RAIRO-Oper. Res. 46 (2012) 41-62 RATRO Operations Research
DOI: 10.1051/r0/2012007 WWW.Tairo-ro.org

ALGORITHMS FOR THE TWO DIMENSIONAL BIN
PACKING PROBLEM WITH PARTIAL CONFLICTS

KnaourLa HaMmpr-DHAOUI', NACIMA LABADIE!
AND ALICE YALAOUT!

Abstract. The two-dimensional bin packing problem is a well-known
problem for which several exact and approximation methods were pro-
posed. In real life applications, such as in Hazardous Material trans-
portation, transported items may be partially incompatible, and have
to be separated by a safety distance. This complication has not yet
been considered in the literature. This paper introduces this extension
called the two-dimensional bin packing problem with partial conflicts
(2BPPC) which is a 2BP with distance constraints between given items
to respect, if they are packed within a same bin. The problem is NP-
hard since it generalizes the BP, already NP-hard. This study presents a
mathematical model, two heuristics and a multi-start genetic algorithm
for this new problem.

Keywords. Bin-packing, distance constraint, conflicts, genetic
algorithm.

Mathematics Subject Classification. 05-XX, 90-XX.

1. INTRODUCTION

Packing problems form an important class of combinatorial optimization prob-
lems that have been studied under different variants. For a survey, see for exam-
ple [4]. The Bin packing problem (BP) consists in packing items with one, two
or three dimensions in a minimal number of bins. Many packing problems involve

Received July 12, 2011. Accepted March 27, 2012.

1 ICD — LOSI - University of Technology of Troyes, UMR-STMR-CNRS-6279, Troyes, France.
khaoula.hamdi@gmail.com

Article published by EDP Sciences © EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012007
http://www.rairo-ro.org
http://www.edpsciences.org

42 K. HAMDI-DHAOUI ET AL.

the insertion of two dimensional items. They mostly differ on the objective func-
tion to minimize. Among these problems, we find the two-dimensional bin packing
problem (2BP) that consists in packing a set of rectangular items into a minimum
number of identical rectangular bins.

In some fields (hazardous materials transportation, for example), transported
items can be totally incompatible and have then to be transported and stored in
different warehouses. In this case, we need to solve a bin packing problem with con-
flicts (BPC). The BPC is a natural generalization of the BP that aims to pack items
into a minimum number of bins subject to incompatibility restrictions. Gendreau
et al. [7] proposed six heuristics and two lower bounds for the BPC. One heuris-
tic is a direct adaptation of the first fit decreasing (FFD) algorithm of Coffman
et al. [4]. Three heuristics are based on graph coloring using different procedures.
The remaining two heuristics are based on finding cliques using Johnson greedy
heuristic [11]. Most of the available studies in the literature present approximation
methods for the BPC. The first study has been proposed by Jansen [10]. Recently,
Fernandes-Muritiba et al. [6] provided different new lower and upper bounds and
two approaches to solve exactly the BPC. Khanafer et al. [14] developed new lower
bounds and heuristics as well.

The two-dimensional version of the bin packing problem with conflicts (2BPC)
has been introduced by Khanafer et al. [14]. The authors proposed at first lower
bounds and pretreatment procedures [13]. The same authors developed later a new
approach based on a tree-decomposition [12]. They also achieved a bi-objective
study in which the number of violated conflicts and the number of used bins are
the two criteria to minimize [13].

The concept of distance constraint in BP problems was already introduced in
the literature. In [16], each item has to be separated from all other items and
from the bin borders by a given distance associated to the item. There is therefore
no contact between the edges of all items. Stoyan and Yoskov [16] proposed a
mathematical model and a hybrid method, combining a branch and bound and a
reduced gradient method, to solve this problem. They consider both cases where
the items are either rectangles or circles. The problem was generalized to the three
dimensional case by Stoyan and Chugay [15]. In this last study, items are either
cylinders or parallelepiped and the packing area is considered of some given shape.
In another variant studied by Beaumont et al. [1], the maximal distance between
two items belonging to the same bin has to be smaller than a given threshold.

The two dimensional Bin-Packing with Partial Conflicts (2BPPC) is defined as a
2BP in which some items are partially conflicting. When such items are assigned to
a same bin, a given safety distance must be kept between them. The introduction
of this new problem is motivated by real applications such as hazardous waste
collection.

This paper provides a first study for the two-dimensional bin packing problem
with partial conflicts (2BPPC). In this work, some classical heuristics usually used
to solve the BP problem are adapted to our problem and a multi-start genetic
algorithm is also developed. In Section 2, a mathematical model is proposed. In

ALGORITHMS FOR THE 2BPPC 43

Distance d_, Distance d

FIGURE 1. Safety distance.

Section 3, two heuristics are developed to obtain the first results for this new
problem. In Section 4, the different components of the metaheuristic are detailed.
Section 5 is dedicated to computational results and a conclusion ends this paper.

2. BIN PACKING BROBLEM WITH PARTIAL CONFLICTS

2.1. PROBLEM PRESENTATION

A 2BPPC instance consists in a set A = {1,...,n} of items which have to be
packed in a minimum number of identical bins. A bin is defined by its height H and
its width W. An item ¢ has a height h; and a width w; (h;, w; € N). A solution of the
problem consists in assigning each item i to a bin and defining its position, denoted
by (z;,y:) which corresponds to the coordinates of its bottom left-hand corner
in the bin of its insertion, without overlapping while keeping a safety distance D
between partially conflicting items (Fig. 1). The considered distance is denoted dn
and is defined as follows: let ¢ and j be two items inserted in the same bin. Their
positions in the bin are: (x;,y;) and (x;,y;). doo (i, j) = max{|z; — x|, |y; — y;|}.

In this study, the distance d, is chosen because it is the one often used in
hazardous material transportation. In this sector, the guideline is to keep a prefixed
horizontal or vertical spacing between any two materials partially conflicting. For
example, corrosive material and flammable solid material are in partial conflict as
indicated in Hazardous material classification data-base [5]. hence when they have
to be packed within the same bin (a storage area or a vehicle), a safety distance of
1 horizontal or vertical meter must separate them. Figure 1 shows the difference
on using the distance d, and the Euclidean distance d. Further more, the distance
constraints (4 and 5) are expressed in a linear way for d.., contrary to the case
where the Fuclidean distance d is used.

In Figure 2, items 1 and 2 are conflicting with item i, that is why a safety
distance D is kept between them.

2.2. MODEL

This section presents a mixed integer linear program (MILP) for the 2BPPC.
Like most mathematical programming formulations for 2D-packing problems, only

44

K. HAMDI-DHAOUI ET AL.

Vit

FIGURE 2. Partial conflicts.

very small instances can be handled by commercial MILP software. Hence, the
main interest of this model is to provide a compact and unambiguous problem

specification.

m
minimize g Uk
k=1

n
§ Zikk <MK Vg,
i=1

m
E Zik =]-7
k=1

z, +w; < W
yi +hi <H

(2.1)
Vk e {1,...,m} (2.2)
Vie A (2.3)
Vie A (2.4)
Vie A (2.5)

i + (w; + D *byj) < xzj+M (3—zik—zjk—ailj) Vi,je A, VE e {1,...,m}

xj + (wj + D byj) < x4+ M * (3—zik—zjk—a?j) Vi,j e A,Vk e {1,...,m}

yi + (h; + D bij) <y +M * (3—zik—zjk—a?j) Vi, j € A Vk € {1,. . .7m}

Y; + (h] + D % sz) < yi-l-M* (3—zik—zjk—a?j) V’L,_] € A,Vk S {1, L 7177,}

aj; +aj; +al; +ag; > 1
v € {0,1},
zik € {0,1},
aﬁj € {0,1},
zi,y;i € RY,

(2.9)
Vi,j € A (2.10)
Vke{l,...,m} (2.11)
Vie AVE e {1,...,m} (2.12)
Vie{l,...,4}Vi,je A (2.13)
Vi € A. (2.14)

ALGORITHMS FOR THE 2BPPC 45

We define a Cartesian coordinate system to describe a feasible packing. The
origin (0,0) is located at the bin bottom left corner. The z-axis for horizontal
locations and the y-axis for vertical positions respectively coincide with the bin
edges. The position of an item 4 is expressed as the coordinates (x;,y;) of its
bottom-left corner in the bin to which it is assigned. Let M be a huge integer which
can be fixed to max(H,W). Although the number of used bins is the objective
function to minimize, we need to define an upper bound m on the number of bins
to limit the model size (m = n in the worst case). Let B = (b;;) be the matrix
of partial conflicts. b;; is equal to one if and only if the items ¢ and j have to be
separated with a minimal given distance D if they are assigned to the same bin,
zero otherwise.

The following decision variables are used in the model:

— binary variables vy, equal to one if and only if the bin k is used;

— binary variables z;x, equal to one if and only if the item 7 is packed in the bin k;
— real variables x; and y;, determine the position of the item ¢ in the used bin;
binary variables aéj equal to one if and only if the equation [connecting the
items ¢ and j is used.

The objective function (1) to minimize is the number of used bins. The con-
straints (2) ensure that no item is assigned to an unused bin. The constraints (3)
guarantee that each item is packed only once, in a single bin. The constraints (4)
and (5) make sure that each item is really placed inside the bin to which it is
assigned. The respect of conflicts and the packing of items without overlapping
are ensured with the constraints (6)—(9). The constraints (10) guarantee that at
least one constraint among the last four is satisfied when the two concerned items
are assigned to the same bin. Finally, the constraints (11)—(14) fix the nature of
the decision variables.

Let consider the problem described in Figure 3. The problem is composed of
5 items pertaining to 3 different classes. Items of classes 1 and 2 are partially
conflicting while those of class 3 are compatible with all others items. We start
by solving the problem with Cplex solver that gives an exact solution in Figure 4.
Some results of the model are given in Section 5.1. The model allows to obtain
exact solutions for instances with a small number of items in a reasonable time. For
larger instances, heuristic and metaheuristic method are called. In the following
sections, the chosen algorithms to approximately solve the 2BPPC are detailed.

3. HEURISTICS

3.1. MODIFIED BOTTOM-LEFT-FILL HEURISTIC (BLF)

This method consists in placing an item into its lowest possible position and
left justifying it. The procedure is then reiterated for each item in turn in a given
order. This order is obtained by sorting out the items in a decreasing order of
their heights. In case of equality, widths are considered and an item with a biggest

46 K. HAMDI-DHAOUI ET AL.

mnnnnu Conflitcs: classes 1 and 2
al | 22

Class 1 3 2 <~ D:safety
distance=5

(7,16) H =30
U215 10 13)

(3.9 (9,8) = (ws, hy)

s]I

-~

W3

F1GURE 3. An example of bin-packing problem.

FIGURE 4. Exact resolution of the problem.

value of its width is examined first. At any stage of the heuristic, each used bin
contains a set of empty spaces. These spaces are available rectangles; each of them
is defined with its height, width and coordinates of its bottom left corner. To place
an item, the method proceeds by examining each available rectangle in turn and
finding whether the item fits into it and whether it is conflicting with the already
packed items that surround the considered rectangle. Rectangles are examined in
an increasing order of the ordinates of their bottom left corner. In case of equality,
abscissa is considered and the rectangle with lowest value of abscissa is examined
first.

In Figure 5, after the insertion of item 1, the used available rectangle is deleted
while two new available rectangles are created: Top (W7 = W, Hy = H —y1) is the
available rectangle on top of the inserted item and Right (Wo = W — 29, Hy = H)
is the available rectangle on its right.

In Algorithm 1, Item denotes the current item for insertion. Two tests are
necessary before packing any item. The first one is Packing test which takes the
value true if the available space can contain the item. The second one is Conflicts

ALGORITHMS FOR THE 2BPPC 47

r T T T T o T T T 1

1 1 1 1

: Top = !

G R

_______ et (H)
I 1

Right : :
Lo ;

FIGURE 5. Available rectangles.

Algorithm 1. Modified Bottom-left-fill heuristic

Initialize a bin with one available rectangle
For Item =1 to n do
Repeat
Go through available rectangles in initialized bins
if (Packing test (Item) = True) then
if (Conflicts test (Item) = True) then
Packing (Item)
Update available rectangles
End if
End if
Until ((/tem is packed) or (all available rectangles are scanned))
If (Item is not packed) Initialize a new bin
end for

Algorithm 2. Procedure Update available rectangles

Create Rectangles (Top) and (Right)
For r =1 to Nr
If Rectangle(r) N Rectangle(p) # 0
Update Rectangle(r)
If (W, =0 or H, =0) Delete Rectangle(r)
end for
Delete Rectangle(p)
Sort out Rectangle

test which takes the value true if there is a conflict between the item to insert and
the already packed items defining the insertion rectangle. Procedure Packing fixes
item coordinates in the corresponding valid bin, while procedure Update is used
to create new empty rectangles and erase used ones.

The procedure Update is described in Algorithm 2. Nr is the number of available
rectangles. Let p be the index of the available rectangle where the current item

48 K. HAMDI-DHAOUI ET AL.

&

]

FicURE 6. Update available rectangles.

is inserted. If there is an intersection between an existing rectangle r and the
rectangle p, the dimensions of the rectangle r are modified in order to eliminate
the intersection area. If the new height or width of the treated rectangle becomes
null, the rectangle is deleted. Two new rectangles are created (Top and right) and
the rectangle p is deleted.

In Figure 6, before inserting Item 3, three rectangles are available, Ry, R and
R3 (see the top part of the figure). Item 3 is inserted in R;. The rectangle R2
intersects R1, it is thus updated. The rectangles R4 and Rj5 are created and R; is
deleted (see bottom part of Fig. 6).

In Figure 7, item 6 is partially conflicting with items 1, 2, 4 and 5. An avail-
able rectangle is valid for inserting item 6, if item 6 can fit in the rectangle while
keeping D between item 6 and all surrounding items that are conflicting with
it. The available rectangle in Figure 7 is valid for inserting item 6 and the posi-
tion of insertion is (zg,ys). If we assume that item 3 is conflicting with item 6,
this insertion becomes impossible and the following available rectangles are to be
tested.

The Bottom left heuristic, described in Algorithm 1, is modified in order to
fulfill the requirement of the new problem. In BLF, if an item conflicts with one
or more items surrounding a valid rectangle, a safety distance D has to be kept
between the two items. In order to avoid keeping so many unused empty spaces,
when the first valid rectangle for packing an item corresponds to a conflicting
position, the item is not packed immediately. It is removed from the list, and the
following items are examined. The first item that can be packed without keeping
a safety distance is then inserted. The removed item is reinserted at the end of the
list and is reexamined later.

ALGORITHMS FOR THE 2BPPC 49

FIGURE 7. Conflicts verification.

(a) BLF on instance (b) BLF on instance (¢) Modifizs BLF on
without conflicts with conflicts instance with conflicts

Fi1GURE 8. BLF and modified BLF.

In Figure 8, the results obtained with BLF and modified BLF on the problem
of Figure 3, with and without partial conflicts, are compared. Figure 8a describes
the solution obtained with BLF without considering conflicts. Items are sorted out
in a decreasing order of their heights. We notice that three conflicts are violated
between items (1, 5), (4, 5) and (3, 4). Figure 8b illustrates the solution given
by BLF on the instance with conflicts. A safety distance D is kept between items
(1, 5) and (4, 5). In Figure 8¢, the problem is resolved with modified BLF. Ttem
5 is partially conflicting with Item 1 that is already inserted, that is why it is not
inserted immediately. It is removed from the list and items 2 and 4 are inserted.
Item 3 is partially conflicting with Item 4 which is adjacent to the valid available
rectangle for Item 3 insertion. Item 3 is then removed from the list. As there is

50 K. HAMDI-DHAOUI ET AL.

no more items that can be inserted without keeping a safety distance, Item 5 is
inserted. Finally, Item 3 is also inserted.

3.2. MODIFIED SHELF HEURISTIC FILL — DYNAMIC (SHF-D)

This heuristic was introduced by Ben Massoud et al. [2] and is mainly used for
guillotine cutting problems. In this kind of problems, the cutting tool has to go
from one edge of the rectangle (or the strip to cut) to the other. Shelf algorithms
allow to resolve this problem. Packing is obtained by inserting items from the left
to the right side, while forming shelfs. The first shelf corresponds to the rectangle
bottom. The next shelf bottom is obtained with the horizontal line that coincide
with the top of the highest item in the previous shelf. The treatment is repeated
for all items.

In the classical version, items are sorted out in a decreasing order of heights. In
this modified version, items are separated into sets corresponding to their classes
(as in hazardous materials classification, items are assigned to classes and the par-
tial conflicts are rather defined between classes than items). Then they are inserted
in a way that the items of two classes treated successively are not conflicting. If it
is impossible to obtain an order that separates every pair of conflicting classes, a
safety distance is kept when necessary.

The procedure that sorts out the classes starts by assigning the first position to
the class that has the biggest degree of conflicts. The degree of conflicts of a class
corresponds to the number of classes conflicting with it. After adding a class to
the list, the following class is chosen among the classes non conflicting with it.

The procedure of sorting out the classes is described in Algorithm 3. Classes
stands for the table of classes and represents the input of the algorithm, while List
is the output corresponding to the new order of the classes. Nc is the number of
classes and ¢ and ind are indexes of the classes. Degree is a table in which are
recorded the degree of the classes. Finally, Compatible is a boolean that takes the
value true if the considered classes are compatible, and the value false if not.

Each item is inserted in the lowest possible position left-justified in the first shelf
where it fits entirely, if any. If none of the existing shelfs can contain it, a new shelf
is initialized. This heuristic is different from other classical shelf algorithms with
its tendency to reuse at best the free areas in each shelf, by inserting items on top
of the others while preserving guillotine cutting constraints.

The notion of available rectangles that allows to detect all free areas is also
used in this method. Conflicts verification is performed in the same manner as in
modified Bottom-left-fill. In the dynamic version of the method (SHF-D), a shelf
height is not fixed with the height of the first inserted item. A temporary height is
updated after each insertion. Let Nr be the number of available rectangles in the
current bin and Ns the number of shelfs within it. If the current item does not fit
in all the Nr — 1 available rectangles and the last rectangle has to be used (the
rectangle with the biggest ordinate of bottom-left corner), a new shelf is initialized

ALGORITHMS FOR THE 2BPPC 51

Algorithm 3. Sorting out classes procedure

Sort out Classes in a decreasing order of Degree

c=1

List(c) = Classes(c)

Repeat
ind=c+1
Compatible = false
Repeat

If (Classes(ind) conflicts with List(c)) then ind = ind + 1
Else Compatible = true
Until ((Compatible = true) or (ind = Nc))
If (Compatible = true) then List(c) = Classes(ind)
Else List(c) = Classes(c+1)
c=c+1
Until (¢ = Ne¢)

Algorithm 4. Fix shelf height procedure

If (p = Nr) then

Shelf Height(Ns) = Y,

Ns=Ns+1

Initialize Shelf(Ns) with Current Item
else

Insert Current Item in Shelf(Ns)
End if

with this item and the height of the previous shelf is fixed. In Algorithm 4, let p
be the index of the valid rectangle for insertion and Y}, its ordinate.

Figure 9 illustrates the difference between SHF, SHF-D and modified SHF-D
heuristics applied on the problem proposed in Figure 3. In Figure 9a, corresponding
to a solution obtained by SHF, the height of item 1 fixes the height of the first
shelf that contains it. Item 5 is partially conflicting with item 1, that is why a
safety distance separates them. As there is no enough space in the current shelf
to insert item 2, this item initializes a new shelf and fixes its height. Item 4 is
partially conflicting with Item 5, thus it can not be inserted in the second shelf. It
initializes the third shelf. Finally, Item 3 is partially conflicting with items 1 and
4. Tt is inserted in the second shelf in a position separated from these two items
with a safety distance.

In Figure 9b, corresponding to the solution given by SHF-D, the shelf height is
not fixed by the first inserted item. We notice that all items have been inserted
without fixing the shelf height even once. Safety distances separate items (1 and 5),
(5 and 4) and (3 and 4).

In Figure 9c, the problem is resolved with modified SHF-D. Items of class 1
are inserted first, then those of class 3 that is compatible with all classes. Finally,
items of class 2 are inserted while keeping safety distance when needed.

52 K. HAMDI-DHAOUI ET AL.

(a) SHF (b) SHF-D (c) Modified SHF-D

FIGURE 9. SHF-D and modified SHF-D.

4. MULTI-START GENETIC ALGORITHM (MS-GA)

In 1975, Holland [9] described an optimization method, based on analogy to
the process of natural selection in biology. The biological basis for the adaptation
process is evolution from one generation to the next, based on elimination of weak
elements and retention of stronger elements (those with the best performance in
the current environment). Of course, over the long term, it is not the strong indi-
viduals themselves which ultimately survive, but rather offspring related to them
genetically in proportion to their reproductive fitness or success at reproduction.
The search over this representation space is performed using so-called “genetic
algorithms” (GA).

GAs are now widely recognized as effective search paradigms in several ar-
eas, particularly as a method for achieving relatively good solutions to NP-hard
optimization problems of high dimensionality in few time. A GA maintains a pop-
ulation of strings (chromosomes) that encode candidate solutions to a problem.
These strings are the analog of chromosomes in natural evolution. A fitness func-
tion defines the quality of each solution. The GA chooses parent organisms from
the population in such a way that the more fit organisms are more likely to be cho-
sen. It applies operators to generate offspring from the parents. Most commonly
used operators are crossovers, which combine genetic material from two parents,
and mutations, which randomly make local modifications in the chromosomes.

In this section, the developed Genetic algorithm to solve the two-dimensional
Bin Packing Problem with Partial Conflicts is detailed. The general framework of
the method is given in Algorithm 2. NP represents the population size. Population
Generation denotes the procedure that generates chromosomes and calls the pack-
ing heuristic to build the corresponding initial solutions. Select is a randomized
selection process of selection of pair of parents candidates to generate new off-
spring with the procedure Crossover. The procedure Mutation performs a local

ALGORITHMS FOR THE 2BPPC 53

Algorithm 5. Multi-start genetic algorithm

Gen =0
Best = Infinity
count = Infinity
Repeat
Gen=Gen+1
If (count > Cmax) then Population Generation
Repeat
Selection(P1)
Selection(P2)
New offspring = Crossover(P1, P2)
Mutation(New offspring)
until (NP offsprings are created)
If (Fitness(Best new offspring) < Best) then
Best = Fitness(Best new offspring)
count = 0
end if
Else count = count +1
Sort Out(Population = Parents and Offspring)
New Population = (NP Best solutions)
until ((Gen = NG) or Lower bound attained)

modification in a given solution. NG is the maximal number of generations and
Gen is the corresponding counter. Sort Out is the procedure in charge of sorting
out the list Population in increasing order of fitness (the fitness of a solution is
the number of bins it uses to pack all items). Cmax is the maximum number of
created solutions without improving the best found solution. The corresponding
counter is count.

At each step, two parents are selected randomly using binary tournament. The
parent with best quality in the pair is kept and the operation is repeated to obtain
the second parent. NP crossovers are performed to obtain NP offspring. All solu-
tions are sorted out (old and new ones), and the NP best solutions are conserved
for the next step. The population is reinitialized after creating Cmax populations
without improving the best solution. A new restart of the metaheuristic is then
recorded. The process is repeated NG times. It can be stopped well before all
iterations are performed, if a lower bound is achieved. In our implementation, a

simple lower bound for the bin packing problem is used: LB = Y"1 | '{,’V’;I

4.1. INITIAL SOLUTIONS AND CHROMOSOME’S ENCODING

Different manners to encode the chromosomes have been proposed for bin-
packing problems. Here, we chose an encoding that allows obtaining a feasible
solution without reparation. Our chromosomes represent the order according to
which items are treated by the packing heuristic. A packing heuristic is then called
to obtain the solution.

54 K. HAMDI-DHAOUI ET AL.

To create initial solutions, modified BLF heuristic is chosen. In fact, for each
given chromosome, modified BLF can build a different solution. While in modified
SHF-D, items are treated in a given order that takes into account the conflicts
between classes, that is why only a limited number of initial solutions can be gen-
erated. Initial chromosomes are then generated randomly and the corresponding
solutions are given by modified BLF.

4.2. TEST OF CONFLICTS

Conflicts are managed when constructing solutions with the packing heuristic.
The test of conflicts consists in scanning the list of already inserted items and focus
on their insertion positions. The compatibility of all the items directly surrounding
the available rectangle for packing the current item is verified. If there exists a
conflict with at least one surrounding item, a safety distance D has to be kept
between the two items.

4.3. CROSSOVER

The chromosomes of a given population are sorted out in increasing number of
used bins (fitness function). If equality, the solution with higher maximum filling
rate is considered of better quality. The filling rate of a bin corresponds to the
quotient between the full surface and the total surface of the bin. The maximum
filling rate of a solution is the highest filling rate of its bins. In the crossover,
the parent with a bigger maximum filling rate is considered as the basis to build
the child offspring. It is called P1. The second parent P2, serves to complete the
solution.

For each item, the touching perimeter obtained with its position in P! is com-
puted. It consists in the total length of its edges that touches other items in the
same bin. The borders of the bin are not taken into account. The touching rate of
an item is computed as the quotient of its touching perimeter by its perimeter.

Each item with a touching rate bigger than a fixed level «, appears in the off-
spring, with its surrounding items, in the same order as in P1. The items pertaining
to more than one conserved sequence, are represented only once (the items that
appear in more than one sequence are represented only one time and the copies are
eliminated). The solution is then completed with the remaining items, according to
their appearance order in P2. Only one offspring is obtained with each crossover.

In the example given in Figure 10, item 4 has an interesting touching rate
(> a = 75% for example where « is a parameter of the algorithm), in the solution
corresponding to P1. It is in contact with items 1, 2, 3 and 6. Item 4 and its
surrounding items appear then in the offspring O1 in the same order as in P1 (3,
2,1, 4, 6). The remaining items (5, 7, 8) are added to the child solution according
to their order of appearance in P2: (8, 7, 5).

ALGORITHMS FOR THE 2BPPC 55

; EIE - R[] »
0 B0 ank

CE N

FiGure 10. Example of crossover.

4.4. MUTATION

The mutation procedure is a local modification applied to a chromosome in order
to bring a part of diversification. It allows to direct the research to a new area in the
search space and escape from local optima. The used mutation is item relocation.
It consists in removing an item from its current position in the chromosome to
another position in the list. The position of the item to relocate and the insertion
position are determined randomly according to a uniform distribution in [1,n]
where n is the number of elements in a chromosome. The mutation procedure is
applied with a given probability (see Sect. 5.2.1).

5. EXPERIMENTAL RESULTS

Our algorithm was tested on Berkey and Wang instances [3]. The instances are
composed of five groups that differ in the number of items (n = 20, 40, 60, 80, 100).
Each group contains ten different instances. The instances characteristics are as
follows:

— Set 1: w; and h; are generated randomly according to uniform distribution in
[1,10]. W = H = 10.

— Set 2: w; and h; are generated randomly according to uniform distribution
[1,10]. W = H = 30.

— Set 3: w; and h; are generated randomly according to uniform distribution
[1,35]. W = H = 40.

— Set 4: w; and h; are generated randomly according to uniform distribution
[1,35]. W = H = 100.

— Set 5: w; and h; are generated randomly according to uniform distribution
[1,100]. W = H = 100.

— Set 6: w; and h; are generated randomly according to uniform distribution
[1,100]. W = H = 300.

—-

n

—-

n

—-

n

—-

n

—-

n

56 K. HAMDI-DHAOUI ET AL.

TABLE 1. Matrix of partial conflicts.

Classes 1 2 3 4 5
1 0O 0 0 0 O
2 o 0 1 1 1
3 0 1 0 0 1
4 o 1 0 0 1
5 o 1 1 1 0

TABLE 2. Results of the mathematical model.

Without conflicts With conflicts

Sets N OPT N bins N Opt N bins
Set 1 20 7.1 7.7 4 9.2
Set 2 20 1 1 10 1.5
Set 3 20 5.2 5.3 8 6
Set 4 20 1 1 10 1
Set 5 20 6.5 6.9 6 7.2
Set 6 20 1 6.7 0 7.6

To meet the requirement of our problem, a new benchmark using these instances
was generated by adding partial conflicts. A class index is randomly assigned to
each item according to uniform distribution. We consider 5 possible classes between
which partial conflicts are defined according to the symmetric matrix in Table 1:

All studied algorithms were developed with C++ and run on a PC Pentium(R)
Dual-Core CPU, 2.20 GHz and 4 Go of RAM.

5.1. MATHEMATICAL MODEL RESULTS

The model proposed in Section 2.2 has been tested on the instances of Berkey
and Wang with a number of items limited to 20. The maximum computing time
was fixed to 5 min (300 s). In Table 2 the results are reported. The column N bins
corresponds to the average number of used bins for each group of 10 instances with
a number of items equal to 20. The column N Opt gives the number of instances
for which the optimal solution is reached by the model.

In limited computing time to 5 min, the model is not able to find all optimal
solutions for instances without conflicts. Only for Sets 2 and 4, 10 optimal solutions
out of 10 are reached. Instances of Set 6 are the most difficult to resolve, since
no optimal solution was found and the gap between OPT and N bins is very
important (670%). When the maximum computing time is raised to 900 s, the gap
drops to 480%. The same behavior is observed for the instances with conflicts: the
gap drops from 760% to 580%.

ALGORITHMS FOR THE 2BPPC 57

TABLE 3. Latin square.

NP NG Alpha F

L) () () 1039
2 0 () 0 1035
3 () () (+) 1035
4) 0 0 1036
5 0 0 (+) 1031
6 (+) 0 (<) 1031
7 () (+) (+) 1032
8 0 (+) () 1030
9) () 0 1029

5.2. HEURISTICS AND MULTI-START GENETIC ALGORITHM RESULTS

5.2.1. Parameter setting

The parameter Cmax is determined in function of NG and was set to
min(NG/4,100). For values of NG smaller than 100, Cmax = NG/4. When NG
takes a big value, the population is initialized after 100 iterations without improv-
ing the best solution. The mutation is applied with a probability of 10%. This rate
corresponds to a reasonable level of diversification that allows to modify only a
small number of chromosomes and avoids random dispersion of the population.

To obtain the values of the remaining parameters, we start by dressing a design
of experiments. This procedure allows to estimate the effect of different parameters
on the obtained results. 3 parameters are concerned by the study: NP, NG and
«. Each parameter can take one of three possible values: high, low and neutral.
NP = {10,20,30}, NG = {20,50,100} and o« = {0.6,0.7,0.8}. The applied plan
is the Latin square with 9 possible situations [8]. In Table 3, these 9 situations
and the corresponding results are explained. The tests are realized for all the 50
instances of the first set. The given results correspond to the sum of used bins in
these instances. The sign (+) denotes the high position of each parameter and (-)
the low one, while 0 is the neutral position.

Let F be a vector of 9 responses. Each response F; corresponding to a differ-
ent situation among the 9 situations of Table 3 can be explained with a limited
development, in function of the parameters (x;) as follows:

F;, =bjp + Zbijxj +e (51)
J

where b;o is a constant and e is a polynomial function of (z;) of a degree at least
equal to 2. As the considered parameters are independent, the response F; can
be approximated by a linear function (the value of e aims towards zero). Let b
be the vector of the coefficients (b;;). An estimation of b is computed with the
following expression, where X7 is a transposition of the matrix of parameters X,
XTX is the matrix of information, (X7 X)~! is the matrix of dispersion and F

58 K. HAMDI-DHAOUI ET AL.

TABLE 4. Coeflicients computing.

NP NG a
Coeffecient -2 -3 -0.33
Importance 38% 56% 6%

the obtained response. The matrix X is obtained by replacing the signs (+) and
(=) in Table 3 by the values (+1) and (-1).

b= (XTX)"'XTF. (5.2)

In Table 4, the obtained coefficients for the studied responses are recorded. Ac-
cording to variance analysis, The second parameter (NG) has the most important
coefficient that represents 56% of the model’s responses. As seen in Table 3, the
best results are obtained with NG = 100. The second important parameter is NP
with a normalized coefficient of 38%. With NG = 100, we notice that the results
are improved when NP increases. Finally, the last parameter o can be fixed to
0.7 as this value gives the best obtained result within preliminary tests. For the
following tests, the value of NG will be set to 10000 as it corresponds to the most
interesting parameter and the results quality improves when NG increases. NP
and a will be set to 30 and 0.7.

5.2.2. Instances without conflicts

In order to estimate the algorithm’s quality, it has been tested on 2BP instances
without conflicts from the literature. In Table 5, results of tests on the instances
of Berkey and Wang without conflicts are detailed. For each line, an average result
for 10 instances with the same number of items is computed. First, we report in
the column BLF the results obtain with this heuristic. Optimal solutions available
in the literature are reported [17] in column Optimal. The remaining columns
concern our MS-GA. For each instance, 10 runs are performed and the minimum
value (N Min), the maximum value (N Max) and the average value (N Average) of
the objective function are recorded. The average computing time for each group of
instances is given in the column CPU Average. The column N Opt is the number of
optimal solutions found while considering the best results of our MS-GA (N Min).
Finally, Gap determines the gap between N Min and Optimal.

We notice that for all sets of instances, the heuristic results are worse than
the worst results obtained with the MS-GA recorded in the column N Max. We
compute an average gap of 8.5% between BLF and N Max, of 12.11% between BLF
and N Min and of 14.05% BLF and Optimal. The percentage of optimal solutions
found by BLF ranges from 6% for Set 5 to 76% for Set 6, with an average of 35%.

For the best results of our MS-GA (N Min), the observed distance to optimal
solutions ranges from 0% to 11.7%. The most important values are noticed for
instances with small number of bins in the optimal solution. In this case, every
supplementary bin has a great impact on the final gap. In average, N Min is only

ALGORITHMS FOR THE 2BPPC

59

TABLE 5. Results of BLF and MS-GA on the instances without conflicts.

BLF Optimal NMin NMax NAverage CPU Average Nopt Gap

Set 1 20 7.9 7.1 7.1 7.1 7.1 33.4 10 0%
40 15 13.4 13.4 139 13.59 90.2 10 0%
60 21.9 20 20.1 208 20.32 182.8 9 0.5%
80 304 275 27.5 284 27.79 302.1 10 0%
100 35.2 31.7 321 33.6 32.67 443.2 6 1.3%
Average 22.08 19.94 20.04 20.76 20.29 210.34 9 0.5%
Set 2 20 1.6 1 1 1 1 39.2 10 0%
40 2.2 1.9 1.9 2 1.97 109.2 10 0%
60 3 2.5 2.5 2.7 2.55 197.1 10 0%
80 4 3.1 3.2 3.3 3.25 309.5 9 32%
100 4.5 3.9 4 4.2 4.11 448.3 9 2.6%
Average 3.06 2.48 252 2.64 2.58 220.66 9.6 1.6%
Set 3 20 5.9 5.1 5.1 5.4 5.24 35 10 0%
40 11 9.4 9.4 9.9 9.57 90.8 10 0%
60 16.1 13.9 13.9 149 14.34 175.2 10 0%
80 223 189 19.1 204 19.66 277.8 8 1%
100 26.2 223 234 24.2 23.71 405.7 4 4.9%
Average 16.3 13.92 14.18 14.96 14.5 196.9 84 1.9%
Set 4 20 1.3 1 1 1 1 37.3 10 0%
40 2.1 1.9 1.9 2 1.94 100.3 10 0%
60 2.9 2.5 2.5 2.7 2.59 177.9 10 0%
80 3.6 3.2 3.2 34 3.3 275.3 10 0%
100 4.4 3.8 3.9 4.2 4.04 397.2 9 2.6%
Average 2.86 2.48 2.5 2,66 2.57 197.6 9.8 0.8%
Set 5 20 7.3 6.5 6.5 6.5 6.5 33.9 10 0%
40 14 11.9 121 122 12.11 88.1 8 1%
60 20.2 18 184 18.6 18.5 173.6 6 22%
80 27.8 247 25.3 254 25.37 291.3 4 22%
100 324 281 29.6 299 29.71 414.3 0 53%
Average 20.34 17.84 18.38 18.52 18.44 200.24 56 3%
Set 6 20 1 1 1 1 1 39.2 10 0%
40 2.1 1.7 1.9 1.9 1.9 114.4 8 11.7%
60 2.6 2.1 2.2 2.3 2.23 197.8 9 4.7%
80 3.2 3 3 3 3 290.8 10 0%
100 3.8 3.4 3.4 3.6 3.5 414.9 10 0%
Average 2.54 2.24 2.3 236 2.33 211.42 9.4 2.7™%
Average 112 9.82 9.99 10.32 10.12 206.19 8.63 1.73%

60 K. HAMDI-DHAOUI ET AL.

1.73% distant from optimal solutions, while N Average has a gap of 3.47%. We
notice that the set 5 is the most difficult to resolve. Indeed, for this group no
optimal solution was reached in Set 5 — N 100. Finally, the number of optimal
solutions found is 259 for the best results N Min (out of 300). In average, 86.3% of
optimal solutions are reached by N Min. The values recorded by N Max are only
3.94% distant from N Min which shows the robustness of our MS-GA.

For the computing time, it does not depend on the Set of instances but on
the number of items per instance. For instances with only 20 items, an average
computing time of 35 seconds is recorded, while it can reach 440 s for instances
with 100 items (7 min).

5.2.3. Instances with conflicts

The results of the genetic algorithm and the two presented heuristics on in-
stances with partial conflicts are given in Table 6. Berkey and Wang instances were
adapted by randomly assigning a class index (corresponding to a Hazardous mate-
rial type) to each item. The conflicts are considered between classes (see Tab. 1).
As for instances without conflicts, 10 runs are performed for each instance.

The two developed heuristics have very small computing time (<10~* s). In
average, the modified SHF-D gives the best heuristic results. The MS-GA is run
with the parameters values determined earlier, in Section 5.2.1. The best results
of our MS-GA allow to improve the best heuristic results obtained with modified
SHF-D with an average of 12.03%, while the improvement of modified BLF solu-
tions reaches 20.6% (Tab. 6, column Imp.). The number of instances improved by
the metaheuristic is reported in column N Imp., with regards to modified BLF
solutions. The percentage of improved instances ranges from 14% (Sets 4 and 6)
to 72% (Set 1), with an average of 44%.

The additional conflicts constraints lead to an average of 7% more bins com-
pared to the case without conflicts. These results traduce the importance of this
supplementary constraint of partial conflicts and its impact on packing problems.
The number of instances for which the number of bins have not changed is 138 (out
of 300), which represents 46% of all instances. The Set 3 is the most constrained
with only 18% of its instances with conflicts for which the number of used bins did
not change. For the Set 6, the partial conflicts are less important, as 78% of its
instances with conflicts are resolved without raising the number of required bins.

The computing time for the instances with conflicts is higher than the one
required for instances without conflicts. Especially, instances of Set 2 are too much
time consuming (average of 28 min), while the average for remaining instances does
not exceed 10 minutes (for 10000 generations).

6. CONCLUSION AND PERSPECTIVES

This paper introduces a new packing problem: the two-dimensional packing
problem with partial conflicts. A mathematical model is proposed and two heuris-
tics are developed to obtain the first results. Then a multi-start genetic algorithm

ALGORITHMS FOR THE 2BPPC

61

TABLE 6. Results of the heuristics and MS-GA on the instances with conflicts.

Heuristics MS-GA
BLF-M SHFD-M NMin NMax NAverage CPU Imp. NImp.

Set 1 20 8.5 8.2 7.4 7.4 7.4 46 14.86% 4
40 15.5 15.1 14 14 14 145 10.71% 9

60 23.1 22.6 21.2 219 21.3 306.4 8.96% 6

80 31.1 30.6 29 30.1 29.4 553.2 7.24% 9

100 36.9 35.6 33.9 34.7 34.4 864.7 8.85% 8
Average 23.02 22.42 21.1 21.62 21.3 383.06 9.1% 7.2

Set 2 20 2 2 1.4 1.4 1.4 93.3 42.86% 6
40 3.1 2.5 2.1 2.1 2.1 569.1 47.62% 4

60 3.9 3.5 3 3 3 1346.6 30% 4

80 4.8 4.4 4 4 4 2491.1 20% 3

100 5.3 5 4.1 4.5 4.2 4134.6 29.27% 6
Average 3.82 3.48 2.92 3 2.94 1726.94 33.95% 4.7

Set 3 20 6.6 6.3 5.5 5.5 5.5 35 20% 5
40 11.7 11.5 10.1 10.1 10.1 124.3 15.84% 9

60 17 16.4 15.1 158 154 248.1 12.58% 8

80 23.2 22.5 21 21.8 21.3 456.2 10.48% 6

100 26.7 26.6 24.8 25.7 25.2 731.3 7.66% 7
Average 17.04 16.66 154 15.8 15.56 246.26 13.31% 7

Set 4 20 1.6 14 1 1 1 65.3 60% 2
40 2.3 2.4 2 2 2 228.3 15% 2

60 3.5 3 2.9 3.1 3 472.9 20.69% 1

80 4.5 3.9 3.7 3.9 3.8 870.4 21.62% 1

100 5.1 4.4 4.4 4.4 4.4 1344.8 15.91% 1
Average 3.4 3.02 2.8 2.88 2.84 583.28 26.64% 1.4

Set 5 20 7.1 7.1 6.6 6.6 6.6 41.7 7.58% 3
40 13.3 13.8 125 125 12.5 123.4 6.40% 5

60 20.7 20.4 19 19.5 19.2 252 8.95% 6

80 28 27.4 26 26.7 26.3 450.1 7.69% 6

100 32.6 32.1 30.7 314 31.1 689.3 6.19% 3
Average 20.34 20.16 18.96 19.34 19.14 311.3 7.36% 4.7

Set 6 20 1.4 1.2 1 1 1 24 40% 1
40 2.1 2 1.9 1.9 1.9 215.5 10.53% 1

60 3 2.6 2.5 2.5 2.5 481.8 20% 1

80 4 3.3 3.3 3.3 3.3 771.8 21.21% 3

100 4.5 3.9 3.7 3.9 3.8 1144.6 21.62% 1
Average 3 2.6 248 2.52 2.5 522.74 22.67% 1.4

62 K. HAMDI-DHAOUI ET AL.

is designed to improve heuristic results. For instances with conflicts, the genetic al-
gorithm improves modified SHF-D results by 12.03% and 44% of instances results
are improved.

The metaheuristic was also tested on instances without conflicts in order to
evaluate its performance with regards to existing packing methods. The results
are only 1.73% distant from optimal solutions. It succeeds to find 259 optimal
solutions out of 300, which corresponds to 86.3%, in an average computing time
of 206 s.

REFERENCES

[1] O. Beaumont, N. Bonichon and H. Larchevéque, Bin packing under distance constraint.
Technical Report, Université de Bordeaux, Laboratoire Bordelais de Recherche en Informa-
tique, INRIA Bordeaux Sud-Ouest (2010).

[2] S. Ben Messaoud, C. Chu and M.L. Espinouse, An approach to solve cutting stock sheets.
Scottish Mathematical Council 6 (2004) 5109-5113.

[3] J.O. Berkey and P.Y. Wang, Two dimensional finite bin packing algorithms. J. Oper. Res.
Soc. 38 (2004) 423-429.

[4] E.G. Coffman, M.R. Garey and D.S. Johnson, Approximation algorithms for bin-packing —
an updated survey, in Algorithm design for computer system design, edited by G. Ausiello,
M. Lucertini and P. Serafini. Springer, Vienna (2007).

[5] Environment Canada, Compliance promotion bulletin (Compro No. 12), regulations for the
management of hazardous waste (2002).

[6] A.E. Fernandes-Muritiba, M. Iori, E. Malaguti and P. Toth, Algorithms for the bin packing
problem with conflicts. Informs J. Comput. 22 (2010) 401-415.

[7] M. Gendreau, G. Laporte and F. Semet, Heuristics and lower bounds for the bin packing
problem with conflicts. Comput. Oper. Res. 31 (2004) 347-358.

[8] J. Goupy, Les plans d’expériences. Revue Modulad 34 (2006) 74-116.

[9] J.H. Holland, Adaptation in natural and artifficial systems. University of Michigan Press,
Ann Arbor, MI (1975) 1-211.

[10] K. Jansen, An approximation Scheme for Bin Packing with conflicts, Lect. Notes Comput.
Sci. 1432. Springer, Berlin (1998).

[11] D. Johnson, Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci.
9 (1974) 272-314.

[12] A. Khanafer, F. Clautiaux and E.G. Talbi, Tree-decomposition based tabu search for the
bin packing problems with conflicts, in Metaheuristics International Conference, MICO09.
Hamburg, Germany (2009).

[13] A. Khanafer, F. Clautiaux and E.G. Talbi, Algorithmes pour des problémes de bin-packing
mono et multi-objectif. Ph.D. thesis, Université des Sciences et Technologies de Lilles (2010).

[14] A. Khanafer, F. Clautiaux and E.G. Talbi, New lower bounds for bin packing problems with
conflicts. Eur. J. Oper. Res. 206 (2010) 281-288.

[15] Y.G. Stoyan and A. Chugay, Packing cylinders and rectangular parallelepipeds with dis-
tances between them into a given region. Eur. J. Oper. Res. 360 (2009) 446-455.

[16] Y.G. Stoyan and G.N. Yaskov, Mathematical model and solution method of optimization
problem of placement of rectangles and circles taking account special constraints. Int. Trans.
Oper. Res. 5 (1998) 45-57.

[17] Universita di Bologna D.E.L.S., Operations Research, http://www.or.deis.unibo.it/
research.html.

http://www.or.deis.unibo.it/ research.html.
http://www.or.deis.unibo.it/ research.html.

	Introduction
	Bin packing broblem with partial conflicts
	Problem presentation
	Model

	Heuristics
	Modified bottom-left-fill heuristic (BLF)
	Modified shelf heuristic fill -- dynamic (SHF-D)

	Multi-start genetic algorithm (MS-GA)
	Initial solutions and chromosome's encoding
	Test of conflicts
	Crossover
	Mutation

	Experimental results
	Mathematical model results
	Heuristics and multi-start genetic algorithm results
	Parameter setting
	Instances without conflicts
	Instances with conflicts

	Conclusion and perspectives
	References

