JANLUIBI} .

Proof. Immediate from Theorem 3.18 and Theorem 3,19. O

C<YISPR(a,A)
[Vector of integers scalar product. a is an integer. A is an
integral vector. C=a*A.]

safe a',A',i,n.

(TY [a=0.] it a=0 then { n<LENGTH{A)3 C=()3 for i=l1,;...,n dO
C+COMP(0,C); return }.

(2) [a=1.] if a=1 then { C«A; return I,

(3) [a=-1.] if a=-1 then { C<«VINEG(A); return }.
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(4) [General case.] C+(); A'«A; repeat { ADV(A';a',A")

c<IPROD(a,a'); C«COMP(c,C) } until A'=(); C<INV(C);

return O

n . oA
Theorem 3.21. Llet Ae Z , Then tVISPR(a’A) n if a=0;

tVISPR(a’A) ~1 if a=1; tVISPR(a,A);§ nL(a)L(|A]) otherwise.
Proof. The cases that a =0 and a =1 are trivial. If a-= -1,
then tVISPR(a’A) ~ tVINEG(A)fﬁ-nL(lAI) ~ nL(a)L(]A]) . For lal > 1,
the repeat-loop will be executed n times and the computing time of

each execution of the loop is < L(a)L([A]) . Therefore, tVISPR(a’A)
<nL(a)L(]A]) . O

C<VILCOM(a,b,A,B)
[Vector of integers linear combination. a and b are integers.
A and B are integral vectors in z". C=a-A+b-B.]
safe C.

(1) S«VISPR(a,A); T«VISPR(b,B); C<VISUM(S,T); return O

Theorem 3.22. Let A, B e Z" . Then

(1) tVILCOM(a,b,A,B) ~n,for a=b=0,

(2) tVILCOM(a’b’A’B)3$ nL(b)L(IBl) , for a=0and b=0,
) Ln

(3) tVILCOM(a’b’A’B L(a)L(lAl) , for a=0and b =20,
(&)t contEsbeAss =R ttal A B ——for—ab—=-0
Proof. Case 1. tVILCOM(a,b,A,B) ~ tVISPR(O,A) + t (0,B) +

VISPR
tVISUM(O’O) ~n+n+na~n, '

Case 2. If b =1, then tVILCOM(a,b,A,B) ~ tVISPR(O’A) +



tVISPR(]’B) + tVISUM(O,B);ﬁ n+ 1+ nL(B1) ~nL(IB]) ~ nL{b)L(IB}) .
If b=1, then tVILCOM(a,b,A,B) ~ tVISPR(O’A) + tVISPR(b,B) +
tVISUM(O,bB);ﬁ n + nL(b)L({|B]) + nL(IbB]) ~ nL(b)L(IB|) since
L(IbB]) = L(IbJ«IB]) ~ L(b) + L(IBI) .

Case 3. Similar to case 2.

Case 4. This case can be divided into four subcases: (i) a =1
b=1, (ii) a=1,b=1, (iii) a=1,b=1 and (iv) a=1,
b=1. We are going to show subcase (iv). The other three subcases
can be shown in a similar way. For a=1 and b=1,
typLoou(@:b-AB) ~ tyrsppl-A) + tyrgpp(DsB) + tygyy(ah.b8) =
nL(a)L(1Al) + nL(b)L(IBI) + n {L(laAl) + L(IbBI)} ~ n {L(a)L(IA]) +
L(b)L(IBI) + L(a) + L(IAI) + L(b) + L(IB[)} ~n {L(a)L(IAl) *
L(b)L(IB1)} . O

Combining the four cases of Theorem 3.22 we have immediately the

following corollary.

Corollary. Let A, B eZ'. Then ty cgu(a:bsAB) %
n {sign(]al)L(a)L(|A]) + sign(Ib{)L(b)L(IB]) + T} .

W«VIERED(U,V,1)

[Vector of integers, element reduction. U=(u],...,un) and

V=(v1,...,vn) are integral n-vectors. Isisn. vizO. W=U-qV,

where q=[ui/v1].]
safe u,v.

(1) u<eLELT(U,1); v<LELT(V,1); q«IQ(u,v); if q=0 then WU else
{ gq<INEG(q); W<VISPR(q,V); W«VISUM{U,W) }; return O
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Theorem 3.23. lLet U, V e 2" . Let u, and Vi be the i= elements

of U and V respectively. If [u,l < lvil 5 then tVIERED(U’V’i)

~ L(V.I) +1i ., If iu.]l 2 ]V.‘l , then tVIERED(U’V’1) ﬁ

n { L(IV]){L(ui)—L(vi)+1} + L(1U1) ¥ .

Proof. Let q = [ui/vi]. If Jusl < Jvsils then q =0 so
tVIERED(U’V’i) ~ tLELT(U,i) + tLELT(V,i) + tIQ(”i’Vi) ~q o+ i+ L(vi)

v

vyl s then tyrepep(UaVai) ~ g p(Us1) +
t g (Vo) + trg(upvy) + tpeal@) + typsprlas?) * typgyy(V-aV)

Li+ 1+ L(g)L(vs) + L(q) + nL(q)L(1V1) + n {L(JU])+L(1qV1)3

~ nL(q)L(IVI) + nL(JUl) ~ n {LOVDIL(uy)-L(v)+13 + LOIUNDE . O

VIUT(U,V,i;U0',V")

[Vector of integers, unimodular transformation. U=(u1,...,un)
and V=(v1,...,vn) are vectors in Z" with u;=0. [ut,vt]=fu,vIK
where K is a unimodular matrix, depending on us and Vis whose
elements are obtained from IDEGCD.]

safe c,i,u,v.
(1) u<LELT(U,i); v<LELT(V,i); IDEGCD(u,v;C5P.q,rsS)s

U'<VILCOM(p,q,U,V); V'<VILCOM(r,s,U,V); return O

Theorem 3.24. Let U = (u1,...,un) e 2" and V= (v],...,vn) e 2,
VIUT(U,V,i);ﬁ n { L(vi)L(lUl) + L(ui)L(IVI) I,

Then t

Proof. Let p, q, r and s be the integers computed by the algorithm

IDEGCD such that puy + qvy = gcd(ui,vi) and ru; + sv; = 0. Then

L(p) < L(vi) , L(q) = L(ui) , L(r) < L(vi) and L(s) < L(ui) . The

computing time for accessing Uy and vy is ~ 1 , by Theorem 3.4.



42

The time for computing p, g, r and s is :gl.(ui)L(vi) from Theorem
3.16. The computing time of the calls to the algorithm VILCOM 1is

<n{ L(vi)L(iUl) + L(ui)L(IVl) } by Theorem 3.22. Therefore
tVIUT(U,V,i);$ i+ L(ui)L(vi) +n { L(vi)L(lUl) + L(ui)L(lVI) }. O

Let A be an integral matrix in Z(m,n) . We shall represent A
by the Tist (A],...,An) , where each Ai is the 1list representation
of the ilh column (as an m-vector) of A . The norm of a matrix

A= (a..) e Z(m,n) , denoted by norm(A) or [Al , is defined to be the

235
non-negative integer max j.4 sop Iaij]
Following are descriptions and computing time analyses of integral

matrix algorithms.

B<MIAIM(A)
[Matrix of integers, adjoin identity matrix. A is anmbyn
matrix of integers. B is the matrix obtained by adjoining an
n by n identity matrix to the bottom of A. A is modified.]
safe 1,J,n.
(1) n<LENGTH(A); A'<INV(A); B+(); for i=1,...,n do { ADV(A';A],A');
T«(); for j=1,...,n do if i=j then T«COMP(1,T) else

T«COMP(0,T) 3 A]+CONC(A],T); B+COMP(A],B) }; return O

Theorem 3.25. Let A e Z(m,n) . Then t,...u(A) ~ n{m+n).

Proof. The computing time for computing the length of A and
inverting A is ~n . The computing time for constructing the {0 unit

vector Ei e 2" 4s ~n . The computing time for concatenating the iLﬁ
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column of A -and- E_i is. ~m . Thus, tMIAIM(A) ~n +. n(n+m)

~ n(m+n) .

B«MINNCT(A)
[Matrix of integers, non-negative column transformation.
A=(aij) is an m by n integral matrix. B=(bij) is the mby n
integral matrix with bij=aij if a]jzo and bijz'aij if a]j<0.
A is modified.]
safe MINNCT.
(1) B«A; A'<A; repeat { A]+FIRST(A'); a+FIRST(A]); if
ISIGNF(a)<0 then { A]+VINEG(A1); SFIRST(A',A]) }s
A'<RED(A') 1} until A*=(); return [

Theorem 3.26. Let A ¢ Z{(m,n) . Then tMINNCT(A) < wmnL(|Al) .

Proof. Let Ai = (a1i,...,a .) be the iih column of A . The

mi
computing time of the iiﬁ execution of the repeat-loop is

~ tISIGNF(a11) + tVINEG(Ai)fﬁ L(|Al) + mL(]A]) ~ mL(]A]) . The repeat-
loop will be executed n times. Therefore, tMINNCT(A)Ti mnL(JA]) . O

B<MICS(A)
[Matrix of integers column sort. A is an integral matrix with
non-negative elements in the first row. B is an integral matrix

obtained by sorting columns of A such that elements of the

first row are in descending order. A is modified.]
safe MICS,
(1) [Bubble sort columns.] repeat { A'<A; s<0; while
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RED(A')=() do { ADV(A';A],A"); A2+FIRST(A"); a]+FIRST(A1);
aZ+FIRST(A2); if ICOMP(a],a2)<O then { SFIRST(A',AZ)
SFIRST(A",A1); s«<1 }; A'<A" } } until s=0; B«A; return [

Theorem 3.27. Let A e Z(m,n) . Then tyr c(A) < nlL(IAl) .

Proof. The computing time of ICOMP is the most significant part of the
computing time of MICS. Since there are at most n(n-1) integer
comparisons in MICS and each integer comparison needs time < L(|A]) ,

tyres(A) < n(n=1LUIAI) + 12 neL(JA]) . O

B<MICINS(A,V)
[Matrix of integers column insertion. A is an m by n integral

matrix represented by the 1list (A]’AZ""’An)’ where A, is the

1ist (a]i,...,a .) representing column i of A and a]]za]zz...

mi

2aq, V=(v1,...,v ) is an integral vector with vi<ajq. Let

m
{ be the largest integer such that a12Vq - Then B is the matrix
represented by the 1ist (A1""’Ai’V’Ai+1""’An)’ A is
modified.]

safe MICINS.
(1) [Initialize.] A'<A; A"<RED(A'); Vv<FIRST(V).
(2) [Loop.] while A"=() & ICOMP(FIRST(FIRST(A")),v)=0 do

{ A'«A"; A"+RED(A") 1.

(3) [Finish.] B<«COMP(V,A"); SRED(A',B); B«A; return O

Theorem 3.28. Let A e Z(m,n) and V ¢ Z™ ., Then tMICINS(A’V)
<n { LOJAD) + LOIVE) 3
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Proof. Let ti be the computing time of step i. It can be easily
verified that t] ~1, t2-_<_n { L(JAL) + L(JVI) } and t3 ~ 1 . Thus,
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CHAPTER 4. AN ALGORITHM BASED ON IDEAS OF ROSSER

Section 4.7. Introduction

The main difficulty in solving linear Diophantine systems is "the
very rapid growth of coefficients. In this chapter we shall present an
algorithm, called LDSSBR, which restrains coefficient growth very wef]
in the early stage of the algorithm. Although the growth becomes fast
in the final stage of the algorithm, it is still quite moderate compared
to some other algorithms. As our empirical results will shaw, the
length of the largest coefficients while solving the Diophantine system

Ax

L]

b s typically bounded by nL(n|A|) , where n is the number of
variables in the system.

The ideas employed in the algorithm LDSSBR to control coefficient
growth come from J. B. Rosser. He used the ideas in finding a general
solution with much smaller coefficients to a linear Diophantine equation
(see [ROS41]) and computing the exact inverse of a non-singular square
integral matrix to minimize computing time (see [R0S52]). Consider the

following linear Diophantine equation

(4.1) ajxy * agky oot agX, = b .

Without loss of generality, let us assume a1 23, 2 ... za, 2 0 and

a> Q , since if a; < 0 we can replace x, by =-x; , if a. < a;
) 1 ¥

b |
J

for some 1 < j we can interchange X5 and xj and if ay = Q0 the
equation becomes trivial. Rosser's algorithm begins with the following

matrix
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ap 2y a,
1 0 . 0
c = 0 1 0
o 0 ... 1
brcan -
: .th .th
Let c. . be the element in the i row and j== column of C , and let

1ed
Cj be the jzﬂ column of C . Then the algorithm consists of the

following steps:

sort C1, cee 3 Cn in descending order according to
their leading elements } .

(2) At this point the matrix C has the form

c O « 0
b
U1 U2 Un
where Uj e " and c = gcd(a],...,an) . If ¢ /[b

then (4.1) has no solution, otherwise X =qU, +
y2U2 S ynUn , where X = (x],...,xn)T . q=Db/c
and Yos e ¥y are arbitrary integers, is a general

solution of (4.1).

One may easily verify that the matrix U= [U],...,Un] is unimodular.
Since ¢y 3 and Cy.p are the largest and the second largest elements
3 3

in the first row of C , the integer Lc] 1/c1 2J computed in step 1 fis
? H
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usually small. So Rosser's algorithm usually will finda U with-evenly
small elements, especially when n is large, while other methods
usually will find a U with some large elements and the rest quite
small, including many zeros and ones.

In solving the linear Diophantine system Ax =b , one would like
to compute a unimodular matrix U such that A' = AU 1is a column

echelon matrix, i.e., if A' e Z(m,n) , r = rank(A') and kj , 1<sr ,

is the row index of the leading non-zero element of column j of A’

then 1 < k] <<k and columns r+i1,...,n of A' are zero. In
the algorithm LDSSBR, U is obtained by executing statements similar to
those in step 1 of Rosser's algorithm r , the rank of A , times. In
fact U ‘is the product of r unimodular matrices U1,..., 4]

r
associated with executions of step 1 of Rosser's algorithm. The sizes

of the elements in the Ui's will directly affect the rate of coeffi-

cient growth in solving a linear Diophantine system. Since, in general,

Rosser's algorithm computes Ui's with evenly small elements, the
algorithm controls the coefficient growth very well.

Rosser's algorithm is very simple. However, analysis of this
algorithm is not as simple as one might suppose. Only recently has a
thorough analysis been obtained (see [KNU69], Section 4.5.3) for the

special case n = 2.

In Section 4.2 we will describe the algorithm LUSSBR, which employs
the ideas of Rosser. In Section 4.4 we will analyze the computing time
of a "special case" of the algorithm LDSSBR. The coefficients of the

special case are related to the members of a sequence generalized from
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the famous Fibonacci sequence. We will called it the nih order

Fibonacci sequence. Some important properties of the n-t-r-l order
Fibonacci sequence will be investigated in Section 4.3 and used in the

computing time analysis of the algorithm LDSSBR in Section 4.4.
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Section 4.2,  The Algorithm

LDSSBR(A,b;x*,N)
[Linear Diophantine system solution, based on Rosser's ideas.
A is an m by n integral matrix. b {s an integral m-vector.
If the Djophantine system Ax=b is consistent, then x* is a
particular solution and N is a 1ist of basis vectors of the
solution module of Ax=0, Otherwise, x* and N are null lists.
A and b are modified.]
safe b],C',Cz,m,N,n,s,x*.
(1) [Initialize.] n<LENGTH(A); meLENGTH(b) .
(2) [Adjoin identity matrix to A and zero vector to -b,]
C<MIAIM(A); B<VIAZ(VINEG(b),n).
(3) [Sort columns of C.] C<MINNCT(C); C«MICS(C).
(4) [Pivot row zero.] C]+FIRST(C); if FIRST(C1)=O then go to 6.
(5) [Eliminate pivot row.] repeat { B+VIERED(B,C],1);
C+RED(C); if C=() then s+0 else { C2+FIRST(C); s+FIRST(C2);
if s=0 then { C]+VIERED(C],CZ,1); C+MICINS(C,C]);
C1<-C2 } }  }until s=0; nen-1.
(6) [System inconsistent?] ADV(B;b],B); if b]=0 then { x*<();
N<(); return }.

(7) [Remove pivot row.] C'«C; while C'=() do { CI+FIRST(C‘);

C]+RED(C]); SFIRST(C',C]); C'«RED(C') }; mem-1.
(8) [Finished?] if m>0 then { if n>0 then go to 3 else
go to 6 }; x*B; N«C; return (O



51

Step 1 computes the number of variables” n and the number of

equations m 1in the system. Step 2 constructs the matrix C = l.?j ,
where I s the identity matrix in Z(n,n) , and the vector B =

J:'g] , where 0 is the zero vector in yAl Steps 3 to 8 form a loop
which computes a unimodular matrix U such that AU is a column

echelon matrix by repeatedly executing a step similar to step 1 in
Rosser's algorithm described in Section 4.1, checks the consistency of
the system and computes a particular solution if there exists one. Step
3 makes the elements in the first row non-negative and sorts them in
descending order by performing two kinds of elementary column operations,
multiplying a éo]umn by -1 and interchanging two columns. This is a
preparatory step for step 5 which employs Rosser's ideas, Step 4 checks
whether the first row is zero and, if so, skips the execution of step 5.
Step 5 basically does two things: (1) reduce the size of the first
element of B by repeatedly subtracting multiples of the first column

of C from B and (2) perform step 1 of Rosser's algorithm. Note that
two kinds of elementary column operations are involved in this step,
i.e., subtracting a multiple of a column from another column and
interchanging two columns. Also note that, because the first column

of C 1is no longer useful in later computations after leaving the

repeat-loop, it is deleted from C through the algorithm RED before

If it is inconsistent, then it returns the null 1ist for x* and N.
Step 7 removes the first row of C , whose elements are zero. The

deletions of these unnecessary columns and rows make this algorithm more
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efficient. Later when we verify the validity of thealgorithm, we will
assume these deleted columns and rows are attached. Step 8 decides

whether there are remaining rows and columns.

Theorem 4.1. The algorithm LDSSBR is valid,

Proof. Let C be the (mtn) by n matrix which initially is [?}
and Tet B be the (mtn)-vector which initially is -['g] . Let C'
denote the matrix consisting of rows 1,...,m of C ,v1et C" denote
the matrix consisting of rows m+l,...,mtn of C , Jet B' denote the
vector consisting of the first m components of B and let B" denote
the vector consisting of the last n components of B . Performing

any one of the three kinds of elementary column operations on C will
preserve (1) the unimodularity of C" , (2) the validity of the relation
C' = AC" and (3) the consistency of C'x = B' . Suppose C is
obtained from C by performing an elementary column operation on C.
Then C = CE , where E 1is the elementary matrix (hence, a unimodular
matrix) reflecting the elementary column operation. Let C' and C"

-~

be the submatrices of C corresponding to C' and C" of C . Then

C'=C'E and C" = C"E . Since det(C") = det(C")det(E)

+ det(C") ,

C'E - AC"E
(C'- AC")E and det(E) =0, C' - AC" =0 iff C' -AC" =0, i.e.,

T' 4is unimodular iff C" 94s unimodular. Since C'~ AC"

C' = AC" iff C' =AC" . Since C' =C'E and E 1is unimodular,

C'x = B' 1is consistent iff C'x = B' 1is consistent by Theorem 2.6.
Obviously, C" 1is unimodular and C' = AC" when C 1is constructed

in step 2. So we can conclude that C" 1is unimodular and C' = AC" at
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any point of the algorithm LDSSER.

Adding an integral multiple of a column of C to B will preserve
(i) the validity of the relation B' = AB" - b and (ii) the consistency

of C'x =B' . Suppose B s obtained from B by adding kCi , where

c! -
C; = (Cl) is the 0 column of €, to B . Then B =B+ kC; -
.‘i

Let B' and B" be the vectors consisting of the first m elements
and the last n elements of B respectively. Then B' = B! + kC% and

"B'n = B" + kC'_; . Note that C_; = AC'_; by the fact that C' = AC" ,

Since B' - AB" = (B' + kC%) - A(B" + kC%) = (B' + kAC?) - (AB" + kACg)

B AR, B = ABY - b Aff B'=ABY ~b . If x = (xpse..sx)

i5 a solution of the system C'x =B' , then y = (x1,...,x1.+k,...,xn)T

is a solution of the system C'y = B' , since C'y =C' { x +
(0,...,k,...,0)T } =C'x + kC% =B' + kC% = B' . Similarly, if

(y1,...,yn)T is a solution of the system C'y = B' , then

Y

X (y],...,yi-k,...,yn)Tis a solution of the system C'x = B' , This
implies C'x = B' is consistent iff C'x = B' is consistent.
Obviously, B' = AB" - b when B {is constructed in step 2. So we can
conclude that B' = AB" - b and that C'x = B' {s consistent iff
Ax = b s consistent at any point in the algorithm LDSSBR.

If B' passes all the tests in step 6 (when we say B* passes the

1§h test, we mean that the 123 element of B' at the iih execution of

step 6 is equal to zero), then the final value of B' 1is zero, Thus,
AB" - b =0 , and hence, B" is a particular solution of the system

Ax = b . At this point C' is in column echelon form. Since C' = AC"
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and C" s unimodular, by Theorem 2.7, {C;;T,;;;,Cg} is-a-basis-of the -
solution module of the system Ax = 0 , where (" = [C",...,Cg] and
r = rank(A) .

If Ax = b is consistent, then C'x = B* 1is consistent at any
point in the algorithm LDSSBR., Suppose B' has passed the first i-1
tests and is ready for the iih test, Let C! = [Ci,...,CA] and let
t. ,1<j<n, be the row index of the leading non-zero element of

J

Cj . Then ty << t. <i and t t >1i forsome pz20.

p p+'1 3t e n
Let x* = (xl,...,xn)T be a solution of C'x =B' . Then B' = C'x*
= g=] ij5 . We claim xq = ... = Xp = 0 . Since B' passed the
3 2 - ! = - ) - [ ] |T
first -1 tests, B] v B].'_1 0 , where B (81,...,Bn) .

Let 1 <h < p and assume that X{ % oo T X1 T 0. Then

= 1 ! = ' n
B' = j=h chj . let k=t, . Then B = j=h XjCé,j where Cy

is the k—th component of Cj . But Cé j =0 for j>h so
b

Bé = ><hC"<,h . If k<1 then Bé = 0 and Cé,h =0 so0 Xy, = 0.

If k=1 then h=p and IBQI < Cé h by virtue of step 5 so again
b

>J

0 . By induction on h, therefore, x; = ... = Xg = 0 and

n ' - s = 7N v O
Zj=p+1 xsCy . But Cy ;=0 for J>p so Bi = 1j=ps1 %584,

=0 . Hence B' also passes the izh validity test. This completes

*h
Bl.

the validity proof for LDSSBR. O
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Sectionw4r3,WM”ThewngguOrder Fibonacci Sequences

Given a sequence of numbers A(0), A(1), ... , an equation relating
A(k) to its predecessors in the sequence, valid for all integers k

greater than some integer kO , is called a recurrence relation. If

A(k) 1is determined by its immediate n predecessors for k=2n , then
the recurrence relation is said to be of order n. A recurrence relation
is linear if A(k) {is a linear combination of A(k-i) , I<isn , for
k>=n . Consider the linear recurrence relation of order n with
constant coefficients

(4.2) A(k) = c1A(k—1) + czA(k-Z) + ... F an(k—n) ,

for k=zn, Cqs Crs vee s €y constant and c, * 0 . With the

recurrence relation (4.2) we associate the equation

(4.3) M- c1x""] - czxn"2 - ve.=c =0,

which is called the characteristic equation for (4.2). The n complex

roots oys Gps ee 3 %p s which may not be distinct, of (4.3) are called

the characteristic roots for (4.3). A sequence A(0), A(1), A(2), ...

of complex numbers, which sat{sfies the recurrence relation (4.2) is

called a solution of (4.2).

Theorem 4.2. Let Ays G5 eee o oy be the characteristic roots of

the characteristic equation for the recurrence relation (4.2). Then

the sequence

(4.8)  AK) =30 e L k=0,1.2,.
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is a solution of the recurrence relation {4.2) for-any constantsr~e],

ez, LI ] ’e Py

n
_th K. tn k-n n
Proof. Forany k=n, A(K) = i & o Dicp &5 9
_en k=n ¢n n-j _ tn n k-3 _ ¢n n
= Diar & oy Lg= G5 9 T e & Ti=1 €585 = Ljmy 5 Lim® @

= g=] ¢ A(k-j) . This implies that the sequence (4.4) satisfies the

recurrence relation (4.2), and hence, is a solution of (4.2). 0

Theroem 4.3.

Let Aps Qos eee %

be the characteristic roots of

the characteristic equation for the recurrence relation (4.2). Let

B(0), B(1), B(2), ...

‘v - th k
If oy ags ... 5 @ are distinct, then B(k) Ei=1 e; oy
k=0,1,2, ... , for some constants &1, €55 ... 5 &, .
- th K -
Proof. Let A(k) = Lijejof > k=012, ccus where e1, €5s...

n

k=0,1,2, ...

Since a solution of a recurrence relation is completely determined by

the first n members of the solution, it suffices to show that there

e are any constants. By Theorem 4.2, the sequence A(k),

, is a solution of the recurrence relation (4.2).

be a solution of the recurrence relation (4.2).

3 N - n k
exist some constants e, ey, ... , e, such that B(k) = Liop & ¢
for k=0,1, ..., n=1. The coefficient matrix of this system is

™ =
1 1 ; 1
he &2 v %n
an-] n=1 O‘n--l
1 2 n )
L _
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This matrix is well known as the Vandermonde matrix. Its determinant is

the product TT-]si<jsn ( ay - o ) (see [KNU73]). Since aps aps «vv s
o are distinct, the determinant of the coefficient matrix is non-zero.

Therefore, there is a unique solution for € €95 vev s e, - 0

By Theorems 4.2 and 4.3, (4.4) represents all the solutions of the

recurrence relation (4.2), hence, is called a general solution of (4.2)

provided that the characteristic roots of the characteristic equation
for (4.2) are distinct.

One sequence of special interest to us is the sequence Fn(k) s
k=0,1,2, ... , satisfying the linear recurrence relation of order

nz2

(4.5) Fn(k) = Fn(k-l) + Fn(k-n) , kzn,

with initial values Fn(k) =0 for k=0,1, ... s n-2 and

Fn(n—1) =71 . We will call this sequence the nLh order Fibonacci

sequence, members of this sequence the an order Fibonacci numbers and

the linear recurrence relation (4.5) the nih order Fibonacci recurrence

relation.

Let Cn(x) = x" - xn"I -1, n=x2=2. Then Cn(x) =0 is the

characteristic equation for the nih order Fibonacci recurrence relation.

Let a3, ... ,a, be the characteristic roots of Cn(x) = (0, Then

R

Ays eee 3 Op are non-zero and distinct, since Cn(O) 2 0 and

gcd(Cn(x),CA(x)) =1, By Theorem 4.3, Fn(k) = ?=] e a% for some

constants €5 e s B o Bps e s e, can be obtained by solving
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the system
1 1 1 e Fn(O) 0
ay ay @ e, _ Fn(1) i 0 '
a?_] ag-l cee ag-] e, {_Fn(n-l) 1

Let D be the coefficient matrix. D is a Vandermonde matrix and
det(D) = TT‘]Sj<ksn (o - oy ) . Let D, be the matrix obtained by
replacing the 12& column of D by the right-hand side of the system.

i n+i

i

By Cramer's rule, e, det(Di)/det(D) = (-1)n+i{TT1;} (“i - ak)}"1-

1

-1 L (2 -1
{ TTeeter (o = 23 = (DT T qgean 2 ket (24 7 %

=1 TT.]sksn & k=i (a; - ak)}-] = { CA(ai) 11 = ¢ na?'] - (n-])a?'z 31
= oyl n(a? ) “?n]) ¥ “?-1}-1 = oy (“?—] +n)"" . Therefore,

(4.6) Fo(k) = ?=] a§+1 ( a?" #n )7,

Since the number of sign variations of the coefficients of Cn(x)
is 1, the equation Cn(x) = 0 has one and only one positive real root

by Descartes' rule of signs. Let o« be the positive real root of

()

]
x

~]
n

0. Then 1 <a<2, since Ln(l) = =T < 0 and
c(2)=2"-2"1-150 for nz2. Ve claimthat @ {is the root
of largest modulus of Cn(x) =0 . Let Dn(x) = C {x)/(x~a) and let

n
E(x) =D (ax)/an~2 .

0 Then it is equivalent to show that all the roots
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of"Eh(x)r=»0~»1ie,within,theuunit”cirCTe Ix] =1 , x a complex

variable. We need the following theorem due to Rouché in order to

establish the above claim.

Theorem 4.4 (Rouché). Let C be the unit circle |x] =1, If R(x)

and S(x) are two univariate polynomials with complex coefficients
and |R(x)] > IS(x)| on C , then R(x) + S(x) and R(x) have the
same number of roots inside C .

Proof. See [MAR69]. O

Let P 1.(x) = (iu—i+1)x"'i + (oc-l)xn"i'1 + ...+ (a=1) for

1si<n. Andlet P% .(x) = Mip L (1/x) = (=)™ T4 L.+
(a-1)x + (ia=i+1) . Then, on C , |Px 1.(x)l = |P* (X)) =

: ; )i
)in-1l|pn’i(1/x)l = an’i(1/x)[ = ‘Pn,i(x)" where Y denotes the

complex conjugate of y . Let R(x) = (ia—i+1)Pn’i(x) and let

S(x) = —(a—T)P;,i(x) . Then IR(x)! > IS(x)] on C since [ia-i+1]
> |la=11 . Hence, by Theorem 4.4, R(x) + S(x) and Pn,i(x) have the
same number of roots inside C . Note that R(x) + S(x) =
(1a-i#1)P, (%) = (a1)P% 4(x) = (ia-i+1)2 = (a-1)21"T 4
(Gami1) (a=1) - (e-1)2F 1w o+ ((Hami) (1) - (a-1)%} x
e ) () 1Y x (e (@) (1))

= {(§-1)(a=1) + 1}xPn’i+1(x) and R(x) + S(x) has the same degree as

Pn,i(x) . So R{x) + S(x) , and hence Pn,i+1(x) , and Pn,i(x) have

the same number of roots outside or on C. Note that this is true for

]

1<i{s<n-2. Since Dn(x) (xn—xn"1~1)/(x~a) = xn"] + (oz--])xn'2 +

ces F an—z(a-T) and En(x)

Dn(ax)/an-z = oaxn"1 + (a—l)xn"z + ...t
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(a=1) =P 7(x) ,me(x)f~and,an;n;](x) “have the same number of roots

n,1 n
outside C . Obyiously, P (x) = {(n-1)a - (n-2)}x + (a~1) has no

n,n-i
root outside or on C , since J(n-T)a = (n=2)] > fa-1] . S0 we have

the following theorem.

Theorem 4.5. Let o« be the positive real root of the characteristic

equation Cn(x) "o L1 =0 for the n order Fibonacci

sequence. Then o is the characteristic root of largest modulus.

The next theorem gives bounds on nih order Fibonacci numbers.

Theorem 4.6. Let Fn(k) ,k=0,1,2, ... , be the nﬁh order

Fibonacci sequence, and let « be the positive real root of the

characteristic equation Cn(x) = x" —x"'1 -1 =0 for the nlh order

Fibonacci sequence., Then ak—2n+2 < Fn(k) < ak-n+1 for k = n-1 .
< OLk—n-ﬂ

k-2n+2 _ ¢ (k) for

n
(n) = ... = Fn(2n-2) = ]

Proof by induction on k. Obviously, «

k=n-1,n, ... , 2n-2 , since Fn(n-1) = Fn

and « > 1 . Now assume that the induction hypothesis is true for any

k <m, with m= 2n-2 . Then Fn(m+1) = F_{(m) + Fn(m-n+1) >

n
OLm—2n+2 + 0‘m--3»n+3 - am—3n+3<an-1+]) =le—3n+3.onn OL(m+1)--2n+2

and

Fn(m+1) Fn(m) + Fn(m—n+1) < cLm-n+1 + am-2n+2 - 0‘m—Zn-r-z(mn.-h_,U

- OLm—-2n+2.c‘n - a(m+1)—n+1 0

Let -EPEE- PP a_ be non-negative integers, n 2 2 , with

ay 2852 ..o za and a; = 0. Let Vi , 11 <n, be the izh

column of the matrix
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oo —

Consider the following steps:

(1) k<«-1.

(2) if Vo = 0 then go to 4, where v, is the first element
of ¥, .

(3) k«k+1; A «Vy5q =« LV1/V2J, where vy is the first
element of V1; V <« V] - quz; set s to be the largest
integer such that v 2V, where Vs and v are the first
elements of VS and V respectively; for 1 =2, ... 5, S
do Vi’] « Vi5 Vs < V; go to 2.

(4 for i=1, ... ,ndo Ak+i < Vi .

Let r be the final value for the index k . The above steps generate

a sequence qg, Gy -+ > Ay of quotients, which is called the guotient

sequence of Ay, ... > 3y s and a sequence AO, A1, vee 5 A of

> Urdn
vectors. Let cj and X5 o 1 <4i<n, denote the first and the
H
(1'+1)J—Ch elements of Aj respectively. Then the sequence Co» Cq» v+ o

Crtrn and the sequence Xi,02 %i,10 00

. <1<
’X'I-Y“H']’] 1 n,are

called the remainder sequence and the 1ED-mu1t1p1ier sequence of

ays ee s 3 respectively. Note that c . = gcd(al,...,an) ,

= = = = n 3
Copp = o0 = Cpyp = 0 and ¢ 2j=1 x;,535 for 0<is<rin,
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Now we would Tike to derive bounds on the lengths of the remainder

and quotient sequences of n non-negative integers a; za, 2 ... 2 3,

>0 with 24 =0,

Theorem 4.7, Let Fn(O), Fn(T) (2), ... be the nih order
Fibonacci sequence. Then Fn(m 2 F (1 + Fn(n-l) for m=zn .

Proof by inductionon m . For m=n, Fn( n) = Fn(O) + Fn(n-l)

= ET g Fn + Fn(n—l) . Assume the induction hypothesis is true for

=kzn., F(k+1)=Fn(k)+F (k=n+1) 210 (1) + Fo(n-1) +

Fo(k-nt1) = D207 F(6) + Fo(n-1) L O
For n=z2 let Sn,m be the set {(a],az,...,an) lay 23,2 ...2
a, 2 0, a; # 0 and the length of the remainder sequence of a1 s

. s @, s mtl ) .

Theorem 4.8. Let cps €y «vv s Cp be the remainder sequence of

(a], PP an) € Sn,m . Then c; 2 Fn(m-i) for i=0,1, ... , m.

Proof by induction on _m . For m=n-1 , ¢z 1= Fn(n~1) and

1, ... » n=1 . Now assume the induction

c; = Q= Fn(n-i-1) for i

hypothesis is true for m =k =z n-1 . Let (a;, aps «.: > a,) € Sn,k+1
and let Cgs C1s +++ 3 Cie] and 9gs Gy« s Agon+] be the remainder

Vo>

32- ves 2

[\

and the quotient sequences of aj, a3, ... » 3y . Let ai

a, be a permutation of az, ..., 3y, 2, where a =aj - Gjap .

Then Cqys v s Cpyg is the remainder sequence of (a{, a5y e s aé)

€ Sn K By the {induction hypothesis, we have c. = Fn(k—i+1) for

i
i=1,2,...,k+1 . It remains to show that cj = F (k+1) . For
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0 <i sk-ntl— <5 q1c1+1 Cs _where .1'i >1i+ 1 1is the index

1
associated with the remainder of C; and cl.+1 in the remainder

sequence of (a],az,...,an) . Note that the ji's are distinct. Consider

(4.7) _ zk—n+1 _ 2k—n+1

C = =0 Gl T Ckemi2

k-n+ k-n+1
- 2 ~-n+1 X -n

iS4 T * Ckon2

- gk-nt] k-n+]
= Tido (Mo * hiso G F Ckene2

k-n+1 .
2 jl t Cp_npp » SiNCE Q4 2 1.

Since Cgs Cp» «vv > Cret] is a decreasing sequence, the sum of any
Kk -n+ 2 distinct elements of the sequence is greater than or equal

to the sum of the last k - n + 2 elements of the sequence. So

k-n+1 k+1
(4.8) Y=g Cji > Yion G4 ¢

Substituting (4.8) into (4.7),

k1
Cg = Lij=n S ¥ Ck-n+2

2 T F (k-141) + F(n-1)

T FL(3) + Flne1) 5 gkein

]

Fn(k+1) , by Theorem 4.7,

This completes the proof.
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Theorem 4.9. Let (a1,...,an) €S o ‘Thenw'm'<”{2n2/(2n*1)}61n a1)~+
2(n-1) .

Proof. By Theorems 4.6 and 4.8, a; 2 Fn(m) > M2t

, where a s
the only positive real root of Cn(x) = x" - xn'] -1 =0 . Taking
natural logrithms, we get 1In a; 2 (m=2n+2)(1n o) . Since Cn(1+1/n)
- ()" - ()™ 21 = (ER)T - 1 - ()]

- (/m) ¢ e e (e ey - (e <

(/m) ¢ a3 - (e/m™ T =0 and ¢ (2) = 2" -2 o150
for n22, a > 1+1/n . Hence, In a; > (m-2n+2) In(1+1/n) . Since
n(14x) = 15 (D> - ¥z for x> 0, In(1/n) >

1/n - 1/2n2 = (2n—1)/2n2 . Therefore, 1n a; > (m-2n+2)(2n-1)/2n2 .

Now this theorem becomes evident. O

Since the length of the quotient sequence is n less than the
length of the remainder sequence, we have immediately the following

corollary.

Corollary. Let s be the number of divisions required to compute the
remainder sequence for (a1,...,an) £ Sn,m . Then

s < {2n2/(2n-1)}(1n a]) +n-1,

Let a, = Fn(m-i+1) , 1 <1i<n . Then the i—h multiplier

sequence X: 4 k=0,1, ... ,m of a;, ... , a, satisfies the
; |

n

recurrence relation

(4.9) Xik = % kent1 t ¥i,ken 2 for k2n.
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We will call (4.9) the ni:-h order multiplier recurrence relation. Let

C;(x) =x"+x~-1. Then Cﬁ(x) = 0 1is the characteristic equation for
the nth order multiplier recurrence relation. Note that Cﬁ(x) =
—x"Cn(l/x) . So the characteristic roots of Cﬁ(x) = 0 are the inverses
of the characteristic roots of Cn(x) =0, Let Bys e Bn be the
roots of Cﬁ(x) =0 . Since By» +vv 5 B
g=] Ci,j8§ , where the ci,j‘s are constant for a given n .
Considering the generating function Gi(z) of the iEﬂ multiplier

n are distinct, xi,k =

sequence Xj > k=0, 1,2, .oy 6;(2) = Lo Xi,kzk ) 22;5 Xi,kzk

k

n e k _ en-l n e k
+ 2" Te o K 2% Temo Xik 2 T2 Lo (R 7 KLk ) 2

n-1 k n e k n-l v kK _ on-1 K
Teoo %1,k 2 * 7 Do Xk 2 72 Dkst ik 2T Dm0 ik

+ 2" 6. (2) - zn'] G.(z) + X5 0 z"'] . Thus,

—
K~
po
(w)

~
o
—te
—~
N
~—
]

( EE;A X K+ X4 .0 -1 )1+ 1L . )-1

Ko Xi g A ) TT2=] (1 -8,z )-]

i
—
o~

~ 3
[
<O -t
>
-
o~

From the definition of Gi(z) ,

_ o k- o n k k
(4.11)  65(2) = o X4, 2 = Ly { Lj=1 S4,5 892

)k n

_ ] -
Lj=1 04,5 (1 -8 2)

n -]
j=1 ©4,5 Lk=0 ( 85 2

n -1
0051 €15 TT qeken & kg 182 3 Ty (1-82)

Comparing (4.10) and (4.11), we get
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Y an en SN _ - tvh-1 k n-1
(¢12)  Tiay ¢4 5 Thaken o keg 083 = Lo X162 * %502
Let z =8, Multiplied by a1, (4.12) becoes

- tn-1 n-k-1
(413 ey n Thaken & kem BaB) = ksd Xipk B 4,0

. : - - n-1 =
since TTigken & kem (Bn78) = Chi(ey) = nep + 1 and x5 q =1
and Xk " 0 for k<n=-T8&k=1-1,

(e e 1) (nel 1) A A=

= m
(4.14) Sim "

-1 (gl 4y ) if 1>

®m

The rate of growth of the multiplier sequences depends on the
maximum modulus of the roots of the characteristic equation C;(x) =

M+x-1=0 , for which we now derive a bound.

Theorem 4,10. If p 1is a root of C;(x) =x"+x-1=0 then

lol < p1/(n=1)

Proof. Since 21/(n-1) > 1 , the theorem is obviously true if [p] < 1.

Assume |p] > 1 . Then Ip-]l <1 . Since pn +p~-1=0, pn—] =
Mo = (1-p)/p =07V =1 . Thus, lol™ =1t =1 s v1 <2,
Therefore, lo] < 2/(™1) g

Theorem 4.11. Let c. be defined by (4.14), Then Jc, _J <1 and
i,m 1,m

1 h |
i

“‘i,m’ e ToOr ;.
Proof. Let o = Ye1e = a + bi be a complex root of C:(x) = xMx-1

=0 . Then Y2n = Ipnlz = 11-p|2 = (1 - ycosos )2 + (v sin o )2

= YZ +1 - 2¢ cos ¢ = 72+ 1 - 2a. Thus, a = _(YZn - YZ -1)/2.,
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By elementary calculus one can show that a has a maximum a* at

v* = n-1/(2n-2) . Hence a < a* < y* = n'1/(2n"2) <1 for n=2 and

(4.15) in-(n-1)pl = In-(n-1)al >n =~ (n-1) = 1.

For 121, leg ol = 1080+ 1 )(nep™ + 17 -

e+ N nel g )7 = 1 (nep 8y )7 = g (1) + e 1T
o PR LD I I I N G Fi R I
e Cngl e )T = el T - (nemegt T < g

<t/ (n-l) g
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Section 4.4.  Analysis of the Algorithm

’

Table 4.1 shows the experimental probability p that an element

in the quotient sequence of n non-negative integers 815 +es s 3y is

equal to 1 . Each entry in Table 4.1 is an average of 30 examples in

which the ai‘s are random integers 60 bits or less in length. p is

larger than 90 percent when n 1s greater than or equal to 8.

Table 4.1
n p
3 .62
4 74
5 .82
8 .92
1 .94
15 .96

Because of the high probability that quotients in quotient sequences
are equal to 1 , we will analyze a "special case" of the algorithm

LDSSBR. Let r be the rank of the coefficient matrix A , and let

ry = min{r,n-1} . We will assume that at the beginning of the izﬂ

execution of step 3, 1 < 1 < r o the elements in the first row of C

are consecutive (n-i+1):c-n order Fibonacci numbers.

Steps 3 to 8 form the major loop of LDSSBR, Note that at the

beginning of the i execution of the loop C is an. (m+ni) by n;

matrix, where ny = n-1i+1 and B 1is an (m+ni)-vector. First we
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will derive a bound on the sizes of the elements of C during the i~

execution of the loop.

Let cg K be the element in the jih row and k-ttl column of C

at the beginning of the 115 execution of the loop. We assume

c? 12 vee oo c? n. are consecutive nir‘h order Fibonacci numbers, say
3 L AAR
3
c? i = Fn (s-i) for some positive integer s and 1 =1, ... , Ny
i i
Let di be a bound on the elements of C during the iin execution

of the major loop. Then, for 1 =<1 < ry oo the element in the jzﬂ row

and k¥ column of C during the it execution is given by
"0
S5k = Zh=1 Cih xh’si for some s, 0 < 5§ <S> where xh,si is the

(si+1)§h element of the e multiplier sequence of c? 12 v

& Since X = Eni e Bsi where 8 B are the
1,n; ° h,s. t=1 “h,t "t °? 12 7" 2 "n r

i i i

* = i - = 1
roots of Cni(X) X ' +x-1=0 and 10 e eh,ni are given

by (4.14), we have

g0, o 3
A R N N I N e L

S.
i

N

n. n.
1 1
T R

s./(n;~1) n, n,
i
2! iy Ehll Etl] lep, ¢! by Theorem 4.10 ,

A

s./(n.=1)+1 ,

<2 V1 n? di g > by Theorem 4.11 ,

+12

s/n,
) -H'l ] =Nn.-
2 ny d;_qy » since ng q=ny 1.

1+
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Obvioustlys (C? 1 C? j 27 C(]J ’n‘i) eSn] ,5-1" By Theorem 4.9,
2 0 2
s < { 2n1(1n ¢, )/(2n1-1) + 2n - 1} < nf (1n d )/ni+] + 2n1+] .

1
Thus, from (4.16), taking base B8 logarithms, we have 1ogB d. <

{ n§ (1n B)(1ogs )/n]+] + 31} 10982 + 2109B n, + 1ogB d: 4

= n (In 2)(109B )/n + 10958 + 2109B ny * 1098 di-] , Hence ,

A

(4.17) L(d;)

2,2
i { (In 2)n1/n1+] + 13 L(d1~]) + ZL(ni) + L(8)

A

2 2
(1+(Tn 2))n 1L(di—1)/ni+1 + 2L(ni) + L(8) .
Inductively, (4.17) becomes

(4.18)  L(¢,) < (e(n 23T nd a7 L(eg) + T 1+ 2)1 n?

i i1 i=j+1°

niZ, {2(n, ;) + L(8)}

i=J
2

= g+ 237 n? (n-1)2 L(dg) + TIZ) Ui 2) 1

(n-i+3)% (n-1)"% (2L(n-i+3+1) + L(8)}

(1+(1n 237 n? L(dg) + SL(n+1) n® T12g O1+(In 2) ¥

A

A

(0 237 n? L) + 5010 207101+ (10 2)1 0 L(n1)

N

(+(in 2)37 n? ( L(dy) + 8L(nt1) 3,

For 1 > r o the izh execution of the major loop of LDSSBR does

not change the elements of the matrix C ., Thus, for 1 > S
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ry

(4.19)  L(d;) < 01+(1n 2)} n? { L(dy) + BL(n+1))

< (1#(1n 203" n? { L(dg) + BL(n+1) 3 .

At the beginning of the iEh execution of the major loop, where

l1<i<pr if r<n or 1 si<r if r=n,B8 is an (m+ni)-vector.

Let B0 be the value of B at the beginning of the 1§h execution

of the major loop. Step 5 generates a sequence Bo, 81, vee s Bt for

the vector B , where t 1is the integer such that c? j = Fn(t+n1-j)

for j=1, ... N5 The first call to subroutine VIERED in the
repeat-loop in step 5 implicitly generates a sequence Qg, Qs ««- » 9

_ vt . _ .
such that by = Zj=0 a; Fni(t+n1—3—1) , Wwhere qj_[bj/Fni(t+ni'J"])]

and bj is the first element of Bj for j=0,1, ... , £t . Note

that lqgl = LIbjI/Fy (bmg=3-D)] < LR, (Em;-3) - 1/Fy (thn;-3-1)]

<1, since |bj| < Fn.(t+ni-j) for j =3, ... » t . Therefore,
i

(4.20) 15 1a50 = lagl + € = LIbgl/Fy (weny=1)] + & < 1bgl *+ £

2
< |b0| + { Zni (In di)/(Zni~1) } o+, - 1 , by the

corollary of Theorem 4.9,

Let e, be a bound on the elements of B during the i~

. . . t
execution of thf major Toop, 1 < 1 < ry - Then 2ei < ei_] + 2j=0|qjldi-1
= 850 + di..] ).j_—.o lel < &0 + di-1 1 el"'] oy (TF (I di—'l))/”]-l-'l +
Mwp b (digfT) Teg g 4 "% (1 + (Indy_))/ngg + Nyyq

2
< (di"]+]) { ei"-‘ + n1- (] + d’l"'])/n'l'*‘] + n_i+-l 1. ThUS,
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(4.21).  L(ey) s L(d;_¢#1) + L(e; q) ¥ L(Tﬂ?(di 1P /ngq D)t

L(n, 2

1+1)

< L(dy_y+1) + L{ejq) * L(d;_q#1) + 2L(n;) + 3

A

L(ei_]) + 2L(d.”1) t2l(ng) +

(nj) + 5 , by induction »

L(eg) + 22’ (+(1n 23 n? 1L(dg) + BL(n+1)} +

< Lleg) + 22‘ 1 Ld,) + 221=

A

2iL(n) + 51 , by (4.18) ,
< L(eg) + 2(In 211 (1+(1n 2)3' n? (L(dy) + 8L(n+1)} +

2iL(n) + 51 .

e..1 * e.qd,..q - Hence it is

clear that (4.21) holds for i < r whether or not r =n .

For i >r , the 1§h execution of the major loop does not change

For the case that r =n, er <

the elements of B . Thus, for i >r,

(4.22)  L(e,) < Leg) + 2(In )" (1+(1n 2)3" n?

i { L(do) + 8L(n*+1) }

+ 2rL(n) + 5r .

We are ready now to analyze the computing time of the algorithm
LDSSBR. Let ki be the number of executions of step i . Then the
values of the ki's are given by Table 4,2,

Let ti i be the computing time of the jLn execution of step i ,
3

and let ti be the computing time of step i . Then

(4.23) ty~n+m,
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Table 4.2
i 1 2 3 4 5 6 7 8
ki 1 1 n n r m m m

(4.24) tz;ﬁ n(m+n) + nL(dO) + (mtn) ~ n(m+n+L(dO)) .

By Theorem 3.28, Theorem 3.29, (4.18) and (4.19),

“3 t, » < n{ (mn)nL(d)) + n?
j=1 "3,j = r

2

(4.25) ty = ) L(dr)} ~ (m+n)n L(dr) .

Obviously,

RV -
(4.26) t4 - Xj:‘] t4,j .n.

The computing time of step 5 is codominant with the computing time
of repeated execution of VIERED and MICINS. Let S; be the number of
executions of the repeat loop. Let Pps oeeo psi and Qys +v- s qsi_]
be the quotient sequences implicitly generated by the first and second
subroutine calls to VIERED in the repeat loop, respectively. Then
qj =1 for j=1, ... 31-1 by assumption and [p]l < e and
ijl =1 forj=2, ... sy (see the derivation of (4.20)). Therefore,

S.
by Theorems 3.23 and 3.28, t; . X (mn,) { L(d;) J.;] L(pj) + L(e;)
S.~1
1

j=1

5,1

+ (m+ni) { L(di) L(qj) + L(di) } o+ ni(si"])L(di)

< (m+ni) { L(di) { L(ei) t s, -1 1+ L(ei) } o+ (m+ni)siL(di) +

) -

ni(si—l)L(di)jg (m+ni)L(di)L(e1) + (m+ni)siL(di) ~ (m+n1.)L(d1

{ L(ei) + s } . By the corollary of Theorem 4.9, we have
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Y ) s (T d ) e ~ :
t ¢ £ (mng)L(dy) € Lleg) + np (I dd/ngey # Mypy 3 Amengbldge

{ niL(di) + L(ei) } . Thus,
_tr
(4.27) tg = 3=1 tS,j < r(m+n)L(dr) { nL(dr) + L(er) } .
The computing times for steps 6 to 8 are obvious and given by
(4.28)  tg~tg~m o, and
(4.29) t, 4mn .

By (4.19), (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), (4.28)
and (4.29),

t pssar(Asb) X nP(meLld) + r(mn)L(d ) (nL(d,) + Lle,))
) }

2 (mn)n201+(1n 2)17 N LOIAL + L(n) 3

~ (m+n)L(dr) { ne + rn L(dr) + rL(er
2 3
{ n® + rn®C LOJIAL) + L(n) } + rL(Ib]) +
rn2{1+(1n 2370 LOAL + L(n) 3}
o po ) (14 (Tn 2)3T 0+ (T 2)3THL(IADL(n) 32

+ rnl(men) (1+(1n 2)3° £ L(JAD+L(n) 3 L{IbI) .
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. CHAPTER 5. A MODIFICATION OF KANNAN AND BACHEM'S ALGORITHM

Section 5.1. Introduction

In this chapter we will present and analyze another algorithm,
called LDSMKB, for solving systems of linear Diophantine equations. The
basic ideas for the algorithm come from Kannan and Bachem [KAB78]. They
used these ideas in computing the Smith and the Hermite normal forms of
a non-singular square integral matrix A and showed that the lengths of
the coefficients of A during the computation of the Hermite normal
form of A can be bounded by a polynomial function of order n4L(nlA|),
where n is the common row and column dimension of A .

Usual methods for computing the Hermite normal form of A
transform successively the submatrix consisting of the first 1 rows
of A into its Hermite normal form for i=1,....,n . So elements common
to row 1, ..., 1 and columns i+1, ..., n of A are zero after
transforming the first i rows of A into a Hermite normal matrix.

Kannan and Bachem's method successively transforms the i by i
principal minor of A into its Hermite normal form for i=1,...,n .

So columns i+l, ..., n of A remain unchanged before transforming the
i+1 by i+1 principal minor of A . Preconditioning is required to

ensure that all the principal minors of A are non-singular. During

3l

the 1= execution of the major loop 1n Kannan and Bachem's atgorithm,
which transforms the i+1 by i+l principal minor into its Hermite
normal form, two processes are involved, namely, elimination and

normalization. Elimination refers to the process of forcing Aj i+] *
>
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the element in row J and column i+l of A , to zero for =Ty oo
by a sequence of unimodular column transformations on A , that is,
postmultiplication of A by a sequence of unimodular matrices. Note
that any unimodular transformation is equivalent to a sequence of
elementary column operations, since every unimodular matrix is equal to
a product of some sequence of elementary matrices. Normalization refers
to the process of making elements to the left of the diagonal non-
negative and less than the diagonal elements to their right. The
normalization order is from top to bottom and from left to right. The
normalization order in the third execution of the major loop is

illustrated by the following figure.

* 0 0 0
1 * 0 0
2 3 * 0

Each "*" represents a diagonal element. Each positive number denotes

the order of the corresponding element in the normalization process.
Let A' be the matrix obtained from A whose i by 1 principal

minor A% is the Hermite normal form of the i by i principal minor

Ai of A . Then A' = AU for some unimodular matrix U . Since Al

is obtained from A by a sequence of unimodular transformation on the

Ui 0

0 I

first 1 columns of A, U= where Ui is an i by i

unimodular matrix, and hence, A% = Aiui . Since Ai is non-singular,
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0, = A7 AL = adj(A;) A} / det(A;) , and hence, IU;1 = i1adj(A;)11Af1/

Idet(Ai)l . Since A% is a Hermite matrix, every element in the jih
row of A% is non-negative and not greater than the diagonal element
in the jm row of A% for j=1,...,1 and each diagonal element of
A% is not greater than the product of all the diagonal elements of

A% , which is the determinant of A% . Thus, IA%] < !det(A%)l

= ldet(Aiui)l = ldet(Ai)lldet(Ui)] ldEt(Ai)l , and hence, lUil <

iladj(Ai)l . Since every element of the adjoint of Ai is an 1i-1 by
i-1 minor of A whose magnitude is bounded by (i—])!lAli'] (see
e (i-n AT = AT s

nIAIIUL = nlA1U;] < (nlal)"

N

Theorem 5.2 in Section 5.3), ]Ui]

AN . since A' =AU, [A']

IA

Therefore, the length of the norm of A' is bounded by iL(n]Al) .
Using this bound for the lengths of the elements of A' at the

end of the iih iteration, Kannan and Bachem derive a bound of order

n4L(nlA|) on the sizes of the coefficients during the (i+1)£ﬁ
iteration. Without modifying their algorithm one can derive a better
bound of order nzL(niAI) on the sizes of the coefficients during the
(1+1)Lﬂ jteration by employing once again the fact that A% is the
Hermite normal form of Ai , so that the product of all the diagonal

elements of A% , being the magnitude of the determinant of Ai » 1S

bounded by (ilA])i .

One can obtain an even better bourd; of order—nk{mtAt)— by
changing the normalization order of Kannan and Bachem's algorithm. The
new normalization order is from right to left and from top to bottom.

A typical normalization order for the third execution of the major loop
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of this modified Kannan and Bachem's—algorithm—is—illustrated-by-the—

following figure.

* 0 0 0
4 * 0 0
5 2 * 0

This modification enables us to derive a better bound because column B
is normalized by using only the already normalized columns JFl, ... i4]
to its right during the izh jteration of the major loop of the modified
Kannan and Bachem's algorithm. The derivation of this new bound fis
very similar to the one given in Section 5.3 for the algorithm LDSMKB.
In the algorithm LDSMKB we extend Kannan and Bachem's ideas with
the modification described in the previous paragraph to the problem of
solving a system of linear Diophantine equations Ax = b for any
Ae Z(m,n) of rank r and b e 7™ . In order to employ Kannan and
Bachem's ideas for a square non-singular preconditioned matrix, the
n by n identity matrix is adjoined to the bottom of A , and we call
the new matrix A . Since A is of rank n , there exists a non-

singular submatrix A* of A consisting of r 1linearly independent

rows of A and n-r rows of the n by n identity matrix. The major

work for the algorithm LDSMKB is to transform A* 1into a pseudo-Hermite

matrix by applying a sequence of unimodular transformations to A . A

square non-singular matrix is a pseudo-Hermite matrix, or in pseudo-

Hermite form, if it is lower-triangular and the absolute value of any
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off-diagonal element is less than the absolute value of the diagonal

element to its right. The transformation of A* into a pseudo-Hermite
matrix enables us to derive a very good bound, of order n + rL(rlAl)
on the lengths of the coefficients pertaining to A .

Some helpful notations are introduced here before we present and

analyze the algorithm LDSMKB. Let V be a vector. The izh component

of V is denoted by Vi . Let A bean m by n matrix. The jLﬂ
column of A 1is denoted by Aj . The element in the 1Lh row and jzh
column of A is denoted by Ai,j . Let [EEERRTRM and j],...,gt be
sequences of integers such that 1 < ik <m and 1 < jh <n . Then

the matrix consisting of the elements of A in rows 11,...,1 and

Jusenesd
columns j],...,jt in that order is denoted by A [;;, ’jg] CIf
« v ey t

-i’o 91
s =t , its determinant is denoted by A (j] js)
]’.."t

Given an m by n matrix A, Tet A be the m+n by n
matrix [?:‘ , where I is the n by n identity matrix. Define

inductively the row-sequence of A , R = (il""’in) , as follows.

For n=1, R = (i) where i 1is the smallest positive integer such
that A (}) 20 . For n>1, let (i],...,in_1) be the row-sequence

of A [}""’nT] and let i be the smallest positive integer such

— i],...,in_],i
that A ‘l .......... .n # 0 . Then R = ( i]’...,ik’i’ik'}']".‘,in"])

where, with 10 =0, k is the largest integer, 0 <k <n-1, such

that

< i,

T
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— The submatrix A* discussed above will be the matrix

—

A

|]9.c.,|

where (i],...,in) is the row-sequence of A .

Tseeowsh
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Section 5.2. The Algorithm

In this section we will describe the algorithm LDSMKB and prove
that the algorithm is valid.

The algorithm has two inputs and two outputs. The inputs are the
coefficient matrix A , an integral m by n matrix, and the right-
hand-side b , an integral m-vector, of the linear Diophantine system
to be solved. The outputs are a particular solution x* of the
Diophantine system Ax =b and a basis N of the solution module of
the homogeneous Diophantine system Ax =0 1if the Diophantine system

Ax

b 1is consistent. Otherwise, the null list is returned for x*
and N .

The algorithm begins by constructing the m+ n by n matrix C

whose initial value is A = [?] , where I s the n by n identity

matrix, and the (m+n)-vector B whose initial value is b = ['g] ,

where 0 1{s the zero n-vector.

Let Rh = (i],...,ih) be the row-sequence.of the submatrix Ah

consisting of the first_h columns of A . Let Dh

_iqse.esd
non-singular matrix A ]] hh . Let ry be the rank of Ah.

denote the square

Then the algorithm computes Ry = (i]) , Where 11 is the row index of

the Teading non-zero element of 51 , that is, the smallest positive
i
integer such that A (]]) =0 ., If i] >m , which implies that A1

is a zero > 1= 97 ise; rTe ——HWe—ctaim—that—+f
R = (j1,...,jn) is the row-sequence of an m by n matrix of rank r ,

then j] < j2 < e < J and jh >m for r<hs<n. This is

.i
obviously true for Ry - Note that C ]] {s obviously a pseudo-

n
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Hermite matrix.
Now the algorithm enters a loop which computes 1, and Rk+]

and transforms Dk+1 into a pseudo-Hermite matrix for k=1,...,n=1

. . . th . , 11""’1k
inductively. At the beginning of the Kk iteration C 1 K
is in pseudo-Hermite form where R, = (i],.i.,ik) is the row-sequence

of Ak . To transform Dk+1

into a pseudo-Hermite matrix one can first
eliminate Cij,k+1 by applying a unimodular transformation to columns
Cj and Ck+1 for j=1,...,k 1in that orderiand.th?n normalizing
elements to the left of the diagonal of C 11::'::kk from rignt to
left and from top to bottom.

However, a slight modification can be made to improve the
efficiency. The algorithm LDSMKB first finds the row index J of the
leading non-zero element of Ck+] . If j is in {i],...,ik} , say
j= ih , then the algorithm eliminates Cj,k+1 by applying a unimodular
transformation to Ch and Ck+1 and repeats the above process.
Eventually, J will be different from any index in {1],...,ik} , since
the j's found in the above process are increasing and Ck+1 is
linearly independent of Cl through Ck . Let Jj* be the last
found. Then .i* is the smallest positive integer such that
C (;‘]kiﬂ) 0. If j*> i, then R, is obviously the

sequence (i],...,ik,j*) . If, with ig =0, h is the largest integer,

0 < h < k-1, such that ih < J¥ < Thet o then Rk+] =

',

(il""’ih’j*’ih+1""’ik) . Such an h exists by the hypothesis that
i] < iz < ve. < ik . Obviously, Rk+] is also an increasing sequence.
If j* <m, then Ak+1 is linearly independent of A],...,Ak , and
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hence =r.t1. Otherwise, 1y 4 =7 . Thus if Ry q =

N

rl -3
KT

(1{,...,ié+]) then ié >m for h>req - For the case that

1h < j* < 1h+1 , the algorithm rotates columns h+1l,...,k+1 so that
colng k+1' becomes the (h+])th column, and then the matrix

C [;1:::.:;§§1]. is lower-triangular. Since now columns h+2,...,k+1

of C were columns h+l,...,k of C at the beginning of the k-th
jteration, whose elements were not changed during the elimination, the
"normalization can proceed from column h+1 , rather than from column Kk ,
to column 1 .

Llet A' be the final value of C after finishing the Toop n-1
times, and let Rn = (i],...,in) . Then a particu1ar solution can be
obtained, if the system is consistent, by reducing Bih for h=1,...,rn
through applications of the algorithm VIERED to B and Aé with
respect to their ith elements. Let (bi""’b$+n) be the final value

of B, If b{ =0 for i=1,....,m , then the Diophantine system

Ax = b is consistent and the algorithm returns (b

'A'. m],.-',mn
rn+],...,n

.,b' ) and

1
1?0 T mdn

] for x* and N respectively. Otherwise, the
Diophantine system is inconsistent and the algorithm returns the null
1ist for x* and N .

Following is the algorithm description of LDSMKB. The validity
proof of LDSMKB follows the algorithm description.

LDSMKB (A,b;x*,N)
[Linear Diophantine system solution, modified Kannan and Bachem

algorithm. A is an m by n integral matrix. b is an integral
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m-véctor. 1f the Diophantine system Ax=b {s consistent; thenx*—

is a particular solution and N is a Tist of basis vectors of the

solution module of Ax=0. Otherwise, x* and N are null lists. A

and b are modified.]
safe c,C1,C',C{,C*,h,i,j,k,m,N,n,r,R',x*.

(1) [Adjoin identity matrix to A and zero vector to -b.]
n<LENGTH(A) ; C<MIAIM(A); B<VIAZ(VINEG(b) ,n).

(2) [Initialize.] m<LENGTH(b); C]+FIRST(C); j«0; repeat
{ j<j+1; ADV(C];C,CT) } until c=0; R«COMP(j,()); if Jjsm
then r<l else r<0; k«l; if n=1 then go to 5.

(3) [Eliminate column k+1 and augment row-sequence. ]
C*«REDUCT(C,k) ; CT+FIRST(C*); C'«C; R'+R; for h=1,...,k+1
do { if hsk then ADV(R';i,R') else i«mtn+l; Ci+€*; j<0;

1

repeat { j<«j+1; ADV(C{;C,C{) } until c=0; if j=i1 then

{ if j=1 then { C]+FIRST(C'); VIUT(C],Cﬁ,i;C],CT);
SFIRST(C',C]) }; C'<RED(C') 1} else { SFIRST(C*,C#);
C+LEROT(C,h,k+1); ReLEINST(R,h-1,3); if js<m then rertl;
go to 4} I

(4) [Normalize off-diagonal elements.] for j=h,h-1,...,1
do { C*<REDUCT(C,j-1); ADV(C*;T,C"); R'«REDUCT(R,J);

while R'#() do { ADV(C';Cq,C'); ADV(R';1,R"); T+

VIERED(T,Ci,i) T SFIRST(CH, T ¥y KekF T3 if ke thenmgoto—3:
(5) [Check consistency of the system.] for j=1,...,r do

{ ADY(C;T,C); ADV(R;i,R); B«VIERED(B,T,1) };'j+0; repeat

{ j«j+1; ADV(B;c,B) } until j=m v c=0.
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(6) [System consistent.] if c=0 then { C'«C; while C'=()

do { C{+FIRST(C'); Ci+REDUC?(Ci,m); SFIRST(C',Ci);
C'<RED(C') }; x*<B; N«C; return 1.

(7) [System inconsistent.] x*<(); N«()3; return 0

Theorem 5.1. The algorithm LDSMKB is valid.

Proof. Let C be the (mtn) by n matrix which is initially [?]
and let B be the (m+n)-veEtor which is initially [}8:] . Let ('
denote the matrix consisting of rows 1,...,m of C , let C" denote
the matrix consisting of rows m+l,...,mn of C , let B' denote the
vector consisting of the first m components of B and let B" denote
the vector consisting of the last n components of B . Performing
unimodular transformations on C will preserve (1) the unimodularity
of C", (2) the validity of the relation C' = AC" and (3) the
consistency of C'x =B' . The proof is same as that for elementary
column operations as shown in Theorem 4.1. Let C' and C" be the
final values of C' and C" respectively. Obviously, C" is
unimodular and C' = AC" when C 1is constructad in step 1. So c" s
unimodular, C' = AC" and C'x = b is consistent iff Ax =b is
consistent. Note that C' has the form [E',...,E;,O,...,O] where

r+1°°
the solution module of Ax = 0 . r 1

r = rank(A) . Therefore, by Theorem 2.7, {C" ..,6;} is a basis of

C
Adding an integral multiple of a column of C = ‘_E"J to B will
preserve (i) the validity of the relation B' = AB" - b and (i) the

consistency of C'x = b (see the proof of Theorem 4.1). Let B' and
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B* be the final values of B' and B" . Obviouslys; B' =AB" -b

when B 1is constructed in step 1. So B' =AB" -b and C'x =B' is
consistent iff C'x = b 1is consistent, and hence, iff Ax =b is
consistent.

If B' =0 then AB" =b . Therefore, B" is a particular

solution of the system Ax =b . If Ax =b is consistent, then

C'x = B' is consistent. Let x* = (x],...,xn)T be a solution of

r - n Bl - . T -~ T
C'x =B' ., Then B' = C'x* = [C],...,C;, 5eees0] (x],...,xn)
r

- = = Rl = 7 r
T 0. Then B' = i=h chj .

the row-sequence of A and let k =1, . Then 5& = §=h ijé i

0
= Z§=] xj53 . MWeclaim x; = ...=x,=0. Let 1 <hs<r and assume

Let R = (i],...,i ) be

n
But Cé,j =0 for j>h so Bk = thk,h . Since ]Bé] < ICé’h}
by virtue of step 5, Xy = 0 . By induction on h , therefore,

Xp T oo T X F 0 and B8' =0 . This completes the proof. O
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 Section 5.3. Analysis of the Algorithm

In this section we will first derive bounds on the coefficients
for the algorithm LDSMKB, then use these bounds to derive a bound on

the computing time.

Theorem 5.2. Let A bean n by n matrix, and let di be the

th

norm of the 1 row of A, i.e., d. = max

i 1<j=n lAi,j
|det(A)| < n! TT?:] d; .

Proof. Since the determinant of A is a sum of n! terms and each

| . Then

term is a product of n elements from n different rows of A , the

theorem becomes evident. I

Steps 3 to 4 form the major Toop of the algorithm LDSMKB. Let
O be the initial value of the matrix C . Let €K, 1=<ksn-1, be
the value of C at the end of the kzh iteration of step 4. Theorem

5.3 gives bounds on the coefficients of Ck for k=1,...,n-1 .

Theorem 5.3. Let "] and (11,...,ik+]) be the rank and the row-

sequence of A [}""’kzl respectively with A = 0 . Then

(1) c§ i - c? 5 for Tsiawm & ki2sjen
(2) Cg . =0 for 1sh<jsk+l ,
ThaJ

(3) 1c§ ] o< lcﬁ o) for 1gj<hsk+1

hi\] h’

+1 ok oy kA

ry, , ,+1

(5) 15 1 s ()2 gt 1T for Tsiemen @

I 4 Lgsennsipgg) & Tsiskel,
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Proof.  Let k"= k+¥1 - During the first—k—iterations—of-the-major———-

loop no operations have been performed on columns Jj > k' , so (1) is

true. Let D' and D denote the submatrices consisting of the first

k 0

k' columns of C° and C° respectively. Then D' = DK for some k!

by k' unimodular matrix K , since only unimodular transformations

have been applied on the first k' columns of C . Let H' =
]’1,. -31k|
D' 1 K . By virtue of the algorithm, H' is a pseudo-Hermi te

Tqseeesipy
matrix. So (2) and (3) are true. Let H =D []] kE } . Then

H' = HK . Since H' 1is a triangular matrix, det(H') = TTﬁ_] D!
= 'lh,
k

S TIKL kL. Also, det(H') = det(HK) = det(H) det(K) = £ det(H) .
h’

]
Therefore, TTE=]IC§ hl = |det(H)] . Note that the hi.‘h row of H
h? *
th row of D , which consists of the first k' elements of
0

is the 1p
row ih of C Since ih <m for 1 <hs=« Fe and ih >m for
rer < h < k' , the norm of the h'tﬂ row of H 1is bounded by |A]
for 1 <h < Ty and 1 for P < h < k' . By Theorem 5.2,
det(H)] < rk,! }Airkl . Thus, (4) is true. Since H

is non-singular, 4ol exists. So K= TRLITI adj(H) H' / det(H) ,

and nence, JK| = ladj(H) H'l / ldet(H)] < k' ladj(H)| IH'] / Jdet(H) |

. . : oyt - k
Since H' is a pseudo-Hermite matrix, JH'l = max 1<h=k' 1cih’h‘ s
1.1 le
T]E=1 ]C? (= [det(MT . S0 KK [adj(H)T . Since every etement
h3

of adj(H) 1s the determinant of some k' by k' minor of H and at
most e rows of H come from the coefficient matrix A and the

r
rest come from the identity matrix I , Jladj(H)!| < rk.! JA| k'
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Therefore, K| < k' r ! |Al = . Now D' =DK, hence [D'] <

rk.+1

Yo
k'y < k@ STY

k' |DI 1Kl = k' [A] ( k' rk.! [A] So (5)

is true. O

Let (i],...,ik) be the row-sequence of A [%""’E:] . During
the k't-Ll jteration of the major loop, step 3 eliminates elements in
column k+#1 of C by a sequence of unimodular transformations. The

th jteration of the for-loop in step 3 will change only columns J

—k ~ —k -—k ._k ,j _
and k+1 of C . Let Cj = (Cl,j""’cm+n,j) and C =
th

(E§,J’.__,E;;i) be columns j and k+1 of C after the j—
th

iteration of the for-loop during the k= iteration of the major loop.
Ek

The following theorem gives bounds on the coefficients of j and

Ek,j

]

Theorem 5.4. Let d = ;ck ]hl for h=1,...,k . If the rank of
‘ The
A 1,....m is r, and A = 0 , then
]" . 9 ’k k ,
(1) 1 16 91 < 1AL d TTay (2dy) for i=ipeliqs..niyd s

IN

k
'I
k , r,+1 P
(2) 1B 1, 18T s kB ar gt I T, (2dy) for
i £

...,1k} .

5 rk+1

Proof by induction on j. Let k' =k + 1, and let d0 =k rk! [A]

The theorem is obviously true for k =1 1if VIUT is not applied in the

first iteration of the for-loop in step 3. If VIUT is applied in the

first iteration of the for-loop in step 3, then C$ 1= Y C%‘} +
k-1 =k,1 _ k-1 k-1

3
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k-1 k-1

are {ntegers obtained by applying- -IDEGED-to— C1 1T -and-- C1
1? 1’

k-1 _ 0
C.l_l’kl =0 then ]U‘l] = lCL‘,k'I ]C‘l],kll = lAl and ]V]l <
k=1, _
lCi1’]l =dy . Therefore, 1C1’]l < |A] lC1 ]l + d, Al <
k-1 k-1 _ s k-1
2 |Al max {lCi’]l , d]} . If Ci],k' =0, then |yl = ls1gn(C.1’1)l

1 and lv1l = lsign(C?}lk.)l =0 , Again, lfg,]i lC1 ]l

N

1Al max {1c§:}i L db . If 4= e gsni ), then lc?‘

| <

b

Ic hl ¢, . Hence, 1E§ | < 20A1 max {d , di} < 1A dy (2d7) .

1h,
k 11
i,

If 1 # {ijs...0,} > then 1€ (1 < dg . Hence, 1E§,]1 s Al dg (24,

So the theorem is true for C? 1 - With a similar argument, the theorem
H

is also true for Ek 1 .

Now assume the induction hypothesis is true for j =1 . The

theorem is obviously true for k =Jj + 1 if VIUT is not applied in the

(j+1)Lh iteration of the for-loop in step 3. If VIUT is applied in
the (j+1)£h jteration of the for-loop in step 3, then E? 541 T
H

k-1
uy €y 541

k-1
i34

+ vy E%’J and E§s3*7 - v, E?’J , where up s Vo

u, and v, are integers obtained by applying IDEGCD to ay = Cg !
T5+1°

- tkad - 3 -
and a, = C5>9 . Let d = |Al dy,q TTyoy (2d) . If ay = 0, then

1501
lal = d by induction hypothesis and Jvil < la] = dgq . If

Uz

»J+1

in

lug ]

a, =0, then ]u]! = Isign(a])] =1 and |vq] = lsign(az)] =0 . For
- k k-1 2K, 3 .
either case, 'Ci,j+1l < d |G serl Ty I Iy, 1f i= i, e

: : k" ‘\"1 = *k:j
R FTCTITTFLDN I then ]Ci,j+1] < 1C1h’hl d, and Cy*Y] <
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lA,l,,.,,,,dh,,,,IIL},,,,,(,ZQ ) by induction hypothesis. Thus, [Cy sq1 <

2 1Al dy dyy T (24) = 11 4 TR () o IF 44 Cipni b
then 1cf }+]1 < dy by Theorem 5.3(5) and 161’31 < 1A dy T, (2d,) .
Thus , J+1l <2 |Al dy d o T = JAl 4y TRE (2d,) . S0

the theorem is true for CX Similarly for 6§’J+]

§ 54 . 0

Corollary. During the kih iteration of step 3 of the algorithm LDSMKB
Lorollary.

k2,2 2Tk

if A 20 then the norm of C 1is bounded by 2" k rk JA]

Proof. The h:l.‘h column of C , 1 <h <k , is changed only once during

the k-th jteration of step 3, and Eﬁ is the new value of the hth

column of C . By Theorem 5.4 and the fact that IEk hl =
h,
k-1 =k,h-1 ) 2 re¥2
ged(C5 B3 < ‘h’ o= d e < kBt AR T (24
during the kth iteration of step 3. Since t=1 (Zdt) =

r
K TR c& 1 <2k 1 A K by Theorem 5.3(4), ICI <
t""l ]t’t k
2r, +2

k

K2 p 12 .0

2" k rk!

let Ry, = (1],,_,,ik+]) be the row-sequence of A [1,...,kT]

Let Eg’p = ( E%:g, m;g J) be the JLh column of C after the
th

ip—- element, j < p < k+1 , of the jih column of C 1is normalized

during the kX jteration of the major loop. The following theorem

gives bounds on Ck 5 .
!

Theorem 5.5. Let d_ = ]C@ | for h=1,...,k+1 . If A =0 then
h ]h’h
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T
—
Sl

Nk:p <
(2) 1C°51 =2

Ck .) be the JEH

3”7 mHn ,

column of C before the normalization of the Jzﬁ column begins. Let

2(ry g 1) 2r, +2
2 1Al Th1

Proof by induction on p. Let c

2 2

~k k k
Then ICi,j] < 2"k rk! [A]

d = 2 (k#1)% vy

< d by the corollary of Theorem 5.4. Let s =1

it _xk ok
=L, 79 G

41 Then
1 » where q=[ E: y K

| <d and Iql < |E§ N ’3+11 <d+dck
3

/ C 5, 5+1 ] . Since

NTRTINE
. . : k )
1= 1h € { 1j+2,o--,1k+1 } Py then ]C_i ,j+]l < lC,]- ,h] - dh . HenCE,

BT < d (Ted,) < 2d dy . IF 4 £ {dqse.sipyq 3 then by

2 Peeq ™l

[ s 2d (k1) vt 1Al
3(rqt1)

Theorem 5.3(5) 1853711 = 2d 1cf 5,

4 3
) rk+]!

k

= 2d' , where d' = 2" (k+1 [A] Therefore, the

theorem is true for p = j+1 .

Now assume inductively that the theorem is true for p 2 j+ 1.

let s = 1p+1 . Then Ck p+1 = f ’ - [ Ck p / CS o+ ] C1 ot and
nence (TR < [THR £ SR 1ck 1< R v ad
(TTog4p (24,0} ick fprl - If i e Cipaaiiy b, then

B0 < 24 d) TTojyp (2dy) and 16§ g1 <165 1 = ¢ . Hence,

gk,ptl
T8 s 2d dy (#d ) TThagep (24y) s 24 d L TToE Diap (2dy) L IF
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- - . NIK’ ' (3 .
B i ¢ {ipseesipy b o then lci;gl s 2d' TTh.54p (2dy) by induction

hypothesis and ]Ck | (k+1)2 ! IAlrk+1+] by Theorem 5.3(5)

yp -i’p.*.] - rk+] . . .

,ptl

~k : +1
Hence, T35 1 < 2d' (1+dyyy) T jp (2dy) s 24 T, (24)

Therefore, the theorem is true for p+l .

Corollary. During the kr‘h jteration of step 4 of the algorithm LDSMKB,

4(r,  1*1)
if a0, ¢l <22 (et 1t T where ry g ds the

Tyeees m
rank of A [1,...,k+11
Proof. Setting p = k + 1 in Theorem 5.5, and using Theorem 5.3(4),
+1

, Tk k 1 k Pre1™ '
il < 2d' TTELY,p (2d,) < 2% d I 4y < 25 d' rqt 1Al =

4(r, +1)
2k 4 4 k+1
257 (k+1) rk+]! [A] .0
Since k<sn-1,r <vr < rank(A) = r , r! < rr+] and
- * Tk T Ok+l T >t T
n4 < 22n+2 for n > 0 , we have the following theorem immediately

from the corollaries of Theorems 5.4 and 5.5.

Theorem 5.6. At any point of the algorithm LDSHKB, if A =0, ICl <

, where r = rank(A) .
The next theorem gives bounds on elements of the vector B.

Theorem 5.7. Let (1],...,in) be the row-sequence of A . Let C*

be the final value of C . Let e =|C¥ | for h=1,...,n.
A o

k th

Llet BX be the value of B right after the k™ application of
the algorithm VIERED in step 6. Then, if A =0 , (1) 15?1 <e

=i e { il ), (2) 1B§} < 2% |by e, if 1=, ¢
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L Ayyreenin 1o (3) 18812 2€ b1 n? (AN 4F g CAgsesin b

Proof by induction on k. Let B0 be the initial value of B , i.e.,

g° [}8] . For k=1, let t=i, . since 8' =80 [8}/ct Tt

1 0 . . 1 _ 40
B'l ‘[Bt/C*]]C11.If1e{1]},then B'I—Bt-

[B%/C¥’]] Cé,] , and hence, ]B!l < IC* ]l = e . Therefore, (1) is true

for k=1 . Note that 18}1 891 + 18] jcx 41

IA

bl + Ib) IC¥ 4

If 1= ¢ IPYRRRTI I O then 1C§’1] < ici,hl e, - Therefore,

811 < Ibl + Ibl e, < 2 Ibl e . That'is, (2) is true for k=1 .
If 14 i;...,0, )} then by Theorem 5.3(5), BY1 < 2 161 jct 41
2 bl n? (r lAl)r+1 so (3) is true for k =1 .

Now assume the theorem is true for k =p =21, Let t= ip+] .
Since 871 =8P - [ 82/ cr g ek, 8f =8f -
L Bg / C%,p+1 ] C?,p+] CIF i = e i],...,ip } , then since

Cﬁ,p+] =0, !B?+ll = IBPI < ey by induction hypothesis. If

C s - ptl P_rgP

i 1p+1 t , then lBi | = IB [ BL / Ct o+l ] Ct p+]l < ]C p+1[
= enyp Therefore, (1) is true for k=p+1 . If 1 =1 ¢

IA

Uingpseensip } , then by induction hypothesis 1[8@ / cg’p+]];
p p = oP +1
1BR1 /16 pugl < (27 101 epyq) / epyq = 2° b1 . Thus, 8|
prl + 2P Ib] Ict

A

or1) <20 bl # 27 Dbl gCE 1= 2P bl gy ¢

2P 1bl e = 2P Ib| e, . Therefore, (2) is true for k = ptl . If
i¢d i],...,in } , then ]B?l < 2P |b] n2 (rlAl)r+1 by induction

hypothesis (3) and IC* | < n® (r]A])‘r‘+l by Theorem 5.3(5). As

1,pt+l
shown in the proof for (2) ][Bg/cﬁ p+1]] < 2P Ipl . Therefore,

133*‘4 < 2P b 0% (rIAD™ + 2P 101 n? (rIADTY = 2PTT by nP(rian T
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—This-completes—the proof.. ]

Corollary. At any point of the algorithm LDSMKB, if A =0 , IB] <
22n+1 Ib] (rIA!)r+1

Proof. By Theorem 5.3(4), e, < (rjA])" for h =1,...,n . Therefore
by Theorem 5.7, at any point of the algorithm LDSMKB, [B] <

M 161 02 (r1AD™ < 2% 02 jb) (rANTF < 22T oy (ran™ L

Finally Theorem 5.8 gives a bound on the computing time of the

algorithm LDSMKB.

Theorem 5.8. Let A e Z(m,n) ,with A =0 , and let be "
Then tLDSMKB(A’b)fi n3(m+n) {n+r L(rlAl)}2 + r(m+n) L(Ib])-
{n+ rL(rlAl)}

Proof. Let ti be the computing time of step i. Obviously, t]-ﬁ
n(mtn) + m L(Ibl) and t2~m by Theorems 3.2, 3.17, 3.18 and 3.25. Let

ti K 3<i<4 and 1 <k <n-1, be the computing time of step i
?

in the k-t-}l iteration of the major loop. The computing time for VIUT

is the most significant one in step 3. VIUT is called at most k times

during the kih iteration. Therefore, by Theorems 3.24 and 5.6,

3 k-< k(m+n) {L(d*)}2 , where d* = 24n (rlA1)4(r+]) . The computing
time for VIERED is the most significant one in step 4. VIERED is

called no more than k2 times during the kih iteration. So

< kz(m+n) {L(d*)}2 by Theorems 3.23 and 5.6. Thus, ty * ty =

4,k
E;} (tg  + ty ) 2T4C {k ) + KE(men) HL(d*) 32 ~ nd(min) (L(d%)}2

)

te is codominant with the computing time for the for-loop and the
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, repeat-loop in step 5. By Theorems 3.23 and 5.6 and the corollary of

Theorem 5.7, tg < r(mn) L(d*) L{e*) + (mtn) , where e* =

221 b1 (r]A)™1 . Obviously, tg ~mn-r) +1 and t;~1.
Therefore, tLDSMKB(A’b)Zé n3(m+n) {L(d*)}2 + r(mtn) L(d*) L(e*) .
Since L(d*) ~n + r L{r]A]) and L(e*) ~n + L(Ib]) + r L(rlAl) ~

L(d*) + L(Ib]) , t (A,b) < n3(mn) (L(d*)12 + r(men) (L(d%)1° +

1.DSHMKB
r{mtn) L(d¥) M]bH'~n%mm){n+-rL(HAH}2+v%mm)LUbH-

{n+rL(rlAl)} . 0O
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CHAPTER 6,  EMPIRICAL RESULTS

First we will show a typical example of coefficient growth in the

algorithms LDSSBR and LDSMKB. Consider

p— -y powen -

-7 -18 -1 -8 4 -24
-20 -11 7 29 -5 -6
A= and b =
-15 19 =27 -17 21 21
| -4 14 16 =11 -18 ] N 8 i

as a randomly generated 4 by 5 matrix and 4-vector whose entries are
five bits or less in length.

The matrix C and the vector B at the end of the kzh iteration
of the major loop of LDSSBR are shown below. The first five columns

are the matrix C . The last column is the vector B .

~20 -1 7 29 -5 6
~15 19 =27 17 21 =21
-4 14 16 -11 -18 -8

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
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83 42 -19 14 -69

-44

=107 25 -25 -20 30
60

47

47 -98

-23

58

-1

-1

-44

72 =653 2 83 -57

47

-313 239 =293 564 154

58

-13

-10

-1

-15




1 0 0 0 0 0
-44 1 0 0 0 0
47 72 1 0 0 0
58 -313 38030 139981 -108167 23616
-1 5 -775  -2852 2204 -481
1 2 352 1293 -1000 219

0 -3 317 1154 -896 193
-2 5 -648  -2385 1843 -402
-1 9 -989  -3654 2819 -618

k=4

1 0 0 0 0 0
-44 1 0 0 0 0
47 72 1 0 0 0
58 -313 38030 1 0 0
-1 5 -775  -8612 25840 -6129
1 -2 352 40350 -121069 28718

0 -3 317 199388 -598258 141903
2 5 -648  -2229 6688  -1586
-1 9 -989 211893 -635779 150803

T

{ (25840, -121069, -598258, 6688, -635779)" } is the basis of the

solution module of Ax =0 . (-6129, 28718, 141903, —f586, 150803)T

is the particular solution of Ax =b .
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th
The matrix C and the vector B at the end of the k= diteration

of the major loop of LDSMKB are shown below.

k=0
-7 -18 -1 -8 4 24
20 -1 7 29 -5 6
S5 19 =27 -17 21 -2
4 14 16 -1 -18 -8
1 0o 0o 0 0 o0
o 1 0 o 0
6o o 1 0 0 0
°o o 0 1 0 0
6o 0o 0o o 1 0
k=1
| 1 0o -1 -8 4 24
78 -283 7 29 5 6

-113  -403 -27 -17 21 =21

-48 -170 16 -11 -18 -8
5 18 0 0 0 0
-2 -7 0 0 0 0
0 0 1 0 0 0
0 0 U 1 U 0
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no

1

0

0
457006
~9796
6493
14993
-7912
0

11007
-3014
-137
69
-283

0

0

1
-133660
2865
-1899
-4385
2314

0

0

0

0
-635779
13628
-9033
-20858
11007

0

21

~18

o o

24

-21

O o o o o

24

-21

o O o o o
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k=4
1 0 0 0 0 24
0 1 0 0 0 6
0 0 1 0 0 -21
0 0 0 1 0 -8
9636 3369  -8415  -8612 25840 0
45148  -15785 39427 40350 -121069 0

-223097 -78001 194827 199388  -598258
2494 872 -2178 -2229 6688

o

-237089 -32893 207046 211893  -635779

o

The basis of the solution module of Ax =0 is { (25840, -121069,
-598258, 6683, --635779)T } . The particular solution (-497089,
2329029, 11508805, -128658, 12230604)T is obtained by eliminating the
first four elements of B .

| One may observe that the first k diagonal elements of C after
the kiﬁ {teration are small integers. In this example they are all

equal to one. An explanation is given below.

Theorem 6.1. (Cauchy-Binet Theorem) Let H and K be k by n and

n by k matrices respectively. If G =HK , then det(G)

] ’-co’k 1. ""’i
- H )kl K
1si]<...<iksn IEERERP Y 1,0, K

......

Proof. See LKNU73T, p. 37, or LGANSS], p. 9, for a proof. O

Let Q . with 1 < k < n , be the set of all k-tuples

(i],...,ik) of integers such that 1 =<1y, < ... <1i <n. Let
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1 ,...,k
s e Z(k,n) with k<n, If S (. \ =0 for all { i},...,ik }

REEEEER Y

€ Qk,n , then Tet dk(S) = 0 ; otherwise, let dk(S) be the greatest

.l ’O",k

. ) such that (1],...,ik) € Qk,n .

common divisor of all S (.
(EPRRER )

4,(S) s called the I determinantal divisor of S .

Theorem 6.2. Let S e Z(k,n) . If S'=SU and U 9is a unimodular

matrix, then dk(S') = dk(S) .
Proof. Since dk(S) =0 iff rank(S) < k and rank(S') = rank(S) ,
dk(S') =0 iff dk(S) =0 . Let us assume dk(S) =0 . For any

: ) [1 ,...,;<] [1,‘..,k]
Guseersdl) €Q. o, let G=5'|. .| ,let H=S5S ,
1 k k,n Jyse-endy 1,....n

1,00, ,N : : )
and ]et K=U . . Then, by Theorem 6']’ SI( EREED -

Jyseeendy Jyseeesdy

U U AL EXETELD .
Y (s . S (. 3ree, ) U (. . } . Since
(1]3--.,1k)€Qk’n 1],...’1k J'l,-oo,\]k

|
d(s) | S ( ) for any (i1s--esiy) € Q > d(S) |

i]’...’ik

] ,.co,k
S-( j]’---’jk) for any (J],...,Jk) € Qk,n , and hence, dk(S) | dk(S ).

-1 1

Similarly, d,(S') | d(S) , since S =8'U"" and U™" s unimodular.

Since dk(S) and dk(S') are positive, dk(S) = dk(S') . 0

Suppose S' is lower-triangular and of full row rank. Then

Teeoask :
S! 1 k:] is the only k by k minor of S' with non-zero

k ’uvo,k
M= 1550 = I3 (],..,,k) | = di(s') = dg(S) by Theorem 6.2. If

k < n then dk(S) is the greatest common divisor of the determinants
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I of all the k by k minors of S . Suppose S is a random matrix.

Then S (}"“'é;i’g) for h =k, k+¥1, ..., n are random integers

whose greatest common divisor, say dé(S) , in general will be small

(see [KNU69], p. 301). Since dk(S) < dé(S) , the si's in general

are small. . .
T9seeesd
To the algorithm LDSSBR, let S be the matrix C° ‘:]‘ ﬁ]
for the kLh iteration, Qhere CO = [? ] and ih is the

th element of the row-sequence of A . To the algorithm LDSIKB, let

Tqseensi
S be the matrix CO [11 ki1] . Then our observation follows from

the above argument.

Finally, we will present several tables of empirical results which
indicate some aspects of the performances of the algorithms LDSSBR and
LDSMKB .

Symbols in these tables have the following meanings:

n - number of variables in the system,

m - number of equations in the system,

r - rank of the coefficient matrix,

dO - length, in bits, of the norm of the coefficient matrix,

e - length, in bits, of the norm of the right-hand-side,

d - length, in bits, of the longest integer occurring in the matrix C

during the computation,

e - length, in bits, of the longest integer occurring in the vector B

during the computation,

ol
1

length, in bits, of the longest integer in the basis obtained,
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Wi

- Jength, in bits, of the longest integer in the particular solution
obtained,
't - UNIVAC 1170 execution time, in seconds,
T - VAX execution time, in seconds.

These tables are obtained by applying LDSSBR and LDSMKB to sets of
randomly generated systems, that is, coefficients in these systems are
randomly chosen from pre-specified intervals. For any given n , m,
dO and € in these tables, random systems were generated until a
consistent one was found. About 40 percent of the random systems
generated were inconsistent.

By comparing Tables 6.1 and 6.4, the ratio of VAX time to UNIVAC
1110 time is about 2.7 on average. This is probably, at least in part,
because several basic SAC-2 subroutines have been written in assembly
language for the UNIVAC but not for the VAX. By examining the tables
we find that the ratio of the computing time of LDSSBR to that of LDSMKB3
ranged from 0.8 to 3.47. Ratios obtained from Tables 6.4 to 6.7 are
displayed in Table 6.8. In all cases LDSSBR found smaller solutions
than LDSMKB did, that is, the norms of the particular solutions obtained
by LDSSBR were smaller than the norms of those obtained by LDSMKB.

In all cases where n - r > 1 LDSSBR also obtained smaller solution

module bases in the same sense.
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w0

Table 6.1
LDSSBR LDSMKB
d e d e t d e d e t
39 36 39 36 .33 81 48 39 46 .28
50 43 50 46 .69 101 60 50 59 .60

61 61 61 61 1.15 127 71 61 68 1.00
69 67 69 67 1.71 145 79 69 79 1.58
83 80 83 80 2.64 174 93 83 90 2.49
92 92 92 92 3.60 191 103 92 102 3.68
105 103 105 103 5.62 215 114 105 114 5.25
114 113 114 113 6.55 230 124 114 121 6.97
124 121 124 121 8.58 250 134 124 133 9.23
135 131 135 131 11.52 271 145 135 141 12.30
147 145 147 145 14.64 301 158 147 158 16.13
160 157 160 157 18.94 326 170 1860 170 20.48
168 166 168 166 23.12 344 179 168 178 25.16
181 180 181 179  28.87 365 190 181 189 32.02
194 192 194 192 35.74 396 205 194 205 38.53

202 200 202 200 42.39 407 214 202 214 47.74

1

5

CTETrTEI a

o
o
o
1
)
o
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Table 6.2
LDSSBR LSDMKB
dy | d e d e t d e d e
10 | 102 100 102 100 5.11 208 111 102 110 4.94
15 | 154 153 154 153 9.17 320 169 154 169 6.80
20 | 206 205 206 205 15.50 429 227 206 226 9.24
25 | 254 253 254 253 18.91 529 280 254 280 10.84
30 | 303 300 303 300 27.99 632 333 303 333 14.50
35 | 354 351 354 351 33.99 738 389 354 389 17.88
40 | 404 402 404 402 43.76 846 444 404 444 21.22
45 | 454 448 454 446  49.04 951 498 454 498 24.91
50 | 506 505 506 505 58.27 | 1058 555 506 553  29.51
55 | 554 553 554 553 67.46 | 1154 608 554 608 33.21
60 | 604 603 604 603 79.90 | 1260 665 604 665 38.39
Notes: n=11, m=r = 10 and ey = dO .
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Table 6.3
LDSSBR LDSMKB
m| d e d e t d e d e t
1 60 57 14 9 1.68 179 117 60 117 1.95
2 74 72 28 26 3.96 298 177 120 174 3.43
3 85 85 37 33 6.62 416 230 172 230 6.01
4 1102 102 60 59 12.50 539 300 241 300 9.28
51122 121 82 79 18.75 658 355 296 347 12.78
6 | 143 142 119 118 26.56 776 418 358 416 16.93
71176 176 166 165 35.84 899 479 419 478  22.59
8 | 212 211 208 207 46.03 | 1018 538 479 537 28.28
9 | 332 330 332 330 62.76 | 1144 602 541 602 34.27
10 | 604 603 604 603 79.96 | 1260 665 604 665 38.42
Notes: n =11, r=m and dO = ey = 60 .
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Table 6.4
LDSSBR LDSMKB
n| d e d e T d e d e T
5 41 35 41 35 .73 87 50 41 49 .86
6 50 50 50 50 1.56 107 60 50 58 1.56
7 60 59 60 59 2.45 128 71 60 71 2.87
8 71 66 71 66 3.89 150 81 71 81 4.50
9 82 82 82 82 6.02 170 92 82 91 6.64
10 91 89 91 89 8.83 180 101 91 100 9.4?
11 | 100 97 100 97 12.24 204 110 100 110 13.45
12 | 115 115 115 114 15.64 236 126 115 126 19.46
13 1122 119 122 119 21.82 248 132 122 132 24.69
14 1136 134 136 134 28.34 277 148 136 147  34.77
15 | 149 149 149 149 38.69 306 160 149 160 45.54
16 | 159 158 158 158 46.79 320 170 159 170 57.75
17 1 170 166 170 166 61.86 343 181 170 179 73.87
18 {177 173 177 173 79.20 359 188 177 187 91.17
19 { 191 191 191 191 102.81 386 202 191 202 115.25
20 | 206 205 206 205 125.21 420 217 206 216 141.43
Notes; m = r = n-1 and d0 eg = 10 .
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Table 6.5
LDSSBR LDSMKB

n d d e T d e d E

5 77 76 77 76 1.97 164 96 77 96 1.35
6 | 100 99 100 99 4.88 216 121 100 121 2.73
71119 118 119 118 7.56 260 138 119 137 4.69
8 (139 136 139 136 12.41 288 159 139 159 7.61
9 | 161 159 161 159 19.61 329 180 161 178 12.14
10 | 184 181 184 181 29.59 380 204 184 204 17.77
11 1 202 201 202 200 38.26 416 222 202 222 25.01
12 | 224 222 224 222 48.46 465 245 224 245 36.83
13 | 247 246 247 246 69.39 512 268 247 267 52.95
14 | 263 261 263 261 84.72 541 284 263 282 69.46
15 |1 288 285 288 285 119.13 500 308 288 305 96.30

Notes: m = r = n-1 and dg ey = 20 .




M
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LDSSBR LDSMKB

n d e d e T d e d e

51161 160 161 160 7.89 343 201 161 201 2.60

6 1799 196 199 196 16.43 432 239 199 239 5.24

7 | 239 238 239 238 25.74 514 278 239 278 10.46

8 | 280 279 280 279 39.10 599 320 280 320 16.83

91320 317 320 317 58.64 670 360 320 355 26.84
10 | 361 360 361 360 85.93 761 401 361 401 43.70
11 | 403 403 403 403 120.43 832 443 403 441 65.24
12 | 444 443 444 443 159.74 918 482 444 481 95.20
13 | 485 484 485 484 206.63 999 525 485 524 136.48
14 | 526 524 526 523 281.03 | 1090 567 526 567 189.77
16 | 567 566 567 566 359.11 | 1169 607 567 605 261.65

Notes: m = r = n-1 and dg = ey = 40 .
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Table 6.7
LDSSBR LDSMKB

n d e d e T d e d e T

51239 238 233 238 15.89 531 299 239 298 4.58
6 | 298 297 298 297 29.76 652 358 298 358 9.13
7 | 358 356 358 356 49.15 771 418 358 4183 17.60
8 | 417 415 417 413 76.44 886 477 417 477  31.31
9 | 483 480 483 480 118.03 | 1023 542 483 541 50.10
10 | 542 537 542 537 165.78 | 1143 601 542 601 80.51
11 | 601 599 601 599 229,39 | 1260 661 601 661 120.78
12 | 664 662 664 662 309.58 | 1387 723 664 717 181.54
13 | 723 722 723 722 411.54 | 1491 783 723 783 258.27
14 | 786 784 786 784 571,67 | 1623 846 786 843 364.17
15 | 849 847 849 847 761.56 | 1752 908 849 908 519.64

Notes: m = r = n-1 and dy = g5 = 60
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Table
10 20 40 60
5 0.85 1.46 3.03 3.47
6 1.00 1.79 3.14 3.26
7 0.85 1.61 2.46 2.79
8 0.86 1.63 2.32 2.44
9 0.91 1.62 2.18 2.36
10 0.93 1.67 1.97 2.06
11 0.91 1.53 1.85 1.90
12 0.80 1.32 1.66 1.71
13 0.88 1.31 1.51 1.59
14 0.82 1.22 1.48 1.57
15 0.85 1.24 1.37 1.47
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CHAPTER 7.  FUTURE STUDIES

The algorithm LDSSBR mainly depends on Rosser's algorithm for
solving the Tinear Diophantine equation axqF .t a X, = ¢ as
described in Section 4.1. The extended Euclidean algorithm is a special
case of Rosser's algorithm with n =2 and ¢ = gcd(a],...,an).
Detailed analyses of the Euclidean algorithm are found in [COL74] and
[KNU69]. No analyses of the general case with n > 2 have been found.
Studies should be done on the general case in order to get a better
understanding of the complexity of the algorithm LDSS3R.

As observed in Chapter &, LDSSBR in general obtained particular
solutions with smaller norms than LDSMKB did. Given a basis and a
particular solution, an optimal particular solution with respect to a
definition of the norm of a vector can be obtained by adding an integral
Tinear combination of the basis vectors to the particular solution.

When the basis consists of only one vector, the problem is simple,

since there is only one multiplier to be determined. However, when the
basis consists of more than one basis vector, the problem becomes much
more difficult. Algorithms for computing an optimal particular solution
and the complexities of such algorithms can be investigated. If no
polynomial time bounded algorithms can be found, algorithms for computing

nearly optimal particular solutions could be sought
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INDEX-OF ALGORITHMS

Algorithm page Algorithm page
v 31 LEROT 33
COMP 31 MIAIM 42
CONC 32 MICINS 44
FIRST 31 MICS 43
I1CoMP 35 MINNCT 43
IDEGCD 36 RED 31
IDIF 35 REDUCT 34
INEG 35 SFIRST 31
INY 32 SRED 31
IPROD 35 SUFFIX 32
1Q 36 VIAZ 37
IQR 36 VIDIF 38
ISIGNF 35 VIERED 40
ISUM 35 VILCOM 39
LDSMKB 83 VINEG 37
LDSSBR 50 VISPR 38
LEINST 33 YISUM 38
LELT 32 VIUT 41




