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the time optimal control problem

It has been an intuitive assumption for some time that if a

control system is being operated from a limited source of

power, and if one wishes to have the system change from

one state to another in minimum time, then this can be done

by at all times utilizing properly all of the power available.

This hypothesis is called “the bang-bang principle.”

Bushaw accepted this hypothesis, and in 1952 showed for

some simple systems with one degree of freedom that,of all

bang-bang systems, there is one that is optimal. In 1953, I

made the observation that the best of all bang-bang systems,

if it exists, is then the best of all systems operating from the

same power source.

J. P. La Salle (1960)
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attractive features of Cartesian problem

• closed-form integration of v̇ = amin/max(s, v) ODEs

• ⇒ (optimal feedrate)2 = piecewise-rational function

• switching points = roots of univariate polynomials

• analytic reduction of “interpolation integral”

⇒ accurate & efficient real-time interpolator

• amenable to all types of (piecewise) polynomial

parametric curves (Bézier, B-spline, etc.)



“conventional” vs. “high-speed” machining

• machining times are major determinant of product cost

• usual: feedrate ≤ 100 in/min, spindle speed ≤ 6, 000 rpm

• HSM: feedrate ≤ 1, 200 in/min, spindle speed ≤ 50, 000 rpm

• in HSM inertial effects may dominate cutting forces, friction, etc.

(especially for intricate curved tool paths)

• most CNC machines significantly under-perform in practice

– control software, not hardware, is the limiting factor

• determine feedrate for minimal-time traversal of curved path, under

given axis acceleration bounds (assuming inertial forces dominant)



3-axis “open architecture” CNC mill

• MHO Series 18 Compact Mill

• 18”×18”×12” work volume

• Yaskawa brushless DC motors

• zero-backlash precision ball screws

• linear encoders, ± 0.001” accuracy

• MDSI OpenCNC control software

• custom real-time interpolators
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past project: real-time CNC interpolators

for Pythagorean-hodograph (PH) curves
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Left: analytic tool path description (quintic PH curve). Right: approximation

of path to various prescribed tolerances using piecewise-linear G codes.



comparative feedrate performance: 100 & 200 ipm
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The G code and PH curve interpolators both give excellent performance

(red) at 100 and 200 ipm. The “staircase” nature of the x and y feedrate

components (blue and green) for the G codes indicate faithful reproduction

of the piecewise-linear path, while the PH curve yields smooth variations.



comparative feedrate performance: 400 & 800 ipm
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At 400 & 800 ipm, the PH curve interpolator continues to yield impeccable

performance – but the performance of the G code interpolator is severely

degraded by “aliasing” effects, incurred by the finite sampling frequency

and discrete nature of the piecewise-linear path description.



past project: optimal section-plane orientation

for contour machining of free-form surfaces



parabolic lines on free-form surfaces



Gauss map computation for free-form surfaces



preambulatory terminology

• s = arc length along curved tool path

• v =
ds

dt
= feedrate (scalar speed) along path

• a =
dv

dt
= feed acceleration — note that a = v

dv

ds

• vlim(s) = velocity limit (maximum v consistent with

axis acceleration constraints)

• vlim(s) usually called the “velocity limit curve” or VLC

• feasible region = set of states in (s, v) phase plane

below the VLC, consistent with all constraints



time-optimal motion with acceleration constraints

κ > 0 κ = 0 κ < 0

a
κ v2

a

a

κ v2

acceleration vector r̈ = a t + κv2 n

t = tangent, n = normal, κ = curvature, v = feedrate, a = feed acceleration

min
v

T =

∫

ds

v
such that







−Ax ≤ a tx + κv2nx ≤ +Ax

−Ay ≤ a ty + κv2ny ≤ +Ay

−Az ≤ a tz + κv2nz ≤ +Az

for simplicity, take Ax = Ay = Az (= A, say) henceforth



need general (not arc-length) parameterization

“It is impossible to parameterize any curve, other than a straight line,

by rational functions of its arc length”

Farouki & Sakkalis (1991)

elements of proof by contradiction:

• Pythagorean triples of polynomials

• partial fraction decomposition of rational functions

• contour integration & “calculus of residues”

∫

g

h
dt = rational function ⇐⇒

∫ +∞

−∞

g

h
dt = 0



degree–n Bézier curve

r(ξ) = (x(ξ), y(ξ), z(ξ)) =
n

∑

k=0

pk

(

n

k

)

(1 − ξ)n−kξk , ξ ∈ [ 0, 1 ]

denote ξ-derivatives by primes & define parametric speed

σ(ξ) = |r′(ξ)| =
ds

dξ

with q = v2 (and hence q′ = 2σa) acceleration constraints become

−A ≤ q′

2σ2
x′ +

q

σ3
(σx′′ − σ′x′) ≤ +A

− A ≤ q′

2σ2
y′ +

q

σ3
(σy′′ − σ′y′) ≤ +A

− A ≤ q′

2σ2
z′ +

q

σ3
(σz′′ − σ′z′) ≤ +A































for ξ ∈ [ 0, 1 ]



constraint parallelogram in (v2, a) plane

a

v2

Parallelogram of possible (v2, a) combinations, defined by pairs of linear

symmetric constraints in v2 and a (only the portion with v2 > 0 is relevant).

Parallelogram varies in size, shape, and orientation with position s on curve.

Right-most vertex of parallelogram defines velocity limit curve (VLC), vlim(s).



range of possible feed accelerations

v < vlim(s)

amin

amax

a

v2

v = vlim(s)

aVLC

a

v2

Left: for states (s, v) with v < vlim(s), a range of possible feed accelerations

amin(s, v) ≤ a ≤ amax(s, v) is defined by the intersection of a vertical line

with the parallelogram in the (v2, a) plane. Right: if v = vlim(s), the vertical

line passes through the right–most parallelogram vertex, and the range of

feed accelerations collapses to a single value, denoted by aVLC(s).



special behavior at critical points

amin

amax

a

v2

At a critical point (a slope discontinuity) of the VLC, one pair of constraints

is described by vertical lines — i.e., these constraints depend only on v2,

and not on a. Instead of a unique feed acceleration aVLC(s) at such points,

there is a range of possible values amin ≤ a ≤ amax instead.



feasible phase-plane trajectory slopes
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For a smooth parametric curve r(ξ), bounds amin ≤ a ≤ amax on the feed

acceleration a = v̇ fix the range of possible trajectory slopes in the (ξ, q)
phase plane, where q = v2. On the VLC, amin = amax (= aVLC, say) —

except at critical points. The upper & lower bounds on trajectory slopes are

continuous but not differentiable functions of position in (ξ, q) phase plane.



trajectory “sources” and “sinks” on VLC

trajectory source = segment of VLC along which unique

feed acceleration points in to feasible phase plane region

trajectory sink = segment of VLC along which unique

feed acceleration points out of feasible phase plane region

tangency point = transition between source and sink

segments on the VLC – serves as potential switching point

between amin and amax phase plane trajectories



we interrupt this seminar for a

— BREAKING NEWS FLASH !! —

Hu is the new leader of China ?

(transcript of a White House conversation between George W. Bush and Condoleeza Rice

upon the nomination of Hu Jintao as the new Chief of the Communist Party of China)

• George: Condi! Nice to see you. What’s happening?

• Condi: Sir, I have here the report about the new leader of China.

• George: Great. Lay it on me.

• Condi: Hu is the new leader of China.

• George: That’s what I want to know.

• Condi: That’s what I’m telling you.

• George: That’s what I’m asking you. Who is the new leader of China?

• Condi: Yes.

• George: I mean the fellow’s name.

• Condi: Hu.

• George: The guy in China.

• Condi: Hu.



• George: The new leader of China.

• Condi: Hu.

• George: The Chinaman!

• Condi: Hu is leading China.

• George: Now whaddya’ asking me for?

• Condi: I’m telling you Hu is leading China.

• George: Well, I’m asking you. Who is leading China?

• Condi: That’s the man’s name.

• George: That’s who’s name?

• Condi: Yes.

• George: Will you or will you not tell me the name of the new leader of China?

• Condi: Yes, sir.

• George: Yassir? Yassir Arafat is in China? I thought he was in the Middle East.

• Condi: That’s correct.

• George: Then who is in China?

• Condi: Yes, sir.

• George: Yassir is in China?

• Condi: No, sir.

• George: Then who is?

• Condi: Yes, sir.

• George: Yassir?

• Condi: No, sir.



• George: Look, Condi. I need to know the name of the new leader of China.

Get me the Secretary General of the UN on the phone.

• Condi: Kofi?

• George: No, thanks.

• Condi: You want Kofi?

• George: No.

• Condi: You don’t want Kofi.

• George: No. But now that you mention it, I could use a glass of milk. And then get me the UN.

• Condi: Yes, sir.

• George: Not Yassir! The guy at the UN.

• Condi: Kofi?

• George: Milk! Will you please make the call?

• Condi: And call who?

• George: Who is the guy at the UN?

• Condi: Hu is the guy in China.

• George: Will you stay out of China?!

• Condi: Yes, sir.

• George: And stay out of the Middle East! Just get me the guy at the UN.

• Condi: Kofi.

• George: All right! With cream and two sugars. Now get on the phone. (Condi picks up the phone.)

• Condi: Rice, here.

• George: Rice? Good idea. And a couple of egg rolls, too. Maybe we should send some to the guy

in China. And the Middle East. Can you get Chinese food in the Middle East?



taxonomy of break-points for optimal feedrate

• switching points on VLC: critical points & tangency points

• switching points below VLC: amin/amax trajectory crossings

• break-points determined by local curve geometry:

inflections, turning points, equi-orientation points

• break-points determined by phase-plane location:

transition points

Can be found by polynomial root-solving. Each type incurs

change in identity of acceleration constraint defining current

amin/amax trajectory – identity of “active” constraint between

consecutive break-points must be recorded.



closed-form integration for extremal trajectories

if x is limiting axis, amin/amax trajectories are defined by

q′

2σ2
x′ +

q

σ3
(σx′′ − σ′x′) = ±A

re-write differential equation as

q′ + 2

(

x′′

x′
− σ′

σ

)

q = ± 2Aσ2

x′

and multiply by integrating factor (x′/σ)2 to obtain

d

dξ

(

x′

σ

)2

q = ± 2Ax′ → q =

(

σ

x′

)2

(C ± 2Ax)

integration constant C determined by specifying known point on trajectory



“removable singularity” at VLC critical points

on amin/amax trajectory q =

(

σ

x′

)2

(C ± 2Ax) =
f

g
, say

but f(ξ∗) = g(ξ∗) = 0 and f ′(ξ∗) = g′(ξ∗) = 0 if ξ∗ identifies a critical point !!

to determine C from known q(ξ∗) value, we must invoke l’Hopital’s rule

lim
ξ→ξ∗

q(ξ) =
f ′′(ξ∗)

g′′(ξ∗)
= ±A

σ2(ξ∗)

x′′(ξ∗)

use two-fold Bernstein-form degree reduction of f(ξ) and g(ξ)
to eliminate the common quadratic factor



simple example (planar curve)
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Left: planar Bézier curve r(ξ), ξ ∈ [ 0, 1 ] with switching points at the three

parameter values ξ1, ξ2, ξ3. Right: construction of optimal feedrate function

q(ξ) = v2(ξ) in the (ξ, q) phase plane. Switching point ξ2 is a VLC critical

point, and ξ1, ξ3 are intersections of amin and amax integration trajectories.



optimal feedrate algorithm (sketch)

input : curve r(ξ), ξ ∈ [ 0, 1 ] & axis acceleration bounds ±A

0. pre-process: compute the VLC, vlim(ξ), and the ordered set

of all (potential) switching points, and their types, on it

1. integrate an amax trajectory forward from (ξ, q) = (0, 0) and an

amin trajectory backward from (ξ, q) = (1, 0)

2. if these trajectories intersect below the VLC, the optimal feedrate

comprises two segments with a single switching point

3. if initial trajectories do not intersect below the VLC, they must cross

the VLC at (distinct) “left” and “right” points



4. from left point, search forward along VLC for the first switching point

– integrate backward & forward from this switching point to obtain an

arriving amin trajectory and a departing amax trajectory

5. intersection of backward trajectory with initial amax trajectory defines

a new switching point below the VLC

6. if forward trajectory intersects the final amin trajectory, this defines a

new switching point below the VLC, and construction of the optimal

feedrate is complete

7. otherwise, forward trajectory must intersect the VLC at a “left” point

– using this point, repeat steps 4-6 until done

output : piecewise-rational function q(ξ) for square of optimal feedrate



illustrative example #1
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The time-optimal feedrate for the “S-shaped curve” on the left involves a

total of ten switching points — two of these are critical points on the VLC,

three are intersections of amin and amax trajectories below the VLC, and the

remaining five correspond to changes in the identity of the limiting axis.



illustrative example #2
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For the “J-curve” on the left, six switching points arise in constructing the

time-optimal feedrate. These comprise one critical point on the VLC, two

amin/amax trajectory intersections, and three limiting-axis-identity changes

(one of the latter is close to, but distinct from, a critical point on the VLC).



illustrative example #3
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A total of twelve switching points occur in the time-optimal feedrate for

the closed loop on the left: namely, three critical points on the VLC, four

amin/amax trajectory intersections, and five limiting-axis-identity changes.



illustrative example #4
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The “spiral” on the left incurs fourteen switching points in its time-optimal

feedrate function: three critical points on the VLC, five amin/amax trajectory

intersections, and six limiting-axis-identity changes.



real-time CNC interpolator algorithm

sampling frequency f = 1024 Hz, sampling interval ∆t =
1

f
≈ 0.001 sec.

function of CNC interpolator: given curve r(ξ) and feedrate function v(ξ),
perform real-time computation of locations ξk at tk = k∆t, k = 0, 1, 2, . . .

locations ξk are solutions of (note: unknown = upper limit of integration)

k∆t =

∫ ξk

0

σ

v
dξ , k = 0, 1, 2, . . .

“interpolation integral” does not ordinarily admit a closed-form reduction



however, for the time-optimal feedrate function (with x as limiting axis)

q = v2 =

(

σ

x′

)2

(C ± 2Ax)

we obtain

k∆t =

∫ ξk

0

|x′|√
C ± 2Ax

dξ =

√

C ± 2A x(ξk)

A
+ K

with integration constant K chosen so that t = 0 when ξ = 0

function on RHS is monotone in ξ, hence equation has unique solution

– obtained to machine precision by a few Newton-Raphson iterations

=⇒ highly accurate and efficient real-time CNC interpolator algorithm



test run data from CNC machine
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Square of time-optimal feedrate is a piecewise-rational function of ξ with

five switching points (one critical and one tangency point on the VLC, and

three switching points below VLC). Record real-time positional data from

encoders on machine axes – obtain velocity & acceleration components by

first- and second-order differencing. A = 104 in/min
2

acceleration bound.



measured axis velocity components
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Measured x and y velocity components from first differences of real-time

encoder position data (NB: independent variable is time, not parameter ξ).



measured axis acceleration components
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Measured x and y acceleration components from second differences of

real-time encoder positions (plotted against time, not curve parameter ξ).

Dashed red lines show prescribed acceleration bounds ± 104 in/min
2
, and

dashed blue lines show approximate instances of switching points.



closure

• for Cartesian machines with independent axis acceleration bounds,

an essentially exact piecewise-rational solution for the time-optimal

“bang-bang” feedrate can be computed

• optimal feedrate admits accurate & efficient real-time interpolator,

based on analytic reduction of the interpolation integral

• a number of errors & inconsistencies exist in the robotics literature

on time-optimal motion along curved paths

• formulate generalizations to systems constrained by axis velocity,

as well as acceleration, bounds

• explore automatic smoothing of slope discontinuities in optimal

feedrate function, to obtain smooth (C2) “near-optimal” motions



“science and poetry”

Trace science then, with modesty thy guide;

First strip off all her equipage of pride,

Deduct what is but vanity, or dress,

Or learning’s luxury, or idleness;

Or tricks to show the stretch of human brain,

Mere curious pleasure, or ingenious pain:

Expunge the whole, or lop th’excrescent parts

Of all, our vices have created arts:

Then see how little the remaining sum,

Which served the past, and must the times to come!

Alexander Pope (1688-1744), Essay on Man



“poets and fools”

Sir, I admit your general rule,

That every poet is a fool.

But you yourself may serve to show it,

That every fool is not a poet!

Alexander Pope (1688-1744)

all poets are fools, but not all fools are poets


