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Abstract

This paper reviews some of the recent advances in the development of algorithms for wireless sensor
networks. We focus on sensor deployment and coverage, routing and sensor fusion.
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1 Introduction

A wireless sensor network may comprise thousands of sensor nodes. Each sensor node has a sensing

capability as well as limited energy supply, compute power, memory and communication ability. Besides

military applications, wireless sensor networks may be used to monitor microclimates and wildlife habitats

[56], the structural integrity of bridges and buildings, building security, location of valuable assets (via

sensors placed on these valuable assets), traffic, and so on. However, realizing the full potential of wireless

sensor networks poses myriad research challenges ranging from hardware and architectural issues, to

programming languages and operating systems for sensor networks, to security concerns, to algorithms

for sensor network deployment, operation and management. Iyengar and Brooks [26, 27] and Culler

and Hong [12] provide good overviews of the breadth of sensor network research topics as well as of

applications for sensor networks.

This paper focuses on some of the algorithmic issues that arise in the context of wireless sensor

networks. Specifically, we review algorithmic issues in sensor deployment and coverage, routing, and

fusion. There is an abundance of algorithmic research related to wireless sensor networks. At a high

level, the developed algorithms may be categorized as either centralized or distributed. Because of the

limited memory, compute and communication capability of sensors, distributed algorithms research has

focused on localized distributed algorithms–distributed algorithms that require only local (e.g., nearest

neighbor) information.
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2 Sensor Deployment and Coverage

In a typical sensor network application, sensors are to be placed (or deployed) so as to monitor a region or

a set of points. In some applications we may be able to select the sites where sensors are placed while in

others (e.g., in hostile environments) we may simply scatter (e.g., air drop) a sufficiently large number of

sensors over the monitoring region with the expectation that the sensors that survive the air drop will be

able to adequately monitor the target region. When site selection is possible, we use deterministic sensor

deployment and when site selection isn’t possible, the deployment is nondeterministic. In both cases, it

often is desirable that the deployed collection of sensors be able to communicate with one another, either

directly or indirectly via multihop communication. So, in addition to covering the region or set of points

to be sensed, we often require the deployed collection of sensors to form a connected network. For a given

placement of sensors, it is easy to check whether the collection covers the target region or point set and

also whether the collection is connected. For the coverage property, we need to know the sensing range

of individual sensors (we assume that a sensor can sense events that occur within a distance r, where r is

the sensor’s sensing range, from it) and for the connected property, we need to know the communication

range, c, of a sensor. Zhang and Lou [72] have established the following necessary and sufficient condition

for coverage to imply connectivity.

Theorem 1 [Zhang and Lou [72]] When the sensor density (i.e., number of sensors per unit area) is

finite, c ≥ 2r is a necessary and sufficient condition for coverage to imply connectivity.

Wang et al. [61] prove a similar result for the case of k-coverage (each point is covered by at least k

sensors) and k-connectivity (the communication graph for the deployed sensors is k connected).

Theorem 2 [Wang et al. [61]] When c ≥ 2r, k-coverage of a convex region implies k-connectivity.

Notice that k-coverage with k > 1 affords some degree of fault tolerance, we are able to monitor all

points so long as no more than k − 1 sensors fail. Huang and Tseng [25] develop algorithms to verify

whether a sensor deployment provides k-coverage. Other variations of the sensor deployment problem also

are possible. For example, we may have no need for sensors to communicate with one another. Instead,

each sensor communicates directly with a base station that is situated within the communication range

of all sensors. In another variant [23, 24], the sensors are mobile and self deploy. A collection of mobile

sensors may be placed into an unknown and potentially hazardous environment. Following this initial

placement, the sensors relocate so as to obtain maximum coverage of the unknown environment. They
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Step 1: [Achieve Coverage]

Let δ = (
√

3
2 + 1)r. Place a sensor at (i, jδ), i even and j integer as well as one at (i + r/2, jδ), i

odd and j integer.

Step 2: [Achieve Connectivity]

Let β =
√

3
2 r. Place a sensor at (0, jδ ± β), j odd.

Figure 1: Kar and Banerjee’s sensor-deployment algorithm

communicate the information they gather to a base station outside of the environment being sensed. A

distributed potential-field-based algorithm to self deploy mobile sensors under the stated assumptions

is developed in [24] and a greedy and incremental self-deployment algorithm is developed in [23]. A

virtual-force algorithm to redeploy sensors so as to maximize coverage also is developed by Zou and

Chakrabarty [73]. Poduri and Sukhatme [47] develop a distributed self-deployment algorithm that is

based on artificial potential fields and which maximizes coverage while ensuring that each sensor has at

least k other sensors within its communication range.

2.1 Deterministic Deployment

2.1.1 Region Coverage

Kar and Banerjee [32] examine the problem of deploying the fewest number of homogeneous sensors so

as to cover the plane with a connected sensor network. They assume that the sensing range equals the

communication range (i.e., r = c). Figure 1 gives their deployment algorithm. One may verify that

the sensors deployed in Step 1 are able to sense the entire plane. So, these sensors satisfy the coverage

requirement. However, the sensors placed in Step 1 define many rows of connected sensors with the

property that two sensors in different rows are unable to communicate (i.e., there is no multihop path

between the sensors such that adjacent sensors on this path are at most c apart). Step 2 creates a

connected network by placing a column of sensors in such a way as to connect together the connected

rows that result from Step 1.

Kar and Banerjee [32] have shown that their algorithm of Figure 1 has a sensor density that is within

2.6% of the optimal density. This algorithm may be extended to provide connected coverage for a set of

finite regions [32].
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Step 1: [Initialize]
Let s be any leaf of the Euclidean minimum-cost spanning tree of the point set.
candidateSet = {s}

Step 2: [Deploy Sensors]

while (candidateSet 6= ∅) {
Remove any point p from candidateSet.
Place a sensor at p.
Remove from candidateSet all points covered by the sensor at p.
Add to candidateSet all points (not necessarily vertices) q
on the spanning tree T that satisfy the conditions:

(1) q is distance r from p.
(2) q is not covered by an already placed sensor.
(3) The spanning tree path from s to q is completely covered by already placed sensors.

}

Figure 2: Greedy algorithm of [32] to deploy sensors

2.1.2 Point Coverage

Figure 2 gives the greedy algorithm of Kar and Banerjee [32] to deploy a connected sensor network so

as to cover a set of points in Euclidean space. This algorithm, which assumes that r = c, uses at most

7.256 times the minimum number of sensors needed to cover the given point set [32]. It is easy to see

that the constructed deployment covers all of the given points and is a connected network.

Grid coverage is another version of the point coverage problem. In this version, Chakrabarty et al. [7],

we are given a two- or three-dimensional grid of points that are to be sensed. Sensor locations are

restricted to these grid points and each grid point is to be covered by at least m, m ≥ 1, sensors (i.e., we

seek m-coverage). For sensing, we have k sensor types available. A sensor of type i costs ci dollars and has

a sensing range ri. At most one sensor may be placed at a grid point. In this version of the point coverage

problem, the sensors do not communicate with one another and are assumed to have a communication

range large enough to reach the base station from any grid position. So, network connectivity is not an

issue. The objective is to find a least-cost sensor deployment that provides m-coverage.

Chakrabarty et al. [7] formulate this m-coverage deployment problem as an integer linear program

(ILP) with O(kn2) variables and O(kn2) equations, where n is the number of grid points. Xu and

Sahni [66] reduce the number of variables to O(kn) and the number of equations to O(n). Also, their

formulation doesn’t require the sensor locations and points to be sensed to form a grid. Let sij be a
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0/1-valued variable with the interpretation sij = 1 iff a sensor of type i is placed at point j, 1 ≤ i ≤ k,

1 ≤ j ≤ n. The solution to the following ILP describes an optimal sensor deployment.

minimize
k

∑

i=1

(ci

n
∑

j=1

sij)

k
∑

i=1

∑

a∈X(i,j)

sia ≥ m, 1 ≤ j ≤ n

k
∑

i=1

sij ≤ 1, 1 ≤ j ≤ n

where

X(i, j) = {all points within ri of point j}

Even with this reduction in the number of variables and equations, the ILP is practically solvable

only for a small number of points n. For large n, Chakrabarty et al. [7] propose a divide-and-conquer

“near-optimal” algorithm in which the base case (small number of points) is solved optimally using the

ILP formulation.

2.2 Maximizing Coverage Lifetime

When sensors are deployed in difficult-to-access environments, as is the case in many military applications,

a large number of sensors may be air-dropped into the region that is to be sensed. Assume that the sensors

that survive the air drop cover all targets that are to be sensed. Since the power supply of a sensor cannot

be replenished, a sensor becomes inoperable once it runs out of energy. Define the life of a sensor network

to be the earliest time at which the network ceases to cover all targets. The life of a network can be

increased if it is possible to put redundant sensors (i.e., sensors not needed to provide coverage of all

targets) to sleep and awaken these sleeping sensors when they are needed to restore target coverage.

Sleeping sensors are inactive while sensors that are awake are active. Inactive sensors consume far less

energy than active ones.

Cardei and Du [5] propose partitioning the set of available sensors into disjoint sets such that each set

covers all targets. Let T be the set of targets to be monitored and let Si denote the subset of T in the

range of sensor i, 1 ≤ i ≤ n. Let P1, P2, · · ·, Pk be disjoint partitions of the set of n sensors such that

∪j∈Pi
Sj = T , 1 ≤ i ≤ k. Then the set of sensors in each Pi covers all targets. We refer to the set of Pis

as a disjoint set cover of size k. Moreover, by going through k sleep/awake rounds where in round i only

the sensors in Pi are awake, we are able to monitor all targets in each round and increase the network life
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to almost kt, where t is the time it takes a sensor to deplete its energy when in the awake mode. Since

sensors deplete energy even when in the sleep mode, the life of each round is slightly less than that of the

preceding round. Cardei and Du [5] have shown that deciding whether there is a disjoint set cover of size

k for a given sensor set is NP-complete. They develop a heuristic to maximize the size of a disjoint set

cover. An experimental evaluation of this heuristic reveals that it finds about 10% more disjoint covers

than does the best algorithm of Slijepcevic and Potkonjak [53]. However, the algorithm of Cardei and

Du [5] takes more time to execute.

Several decentralized localized protocols to control the sleep/awake state of sensors so as to increase

network lifetime have been proposed. Ye, Zhong, Lu and Zhang [70] propose a very simple protocol.

In this protocol, the set of active nodes provide the desired coverage. A sleeping node wakes up when

its sleep timer expires and broadcasts a probing signal a distance d (d is called the probing range). If

no active sensor is detected in this probing range, the sensor moves into the active state. However,

if an active sensor is detected in the probing range, the sensor determines how long to sleep, sets its

sleep timer and goes to sleep. Techniques to dynamically control the sleep time and probing range are

discussed in [70]. Simulations reported in [70] indicate that this simple protocol outperforms the GAF

protocol of [67]. However, experiments conducted by Tian and Georganas [57] reveal that the protocol of

Ye et al. [70] “cannot ensure the original sensing coverage and blind spots may appear after turning off

some nodes.” Tian and Georganas [57] propose an alternative distributed localized protocol that sensors

may use to turn themselves on and off. The network operates in rounds, where each round has two

phases–self-scheduling and sensing. In the self-scheduling phase each sensor decides whether or not to

go to sleep. In the sensing phase, the active/awake sensors monitor the region. Sensor s turns itself off

in the self-scheduling phase if its neighbors are able to monitor the entire sensing region of s. To make

this determination, every sensor broadcasts its location and sensing range. A backoff scheme is proposed

to avoid blind spots that would otherwise occur if two sensors turn off simultaneously, each expecting

the other to monitor part or all of its sensing region. In this backoff scheme, each active sensor uses a

random delay before deciding whether or not it can go to sleep without affecting sensing coverage.

The decentralized algorithm OGDC (Optimal Geographical Density Control) of Zhang and Lou [72]

guarantees coverage, which by Theorem 1 implies connectivity whenever the sensor communication range

is at least twice its sensing range. Experimental results reported in [72] suggest that when OGDC is

used, the number of active (awake) nodes may be up to half that when the PEAS [69] or GAF [67]

algorithms are used to control sensor state. The Coverage Configuration Protocol (CCP) to maximize
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lifetime while providing k-coverage (as well as k-connectivity when c ≥ 2r, Theorem 2) is developed in

[61]. A distributed protocol for differentiated surveillance is proposed by Yan, He and Stankovic [68].

Assume that the probability that sensor s detects an event at a distance d is P (s, x) = 1/(1 + αd)β .

The probability P (x) that an event at x is detected by the sensor network is

P (x) = 1 − Π(1 − P (s, x))

where the product is taken over all sensors in the network. The coverage, C, of the sensor network

(overall network coverage) is the sum of P (x) over all points in the sensing region. Let C ′(s) be the

overall coverage when sensor s is removed from the network. The sensing denomination [37] of a sensor s

is its contribution, C−C ′(s), to overall network coverage. Lu and Suda [37] use the sensing denomination

of a sensor to obtain a distributed localized self-scheduling algorithm to schedule the sleep/awake states

of sensors so as to increase network lifetime. In their algorithm, each sensor periodically makes a decision

to either go to sleep or be active. Sensors with higher sensing denomination have a higher probability of

being active.

2.3 Deployment Quality

The quality of a sensor deployment may be measured by the minimum k for which the deployment

provides k-coverage as well as by the minimum k for which we have k-connectivity. By Theorem 2 the

first metric implies the second when the communication range c is at lest twice the sensing range r.

Meguerdichian et al. [42] have formulated additional metrics suitable for a variety of sensor applications.

In these applications, the ability of a sensor to detect an activity a distance d from the sensor is given

by the function α/(1 + d)β, where α and β are constants. So, sensing ability is maximum when d = 0

and declines as we get farther from the sensor.

Let P be a path that connects two points u and v (these points may be within or outside the region

being sensed). The breach weight, BW (P, u, v), of P is the closest path P gets to any of the deployed

sensors. The breach weight, BW (u, v), of the points u and v is the maximum of the breach weights of

all paths between u and v.

BW (u, v) = max{BW (P, u, v)|P is a path between u and v}

The breach weight or breachability, BW, of a sensor network is the maximum of the breach weights of

all point pairs.

BW = min{BW (u, v)| u and v are points on the boundary of the sensing region}
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When the ability of a sensor to detect an activity is inversely proportional to some power k of distance,

sensor deployments that minimize breach weight are preferred. The breachability of a network gives us

an indication of how successful an intruder could be in evading detection. Suppose we have an application

in which items are being transported between pairs of points and our sensors track the progress of these

shipments. Now we wish to use maximally observable paths, that is paths that remain as close to a sensor

as possible. Let d(x) be the distance between a point x and the sensor nearest to x. Meguerdichian et

al. [42] define the support weight, SW (P, u, v), of a path P between u and v as

SW (P, u, v) = max{d(x)|x is a point on P}

SW (u, v) now is defined as

SW (u, v) = min{SW (P, u, v)|P is a path between u and v}

and the support weight (or simply support), SW , of the sensor network is

SW = max{SW (u, v)| u and v are points on the boundary of the sensing region}

Although Meguerdichian et al. [42] develop centralized algorithms to compute BW (u, v) and SW (u, v),

these algorithms are flawed [35]. Li, Wan and Frieder [35] describe a distributed localized algorithm to

determine SW (u, v). This algorithm is given in Figure 3. In this algorithm |sa| is the Euclidean distance

between the sensors s and a. The algorithm assumes that u and v are in the convex hull of the sensor

locations.

Since there may be several paths with the computed SW (u, v) value, we may be interested in finding,

say, a best support path from u to v that has minimal length. Li et al. [35] develop a localized distributed

algorithm to find an approximately minimal length path with support SW (u, v).

The exposure E(P, u, v) of a path P from u to v is defined as

E(P, u, v) =

∫ v

u
S(x)dx

where S(x) is a sensing function and the integral is computed over the path P . Meguerdichian et al. [43]

suggest two sensing functions. One is simply the sensing ability of the closest sensor to x; the other is

the sum of the abilities of all sensors to detect activity at x. An intruder who wishes to minimize the

risk of detection would take a minimal exposure path to get from u to v. Figure 4 gives the algorithm of

[43] to find an approximation to the minimal-exposure path between u and v. This algorithm overlays
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Step 1: [Construct Local Neighborhood Graph]
Each sensor broadcasts its id and location.
Each sensor s compiles a list L(s) of all ids and locations that it hears.
Let A(s), the adjacency list for s, comprise all sensors a ∈ L(s) such that there is no b ∈ L(s)
located in the interior of the intersection region of the radius |sa| circles centered at s and a.
For each a ∈ A(s), the weight of the edge (s, a) is |sa|/2.

Step 2: [Construct Best Support Path]
Let the length of a path be the maximum weight of its edges.
Let x and y, respectively, be the sensors closest to the points u to v.
Run the distributed Bellman-Ford shortest path algorithm to determine a shortest path P (x, y), in
the local neighborhood graph, from x to y.
(u, x), P (x, y), (y, v) is a best support path from u to v.
The weight of (u, x) is |ux| and that of (y, v) is |yv|.
SW (u, v) is the maximum of the edges weights in the best support path.

Figure 3: Distributed algorithm of [35] to compute SW (u, v)

Step 1: [Graph Overlay]
Overlay the sensing region with a weighted undirected graph G.
The vertices of G are points in the sensing region and its edges are straight lines.
The weight of an edge is the exposure of that edge.

Step 2: [Minimal-Exposure Path]
The minimal-exposure path from u to v is estimated to be the shortest path in G from the vertex
of G closest to the point u to the vertex of G closest to the point v. Its exposure is the length of
this shortest path.

Figure 4: Algorithm of [43] to find an approximate minimal-exposure path

an undirected weighted graph over the sensing region and then finds a shortest path from the graph

vertex nearest to u to the graph vertex nearest to v. This shortest path may be found using Dijkstra’s

shortest path algorithm. By increasing the number of vertices and edges used in Step 1, the accuracy

of the approximation is increased. For the overlay graph, [43] considers a uniform two-dimensional grid

arrangement of the vertices and a variety of options for edges (e.g., edges connect a vertex to its north,

south, east, west, northwest, northeast, southeast and southwest neighbors). Sensor deployments that

maximize minimal-exposure are preferred.

Veltri et al. [59] develop a distributed localized algorithm to find an approximate minimal-exposure

path. Also, they show that finding a maximal-exposure path is NP-hard and they propose several heuris-

tics to construct approximate maximal-exposure paths. Additionally, a linear programming formulation
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for minimal- and maximal-exposure paths is obtained. Kanan et al. [29] develop polynomial time al-

gorithms to compute the maximum vulnerability of a sensor deployment to attack by an intelligent

adversary and use this to compute optimal deployments with minimal vulnerability.

3 Routing

Traditional routing algorithms for sensor networks are datacentric in nature. Given the unattended

and untethered nature of sensor networks, datacentric routing must be collaborative as well as energy-

conserving for individual sensors. Kannan et al. [28, 30] have developed a novel sensor-centric paradigm

for network routing using game-theory. In this sensor-centric paradigm, the sensors collaborate to achieve

common network-wide goals such as route reliability and path length while minimizing individual costs.

The sensor-centric model can be used to define the quality of routing paths in the network (also called

path weakness). Kannan et al. [30] describe inapproximability results on obtaining paths with bounded

weakness along with some heuristics for obtaining strong paths. The development of efficient distributed

algorithms for approximately optimal strong routing is an open issue that can be explored further.

Energy conservation is an overriding concern in the development of any routing algorithm for wireless

sensor networks. This is because such networks are often located such that it is difficult, if not impossible,

to replenish the energy supply of a sensor. Three forms–unicast, broadcast and multicast–of the routing

problem have received significant attention in the literature. The overall objective of these algorithms

is to either maximize the lifetime (earliest time at which a communication fails) or the capacity of the

network (amount of data traffic carried by the network over some fixed period of time).

Assume that the wireless network is represented as a weighted directed graph G that has n ver-

tices/nodes and e edges. Each node of G represents a node of the wireless network. The weight w(i, j)

of the directed edge (i, j) is the amount of energy needed by node i to transmit a unit message to node

j.

In the most common model used for power attenuation, signal power attenuates at the rate a/rd,

where a is a media dependent constant, r is the distance from the signal source, and d is another

constant between 2 and 4 [48]. So, for this model, w(i, j) = w(j, i) = c ∗ r(i, j)d, where r(i, j) is the

Euclidean distance between nodes i and j and c is a constant. In practice, however, this nice relationship

between w(i, j) and r(i, j) may not apply. This may, for example, be due to obstructions between the

nodes that may cause the attenuation to be larger than predicted. Also, the transmission properties of

the media may be asymmetric resulting in w(i, j) 6= w(j, i).
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3.1 Unicast

In a unicast, we wish to send a message from a source sensor s to a destination sensor t. Singh, Woo and

Raghavendra [52] propose five strategies that may be used in the selection of the routing path for this

transmission. The first of these is to use a minimum-energy path (i.e., a path in G for which the sum of

the edge weights is minimum) from s to t. Such a path may be computed using Dijkstra’s shortest path

algorithm [49]. However, since, in practice, messages between several pairs of source-destination sensors

need to be routed in succession, using a minimum-energy path for a message may prevent the successful

routing of future messages. As an example, consider the graph of Figure 5. Suppose that sensors x, b1,

· · ·, bn initially have 10 units of energy each and that u1, · · ·, un each have 1 unit. Assume that the

first unicast is a unit-length message from x to y. There are exactly two paths from x to y in the sensor

network of Figure 5. The upper path, which begins at x, goes through each of the uis, and ends at y uses

n + 1 energy units; the lower path uses 2(n + 1) energy units. Using the minimum energy path, depletes

the energy in node ui, 1 ≤ i ≤ n. Following the unicast, sensors u1, · · ·, un are unable to forward any

messages. So an ensuing request to unicast from ui to uj, i < j will fail. On the other hand, had we

used the lower path, which is not a minimum energy path, we would not deplete the energy in any sensor

and all unit-length unicasts that could be done in the initial network also can be done in the network

following the first x to y unicast.

x

u 1 u 2 ... un

y

b 1 b 2 ... bn

1
1 1 1

1

2
2 2 2

2

Figure 5: A sensor network

The remaining four strategies proposed in [52] attempt to overcome the myopic nature of the minimum-

energy-path strategy, which sacrifices network lifetime and capacity in favor of total remaining energy.

Since routing decisions must be made in an online fashion (i.e., if the ith message is to be sent from si

to ti, the path for message i must be decided without knowledge of sj and tj, j > i), we seek an online

algorithm with good competitive ratio. It is easy to see that there can be no online unicast algorithm

with constant competitive ratio with respect to network lifetime and capacity [1]. For example, consider
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the network of Figure 5. Assume that the energy in each node is 1 unit. Suppose that the first unicast

is from x to y. Without knowledge of the remaining unicasts, we must select either the upper or lower

path from x to y. If the upper path is chosen and the source-destination pairs for the remaining unicasts

turn out to be (u1, u2), (u2, u3), · · ·, (un−1, un), (un, y) then the online algorithm routes only the first

unicast whereas an optimal offline algorithm would route all n + 1 unicasts, giving a competitive ratio

of n + 1. The same ratio results when the lower path is chosen and the source-destination pairs for the

remaining unicasts are (b1, b2), (b2, b3), · · ·, (bn−1, bn), (bn, y).

Theorem 3 There is no online algorithm to maximize lifetime or capacity that has a competitive ratio

smaller than Ω(n).

To maximize lifetime and/or capacity, we need to achieve some balance between the energy consumed

by a route and the minimum residual energy at the nodes along the chosen route. Aslam, Li and Rus [1]

propose the max-min zPmin-path algorithm to select unicast routes that attempt to make this balance.

This algorithm selects a unicast path that uses at most z ∗ Pmin energy, where z is a parameter to the

algorithm and Pmin is the energy required by the minimum-energy unicast path. The selected unicast

path maximizes the minimum residual energy fraction (energy remaining after unicast/initial energy) for

nodes on the unicast path. Notice that the possible values for the residual energy fraction of node u may

be obtained by computing (ce(u)−w(u, v)∗ l)/ie(u), where l is the message length, ce(u) is the (current)

energy at node u just before the unicast, ie(u) is the initial energy at u, and w(u, v) is the energy needed

to send a unit-length message along the edge (u, v). This computation is done for all vertices v adjacent

from u. Hence the union, L, of these values taken over all u gives the possible values for the minimum

residual-energy fraction along any unicast path. Figure 6 gives the max-min zPmin algorithm.

Several adaptations to the basic max-min zPmin algorithm, including a distributed version are de-

scribed in [1]. Kar et al. [33] develop an online capacity-competitive algorithm, CMAX, with logarithmic

competitive ratio. On the surface, this would appear to violate Theorem 3. However, to achieve this

logarithmic competitive ratio, the algorithm CMAX does admission control. That is, it rejects some

unicasts that are possible. The bound of Theorem 3 applies only for online algorithms that must perform

every unicast that is possible.

Let ce, E and l be as for the max-min zPmin algorithm. Let α(u) = 1 − ce(u)/ie(u) be the fraction

of u’s initial energy that has been used so far. Let λ and σ be two constants. In the CMAX algorithm,

the weight of every edge (u, v) is changed from w(u, v) to w(u, v) ∗ (λα(u) − 1). The shortest source-to-

destination path P in the resulting graph is determined. If the length of this path is more than σ, the
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Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v) ∗ l.
Let L be the list of possible values for the minimum residual-energy fraction.

Step 2: [Binary Search]
Do a binary search in L to find the maximum value max of the minimum residual-energy fraction
for which there is a path P from source to destination that uses at most z ∗ Pmin energy.
For this, when testing a value q from L, we find a shortest source to destination path that does
not use edges (u, v) that make the residual-energy fraction at u less than q.

Step 3: [Wrap Up]
If no path is found in Step 2, the unicast isn’t possible.
Otherwise, use the path P corresponding to max.

Figure 6: The max-min zPmin unicast algorithm of [17]

Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v) ∗ l.
Change the weight of every remaining edge (u, v) to w(u, v) ∗ (λα(u) − 1).

Step 2: [Shortest Path]
Let P be the shortest source-to-destination path in the modified graph.

Step 3: [Wrap Up]
If no path is found in Step 2, the unicast isn’t possible.
If the the length of P is more than σ do not do the unicast.
Otherwise, use P for the unicast.

Figure 7: CMAX algorithm of [33] for unicasts

unicast is rejected (admission control); otherwise, the unicast is done using path P . Figure 7 gives the

algorithm.

The CMAX algorithm of Figure 7 has a complexity advantage over the max-min zPmin algorithm of

Figure 6. The former does only 1 shortest-path computation per unicast while the latter does O(logn),

where n is the number of sensor nodes. Although admission control is necessary to establish the logarith-

mic competitive-ratio bound for CMAX, we may use CMAX without admission control (i.e., route very

unicast that is feasible) by setting σ = ∞. Experimental results reported in [33] suggest that CMAX

with no admission control outperforms max-min zPmin on both the lifetime and capacity metrics.

In the MRPC lifetime-maximization algorithm of Misra and Banerjee [45], the capacity, c(u, v) of
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Step 1: [Initialize]
Eliminate from G every edge (u, v) for which ce(u) < w(u, v) ∗ l.
For every remaining edge (u, v) let c(u, v) = ce(u)/w(u, v).
Let L be the list of distinct c(u, v) values.

Step 2: [Binary Search]
Do a binary search in L to find the maximum value max for which there is a path P from source
to destination that uses no edge with c(u, v) < max.
For this, when testing a value q from L, we perform a depth- or breadth-first search beginning at
the source. The search is not permitted to use edges with c(u, v) < q.
Let P be the source-to-destination path with lifetime max.

Step 3: [Wrap Up]
If no path is found in Step 2, the unicast isn’t possible.
Otherwise, use P for the unicast.

Figure 8: MRPC algorithm of [45] for unicasts

edge (u, v) is defined to be ce(u)/w(u, v). Note that c(u, v) is the number of unit-length messages that

may be transmitted along (u, v) before node u runs out of energy. The lifetime of path P , life(P ) is

defined to be the the minimum edge capacity on the path. In MRPC, the unicast is done along a path P

with maximum lifetime. Figure 8 gives the MRPC unicast algorithm. A decentralized implementation

as well as a conditional MRPC in which minimum-energy routing is used so long as the selected path

has a lifetime that is greater than or equal to a specified threshold. When the lifetime of the selected

path falls below this threshold, we switch to MRPC routing.

Chang and Tassiulas [8, 9] develop a linear-programming formulation for lifetime maximization. This

formulation requires knowledge of the rate at which each node generates unicast messages. Wu, Gao

and Stojmenovic [65] propose unicast routing based on connected dominating sets to maximize network

lifetime. Stojmenovic and Lin [55] and Melodia et al. [44] develop localized unicast algorithms to max-

imize lifetime and Heinzelman, Chandrakasan and Balakrishnan [22] develop a clustering-based routing

algorithm (LEACH) for sensor networks..

3.2 Multicast and Broadcast

Using an omnidirectional antenna, node i can transmit the same unit message to nodes j1, j2, · · · , jk,

using

ewireless = max{w(i, jq)|1 ≤ q ≤ k}
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energy rather than

ewired =
k

∑

q=1

w(i, jq)

energy. Since, ewireless ≤ ewired, the reduction in energy needed to broadcast from one node to several

others in a wireless network over that needed in a wired network is referred to as the wireless broadcast

advantage [62, 63].

Because of the similarity between multicast and broadcast algorithms for wireless sensor networks,

we need focus on just one of multicast and broadcast. In this paper, our explicit focus is broadcast. To

broadcast from a source s, we use a broadcast tree T , which is a spanning tree of G that is rooted at s.

The energy, e(u), required by a node of T to broadcast to its children is

e(u) = max{w(u, v)|v is a child of u}

Note that for a leaf node u, e(u) = 0. The energy, e(T ), required by the broadcast tree to broadcast a

unit message from the source to all other nodes is

e(T ) =
∑

u

e(u)

For simplicity, we assume that only unit-length messages are broadcast. So, following a broadcast

using the broadcast tree T , the residual energy, re(i, T ), at node i is

re(i, T ) = ce(i) − max{w(i, j)|j is a child of i in T} ≥ 0

The problem, MEBT, of finding a minimum-energy broadcast tree rooted at a node s is NP-hard,

because MEBT is a generalization of the connected dominating set problem, which is known to be NP-

hard [20]. In fact, MEBT cannot be approximated in polynomial time within a factor (1−ǫ)∆, where ǫ is

any small positive constant and ∆ is the maximal degree of a vertex, unless NP ⊆ DTIME[nO(log log n)]

[21]. Marks et al. [40] propose a genetic algorithm for MEBT and Das et al. [13] propose integer

programming formulations.

Wieselthier et al. [62, 63] propose four centralized greedy heuristics–DSA, MST, BIP, BIPPN–to

construct minimum energy broadcast trees. The DSA (Dijkstra’s shortest paths algorithm) heuristic

(this is the BLU of [62, 63] augmented with the sweep pass of [62, 63]) constructs a shortest path from

the source node s to every other vertex in G. The constructed shortest paths are superimposed to obtain

a tree T rooted at s. Finally, a sweep is performed over the nodes of T . In this sweep, nodes are examined

in ascending order of their index (i.e., in the order 1, 2, 3, · · ·, n). The transmission energy τ(i) for node
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i is determined to be the

max{w(i, j)|j is a child of i in T}

If using τ(i) energy, node i is able to reach any descendents other than its children, then these descendents

are promoted in the broadcast tree T and become additional children of i.

The MST (minimum spanning tree) (this is the BLiMST heuristic of [62] augmented with a sweep

pass) uses Prim’s algorithm [49] to construct a minimum-cost spanning tree (the cost of a spanning tree

is the sum of its edge weights). The constructed spanning tree is restructured by performing a sweep

over the nodes to reduce the total energy required by the tree.

The BIP (broadcast incremental power) heuristic (this is the BIP heuristic of [62, 63] augmented with

a sweep pass) begins with a tree T that comprises only the source node s. The remaining nodes are

added to T one node at a time. The next node u to add to T is selected so that u is a neighbor of a

node in T and e(T ∪ {u}) − e(T ) is minimum. Once the broadcast tree is constructed, a sweep is done

to restructure the tree so as to reduce the required energy.

The BIPPN (broadcast incremental power per node) heuristic (this is the node-based MST heuristic

of [63] augmented with a sweep pass) begins with a tree T that comprises only the source node s and

uses several rounds to grow T into a broadcast tree. To describe the growth procedure, we define

e(T, v, i), where v ∈ T , to be the minimum incremental energy (i.e., energy above the level at which v

must broadcast to reach its present children in T ) needed by node v so as to reach i of its neighbors

that are not in T (of course, only neighbors j such that ce(v) ≥ w(v, j) are to be considered). Let

R(T, v, i) = i/e(T, v, i). Note that R(T, v, i) is the inverse of the incremental energy needed per node

added to T . In each round of BIPPN, we determine v and i such that R(T, v, i) is maximum. Then,

to T , we add the i neighbors of v that are not in T and can be reached from v by incrementing v’s

broadcast energy by e(T, v, i). The i neighbors are added to T as children of v. Once the broadcast tree

is constructed, a sweep is done to restructure the tree so as to reduce the required energy.

Wan et al. [60] show that when w(i, j) = c∗rd, the MST and BIP heuristics have constant approxima-

tion ratios and that the approximation ratio for DSA is at least n/2. Park and Sahni [46] describe two

additional centralized greedy heuristics–MEN and BIPWLA–to construct minimum energy broadcast

trees. The second of these (BIPWLA) is an adaptation of the modified greedy algorithm proposed by

Guha and Khuller [21] for the connected dominating set problem.

The MEN (maximum energy node) heuristic attempts to use nodes that have more energy as non-leaf

nodes of the broadcast tree (note that when i is a non-leaf, re(i) < ce(i), whereas when i is a leaf,
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re(i) = ce(i)). In MEN, we start with T = {s}. At each step, we determine Q such that

Q = {u|u is a leaf of T and u has a neighbor j, j 6∈ T , for which w(u, j) ≤ ce(u)} (1)

From Q, we select the node u that has maximum energy ce(u). All neighbors j of u not already in T

and which satisfy w(u, j) ≤ ce(u) are added to T as children of u. This process of adding nodes to T

terminates when T contains all nodes of G (i.e., when T is a broadcast tree). Finally, a sweep is done to

restructure the tree so as to reduce the required energy.

The BIPWLA (broadcast incremental power with look ahead) heuristic is an adaptation of the look

ahead heuristic proposed in [21] for the connected dominating set problem. This heuristic also may be

viewed as an adaptation of BIPPN. In BIPWLA, we begin with a tree T that comprises the source node

s together with all neighbors of s that are reachable from s using ce(s) energy. Initially, the source node

s is colored black, all other nodes in T are gray and nodes not in T are white. Nodes not in T are added

to T in rounds. In a round, one gray node will have its color changed to black and one or more white

nodes will be added to T as gray nodes. It will always be the case that a node is gray iff it is a leaf of

T , it is black iff it is in T but not a leaf, it is white iff it is not in T . In each round, we select one of

the gray nodes g in T ; color g black; and add to T all white neighbors of g that can be reached using

ce(g) energy. The selection of g is done in the following manner. For each gray node u ∈ T , let nu be

the number of white neighbors of u reachable from u by a broadcast the uses ce(u) energy. Let pu be the

minimum energy needed to reach these nu nodes by a broadcast from u. Let,

A(u) = {j|w(u, j) ≤ ce(u) and j is a white node}

We see that nu = |A(u)| and pu = max{w(u, j)|j ∈ A(u)}.

For each j ∈ A(u), we define the following analogous quantities

B(j) = {q|w(j, q) ≤ ce(j) and q is a white node}

nj = |B(j)|

pj = max{w(j, q)|q ∈ B(j)}

Node g is selected to be the gray node u of T that maximizes

nu/pu + max{nj/pj|j ∈ B(u)}

Once the broadcast tree is constructed, a sweep is done to restructure the tree so as to reduce the

required energy.
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A localized distributed heuristic for MEBT that is based on relative neighborhood graphs has been

proposed by Cartigny, Simplot and Stojmenovic [6]. Wu and Dai [64] develop an alternative localized

distributed heuristic that uses k-hop neighborhood information.

In a real application, the wireless network will be required to perform a sequence B = b1, b2, · · · of

broadcasts. Broadcast bi will specify a source node si and a message length li. Assume, for simplicity,

that li = 1 for all i. For a given broadcast sequence B, the network lifetime is the largest i such

that broadcasts b1, b2, · · · , bi are successfully completed. The 6 heuristics of [62, 63, 46] may be used

to maximize lifetime by performing each bi using the broadcast tree generated by the heuristic (the

broadcast trees are generated in sequence using the residual node energies). However, since each of these

heuristics is designed to minimize total energy consumed by a single broadcast, it is entirely possible

that the very first broadcast depletes the energy in a node, making subsequent broadcasts impossible.

Singh, Raghavendra and Stepanek [51] propose a greedy heuristic for a broadcast sequence. The

source node broadcasts to each of its neighbors resulting in a 2-level tree T with the source as root. T

is expanded into a broadcast tree through a series of steps. In each step, a leaf of T is selected and its

non-tree network neighbors added to T . The leaf selection is done using a greedy strategy–select the leaf

for which the ratio (energy expended by this leaf so far)/(number of non-tree leaves) is minimum.

The critical energy, CE(T ), following a broadcast that uses the broadcast tree T is defined to be

CE(T ) = min{re(i, T )|1 ≤ i ≤ n}

Park and Sahni [46] suggest the use of broadcast trees that maximize the critical energy following each

broadcast. Let MCE(G, s) be the maximum critical energy following a broadcast from node s. For each

node i of G, define a(i) as below

a(i) = {ce(i) − w(i, j)|(i, j) is an edge of G and ce(i) ≥ w(i, j)}

Let l(i) denote the set of all possible values for re(i) following the broadcast. We see that

l(i) =

{

a(i) if i = s
a(i) ∪ {ce(i)} otherwise

Consequently, the sorted list of all possible values for MCE(G, s) is given by

L = sort(∪1≤i≤nl(i))

We may determine whether G has a broadcast tree rooted at s such that CE(T ) ≥ q by performing

either a breadth-first or depth-first search [49] starting at vertex s. This search is forbidden from using
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edges (i, j) for which ce(i) − w(i, j) < q. MCE(G, s) may be determined by performing a binary search

over the values in L [46].

Each of the heuristics described in [62, 63, 46] to construct a minimum energy broadcast tree may be

modified so as to construct a minimum energy broadcast tree T for which CE(T ) = MCE(G, s). For

this modification, we first compute MCE(G, s) and then run a pruned version of the desired heuristic.

In this pruned version, the use of edges for which ce(i)−w(i, j) < MCE(G, s) is forbidden. Experiments

reported in [46] indicate that this modification significantly improves network lifetime, regardless of which

of the 6 base heuristics is used. Lifetime improved, on average, by a low of 48.3% for the MEN heuristic

to a high of 328.9% for the BIPPN heuristic. The BIPPN heuristic modified to use MCE(G, s), as

above, results in the best lifetime.

3.3 Data Collection and Distribution

In the data collection problem, a base station is to collect sensed data from all deployed sensors. The data

distribution problem is the inverse problem in which the base station has to send data to the deployed

sensors (different sensors receive different data from the base station). In both of these problems, the

objective is to complete the task in the smallest amount of time. Florens and McEliece [17, 18] have

observed that the data collection and distribution problems are symmetric. Hence, once can derive an

optimal data collection algorithm from an optimal data distribution algorithm and vice versa. Therefore,

it is necessary to study just one of these two problems explicitly. In keeping with [17, 18], we focus on

data distribution.

Let S1, · · ·, Sn be n sensors and let S0 represent the base station. Let pi be the number of data

packets the base station has to send to sensor i, 1 ≤ i ≤ n. p = [p1, p2, · · · , pn] is the transmission vector.

We assume that the distribution of these packets to the sensors is done in a synchronous time-slotted

fashion. In each time slot, an Si may either receive or transmit (but not both) a packet. To facilitate

the transmission of the packets, each Si has an antenna whose range is r. In the unidirectional antenna

model, Si receives a packet only if that packet is sent in its direction from an antenna located at most r

away. Because of interference, a transmission from Si to Sj is successful iff the following are true:

1. j is in range, that is d(i, j) ≤ r, where d(i, j) is the distance between Si and Sj

2. j is not, itself, transmitting in this time slot

3. There is no interference from other transmissions in the direction of j. Formally, every Sk, k 6= i,

that is transmitting in this time slot in the direction of Sj is out of range. Here, out of range means
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d(k, j) ≥ (1 + δ)r, where δ > 0 is an interference constant.

In the omnidirectional antenna model, a packet transmitted by an Si is received by all Sj (regardless

of direction) that are in the antenna’s range. The constraints on successful transmission are the same

as those for the unidirectional antenna model except that all references to “direction” are dropped. Our

objective is to develop an algorithm to complete the specified data distribution using the fewest number

of time slots. A related data gathering problem for wireless sensor networks is considered in [71].

3.3.1 Unidirectional Antenna Model

Florens and McEliece [17] develop an efficient algorithm to distribute data in a tree network using the

fewest number of time slots. This algorithm is an extension of their data-distribution algorithm for a

line network. We look only at the details of the line-network algorithm here. In a line network, S0, · · ·,

Sn are uniformly spaced on a straight line as in Figure 9. The base station, S0 is at the left end of the

line and the spacing is g. We assume that (1 + δ)r/2 ≤ g ≤ r. Hence, when Si transmits a packet to its

right, the packet can be received by Si+1 but not by Si+2.

S 0 S 1 S 2 S 3

g

Figure 9: A 3-sensor line network, S0 is the base station

Consider the transmission vector [2, 0, 0], which requires 2 packets be sent to S1 and 0 to the remaining

sensors. This transmission may be completed in 2 time slots. S0 sends a packet in each of these two time

slots to S1. The transmission vector [0, 2, 0] requires 4 time slots. In the first, S0 sends the first packet

to S1. In the second time slot only one of S0 and S1 may transmit as if both transmit, then S1 will

need to receive (from S0) and send (to S1) in the second time slot. This violates the restriction that a

sensor cannot receive and send in the same time slot. To avoid buffering problems at a sensor, we adopt

a transmission discipline in which a packet is routed in consecutive slots until it reaches its destination.

Adhering to this discipline requires that S1 transmit, in slot 2, the packet it received in slot 1. So, in

slot 2, the base station S0 is idle. The remaining packet that is to be sent to S2 is sent in slots 3 and 4.

Notice that [2, 0, 1] can be done is 4 slots–in slot 1 S0 sends to S1, in slot 2 S1 sends to S2, in slot 3 S0

sends to S1 and S2 sends to S3, and in slot 4 S0 sends to S1.
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Step 1: [Transmit the packets for Sn, · · ·, S2]
Transmit the packets for Sn, · · ·, S2, in this order.
For this transmission, use slots 2j − 1, 1 ≤ j ≤ t, where t =

∑n
l=2 pl.

The base station makes no transmission in slots 2j, 1 ≤ j ≤ t.

Step 2: [Transmit S1’s packets]
The packets destined for S1 are transmitted in slots 2t < j ≤ 2t + p1.

Figure 10: Base station algorithm of [17] for unidirectional antennas

With the no buffering discipline it is only the base station that has to make a decision for each time

slot. If a sensor receives a packet that is destined for a sensor further down the line, it simply retransmits

this packet in the next time slot. From our simple examples, it follows that the base station can transmit

a packet in slot i + 1 iff it either did not transmit a packet in slot i or the packet transmitted in slot i

was destined for S1. This feasibility constraint coupled with the greedy strategy to transmit packets in

non-increasing order of destination distance results in the greedy base-station algorithm of Florens and

McEliece [17] (Figure 10).

Let L(p) be the last slot in which any of the Sis transmits a packet when the base station algorithm

of Figure 10 is used. Florens and McEliece [17, 19] have shown that

L(p) = max
1≤i≤n

{i − 1 + Pi + 2
∑

i+1≤j≤n

pj}

and that this is the smallest possible value for L(p) over all feasible packet distribution strategies. Hence,

the greedy algorithm of Figure 10 is an optimal distribution algorithm. The optimality of the greedy

algorithm holds even if sensors are permitted to buffer packets destined for other sensors.

Notice that the transmission schedule for the data distribution task defined by p may be converted

into a data collection schedule with the same L(p) value (for the data collection problem, pi is the number

of packets that the base station is to collect from the base station from Si). As noted in [17] each data

distribution transmission from Si to Si+1 in time slot j becomes a data collection transmission from Si+1

to Si in time slot L(p) + 1 − j.

3.3.2 Omnidirectional Antenna Model

The greedy unidirectional-antenna line-network algorithm of Figure 10 may be modified to obtain an

optimal distribution algorithm for a line network that employs omnidirectional antennas (Florens and

McEliece [18]). This modified line-network algorithm may then be extended to obtain an optimal dis-

tribution algorithm for trees [18]. Florens and McEliece [18] also propose a distribution algorithm for
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Step 1: [Transmit the packets for Sn, · · ·, S3]
Transmit the packets for Sn, · · ·, S3, in this order.
For this transmission, use slots 3j − 2, 1 ≤ j ≤ t, where t =

∑n
l=3 pl.

The base station makes no transmission in slots 3j and 3j − 1, 1 ≤ j ≤ t.

Step 2: [Transmit S2’s packets]
The packets destined for S2 are transmitted in slots 3t + 2j − 1, 1 ≤ j ≤ p2.
The base station makes no transmission in slots 3t + 2j, 1 ≤ j ≤ p2.

Step 3: [Transmit S1’s packets]
The packets destined for S1 are transmitted in slots 3t + 2p2 < j ≤ 3t + 2p2 + p1.

Figure 11: Base station algorithm of [18] for omnidirectional antennas

general networks. This distribution algorithm is within a factor 3 of optimal.

As we did for the unidirectional antenna model, we consider only the case of line networks here.

Consider the line network of Figure 9. We make the same assumptions as we did for the unidirectional

model–synchronous time-slotted transmissions, a sensor cannot transmit and receive a packet in the same

slot, and sensors do not buffer packets destined for other sensors. The unidirectional-antenna distribution

strategy for p = [2, 0] and p = [0, 2] may be used for the omnidirectional-antenna case as well. However,

the unidirectional strategy for p = [2, 0, 1] fails when applied to the case of omnidirectional antennas

because of interference. In slot 3 of the unidirectional strategy, both S0 and S2 transmit a packet. Since

S1 is within range of both S0 and S2 (when omnidirectional antennas are used), the interference at S1

causes the transmission from S0 to S1 to fail. In fact every successful distribution strategy for [2, 0, 1]

must use at least 5 slots when the Si employ omnidirectional antennas. A possible 5-slot distribution

strategy is to use the first 3 slots to send S3’s packet (from S0 to S1 to S2 to S3) and then use slots 4

and 5 to send the 2 packets for S1.

With the no buffering constraint, each sensor is required to forward, in the next slot, each packet it

receives that is destined for another sensor. Only the base station has flexibility in operation. So, we

need only develop a base-station algorithm that determines the slot in which each packet (regardless of

its destination) is transmitted to S1. Because of the omnidirectional interference properties, we see that

packets destined for S1 may be transmitted in successive slots, those destined for S2 may be transmitted

in alternate slots, and those destined for Si, i > 2 may be transmitted only in every third slot. Coupling

this observation with the greedy strategy of transmitting packets in non-increasing order of destination

distance results in the greedy algorithm of Figure 11 [18]. The optimality of this algorithm is established

in [18].
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4 Sensor Fusion

The reliability of a sensor system is enhanced through the use of redundancy. That is, each point or

region is monitored by multiple sensors. In a redundant sensor system, we are faced with the problem

of fusing or combining the data reported by each of the sensors monitoring a specified point or region.

Suppose that k > 1 sensors monitor point p. Let mi, 1 ≤ i ≤ k be the measurement recorded by sensor

i for point p. These k measurements may differ because of inherent differences in the k sensors, the

relative location of a sensor with respect to p, as well as because one or more sensors is faulty. Let V be

the real value for p. The objective of sensor fusion is to take the k measurements, some of which may

be faulty, and determine either the correct measurement V or a range in which the correct measurement

lies.

The sensor fusion problem is closely related to the Byzantine agreement problem that has been

extensively studied in the distributed computing literature [34, 14]. Brooks and Iyengar [3] have proposed

a hybrid distributed sensor-fusion algorithm that is a combination of the optimal region algorithm of

Marzullo [41] and the fast convergence algorithm proposed by Mahaney and Schneider [38] for the inexact-

agreement version of the Byzantine generals problem. Let δi be the accuracy of sensor i. So, as far as

sensor i is concerned, the real value at p is mi ± δi (i.e., the value is in the range [mi − δi,mi + δi]). Each

sensor needs to compute a range in which the true value lies as well as the expected true value. For

this computation, each sensor sends its mi and δi values to every other sensor. Suppose that sensor i is

non-faulty. Then every non-faulty processor receives the correct values of mi and δi. Faulty sensors may

receive incorrect values. Similarly, if processor i is faulty, the remaining processors may receive differing

values of mi and δi. Figure 12 gives the Brooks-Iyengar hybrid algorithm [3]. This algorithm is executed

by every sensor using as data the measurement ranges received from the remaining sensors monitoring

point p plus the sensor’s own measurement.

As an example computation, suppose that 4 sensors S1, S2, S3 and S4 monitor p and that the

4 measurement ranges are [2, 6], [3, 8], [4, 10] and [1, 7]. To perform the computation specified by the

Brooks-Iyengar hybrid algorithm, the four sensors communicate their measurement ranges to one another.

Assume that S4 is the only faulty sensor. So, sensors S1, S2 and S3 correctly communicate their

measurement to one another. However, these sensors may receive differing readings from S4. Likewise,

S4 may record different receptions from S1, S2 and S3. Let the S4 measurement received by S1, S2 and

S3 be [1, 3], [2, 7], [7, 12], respectively. The V and range computed at each of the 4 sensors are given in

Figure 13. Note that k = 4 and τ = 1.
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Step 1: [Determine range for real value V ]
Let [li, ui, ni], 1 ≤ i ≤ q be such that

1. li ≤ ui ≤ li+1, 1 ≤ i < q and lq ≤ uq. The [li, ui]’s define disjoint measurement intervals.

2. ni ≥ k − τ gives the number of sensors whose measurement range includes [li, ui].

3. If x is a measurement value not included in one of the [li, ui] intervals, x is included in the
measurement interval of fewer than k − τ sensors.

V is estimated to lie in the range [l1, uq].

Step 2: [Estimate V ]
V is estimated to be the weighted average

∑q
i=1[(li + ui) ∗ ni]/[2 ∗

∑q
i=1 ni].

Figure 12: Brooks-Iyengar hybrid algorithm to estimate V and range for V

S1: The ranges recorded at S1 are [2, 6], [3, 8], [4, 10] and [1, 3]. There is only one tuple [li, ui, ni] that
satisfies the Step 1 criteria. This tuple is [4, 6, 3]. S1 estimates the range for V as [4, 6] and V = 5.

S2: The recorded ranges are [2, 6], [3, 8], [4, 10] and [2, 7]. The tuples are [3, 4, 3], [4, 6, 4] and [6, 7, 3].
S2 estimates the range for V as [3, 7] and V = 5.

S3: The recorded ranges are [2, 6], [3, 8], [4, 10] and [7, 12]. The tuples are [4, 6, 3] and [7, 8, 3]. S3
estimates the range for V as [4, 8] and V = 6.25.

S4: Since this sensor is faulty, it’s computation is unreliable. It may compute any range and value for
V .

Figure 13: Example for Brooks-Iyengar hybrid algorithm

5 Conclusion

We have reviewed some of the recent advances made in the development of algorithms for wireless sensor

networks. This paper has focussed on sensor deployment and coverage, routing (specifically, unicast and

multicast) and sensor fusion. Both centralized and distributed localized algorithms have been considered.
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