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The gods to-day stand friendly, that we may,

Lovers in peace, lead on our days to age!

But, since the affairs of men rest still incertain

Let’s reason with the worst that may befall.

William Shakespeare

Julius Caesar, Act 5 Scene 1.

Dedicated to those who have suffered the worst case.
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Preface

The conventional approach to decisions under uncertainty is based on

expected value optimization. The main problem with this concept is that it

neglects the worst-case effect of the uncertainty in favor of expected values.

While acceptable in numerous instances, decisions based on expected value

optimization may often need to be justified in view of the worst-case scenario.

This is especially important if the decision to be made can be influenced by

such uncertainty that, in the worst case, might have drastic consequences on

the system being optimized. On the other hand, given an uncertain effect, some

worst-case realizations might be so improbable that dwelling on them might

result in unnecessarily pessimistic decisions. Nevertheless, even when deci-

sions based on expected value optimization are to be implemented, the worst-

case scenario does provide an appropriate benchmark indicating the risks.

This book is intended for the dual role of proposing worst-case design for

robust decisions and methods and algorithms for computing the solution to

quantitative decision models. Actually, very little space is devoted to justify

worst-case design. This is implicit in the optimality condition of minimax,

discussed in Chapter 1. In Chapter 6, the robustness of worst-case optimal

strategies are considered for discrete scenarios. Subsequent chapters illustrate

the property. Basically, the performance of the minimax optimal strategy is

noninferior for any scenario, and better for those other than the worst case. As

such, worst-case design needs no further justification as a robust strategy than

a deterministic optimal strategy requires in view of suboptimal alternatives.

In the book, we consider methods for optimal decisions which take account

of the worst-case eventuality of uncertain events. The robust character of

minimax, mentioned above, is central to the usefulness of the strategies

discussed in this book. The discrete minimax strategy ensures a guaranteed

optimal performance in view of the worst case and this is assured for all

scenarios: if any scenario, other than the one corresponding to the worst

case is realized, performance is assured to improve. The continuous minimax

strategy provides a guaranteed optimal performance in view of a continuum of

scenarios. If this continuum is taken as scenarios varying between upper and

lower bounds, performance is assured over the worst case defined between

upper and lower bounds. As such, continuous minimax is a forecaster’s dream

as it provides the opportunity for specifying forecasts defined over a range,



rather than point forecasts. Despite all this, however, we stress that these are

merely computational tools. If the forecaster tries to specify too many discrete

forecasts, in an attempt to cover most possibilities, discrete minimax may

yield too pessimistic strategies or even run into numerical, or computational,

problems due to the resulting numerous scenarios. Similarly, as the upper and

lower bounds on a range forecast get wider, to provide coverage to a wider set

of possibilities, the minimax strategy may become pessimistic. Thus, scenar-

ios have to be chosen with care, among genuinely likely values. The minimax

strategy will then answer the legitimate question of what the best strategy

should be, in view of the worst-case.

The stochastic characterization of uncertainty relies on the average or

expected performance of the system in the presence of uncertain effects.

The book provides the means for taking account of the effect of the worst

case which would, in general, not be reflected in average or expected perfor-

mance evaluation of the system. While expected performance optimization is

often adequate, it is the realization of the worst case that mostly causes the

failure of systems. Hence, all decisions need to take account of the worst case

and the expected performance of the system. Through its inherent pessimism,

the minimax strategy may lead to a serious deterioration of performance.

Alternatively, the realization of the worst-case scenario may result in an

unacceptable performance deterioration for the strategy based on expected

value optimization. Neither minimax nor expected value optimization provide

a substitute to wisdom. At best, they can be regarded as risk management tools

for analyzing the effects of uncertain events.

The book is intended for graduate students, researchers in minimax and for

practitioners of risk management in economics, engineering design, finance,

management science, operations research. After an introductory Chapter 1 in

which the basic concepts and fundamental results used later in the book are

discussed, we have devoted Chapters 2–7 to algorithms and Chapters 8–11 to

risk management applications in finance. Specifically, we survey continuous

minimax algorithms in Chapter 2 and discuss the solution of a subclass, the

saddle point problem, in Chapter 3. A quasi-Newton algorithm for continuous

minimax is developed in Chapter 4 which has desirable convergence proper-

ties and has proved to be successful in practical applications. The latter is

considered in Chapter 5 particularly from the point of view of justifying the

practical use of a simplified version of the algorithm in Chapter 4. The discrete

minimax problem is introduced in Chapter 6 and a quasi-Newton algorithm for

the nonlinearly constrained problem is developed in Chapter 7. In Chapter 8,

the application of continuous minimax to options and hedging is discussed.

The application of mainly the discrete minimax problem to portfolio optimi-

zation is explored in Chapter 9. The worst-case analysis of the asset-liability

management problem and exchange rate scenarios are considered in Chapters

10 and 11, respectively.
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The focus of the discussion is static optimization. Specific problems of

dynamical systems are omitted. For linear dynamical systems, the interested

reader might wish to consult the H1 control literature. Among other items

omitted, we are acutely aware of the absence of engineering applications.

Worst-case design in engineering is perhaps the most intuitively obvious

area in which minimax can yield tangible benefits. This is not because of

lack of trying to get several members of the UK manufacturing sector inter-

ested, rather the reluctance of some of those contacted to embark on new

concepts and developments. Fortunately, EPSRC has recognized the potential

of the area by funding a new research project on the subject. The results of this

will be reported in future research papers.

Throughout the development of the risk management concepts in finance,

the authors have benefited from extensive discussions with Michael Selby. We

are indebted to Marc Hendriks for strong support from a practitioner’s point of

view and to Rudi Bogni for initially validating the usefulness of the approach.

Last, but by no means least, Robin Becker has provided highly useful critical

evaluations of worst-case design.

Berç Rustem (br@doc.ic.ac.uk)

Melendres Howe (mhowe@adb.org)
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Chapter 1

Introduction to minimax

We consider the problem of minimizing a nondifferentiable function, defined

by the maximum of an inner function. We refer to this objective function as

themax-function. In practical applications of minimax, the max-function takes

the form of a maximized error, or disutility, function. For example, portfolio

selection models in finance can be formulated in a scenario-based framework

where the max-function takes the form of a maximized risk measure across all

given scenarios. To solve the minimax problem, algorithms requiring deriva-

tive information cannot be used directly and the usual methods that do not

require gradients are inadequate for this purpose. Instead of gradients, we need

to consider generalized gradients or subgradients to formulate smooth meth-

ods for nonsmooth problems.

The minimax notation is introduced with relevant concepts in convex analy-

sis and nonsmooth optimization. We consider the basic theory of continuous

minimax, characterized by continuous values of maximizing and minimizing

variables, and associated optimality conditions. These need to be satisfied at

the solution generated by all algorithms. The problem of discrete minimax,

with continuous minimization but discrete maximization variables, and related

conditions are considered in Chapters 6 and 7.

1 BACKGROUND AND NOTATION

Equation and section numbering follow the following rule: (1.2.3) refers to

Equation 3 in Chapter 1, Section 2. In Chapter 1 only, this is referred to as

(2.3), elsewhere as (1.2.3). Chapter 1, Section 2 is referred to in Chapter 1 only

as Section 2, elsewhere as Section 1.2.

In this book, we consider strategies, algorithms, properties and applications

of worst-case design problems. When taking decisions under uncertainty, it is

desirable to evaluate the best policy in view of the worst-case uncertain effect.

Essentially, this entails minimax formulations in which the best decision and

the worst case is determined simultaneously. In this sense, optimality is

defined over all possible values of the uncertain effects as opposed to certain

likely realizations. Worst-case design is useful in all disciplines with rival

representations of the same system. For example, in economics Chow



(1979) and Becker et al. (1986) consider rival macroeconomic models of the

same economy. A similar approach to resource allocation is discussed in Pang

and Yu (1989). The robustness property is explored in Hansen et al. (1998). In

finance, Howe et al. (1994, 1996), Dert and Oldenkamp (1997), Howe and

Rustem (1997), Ibanez (1998) and Rustem et al. (2000) consider worst-case

decisions in options pricing and portfolio optimization. In engineering, Ben-

Tal and Nemirovski (1993, 1994) discuss truss topology design under rival

load scenarios. In control systems, H1-control theory is essentially an equiva-

lent minimax formulation for the uncertainties in the system and this aspect is

explored in Başar and Bernhard (1991). Rival representations can be charac-

terized either in terms of a discrete choice, such as two or more models of the

same system, or as values from a continuous range, such as all the values an

uncertain variable may take within an upper and lower bound.

The worst-case design or minimax problem can thus be formulated as

min
x[Rn

max
y[Y

f ðx; yÞ: ð1:1Þ

where x [ R
n is a column vector of real numbers, denoting the decision

variables in the n-dimensional Euclidian space. The vector y represents the

uncertain variables and is defined over the feasible set Y. An equivalent

problem to the above formulation is given by

min
x[Rn

FðxÞ

where

FðxÞ ¼ max
y[Y

f ðx; yÞ

is the max-function. If Y is a set of continuous variables, then the problem is

known as continuous minimax. An example for such a set is

Y ¼ y [ R
m j y‘i

# yi # yUi
; i ¼ 1;…;m

n o

where y‘i
and yUi

are the lower and upper bounds on the ith element of y.

Algorithms for this problem are discussed in detail in Chapters 2–5.

IfY consists of a discrete set of values, the corresponding problem is known

as discrete minimax. We consider equality and inequality constraints on x in

particular for the case of discrete min-max. The problem is expressed as

min
x

max
i[ 1;2;…;mf g

f iðxÞ j gðxÞ ¼ 0; hðxÞ # 0
n o

where f
iðxÞ is the value corresponding to the ith member of the discrete set

{1; 2;…;m} over which the maximum is evaluated and g; h are vectors of

equality and inequality constraints. Properties of, and algorithms for, this

formulation are considered in Chapters 6 and 7.

CHAPTER 12



In this section, we review some of the basic concepts used elsewhere in the

book. Some of the more preliminary material is covered in Comments and

Notes (CN 1–CN 11) at the end of the chapter. We start by considering the

closed line segment joining x and z, denoted by ½x; z�,
½x; z� ; w [ R

n j w ¼ lx1 ð12 lÞz; 0 # l # 1f g ð1:2Þ
and by ðx; zÞ the corresponding open line segment.

Convexity is invoked extensively in minimax. We define this property for

sets and functions. A set C , R
n is called convex if ½x; z� , C for all x; z [ C .

The linear combination

XJ

j¼1

ljxj

is called a convex combination of vectors x1;…; xJ [ R
n if

lj $ 0; j ¼ 1;…; J and
XJ

j¼1

lj ¼ 1:

The convex hull of a set C , R
n, denoted by convC , is the set of all convex

combinations of points in C.
Let C be a convex set. A function f : C , R

n ! R
1 is said to be convex if

f ðlx1 ð12 lÞzÞ # lf ðxÞ1 ð12 lÞf ðzÞ ð1:3Þ
for x; z [ C and l [ ð0; 1Þ. If strict inequality holds for x – z and l [ ð0; 1Þ,
then f is strictly convex. A function defined on C is said to be (strictly) concave

if the function f ¼ 2g is (strictly) convex.

Lemma 1.1 Let f ðxÞ [ C
1
(see CN 3). Then, f is convex over a convex set C

if and only if

f ðzÞ $ f ðxÞ1 7f ðxÞðz2 xÞ; ;z; x [ C :

The function is strictly convex if this inequality is strict.

Proof. Let f be convex. Then, we have

f ðlx1 ð12 lÞzÞ # lf ðxÞ1 ð12 lÞf ðzÞ; ;l [ ½0; 1�
and hence

f ðlx1 ð12 lÞzÞ2 f ðzÞ
l

# f ðxÞ2 f ðzÞ:

This expression yields the required inequality for l ! 0. Let

f ðzÞ $ f ðxÞ1 7f ðxÞðz2 xÞ; ;z; x [ C

INTRODUCTION TO MINIMAX 3



and

x ¼ lx1 1 ð12 lÞy
for some x1 [ C and l [ ½0; 1�. We have the inequalities

f ðx1Þ $ f ðxÞ1 7f ðxÞðx1 2 xÞ

f ðyÞ $ f ðxÞ1 7f ðxÞðy2 xÞ:
Multiplying the first of these inequalities by l and the second by (1 2 l ) and

adding yields

lf ðx1Þ1 ð12 lÞf ðyÞ $ f ðxÞ1 7f ðxÞðlx1 1 ð12 lÞy2 xÞ:
Substituting x ¼ lx1 1 (1 2 l )y yields

l f ðx1Þ1 ð12 lÞf ðyÞ $ f ðlx1 1 ð12 lÞyÞ: A

Lemma 1.2 Let f ðxÞ [ C
2. Then, f is convex (strictly convex) over a convex

set C containing an interior point if and only if the Hessian matrix 72f ðxÞ of
f is positive semi-definite (positive definite) (see CN 4) throughout C.

Proof. Using the second order Taylor expansion of f (see CN 5), we have

f ðyÞ ¼ f ðxÞ1 k7f ðxÞ; y2 xl1
1

2
ky2 x; 72

f ðx1 lðy2 xÞÞðy2 xÞl

for some l [ ½0; 1� (k·,·l is defined in CN 2). If the Hessian is positive semi-

definite everywhere, we have

f ðyÞ $ f ðxÞ1 k7f ðxÞ; y2 xl ð1:4Þ
and, in view of Lemma 1.1, this establishes the convexity of f.

We show that if 72
f ðxÞ is not positive semi-definite for some x [ C , then f

is not convex. Let 72f ðxÞ not be positive semi-definite for some x [ C . By

continuity of 72
f ðxÞ it can be assumed, without loss of generality that x is an

interior point of C. There is a y [ C such that

kx2 y;72f ðxÞðx2 yÞl , 0:

Again, by continuity of the Hessian, y may be selected such that

kx2 y;72f ðx1 lðy2 xÞÞðx2 yÞl , 0; ;l [ ½0; 1�:
In view of the Taylor expansion above, (1.4) does not hold and by Lemma 1.1,

f is not convex. A

An important property of convexity of f is the uniqueness of its minimum, as

stated in the following result.

CHAPTER 14



Lemma 1.3 Let f be a convex function defined over the convex set C. Then,
any local minimum of f is also a global minimum (see CN 11).

Proof. Suppose that x1 is a local minimum. Suppose also that there is another

point x2 [ C , x1 – x2, with f ðx2Þ , f ðx1Þ. Then, for ax1 1 ð12 aÞx2,
a [ ð0; 1Þ, we have

f
�
a x1 1 ð12 aÞx2

�
# a f ðx1Þ1 ð12 aÞf ðx2Þ , f ðx1Þ

which contradicts that x1 is a local minimum point. A

If f ðlxÞ ¼ lf ðxÞ for all l $ 0, then f is said to be positively homogeneous. If

f ðx1 wÞ # f ðxÞ1 f ðwÞ; ;x;w [ R
n

then f is subadditive. A positively homogeneous subadditive function is

always convex. A convex function f : Rn ! R
1 is locally Lipschitz contin-

uous (see CN 8) at x, for any x [ R
n (Makela and Neittaanmaki, 1992, p. 8,

Theorem 2.1.1).

The concept of linear (in)dependence of a set of vectors is used extensively,

in particular for the analysis and characterization of the gradients of the max-

function, in conjunction with Caratheodory’s Theorem which we also cover in

this section. We commence with a definition of linear independence.

1.1 Linear Independence

A set of vectors {x1;…; xr} in R
n is linearly independent if and only if the

equality

Xr

j¼1

ajxj ¼ 0 ð1:5Þ

is achieved for aj ¼ 0, j ¼ 1;…; r. If r $ n1 1, any vectors x1;…; xr inR
n are

linearly dependent. Hence there exist numbers b1
;…;br such that

Xr

j¼1

jbjj . 0 and
Xr

j¼1

bj
xj ¼ 0: ð1:6Þ

We note that b j can be positive or nonpositive. If r $ n1 2, then any vectors

x1;…; xr in R
n are linearly dependent with (1.6) including the additional

condition that

Xr

j¼1

bj ¼ 0: ð1:7Þ

To verify that (1.7) holds for r ¼ n1 2, we represent

INTRODUCTION TO MINIMAX 5



Xn1 2

j¼1

bj
xj ¼ 0

as

Xn1 1

j¼1

bjxj 1 bn12xn12 ¼ 0: ð1:8Þ

Since r ¼ n1 2 . n1 1, xn12 can be represented as a linear combination of

{x1;…; xn11} as

Xn1 1

j¼1

ajxj ¼ xn12:

We let

aj ¼ bj

Xn1 1

j¼1

bj

which yields

Xn1 1

i¼1

bi
xi

Xn1 1

j¼1

bj

¼ xn12:

Returning to (1.8),

Xn1 1

i¼1

bi
xi 1 bn12

Xn1 1

i¼1

bi
xi

Xn1 1

j¼1

bj

8>>>><
>>>>:

9>>>>=
>>>>;
¼ 0

which reduces to

Xn1 1

j¼1

bj
1 bn12 ¼ 0 ¼

Xn1 2

j¼1

bj
:

Thus, (1.7) holds for r ¼ n1 2. The argument can be straightforwardly

extended to r . n1 2.

An equivalent, and shorter, demonstration of (1.7) is done by considering

the n1 1 dimensional vectors

xk ¼ x
k
1;…; x

k
n; 1

h i
T
[ R

n11
; k ¼ ½1;…; r�; r $ n1 2

CHAPTER 16



where xki is the ith element, i ¼ 1;…; n, of xk. There are numbers b k,Pr
k¼1 jbkj . 0, satisfying Xr

k¼1

bk
xk ¼ 0

which is equivalent to (1.7).

1.2 Tangent Cone, Normal Cone and Epigraph

The tangent cone of a convex set C, at x [ C , is given by

ZC ðxÞ ; y [ R
n j ’ti # 0 and yi ! y with ðx1 t

i
yiÞ [ C

n o
: ð1:9Þ

The normal cone of the convex set C, at x [ C, is given by

ẐCðxÞ ; z [ R
n j ky; zl # 0;;y [ ZCðxÞf g: ð1:10Þ

The epigraph of a function f : R
n ! R

1
is

epi f ; ðx; rÞ [ R
n
£R

1 j f ðxÞ # r
n o

: ð1:11Þ
The epigraph of a convex function f : Rn ! R

1 is a closed convex set (Makela

and Neittaanmaki, 1992, Theorem 2.3.7).

1.3 Subgradients and Subdifferentials of Convex Functions

The subdifferential of a convex function f : R
n ! R

1
, at x [ R

n
, is the set

2f ðxÞ ; g [ R
n j f ðx 0Þ $ f ðxÞ1 g

Tðx 0 2 xÞ;;x 0 [ R
n

n o
: ð1:12Þ

Each element g [ 2f ðxÞ is called a subgradient of f at x. The directional

derivative in the direction v [ R
n satisfies

f
0ðx; vÞ ¼ lim

t # 0
f ðx1 tvÞ2 f ðxÞ

t
: ð1:13Þ

More generally, the Clarke (1983) generalized derivative of a locally

Lipschitz function f at x in the direction v [ R
n is defined by

f
0ðx; vÞ ; lim sup

y!x

t # 0

f ðy1 tvÞ2 f ðyÞ
t

: ð1:14Þ

The following important result is used to define a subgradient of the max-

function where the maximizer is nonunique, in terms of the subdifferential.

Theorem 1.1 (Caratheodory’s Theorem) Let G be a set in the finite dimen-

sional Euclidian space, G # R
n. Then, any vector

INTRODUCTION TO MINIMAX 7



g [ convG

may be expressed as a convex combination of at most n1 1 vectors in G.

Proof. This result is widely known (e.g., Demyanov and Malozemov, 1974,

Appendix 2, Lemma 1.1). Its proof does provide some insight for the subse-

quent discussion. Consider the definition of the convex hull of G

convG ¼ x ¼
Xr

k¼1

akxk [ G; xk [ G; ak
$ 0;

Xr

k¼1

ak ¼ 1; r ¼ 1; 2;…

( )
:

ð1:15Þ
Suppose that some x [ G cannot be represented by (1.15) with less than n1 2

terms (after those with ak ¼ 0 have been discarded), that is, r $ n1 2 in any

representation

x ¼
Xr

k¼1

ak
xk; xk [ G; ak

. 0;
Xr

k¼1

ak ¼ 1: ð1:16Þ

From the discussion on linear independence, if r $ n1 2, there exist numbers

b k,
Pr

k¼1 jbkj . 0, such that

Xr

k¼1

bk
xk ¼ 0;

Xr

k¼1

bk ¼ 0: ð1:17Þ

Let

e ¼ min
{kjbk.0}

ak

bk
. 0; ak ¼ ak

2 ebk
; k [ {1;…; r}:

Vector x can be expressed as

x ¼
Xr

k¼1

ak
xk;

Xr

k¼1

ak ¼ 1: ð1:18Þ

To show the equivalence between (1.16) and (1.18), we expand (1.18) to yield

x ¼
Xr

k¼1

ðak
2 ebkÞxk;

Xr

k¼1

ðak
2 ebkÞ ¼ 1

x ¼
Xr

k¼1

ak
xk 2 e

Xr

k¼1

bk
xk;

Xr

k¼1

ak
2 e

Xr

k¼1

bk ¼ 1:

In view of (1.17), we have

x ¼
Xr

k¼1

ak
xk;

Xr

k¼1

ak ¼ 1:
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Considering positive and nonpositive b k separately, we see that ak
$ 0,

k [ {1;…; r}. At least one ak must vanish and this corresponds to subscript

k [ k

����
ak

bk
¼ e

( )
:

Thus, x is a convex combination of at most r 2 1 vectors of G. Iterating this

procedure sufficiently many times, we reach a representation r # n1 1,

(1.17) is no longer satisfied, and we have the desired result. A

We invoke Caratheodory’s Theorem in the context of the subdifferential

2FðxÞ ¼ convG

where

G ¼ 7x f ðx; yÞ j y ¼ argmax
y[Y

f ðx; yÞ
� �

and

convG ; g ¼
X
y

ay7x f ðx; yÞ j 7x f ðx; yÞ [ G; ay
$ 0;

X
y

ay ¼ 1

8<
:

9=
;:

ð1:19Þ
Using Caratheodory’s Theorem, g can be characterized by the convex combi-

nation of at most n1 1 vectors 7x f ðx; yÞ. To verify this, suppose that a

subgradient g [ 2FðxÞ ¼ convG has no representation of type (1.19), for

less than n1 2 vectors (after vectors ½7x f ðx; yÞ� with associated ay ¼ 0 are

discarded). Hence, r $ n1 2 in the representation

g ¼
X
y

ay7x f ðx; yÞ; 7x f ðx; yÞ [ G; ay
. 0;

X
y

ay ¼ 1:

From the discussion on linear dependence, because r $ n1 2, these exist

numbers b y such that
X
y

jbyj . 0 and
X
y

by7x f ðx; yÞ ¼ 0 and
X
y

by ¼ 0:

Setting e and ay as in the proof of Caratheodory’s Theorem, we have

g ¼
X
y

ay7x f ðx; yÞ;
X
y

ay ¼ 1:

Considering positive and nonpositive by separately, we see that ay
$ 0,

y ¼ 1;…; r, and at least one ay must vanish. Thus, g is a convex combination

of at most r 2 1 vectors of G. Iterating this procedure sufficiently many times,

we reach a representation with r # n1 1.
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2 CONTINUOUS MINIMAX

Consider the minimization of the real function FðxÞ given by

min
x[Rn

FðxÞ ð2:1Þ

where FðxÞ is the max-function introduced in Section 1.

FðxÞ ¼ max
y[Y

f ðx; yÞ ð2:2Þ

and Y is a bounded closed subset of Rm (see CN 7). We consider the case

when Y is a set of continuous values. Hence (2.2) is a continuous minimax

problem. In this chapter, and Chapters 2–5, we discuss various concepts,

characteristics and algorithms for continuous minimax. The discrete minimax

case is discussed in Chapters 6–7.

Let the set of maximizers at x be given by

YðxÞ ; yðxÞ [ Y j yðxÞ ¼ argmax
y[Y

f ðx; yÞ
( )

: ð2:3Þ

In the continuous case, considered henceforth, the function f ðx; yÞ is contin-
uous in x, y, and at least once continuously differentiable with respect to x.

Thus, FðxÞ is piecewise C
1, that is, Rn consists of regions inside which the

gradient 7FðxÞ exists and is continuous. At the boundary of the regions 7FðxÞ
jumps, although FðxÞ itself is continuous. This boundary corresponds to a

kink: a point where 7FðxÞ is nonunique.

Lemma 2.1 For a given direction d [ R
n, we have the equality

max
z[2FðxÞ

kd; zl ¼ max
{7x f ðx;yÞjy[YðxÞ}

kd;7x f ðx; yÞl: ð2:4Þ

Proof (Demyanov and Malozemov, 1974; Theorem 3.1, p. 195, Lemma 3.1, p.

60). A

The significance of Lemma 2.1 is that, when the maximal directional deri-

vative is evaluated, given d, it is not necessary to consider the entire convex

hull. This directional derivative can be determined just by using the informa-

tion on the subgradients that characterize the convex hull.

F(x) has a gradient whenever f ðx; yÞ is maximized by a single y. Differ-

entiability fails when y is not unique. The subdifferential of F(x) at x, denoted

by 2FðxÞ, is given by

2FðxÞ ¼ conv g j g ¼ 7FðxÞ ¼ 7x f ðx; yÞ; y [ YðxÞf g: ð2:5Þ
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(Rockafellar, 1981, Proposition 3H). This is also referred to as the Clarke

generalized gradient in Polak (1989).

The subdifferential is a nonempty convex compact set (see CN 7) which

reduces to the gradient in case F(x) has a unique derivative at x. The elements

of 2FðxÞ are called subgradients. As in (1.13) and (1.14), the directional

derivative F 0ðx; dÞ, is given by

F 0ðx; dÞ ¼ lim
t # 0

Fðx1 tdÞ2FðxÞ
t

: ð2:6Þ

(Demyanov and Malozemov, 1974, Theorem 2.1, p. 188). The directional

derivative is the support function of 2FðxÞ, that is,
F 0ðx; dÞ ¼ max

g[2FðxÞ
kg; dl: ð2:7Þ

(Polak, 1987, Definition 2.2.4). For a fixed x, F 0ðx; dÞ is convex in d. As such,

it has a subdifferential which is 2FðxÞ.
If x* is a local minimizer (see CN 11) of F, then the following statements

hold:

(i) F 0ðx; dÞ $ 0; ;d [ R
n

(ii) 0 [ 2FðxÞ,
(Polak, 1989, Theorem 5.1). Hence, the set X* of optimal points x* is char-

acterized by

X* ¼ x* [ R
n j 0 [ 2Fðx*Þf g: ð2:8Þ

3 OPTIMALITY CONDITIONS AND ROBUSTNESS OF MINIMAX

A fundamental condition for minimax is that, at the solution x*, we have

Fðx*Þ ¼ max
y[Y

f ðx*; yÞ $ f ðx*; yÞ; ;y [ Y:

The inequality simply indicates that the performance of the solution x* is

noninferior for any y. This is essentially the robust nature of minimax

which yields a guaranteed best lower-bound performance in view of the

worst-case. It is assured that this performance will improve if the worst-

case is not realized.

We discuss the necessary condition for problem (2.1) and the related Haar

condition.

Theorem 3.1 A necessary condition for FðxÞ to achieve its minimum on R
n

at x* is given by the inequality
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min
z[Rn

max
y[Yðx*Þ

2f ðx*; yÞ
2x

; z2 x*

� �
$ 0 ð3:1aÞ

If FðxÞ is convex on R
n, this condition is also sufficient.

Remark An equivalent condition to (3.1a) is

max
y[Yðx*Þ

2f ðx*; yÞ
2x

; d

� �
$ 0; ;d [ R

n ð3:1bÞ

which simply states that at the solution x*, there is no descent, or improvement,

direction in view of the maximizers at x*.

Proof (Demyanov and Malozemov, 1974, p. 191). To show the necessity of

this condition, let x* [ R
n be a minimum point of F(x) and suppose that (3.1)

fails to hold. There is thus a point z1 [ R
n such that

max
y[Yðx*Þ

2f ðx*; yÞ
2x

; z1 2 x*

� �
¼ 2r , 0: ð3:2Þ

The expression on the left of (3.1) is always negative, having failed (3.2).

Clearly from (3.2), z1 – x*. Let g1 [ R
n
be given by

g1 ¼
z1 2 x*

iz1 2 x*i
; ig1i ¼ 1:

Consider the linear approximation of F(x)

Fðx* 1 ag1Þ ¼ Fðx*Þ1 aF 0ðx; g1Þ1 oðag1Þ ð3:3Þ
(see CN 10) and the directional derivative (2.6) and (2.7), for some vector g [

R
n

F 0ðx; gÞ ; lim
a # 0

Fðx1 agÞ2FðxÞ
a

¼ max
y[YðxÞ

2f ðx; yÞ
2x

; g

� �
: ð3:4Þ

It follows from (3.2), (3.3) and (3.4) that

F 0ðx; g1Þ ¼
2r

iz1 2 x*i
: ð3:5Þ

Thus, for sufficiently small a , we have from (3.3) and (3.5)

Fðx* 1 ag1Þ # Fðx*Þ2
ar

2iz1 2 x*i
, F ðx*Þ: ð3:6Þ

Inequality (3.6) contradicts the assumption that x* is a minimum point ofFðxÞ,
since for all

a [ 0; iz1 2 x*i
� 	

the points x* 1 ag1 are in R
n.
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To establish sufficiency, let FðxÞ be convex on R
n and suppose that (3.1) is

satisfied at x* [ R
n. Suppose that x* is not a minimum point of FðxÞ on R

n.

Then there exists a point z1 [ R
n for which the inequality

Fðz1Þ , Fðx*Þ ð3:7Þ
holds. Clearly, we have z1 – x*. Setting again

g1 ¼
z1 2 x*

iz1 2 x*i
; ig1i ¼ 1

we evaluate

F 0ðx; g1Þ ¼ lim
a # 0

Fðx* 1 ag1Þ2Fðx*Þ
a

:

Since FðxÞ is convex, it follows that for b [ ½0; 1�,
F
�
x* 1 bðz1 2 x*Þ

� ¼ F
�
bz1 1 ð12 bÞx*

�

# bFðz1Þ1 ð12 bÞFðx*Þ

¼ Fðx*Þ1 b Fðz1Þ2Fðx*Þ
� 	

: ð3:8Þ
Hence, for a [ ½0; iz1 2 x*i�, we have

Fðx* 1 ag1Þ2Fðx*Þ
a

¼
F x* 1

a

iz1 2 x*i
ðz1 2 x*Þ


 �
2Fðx*Þ

a

#
1

iz1 2 x*i
Fðz1Þ2Fðx*Þ
� 	

: ð3:9Þ

Thus, by (3.7), (3.8) and (3.9), we have

F 0ðx; g1Þ #
Fðz1Þ2Fðx*Þ

iz1 2 x*i
, 0:

Thus, we observe that

max
y[Yðx*Þ

2f ðx*; yÞ
2x

; z1 2 x*

� �
¼ iz1 2 x*iF

0ðx; g1Þ # Fðz1Þ2Fðx*Þ , 0:

This contradicts (3.1) and hence establishes the sufficiency for convex

FðxÞ. A

3.1 The Haar Condition

We comment on the Haar condition which is usually discussed in the context

of minimax. The necessary condition (3.1) can be expressed as
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0 [ 2Fðx*Þ ð3:10Þ
which is also a sufficient condition when either f ðx; yÞ is strictly convex in

x [ R
n, or the Haar condition is satisfied (Wierzbicki, 1982).

Let the vector e0 be given by

e0 ¼
21

0

" #
[ R

n11 ð3:11Þ

where 0 [ R
n denotes the zero vector. The Haar sufficient condition for a

point x* satisfying (3.10) to be a unique, or global (see CN 11) (local in the

nonconvex case) solution of the original problem is expressed as

e0 [ Ẑ ; h [ Z j kh; zl , 0; ;z [ Z; z – 0f g ð3:12Þ
where Z is the tangent cone and Ẑ is the normal cone to the epigraph ofFðxÞ at
x*.

The implication of the Haar condition is that there are at least n1 1

elements of Y(x*), where the corresponding 7x f ðx*; yiÞ, yi [ Yðx*Þ can be

linearly combined using nonzero l i such that
X
i

li7x f ðx*; yiÞ ¼ 0; yi [ Yðx*Þ:

Hence the vectors 7x f ðx*, yiÞ, yi [ Yðx*Þ; are linearly dependent. The Haar

condition requires that all subsets of n of these n1 1 vectors, 7x f ðx*; yiÞ,
yi [ Yðx*Þ, are linearly independent. Suppose that there are less than this,

no more than n [the cardinality of Yðx*Þ is at most n (i.e., jYðx*Þj # n)].

According to (3.10), there exist nonzero li such that the above equality is

satisfied and all the gradients 7x f ðx*; yiÞ, yi [ Yðx*Þ, are linearly dependent.

If no more than n vectors of dimension n are linearly dependent, it would not

be possible to form full-rank matrices from all collections of these vectors.

Thus, there must be at least n1 1 vectors 7x f ðx*; yÞ, y [ Yðx*Þ. and each

collection of, say n, of them must be linearly independent. This implies in turn

that at least n1 1 elements li must be positive, since, if jYðx*Þj ¼ n1 1, for

each j we have
X

yi[Yðx*Þ; i–j
li7x f ðx*; yiÞ ¼ 2lj7x f ðx*; yjÞ – 0

and lj $ 0, which implies lj . 0. If at least n1 1 elements li are positive,

then e0 is in the interior of the normal cone Ẑ ¼ cone{21;7x f ðx*; yÞ;
y [ Yðx*Þ}. Conversely, if e0 is in the interior of Ẑ, then at least n1 1 vectors

7x f ðx*; yÞ, y [ Yðx*Þ, sum up to zero with coefficients greater than zero and

each collection of n, or less, of these vectors is linearly independent.

The Haar condition is rather restrictive: at least n1 1 vectors 7x f ðx*; yÞ,
y [ Yðx*Þ, must be binding at x* (i.e., there must be at least n1 1 maximizers
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at x*). However, there are cases where jYðx*Þj # n. Then the normal cone Ẑ

does not have an interior and the Haar condition cannot be satisfied, and x*
must be determined on the basis of additional information using second order

conditions.

4 SADDLE POINTS AND SADDLE POINT CONDITIONS

The special case for the minimax problem is the saddle point solution. This is

of particular interest as saddle point solutions are more easily characterized

and computed. Let R , R
n and Y , R

m be bounded closed sets (see CN 7)

and f ðx; yÞ be a continuous function defined on R £Y. A point ðx*; y*Þ [
R £Y is said to be a saddle point of f ðx; yÞ on R £Y if

f ðx*; yÞ # f ðx*; y*Þ # f ðx; y*Þ ð4:1Þ
for all x [ R , y [ Y. In this section we review important properties of saddle

points. Algorithms for computing them are discussed in Chapter 3.

Lemma 4.1 Let the function f ðx; yÞ be continuous on R £Y and R, Y be

closed and bounded sets as above. Then, f ðx; yÞ has a saddle point onR £Y if

and only if

min
x[R

max
y[Y

f ðx; yÞ ¼ max
y[Y

min
x[R

f ðx; yÞ: ð4:2Þ

Proof (Demyanov and Malozemov, 1974; Lemma 6.1, p. 222). A

The maxima and minima in (4.2) are achieved since f ðx; yÞ is continuous
andR,Y are closed and bounded. We show that x*, y* satisfying (4.1) are also

solutions of both sides of equality (4.2). By (4.1), we have

max
y[Y

f ðx*; yÞ # min
x[R

f ðx; y*Þ:

Hence, we have

min
x[R

max
y[Y

f ðx; yÞ # max
y[Y

min
x[R

f ðx; yÞ:

The inverse is trivial: for any x [ R , y [ Y, we have

f ðx; yÞ # max
y 0[Y

f ðx; y 0Þ ð4:3Þ

hence

min
x[R

f ðx; yÞ # min
x[R

max
y 0[Y

f ðx; y 0Þ

and as this inequality is satisfied for all y [ Y, we have
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max
y[Y

min
x[R

f ðx; yÞ # min
x[R

max
y[Y

f ðx; yÞ: ð4:4Þ

In view of (4.3) and (4.4), we have (4.2).

Let (4.2) be satisfied and

FðxÞ ¼ max
y[Y

f ðx; yÞ; fðyÞ ¼ min
x[R

f ðx; yÞ:

It follows from (4.2) and the continuity of FðxÞ, fðyÞ that there exist points

x* [ R , y* [ Y for which

min
x[R

FðxÞ ¼ Fðx*Þ ¼ max
y[Y

fðyÞ ¼ fðy*Þ: ð4:5Þ

It follows from (4.5) that for any ðx; yÞ [ R £Y, we have

f ðx*; yÞ # max
y 0[Y

f ðx*; y 0Þ ¼ Fðx*Þ ¼ fðy*Þ ¼ min
x[R

f ðx; y*Þ # f ðx*; y*Þ ð4:6Þ

and

f ðx; y*Þ $ min
x 0[R

f ðx 0; y*Þ ¼ fðy*Þ ¼ Fðx*Þ ¼ max
y[Y

f ðx*; yÞ $ f ðx*; y*Þ: ð4:7Þ

Combining (4.6) and (4.7) yields (4.1). A

Hence, condition (4.2) is necessary and sufficient for the existence of a

saddle point. In the next result, we discuss a special class of problems satisfy-

ing this condition.

Theorem 4.1 Let f ðx; yÞ be continuous together with 7x f ðx; yÞ on R 0
£Y,

whereR 0
, R

n,Y , R
m. Assume thatR 0 is open and letR , R 0 andY be

bounded closed convex sets. Furthermore, let the function f ðx0; yÞ be concave
for every fixed x0 [ R 0

and f ðx; y0Þ be convex for every fixed y0 [ Y. Then,

equality (4.2) is satisfied for f ðx; yÞ.

Proof (Demyanov and Malozemov, 1974; Theorem 5.2, p. 218). A

A related result, establishing the saddle point of f ðx; yÞ convex in x, concave
in y, is given in Corollary 3.1.1. This uses explicitly the condition on the

Hessian in Lemma 1.2. As convexity in x and concavity in y of f assure

(4.1) and (4.2), the main property used in subsequent chapters for the existence

of a saddle point is that f ðx; yÞ is convex in x, concave in y. This subject is

discussed further in Section 3.1, concerning the motivation, or justification, of

algorithms for computing saddle points.
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COMMENTS AND NOTES

CN 1: Vectors and Matrices

Let Rn be the set of n-dimensional vectors. Any x [ R
n, has n components, or

coordinates. Generally, we refer to the ith component of x by x i. A null vector

refers to x
i ¼ 0, ;i, and is denoted by x ¼ 0. Vectors in R

n are viewed as

column vectors, unless the contrary is stated explicitly. The transpose of x is a

row vector and is denoted by xT.

A matrix a is a rectangular array of numbers. For any A, we use aij, or [A]ij as

the ijth element of A. For i ¼ 1;…; n and j ¼ 1;…;m, A is referred to as an

(n £ m) matrix, with n rows and m columns. When n ¼ m, matrix A is referred

to as a square matrix and if aij ¼ 0, ;i,j, then A ¼ 0. The transpose of the

(n £ m) matrix A is denoted by AT and refers to an (m £ n) matrix whose

elements are given by aji. A matrix is symmetric if A ¼ A
T. The sum of two

(m £ n) matrices A and B is written as A1 B and is the (m £ n) matrix whose

elements are the sum of the corresponding elements in A and B. The product of

a matrix A and scalar t , tA ¼ At, is obtained by multiplying each element of A

by t . The product of an (m £ n) matrix A and (n £ q) matrix B is written as AB

and is the (m £ q) matrix F whose elements are given by

½F�ij ¼
Pn
‘¼1 ½A�i‘½B�‘j. Finally, as in the vector case, an (m £ n) matrix A

is considered to be a member of the space R
n£m such that A [ R

n£m.

CN 2: Inner Product, Vector and Matrix Norms

For any two vectors, x; y [ R
n, their inner product is defined by

kx; yl ¼ xTy ¼
Xn

i¼1

xiyi:

Any two vectors x; y [ R
n satisfying kx; yl ¼ 0 are called orthogonal.

A vector norm i·i on Rn is a mapping that assigns a real scalar to every x [

R
n
and has the properties:

(i) ixi $ 0, ;x [ R
n;

(ii) itxi ¼ utu ixi for every t [ R
1 and every x [ R

n;

(iii) ixi ¼ 0, if and only if x ¼ 0;

(iv) ix1 zi # ixi1 iyi, ;x; y [ R
n (i.e., the triangle inequality).

CHAPTER 118



The Euclidian norm is defined by

ixi2 ¼ kx; xl1=2 ¼
 Xn

i¼1

ðxiÞ2
!1=2

and satisfies the Cauchy–Schwartz inequality

j kx; yl j# ixi2iyi2:

The matrix norms we consider belong to the class of norms that are induced

by the corresponding vector norm. Given any norm i·ifor vector x, the induced
norm for the (n £ m) matrix A is given by

iAi ¼ max
{x[Rn j ixi¼1}

iAxi:

We note that

iAi ¼ max
ixi–0

iAxi

ixi

which follows because for any x – 0, x can be scaled so that its norm is equal

to unity without changing the value of iAxi/ixi. Furthermore, we have

iAxi # iAi ixi and iABi # iAi iBi

which follow from the above for B of appropriate dimension. A detailed

discussion on matrix norms can be found in Golub and van Loan (1983)

and Horn and Johnson (1993).

CN 3: Differentiable Function Definitions

If the function f has continuous first partial derivatives with respect to x, this is

denoted by f [ C
1. If f has continuous second partial derivatives with respect

to x, this is denoted by f [ C
2.

CN 4: Positive Semi-definite and Definite Matrices

The symmetric matrix H is positive semi-definite if for all 0 – v [ R
n,

kv;Hvl $ 0. The symmetric matrix H is positive-definite if for all

0 – v [ R
n, kv;Hvl . 0.

CN 5: First and Second Order Taylor Expansions

First order Taylor series expansion of a function f : Rn ! R
1, and f [ C

1,

for any x; d [ R
n, u [ R

1, is given by
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f ðx1 udÞ ¼ f ðxÞ1 u
Z1

0
k7f ðx1 tudÞ; dl dt:

Second order Taylor series expansion of a function f : Rn ! R
1 and f [ C

2,

for any x; d [ R
n
, u [ R

1
, is given by

f ðx1 udÞ ¼ f ðxÞ1 uk7f ðxÞ; dl1 u2
Z1

0
ð12 tÞkd;72f ðx1 tudÞdl dt


 �
:

CN 6: Linear Independence of Vectors

A set of vectors v1; v2;…; vs is said to be linearly dependent if there are scalars

v1;v2;…;vs, not all zero, such that
Ps

i¼1 vivi ¼ 0. If no such v1;v2;…;vs

exist, the vectors v1; v2;…; vs are said to be linearly independent.

CN 7: Open Sets, Closed Sets, Bounded Sets, Compact Sets,

Convergence of Sequences

The open ball with center x and radius e . 0 is denoted by

Bðx; eÞ ; z [ R
n j iz2 xi , e

� 

for some e . 0. A subset S # R
n is open if around every point x [ S , there is

an open ball contained in S (i.e., for x [ S, there is an e . 0 such that

iy2 xi , e, with y [ S). For example, the ball {y [ R
n j iyi , e} is open.

The interior of any set S # R
n is the set of points x [ S which are at the

center of some ball contained in S. A set is said to be open if all its points are

all interior points. Thus, the interior of a set is always open. The interior of the

ball

y [ R
n j iyi # e

� 

is the open ball

y [ R
n j iyi , e

� 
:

A set S is closed if its complement Rn
2 S is open. Alternatively, a set S is

closed if every point arbitrarily close to S is a member of S. Equivalently, S is

closed if {xk} [ S and {xk} ! x imply that x [ S. For example, the ball {y [

R
n j iyi # e} is closed. The closure of any set S # R

n is the smallest closed

set containing S. The boundary of a set is that part of the set that is not its

interior.

A set is bounded if it lies entirely within a ball of some radius e . 0,

y [ R
n j iy2 xi # e

� 
:
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A set is compact if and only if it is closed and bounded. That is, if it is closed

and contained within a sphere of finite radius.

For a compact set S, the Bolzano–Weierstrass theorem (Apostol, 1981) can

be used to show that every infinite subset of S has an accumulation point in S.
Thus, if {xk} , S (i.e., each member of the sequence is in S,) then {xk} has a

limit point in S. This establishes that there is a subsequence of {xk} converging
to a point in S. For example, the sequence defined by xk11 ¼ 2xk, x0 ¼ 1, has

a subsequence {x2k} with limit point 1 and a subsequence {x2k11} with limit

point 21. Both sequences and their limits are clearly in the compact set

x j ixi # 1
� 

:

The convergence of the algorithms in Chapters 2–7 depends on the Bolzano–

Weierstrass theorem. We are concerned with algorithms that aim to solve for a

fixed optimal point while generating a sequence {xk} within a compact set S
such that a certain descent, or improvement, property is satisfied for a merit

function (e.g., f ðxk11Þ , f ðxkÞ and for x* solving the problem, f ðx*Þ # f ðxkÞ,
;k). There need not be a unique accumulation point for each subsequence.

However, each accumulation point would need to satisfy the optimality condi-

tion of the problem.

CN 8: Lipschitz Continuity of a Function

A function f is said to be locally Lipschitz continuous with constant c $ 0 at

x [ R
n if there exists some e . 0 such that

j f ðwÞ2 f ðzÞ j# ciw2 zi; ;w; z [ Bðx; eÞ:

CN 9: Hyperplanes

A hyperplane is essentially the n-dimensional generalization of a three-dimen-

sional plane. Let the column vector a [ R
n and c be a scalar. Then, the set

{x [ R
n j ka; xl ¼ c} is a hyperplane in R

n.

CN 10: Order o(·), O(·)

Let f be a real-valued function of a real variable x. The notation f ðxÞ ¼ OðxÞ
signifies that f ðxÞ approaches zero at least as fast as x does. This implies that

there exists a k $ 0 such that
����
f ðxÞ
x

���� # k; as x ! 0:

The notation f ðxÞ ¼ oðxÞ indicates that f ðxÞ approaches zero faster than x does,
or equivalently, that k ¼ 0.
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CN 11: Local and Global Minima

Let g : G , R
n ! R

e, h : H , R
n ! R

i and the set of feasible points be

defined by

R ; x [ R
n j gðxÞ ¼ 0; hðxÞ # 0f g:

A point x* is a local minimum point of f over R if there is no better solution

within an e . 0 neighborhood of x* such that,

f ðxÞ $ f ðx*Þ; ;x [ R ; ix2 x*i , e

If f ðxÞ . f (x*), for all x* – x [ R , ix2 x*i , e, then x* is a strict local

minimum point of f over R.

A point x* is a global minimum point of f over R if f ðxÞ $ f ðx*Þ for all
x [ R . If f ðxÞ . f ðx*Þ, for all x* – x [ R , then x* is a strict global minimum

point of f over R.
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Chapter 2

A survey of continuous minimax algorithms

We consider several continuous minimax algorithm models. All of these base

their progress on gradient information. While some are implementable, others

require substantial further development to be of practical use. In Chapter 4, we

introduce and analyze in detail a quasi-Newton algorithm that builds upon

some of the models introduced in the present chapter. In Chapter 5, we

consider numerical experiments with a number of algorithms to justify empiri-

cally a simplified quasi-Newton algorithm.

Under the special assumption that f ðx; yÞ is convex in x and concave in y,

continuous minimax can be formulated as a saddle point problem. This is an

interesting special case for minimax problems and we discuss algorithms for

computing saddle point solutions in Chapter 3. Another special case is discrete

minimax and a superlinearly convergent quasi-Newton algorithm to solve this

problem is discussed in Chapter 7.

1 INTRODUCTION

In this chapter, we survey algorithms for solving the continuous minimax

problem introduced in Section 1.2,

min
x[Rn

max
y[Y

f ðx; yÞ: ð1:1Þ

A new quasi-Newton algorithm for this problem is developed and analyzed in

detail in Chapter 4. Numerical experiments with a number of algorithms are

discussed in Chapter 5.

Continuous minimax belongs to the general class of nonsmooth problems.

The main reason for this nonsmooth character is the possible multiplicity of

maximizers at any given point. The objective function has a different gradient,

with respect to x, corresponding to each maximizer. As such, continuous

minimax problems may be solved using nonsmooth optimization methods

such as subgradient and bundle methods. Subgradient methods require at

least one subgradient to be evaluated at each iteration to find a direction of

descent (see CN 1). Bundle methods use subgradient information from succes-

sive iterations, within a ball of radius r . 0. These methods have been devel-

oped to solve either the general class or particular types of nonsmooth



problems. Those addressing the general class lack explicit steps to deal with

the maximization subproblem, while those addressing particular types, such as

discrete minimax, are too specialized to be applicable to continuous minimax.

For example, the nonsmooth algorithm due to Shor (1980) can be applied to

discrete minimax problems but not to continuous minimax.

A number of algorithms have been proposed for (1.1). The method of

centers by Chaney (1982) requires that the maximum in (1.1) is attained at

a unique point y(x), for all x. The algorithm also requires that, for all maxi-

mization involving xk, there is a globally convergent procedure generating a

sequence {yj} convergent to a unique y(xk). Hence, Chaney’s method does not

handle kinks in the max-function FðxÞ. In this type of problem, FðxÞ is differ-
entiable and smooth optimization techniques can be applied to solve it. Kles-

sig and Polak (1973) consider a first order, feasible directions method that, like

Chaney (1982), requires the maximizer to be unique.

Demyanov and Malozemov (1974) treat problem (1.1) in an indirect way by

solving an infinite sequence of discrete minimax problems of the form

min
x[Rn

max
y[Yt

f ðx; yÞ ð1:2Þ

for t ¼ 1; 2;…, where Y t are finite subsets of Y. The method assumes that for

any e . 0, there exists t0 such that for t . t0, the distance between any point

y [ Y and the point of Y t, nearest to y, is less than e . Thus, as t ! 1, these

discrete minimax problems approximate continuous minimax with increasing

accuracy.

Panin (1981) suggests the use of an approximation to FðxÞ at xk, given by

F‘
k ðdÞ ¼ max

y[Y
f ‘k ðd; yÞ ð1:3Þ

f
‘
k ðd; yÞ ¼ f ðxk; yÞ1 k7x f ðxk; yÞ; dl: ð1:4Þ

The method is based on the assumption that for any x [ R
n, one can determine

d̂ ¼ argmin
d[Rn

F‘
k ðdÞ1

1

2
idi2 ð1:5Þ

where i.i ¼ i.i
2
; k·,·l1/2. No procedure for solving (1.5) is given by Panin.

The method of Kiwiel (1987) is based on Panin (1981). At the kth iteration

of Kiwiel’s algorithm, the change in the objective

Fðxk 1 dÞ2FðxkÞf g
is approximated by

F‘
k ðdÞ2FðxkÞ

n o
:

At xk, a descent direction for FðxkÞ can be found by solving (1.5) using an
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auxiliary algorithm. Since the objective in (1.5) is strongly convex in d, d̂

exists and is uniquely determined by

0 [ d̂ 1 conv 7x f ðxk; yÞ j y [ Y‘
k11

n o
ð1:6Þ

where

Y‘
k11 ;j y [ Y j y ¼ arg max f ‘k ðdk; yÞ

n o
: ð1:7Þ

Kiwiel’s method finds, at each x, a linear combination of the vectors 7x f ðx; yiÞ,
yi [ Y‘

k11.

In Sections 2, 3 and 4, we describe the algorithms of Chaney, Panin and

Kiwiel, respectively. The latter two algorithms are of particular interest as

they are related to the quasi-Newton algorithm in Chapter 5.

2 THE ALGORITHM OF CHANEY

In Chaney (1982), an algorithm is developed for solving the constrained

continuous minimax problem of the form

min
x[X

max
y[Y

f ðx; yÞ: ð2:1Þ

The sets X and Y are determined by constraints of the form

X ; x [ R
n j gjðxÞ # 0; j ¼ 1;…; e

n o

Y ; y [ R
m j hiðyÞ # 0; i ¼ 1;…; if g:

At each fixed x,

FðxÞ ¼ max
y[Y

f ðx; yÞ ð2:2Þ

and (2.1) is reformulated as

min
x[X

FðxÞ: ð2:3Þ

The critical assumption underlying Chaney’s algorithm is that the problem of

maximizing f ðx; yÞ over Y has a unique solution so that the set of maximizers

at x has a single element, Y(x). Therefore, the max-function is given by

FðxÞ ¼ f
�
x;YðxÞ�

for each x in X. Chaney proposes a modified version of the Pironneau and

Polak (1972) method of centers for solving (2.3). The algorithm for solving

(2.2) is left unspecified at the start. The combined algorithm seeks to inter-

twine the Pironneau–Polak minimizing algorithm and the maximizing algo-
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rithm, using an adaptive procedure that forces the maximizing problem to be

solved at a progressively more rapid rate than the minimizing problem.

The Pironneau–Polak method of centers for solving (2.3) is not strictly

implementable as it requires knowledge of Y(xk) as soon as xk is known.

This algorithm is stated below.

Pironneau–Polak Method of Centers

Step 0. Given scalars c, s [ ð0; 1Þ, select x0 [ X and set k ¼ 0.

Step 1. Obtain a solution Dk [ R
1 and dk [ R

n to the quadratic programming

problem

min
d;D

�
D1

1

2
idi2

����D [ R
1
; d [ R

n
; k7FðxkÞ; dl # D;

giðxkÞ1 k7giðxkÞ; dl # D; i ¼ 1; …; t

�
ð2:4Þ

Step 2. If Dk ¼ 0, then Stop. Else, compute

ak ¼ max
�
a
��Fðxk 1 adkÞ2FðxkÞ # caDk;

giðxk 1 adkÞ # caDk; i ¼ 1;…; t; a ¼ ðsÞn; n ¼ 0; 1; 2;…


Step 3. Set xk11 ¼ xk 1 akdk, k ¼ k1 1 and go to Step 1.

Remarks (i) In Step 1, dk is the direction of descent andDk is an upper bound

on the directional derivative. (ii) In Step 2, an Armijo-type line search strategy

is adopted to determine the stepsize a k (see Armijo, 1966). (iii) It is assumed

that the solution of (2.4), satisfying the fist order Karush–Kuhn–Tucker optim-

ality conditions exist (see CN 2).

In the development of the main algorithm, it is recognized that Y(x) cannot

be obtained at once, when x is known. The Pironneau–Polak method of centers

is modified so that Y(xk) can be replaced by successively closer approxima-

tions in such a way that the convergence of the algorithm is maintained. An

auxiliary algorithm, Aðx; yÞ, designed to give a suitably close approximation to

Y(xk) is appended to the Pironneau–Polak method of centers.

Let x [ X , y [ R
m and QPðx; yÞ denote the following quadratic program-

ming problem:

min

�
D1

1

2
idi2

����D [ R
1
; d [ R

n
; k7x f ðx; yÞ; dl # D;

giðxÞ1 k7giðxÞ; dl # D; i ¼ 1;…; t

�
: ð2:5Þ

Let Dðx; yÞ, dðx; yÞ denote a solution to (2.5).
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It is assumed that, given x [ X , y [ R
m, there is a globally convergent

auxiliary algorithm Aðx; yÞ that generates a sequence {zj}, convergent toY(x),

with zj ¼ y. Here, we initialize A with the current value of x and an arbitrary y.

Aðx; yÞ then generates {zj} ! YðxÞ. It is further assumed that, given x [ X , a

test function tðx; ·; cÞ, on ð·Þ [ R
m is known, for some scalar c . 0, so that

positive numbers p1, p2 and r $ 1 exist for which

p1uy2YðxÞur # ut ðx; y; cÞu # p2uy2YðxÞur; x [ X; y [ W* ð2:6Þ

where W* is a bounded neighborhood of Y such that

i72
xxf ðx; yÞi # M and i72

xyf ðx; yÞi # M:

It is also assumed that the test function t is continuous on X £W
*. Hence, for

x [ X , and a sequence

{zj}
1

j¼1 , W
*

it follows that {zj}
1

j¼1 converges to Y(x) if and only if

{tðx; zj; cÞ}1j¼1 ! 0:

The test function is discussed further later in this section.

Chaney’s Minimax Algorithm

Step 0. Initialization: choose the following parameters: b [ ð0; 1Þ, d0 [ ð0; 1Þ,
{ej}

1

j¼0 a strictly decreasing sequence convergent to zero,

{gj}
1

j¼0 a strictly decreasing sequence convergent to zero, with

e0 ¼ oðgjÞ, z21 [ W
*, x0 [ X .

Set k ¼ 0, j ¼ 0, z ¼ z21, m21 ¼ 1.

Step 1. Apply algorithm Aðxk; zÞ to obtain zj so that

j tðxk; zj; cÞ j# ej:

Step 2. Solve problem QPðxk; zjÞ to obtain Dðxk; zjÞ and dðxk; zjÞ. If

Dðxk; zjÞ1
1

2
idðxk; zjÞi2 . 2gj

then set z ¼ zj, mk11 ¼ mj, j ¼ j1 1, go to Step 1.

Else, set z ¼ zj, yk ¼ zj, go to Step 3.
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Step 3. Perform the following steps:

(a) Set a ¼ 1,

(b) Apply algorithm Aðxk 1 adðxk; ykÞ; zÞ to obtain z* such that

utððxk 1 adðxk; ykÞÞ; z*; cÞu # ej:

If

giðxk 1 adðxk; ykÞÞ #
1

2
aDðxk; ykÞ; i ¼ 1;…; t

and

f ðxk 1 adðxk; ykÞ; z*Þ2 f ðxk; ykÞ #
1

2
aDðxk; ykÞ

then set ak ¼ a, mj11 ¼ mj,

xk11 ¼ xk 1 akdðxk; ykÞ
z ¼ z*, k ¼ k1 1, j ¼ j1 1, go to Step 1. Else, go to Step 3c.

(c) If a # mj, then go to Step 3d. Else, set z ¼ z
*, a ¼ ba, go to Step 3b.

(d) Set z ¼ zj, mj11 ¼ d0mj, ak ¼ 0, xk11 ¼ xk, k ¼ k1 1, j ¼ j1 1, go

to Step 1.

Remarks (i) The purpose of ej ¼ oðgjÞ is to assist the solution of the maxi-

mization problem (2.2) to be computed faster than that of the minimization

problem. For a definition of orders, see CN 1.10. (ii) Step 1 is intended to give,

at any stage, an improved solution to the current maximization problem. (iii)

In Step 2, a decision is made as to whether the current point xk can be

improved. The algorithm proceeds to Step 3 only when the test in Step 2

suggests that we are now much closer to a solution Y(xk) of the current

maximization problem than we are to the solution of the minimization

problem. (iv) In Step 3, an Armijo-type line search is performed from the

current iterate xk, along the direction dðxk; ykÞ. For each prospective value

xk 1 akdðxk; ykÞ, it is necessary to search for a point z* which is suitably

close to Yðxk 1 akdðxk; ykÞÞ. In case the algorithm arrives at Step 3d, the

line search is abandoned as a failure. It is shown in Chaney (1982) that this

failure can occur a finite number of times.

The Test Function

The test function tðx; ·; cÞ serves as a monitoring device for the process of

solving the maximization problem for finding Y(x). Given x [ X , consider

the problem
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min 2f ðx; yÞ j y [ Yf g: ð2:7Þ
The function tðx; ·; cÞ is defined in terms of the augmented Lagrangian asso-

ciated with the maximization problem (2.2). Let x [ X , y [ R
m and

lðx; yÞ ;
l1

..

.

li

2
6664

3
7775 [ R

i

be the minimizer of the expression

����
����27yf ðx; yÞ1

Xi

j¼1

lj7hjðyÞ
����
����
2

1

Xi

j¼1

l2j hj ðyÞ2:

Let c . 0 and let aðx; y; cÞ [ R
i be given by

ajðx; y; cÞ ¼ hjðyÞ if chjðyÞ1 lj $ 0

ajðx; y; cÞ ¼
2lj

c
if chjðyÞ1 lj , 0:

Consider the augmented Lagrangian

L
aðx; y; cÞ ¼ 2f ðx; yÞ1 1

2c

Xi

j¼1

max
�
0; chjðyÞ1 lj

�2
2 l2j

n o
:

Finally, the test function

tðx; y; cÞ ¼ 2i7yL
aðx; y; cÞi2 1 iaðx; y; cÞi2

c

is used in Step 1 and Step 3b of the algorithm.

Given x [ X , y satisfies the first order Karush–Kuhn–Tucker necessary and

sufficient conditions of optimality (see CN 2) for (2.7) if and only if, for any

c . 0, the equalities

7yL
aðx; y; cÞ ¼ 0

aðx; y; cÞ ¼ 0

are satisfied. Sufficiency follows in Chaney’s algorithm in view of the

assumed uniqueness of the maximizer Y(x), given x. The function tð·; ·; cÞ is
continuous on X £R

m. It is demonstrated in Chaney (1982) that, for large c,

the function tð·; ·; cÞ satisfies condition (2.6).
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3 THE ALGORITHM OF PANIN

The algorithm discussed in Panin (1981) is intended for solving constrained

continuous minimax problems similar to those addressed by Chaney (1982).

Consider the problem

min
x[X

max
y[Y

f ðx; yÞ ð3:1Þ

whereX # R
n andY # R

m are convex compact sets and f ðx; yÞ, 7x f ðx; yÞ are
continuous with respect to X and Y (see CN 3). It is assumed that, for y [ Y
and x1; x2 [ X , 7x f is Lipschitz continuous in x,

i7x f ðx1; yÞ2 7x f ðx2; yÞi # K ix1 2 x2i

where K . 0 is a constant. Problem (3.1) is reformulated as in (2.2) and (2.3)

min
x[X

FðxÞ ð3:2Þ

where

FðxÞ ¼ max
y[Y

f ðx; yÞ: ð3:3Þ

The algorithm for solving (3.2) is based on the iteration

xk11 ¼ xk 1 akdk: ð3:4Þ
The stepsize, ak, is determined below, dk ¼ x2 xk, x is the solution to the

problem

min
x[X

FkðxÞ ð3:5Þ

where

FkðxÞ ¼ max
y[Y

fkðx; yÞ

fkðx; yÞ ¼ f ðxk; yÞ1 k7x f ðxk; yÞ; x2 xkl1
a

2
ix2 xki

2

and a . 0 is a constant. Let the function Ck be defined by

Ck ¼ min
x[X

FkðxÞ2FðxkÞ: ð3:6Þ

The algorithm is defined as follows.

Panin’s Minimax Algorithm

Step 0. Select x0 [ X , a . 0, termination accuracy 1 q j . 0.

Step 1. Solve subproblems (3.5) and (3.6). If Ck $ 2j, then stop.

Step 2. (a) Set a ¼ 1, c ¼ 1. If the inequality
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Fðxk 1 adkÞ2FðxkÞ # caCk

is satisfied, then set ak ¼ a, ck ¼ c, xk11 with (3.4).

Go to Step 3.

(b) Else, set a ¼ a=2, c ¼ c=2 and return to Step 2a.

Step 3. If ak , 1, set a ¼ 2a.

Set k ¼ k1 1 and go to Step 1.

Panin’s algorithm is strictly not implementable for two reasons. First, the sets

X and Y are not specified. Second, in Step 1, the method for solving (3.5) is

not specified. These reasons confine the algorithm within a conceptual frame-

work only. Kiwiel (1987) has developed this method and the resulting imple-

mentable algorithm is discussed in Section 4 below.

4 THE ALGORITHM OF KIWIEL

Kiwiel’s (1987) development is based on the conceptual algorithm in Section

3. It uses an auxiliary algorithm to solve the subproblems in Step 1 of Panin’s

algorithm.

We consider the continuous minimax problem, constrained in y but uncon-

strained in x

min
x[Rn

max
y[Y

f ðx; yÞ ð4:1Þ

and reformulate it as

min
x[Rn

FðxÞ

FðxÞ ¼ max
y[Y

f ðx; yÞ: ð4:2Þ

Based on Panin’s method, Kiwiel has proposed the linear approximation to the

max-function

f ‘k ðd; yÞ ¼ f ðxk; yÞ1 k7x f ðxk; yÞ; dl

F‘
k ðdÞ ¼ max

y[Y
f
‘
k ðd; yÞ: ð4:3Þ

A descent direction is computed at xk. The auxiliary algorithm evaluates, in

finite number of iterations, the descent direction dk which solves

min
d[Rn

F‘
k ðdÞ1

1

2
idi2: ð4:4Þ

In addition to the set of maximizers at xk, given by Y(xk) in (1.2.3), the
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algorithm utilizes a set of maximizers of f ‘k ðd; yÞ, defined as

Yk11 ; yk11 [ Y
���� yk11 ¼ argmax

y[Y
f
‘
k ðd; yÞ

( )

with the termination criterion for the algorithm determined in terms of the

function

C‘
k ¼ 2 idki

2
1FðxkÞ2 f ðxk; yk11Þ

n o
:

The algorithm is discussed below. The default parameter values are those used

in the numerical experiments in Chapter 5.

Kiwiel’s Minimax Algorithm (Kiw)

Step 0. Initialization: select x0, y0; set k ¼ 0 and

termination accuracy 1 q j $ 0, (j ¼ 1026);

line search parameter c [ ð0; 1Þ, (c ¼ 1024);

stepsize factor s [ ð0; 1Þ, ðs ¼ 0:5);

linear approximation parameter m [ ð0; 1Þ, (m ¼ 2 £ 1024).

Step 1. Solve the maximization at current point xk:

FðxkÞ ¼ max
y[Y

f ðxk; yÞ:

Step 2. Direction-finding subproblem: Set x ¼ xk and use auxiliary algorithm

(AA) with parameters j $ 0 and m until it terminates, returning dk and C‘
k . If

C‘
k $ 2j

the solution has been reached: stop.

Step 3. Line search: compute the stepsize a k using

ak ¼ max a j Fðxk 1 adkÞ2FðxkÞ # caCk; a ¼ ðsÞi; i ¼ 0; 1; 2;…
n o

Set xk11 ¼ xk 1 akdk, k ¼ k1 1, go to Step 1.

Auxiliary Algorithm (AA) (requires input values: xk [ R
n
, FðxkÞ,

j $ 0, m [ ð0; 1Þ)
Step 0. Initialization: set x ¼ xk, FðxÞ ¼ FðxkÞ, select any y1 [ Y, set

p0 ¼ 7x f ðx; y1Þ, Q0 ¼ f ðx; y1Þ, i ¼ 1.

Step 1. Find the number mi that solves
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min
m[R1

1

2
ið12 mÞpi21 1 m7x f ðx; yiÞi2 2 ð12 mÞQi21 2 mf ðx; yiÞ

� �
:

Set

pi ¼ ð12 miÞpi21 1 mi7x f ðx; yiÞ; Qi ¼ ð12 miÞQi21 1 mif ðx; yiÞ;

Ci ¼ 2 ipii
2
1FðxÞ2Qi

n o
:

If Ci $ 2j then go to Step 3.

Step 2. Primal optimality testing: set di ¼ 2pi. Compute

yi11 ¼ argmax
y[Y

f ðx; yÞ1 k7x f ðx; yÞ; dilf g:

If

f ðx; yi11Þ1 k7x f ðx; yi11Þ; dil2FðxÞ # mCi

then, go to Step 3. Else, set i ¼ i1 1, and go to Step 1.

Step 3. Stop returning dk ¼ 2pi and C‘
k ¼ Ci.

Remarks (i) At xk, AA evaluates, in a finite number of iterations, a

descent direction d that solves (4.4). At each iteration of AA, yi yields a

new estimate of the maximizer of f ðxk; yiÞ and 7x f ðxk; yiÞ and these are

combined linearly with old estimates to find a new direction di. (ii) AA

attempts to find the minimum-norm subgradient that is an element of the

subdifferential of the approximating function (4.3) and uses this subgradient

in finding the descent direction. (iii) The algorithm is refined by using inexact

evaluations (Kiwiel, 1987). This involves the assumption that for d [ R
n and

j . 0, it is possible to find a point y [ Y such that

f ðx; yÞ1 k7x f ðx; yÞ; dl $ FkðdÞ2 j:

The revised algorithm assumes that a finite process can find j-accurate solu-

tions to the maximization subproblem. Inexact line searches and a mechanism

for decreasing j ensure global convergence of the method to stationary points

of FðxÞ (i.e., x satisfying the optimality condition of the original problem).
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COMMENTS AND NOTES

CN 1: Motivation for Descent

In general, at a point xk, dk is a descent direction such that the objective

function decreases for small steps taken along dk. Consider a linear approx-

imation of f(x),

f ðxk 1 akdkÞ ¼, f ðxkÞ1 akk7f ðxkÞ; dkl:
For small a k, this approximation is fairly accurate and

f ðxk 1 akdkÞ # f ðxkÞ
provided

k7f ðxkÞ; dkl # 0:

Consider the problem of determining the direction dk that satisfies the last

inequality. Let

dk ¼ argmin f ðxkÞ1 k7f ðxkÞ; dl j k d k2¼ 1f g
where d is required to be of unit, or fixed, length to ensure a well-defined

solution. The first order optimality conditions for this problem are

CHAPTER 234



7f ðxkÞ1 2ldk ¼ 0; idki
2
2 ¼ 1:

Premultiplying the first by dk and applying the constraint, we have

l ¼ 2
k7f ðxkÞ; dkl

2
:

Since 2lk7f ðxkÞ; dkl ¼ 2k7f ðxkÞ;7fðxkÞl,

l2 ¼ k7f ðxkÞ;7f ðxkÞl
4

and, as the minimization of f ðxkÞ1 k7f ðxkÞ; dl is being considered, this yields

l ¼ 1

2
i7f ðxkÞi2 and dk ¼ 2

7f ðxkÞ
i7f ðxkÞi2

where dk is known as the steepest descent direction.

If, instead of the linear approximation, we assume a quadratic approxima-

tion to f(x), we have

f ðxkÞ1 k7f ðxkÞ; dl1
1

2
kd;72f ðxkÞ; dl:

For 72
f ðxkÞ positive definite, the quadratic is minimized by dk satisfying the

first order optimality condition

7f ðxkÞ1 72f ðxkÞdk ¼ 0

or dk ¼ 2ð72
f ðxkÞÞ217f ðxkÞ. This is the Newton direction whose descent

property,

kdk;7f ðxkÞl # 0

can easily be verified.

CN 2: Karush–Kuhn–Tucker Conditions of Optimality

Consider the nonlinear programming problem

min f ðxÞ j hðxÞ # 0; gðxÞ ¼ 0f g
where f is the scalar objective function, g, h are fixed dimensional vectors of

equality and inequality constraints. Let f ; g; h [ C
2 (see CN 1.3) and let the

Lagrangian associated with this problem be given by

Lðx;me
;miÞ ¼ f ðxÞ1 kgðxÞ;mel1 khðxÞ;mil

where m e, m i are the multipliers associated with the equality and inequality

constraints. Let x* denote the solution of the nonlinear programming problem

and let 7gðx*Þ and 7hðx*Þ be linearly independent, where hðx*Þ is the set of

inequality constraints satisfied as equalities at the solution.
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Then there are vectors ðme
*;m

i
*Þwhich satisfy the first order necessary condi-

tions of optimality

7xLðx*;me
*;m

i
*Þ ¼ 0

gðx*Þ ¼ 0; hðx*Þ # 0

khðx*Þ;mi
*l ¼ 0; mi

* $ 0

(Karush, 1939; Kuhn and Tucker, 1951).

Let the superscripts i , j denote the i th and jth equality and inequality

constraints, respectively. The second order necessary condition is satisfied

if, in addition, the Hessian

72
Lðx*;me

*;m
i
*Þ ¼ 72

f ðx*Þ1
X
i

72
g
iðx*Þðme

*Þi 1
X
j

72
h
jðx*Þðmi

*Þj

is positive semi-definite on the subspace (see CN 1.4),

V ¼ v j v – 0; 7gTðx*Þv ¼ 0; 7hTðx*Þv ¼ 0
n o

:

The second order sufficiency condition is ensured if, in addition to the first

order conditions, the above Hessian is positive definite on the subspace

V 0 ¼ v j v – 0; 7gTðx*Þv ¼ 0; k7hjðx*Þ; vl ¼ 0; j [ I
n o

where

I ¼ j j 7hjðx*Þ ¼ 0; ðmi
*Þj . 0

n o
:

Furthermore, it can be shown that when f is a convex function and

x [ R
n j hðxÞ # 0; gðxÞ ¼ 0f g

is a convex set, the first order necessary conditions are also sufficient. By

Lemma 1.1.2, the Hessian of a convex (strictly convex) function f is positive

semi-definite (positive definite). The local minimum of a convex function is

also its global minimum (Rustem, 1998, Chapter 1).

CN 3: Continuous and Differentiable Functions

Let D be a domain in R
n and G [ R

m be a function such that

GðxÞ : D , R
n ! R

m. Each element of GðxÞ is continuous at x if xk ! x

implies GðxkÞ ! GðxÞ, elementwise. If, in addition, the elements of G have

first (or second) partial derivatives which are continuous on D, this is denoted

by GðxÞ [ C
1 (or C2) (see CN 1.3).
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Chapter 3

Algorithms for computing saddle points

Consider the basic continuous minimax problem when the underlying function

f ðx; yÞ is convex in x and concave in y. Then, there is a unique solution to

minimax which can be computed using specialized algorithms. Saddle point

solutions like this are also used by the decision maker to assess the worst-case

strategy of an opponent and compute the optimal response to the worst case. In

the present context, the opponent can be interpreted as nature choosing the

worst-case value of the uncertainty. The solution is an equilibrium strategy

which ensures an optimal response to the worst case. Neither the decision

maker nor nature would benefit by deviating from this equilibrium.

We consider the computation of saddle points with gradient-based algo-

rithms such as steepest descent and Newton-type algorithms. These aim to

satisfy the optimality conditions for the decision maker and for nature.

Gradient-based algorithms approximate, and periodically evaluate numeri-

cally, the Jacobian of the simultaneous system which characterizes the equili-

brium condition. The approximation uses the Broyden update to improve the

Jacobian. Global convergence is maintained by an Armijo-type stepsize strat-

egy.

The global and local convergence of the quasi-Newton algorithm is

discussed. Convergence under relaxed descent directions is established. The

achievement of unit stepsizes is related to the accuracy of the Jacobian approx-

imation. Furthermore, a simple derivation of the Dennis–Moré characteriza-

tion of the Q-superlinear convergence rate is given.

1 COMPUTATION OF SADDLE POINTS

1.1 Saddle Point Equilibria

We extend the discussion in Chapter 2 to a special case of minimax character-

ized by the saddle point condition introduced in Section 1.4. We are specifi-

cally concerned with the equilibrium condition for the decision maker and

nature such that the decision maker and nature seek to optimize their respec-

tive parts of the objective. We thus have the problem of simultaneously

computing the solutions of



min
x[R

�
f ðx; yÞ ð1:1aÞ

max
y[Y

�
f ðx; yÞ ð1:1bÞ

and consequently,

min
x[R

max
y[Y

�
f ðx; yÞ ð1:1cÞ

where x is the vector of decision variables, y is the vector of scenarios and

R , R
n, Y , R

m are defined in Section 1.4.

In this chapter, we consider the constrained problem (1.1a–c) mainly in

terms of transformations into the unconstrained problem in x and y. The

unconstrained problem is given by

min
x[Rn

max
y[Rm

�
f ðx; yÞ: ð1:1dÞ

Assumption 1.1 The function f is convex in x and concave in y.

Hence, f has an unconstrained minimum in x and an unconstrained maxi-

mum y. Thus, for given x, f ðx; yÞ has an unconstrained maximum with respect

to y, and given y, it has an unconstrained minimum with respect to x. We

define the vector z by

z ;
x

y

" #
:

The necessary and sufficient conditions for a joint optimum, or min-max

solution, are satisfied by zT� ¼ ½xT�; yT�� which solve the simultaneous system

of equations

FðzÞ ;
7xf ðx; yÞ
27yf ðx; yÞ

" #
¼ 0: ð1:4Þ

At the saddle point, the solution, x�; y� should also satisfy the sufficiency

conditions for a minimum with respect to x and maximum with respect to y,

given by

kv;72
x f ðx�; y�Þvl . 0; ku;72

y f ðx�; y�Þul , 0; 80 – v [ R
n
; 0 – u [ R

m

ð1:5Þ
(e.g., Rustem, 1998, Chapter 1). Clearly, an algorithm solving (1.4) should

yield solutions that also satisfy (1.5). The latter is a difficult condition to

ensure. For this reason, we assume that f ðx; yÞ is convex with respect to x

and concave with respect to y satisfying the conditions
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miui2 # ku;72
x f ðx; yÞul # Miui2 ð1:6aÞ

mivi2 # 2kv;72
y f ðx; yÞvl # Mivi2 ð1:6bÞ

80 – u [ R
n
; 0 – v [ R

m
; M $ m . 0:

We denote the Jacobian matrix by

7zFðzÞ ;
72
x f ðx; yÞ 72

x;yf ðx; yÞ
�72

y;xf ðx; yÞ �72
y f ðx; yÞ

2
4

3
5

and note that (1.6) ensures that for ẑ [ R
n
£R

m

miẑ i2 # kẑ;7zFðzÞẑl # Miẑ i2: ð1:7Þ
We now discuss the uniqueness condition for saddle points and show that this

is satisfied for convex f ðx; yÞ. We let

w ;
u

v

" #

and define D by

Dðz;wÞ ; f ðu; yÞ � f ðx; vÞ
such that

FðzÞ ¼ 7wDðz; zÞ:
It can be verified that if z� [ R £Y and

min
w[R £Y

Dðz�;wÞ ¼ Dðz�; z�Þ ¼ 0 ð1:8Þ

then z� is a saddle point of f on R £Y since the inequalities

f ðx�; yÞ # f ðx�; y�Þ # f ðx; y�Þ
are satisfied for all ðx�; yÞ [ R £Y, ðx; y�Þ [ R £Y.

Theorem 1.1 Let R , Y be convex and compact (see CN 2), f [ C
1
and the

condition

kFðz1 wÞ � FðzÞ;wl . 0; w – 0; z; z1 w [ R £Y ð1:9Þ
be satisfied. Then the saddle point of f on R £Y is unique.

Proof (Demyanov and Pevnyi, 1972). We note that the inequality
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min
w[R £Y

kFðz�Þ;w � z�l . 0

holds for saddle point z� [ R £Y, as the contrary would imply the existence

of a feasible descent direction for Dðz�;wÞ, contradicting (1.8). Assume that

two saddle points z1 and z2 exist. Then, we have

kFðz1Þ; z2 � z1l $ 0; kFðz2Þ; z1 � z2l $ 0

kFðz1Þ � Fðz2Þ; z1 � z2l # 0:

Hence, by (1.8), z1 ¼ z2 which yields the required result. A

The following corollary establishes saddle points for f ðx; yÞ convex in x,

concave in y and is associated with the discussion in Lemma 1.4.1 and Theo-

rem 1.4.1.

Corollary 1.1 Let f ðx; yÞ [ C
2, ðx; yÞ [ R £Y, and f be strictly convex in

x, concave in y, such that at least the left side inequalities of (1.6) hold. Then,

condition (1.9) is satisfied.

Proof. We have, for ẑ ¼ z1 w, z [ R £Y, u [ R , v [ Y,

kẑ;7zFðzÞẑl ¼ ku;72
x f ðx; yÞul � kv;72

y f ðx; yÞvl $ m iui21ivi2
h i

¼ miẑ i2:

In order to characterize the difference Fðz1 wÞ � FðzÞ, we need to invoke a

special case of the mean value theorem (see CN 1) that holds for F . Provided

each element of the vector F , with the jth element given by

F j : H , R
n ! R

1, is differentiable on an open convex set H0 , H , then

for any two points ẑ;w [ H0, there exist t1; t2;…; t
j
;… [ ð0; 1Þ such that

7zFðẑ;wÞ ;
�
7F 1

z

�
w1 t

1ðẑ � wÞ� ... 7F 2
z

�
w1 t

2ðẑ � wÞ� ... …
�

ð1:10Þ

where 7F j denotes the gradient of the jth element of F , and

FðẑÞ � FðwÞ ¼ 7zFðẑ;wÞ�ẑ � w
�
: ð1:11Þ

Hence, we have

kw;Fðz1 wÞ � FðzÞl ¼ kw;7zFðz1 w; zÞwl $ miwi2: A

1.2 Solution of Systems of Equations

From the above discussion, it is clear that for f ðx; yÞ convex in x, concave in y,
the conditionFðz�Þ ¼ 0 is necessary and sufficient for z� to be a saddle point.

Thus, the search for a saddle point is equivalent to solving the system of
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equations FðzÞ ¼ 0. The remaining discussion in this chapter is concerned

with the solution of a system of nonlinear equations arising from (1.4). Some-

times, it is convenient to characterize the latter problem as

min
z

1

2
iFðzÞi22

� �
: ð1:12Þ

We study the properties of 1
2
iFðzÞi22. By definition of the function, it follows

that

7z

1

2
iFðzÞi22

� �
¼ 7zF TðzÞF ðzÞ

72
z

1

2
iFðzÞi22

� �
¼ 7zF TðzÞ7zFðzÞ1

Xn1m

j¼1

72
zF jðzÞF jðzÞ ð1:13Þ

When (1.6a,b) hold, the matrix 7zFðzÞ is strictly positive definite and thus

(1.12) has a single solution z�. Assume that there exists a scalar x [ ð0;1Þ,
such that

i72
zF jðzÞi # x; 1 # j # n1 m: ð1:14Þ

From (1.13) and (1.14) and the continuity of FðzÞ, it follows that for some

sequence fzkg ! z�, we have

72
z

1

2
iFðzkÞi22

� �� �
! 72

z

1

2
iFðz�Þi22

� �
¼ 7zF Tðz�Þ7zFðz�Þ:

In view of (1.7), there exist constants m1;M1;M1 $ m1 . 0, so that in the

neighborhood of z�, we have for ẑ [ R
n
£R

m

m1iẑi
2
# ẑ; 72

z

1

2
iF zkÞi22

� �� �
ẑ

� �
# M1iẑi

2 ð1:15Þ

and the function 1
2
iFðzÞi22 is smooth and strictly convex in some neighborhood

of z�.

Definition The system F , evaluated at point zk, is denoted by F k ¼ FðzkÞ
and similarly, the Jacobian is denoted by 7F k ¼ 7zF k ¼ 7zFðzkÞ.

Algorithms for solving (1.12) follow the iterative process

zk11 ¼ zk 1 akdk ð1:16Þ
where dk is the direction of progress and ak is the stepsize and the choice of dk,

ak determines the minimization method. For example, the steepest descent

algorithm for the unconstrained minimax problem is based on

ALGORITHMS FOR COMPUTING SADDLE POINTS 41



dk ¼ 27z

1

2
iFðzkÞi22

� �
¼ 27zF T

kF k ð1:17Þ

ak ¼ max

�
a

����
1

2
iFðzk1adkÞi22 2

1

2
iF ki

2
2 # 2rai7zF T

kF ki
2
2;

a ¼ ðaÞi; i ¼ 0; 1; 2;…

�
ð1:18Þ

where r [ ð0; 1
2
) and (1.18) is a stepsize strategy that ensures sufficient

progress at every iteration. While the convergence of (1.17)–(1.18) can be

demonstrated using the discussion in Sections 2–3, an important drawback of

the algorithm is that it requires the second derivatives of f ðx; yÞ, which can

cause difficulties. In subsequent sections, we consider modifications which do

not require second derivatives of f ðx; yÞ but use only Fðxk), or the first deri-

vatives of f ðx; yÞ as long as possible.

In Section 2, we discuss algorithms for computing saddle points. These are

based on gradient information,7zF T
kF k or an approximation to this. In Section

3, we establish the global convergence properties of a quasi-Newton algorithm

which utilizes approximations to 7zF k. In Section 4 we discuss the local

convergence properties of this algorithm in a neighborhood of the solution.

2 THE ALGORITHMS

In this section, we consider four algorithms. Two are intended for uncon-

strained problems and two for constrained problems.

2.1 A Gradient-based Algorithm for Unconstrained Saddle Points

We first consider an algorithm for the unconstrained saddle point problem,

based on the direction

dk ¼ 2FðzkÞ ð2:1Þ
(see Demyanov and Pevnyi, 1971; Danilin and Panin, 1974). The algorithm

consists of the iteration step in (1.16), with dk given by (2.1), and a stepsize

strategy to determine ak such that the algorithm is ensured sufficient progress

at each iteration.

The stepsize ak of the algorithm is determined by the stepsize strategy

ak ¼ max

�
a

����
1

2
iFðzk1adkÞi22 2

1

2
iF ki

2
2 # 2raiF ki

2
2;

a ¼ ðaÞi; i ¼ 0; 1; 2;…

�
ð2:2Þ

where a; r [ ð0; 1Þ. The ultimate convergence of the algorithm is ensured by
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the monotonic decrease of the sequence fiF ki
2
2g. We provide an informal

discussion to this end, leaving the more formal treatment to the subsequent

full quasi-Newton case.

To demonstrate that choosing ak based on (2.2) for this algorithm is justi-

fied, we show that there exists an ak that satisfies (2.2) and consequently

fiF ki
2
2g is monotonically decreasing. Expanding the function iF ki

2
2 in a

second order Taylor series (see CN 1.5), we obtain

1

2
iFðzk1a dkÞi22 2

1

2
iF ki

2
2 ¼ ak7zF T

kF k; dkl

1a2
Z1

0
ð12 tÞ dk;7

2
z

1

2
iFðzkðaÞÞi22

� �
dk

� �
dt


 �
ð2:3Þ

where zkðaÞ ¼ zk 1 atdk. With dk ¼ 2F k, the right side can be expressed as

2aiF ki
2
2

k7zF T
kF k;F kl

iF ki
2
2

2

a
R1
0ð12 tÞ F k;7

2
z

1
2
iFðzkðaÞÞi22

h i
F k

D E
dt

� �

iF ki
2
2

2
4

3
5

Using (1.15) yields the inequality

a2
Z1

0
ð12 tÞ dk;7

2
z

1

2
iFðzkðaÞÞi22

� �
dk

� �
dt


 �
#

a2

2
M1idki

2
:

In view of (1.7), we have

k7zF T
kF k; dkl ¼ 2k7zF T

kF k;F kl # 2miF ki
2
2

which is interesting in that it establishes the descent property of dk ¼ 2F k

(see CN 2.1). Hence, it follows that for a # m=M1,

k7zF T
kF k;F kl

iF ki
2
2

2

a
R1
0ð12 tÞ F k;7

2
z

1
2
iFðzkðaÞÞi22

h i
F k

D E
dt

� �

iF ki
2
2

$ m2
a

2
M1 $

m

2

and (2.3) yields

1

2
iFðzk1adkÞi22 2

1

2
iF ki

2
2 # 2a

m

2
iF ki

2
2:

Since in (2.2), a ¼ ðaÞi, i ¼ 0; 1; 2;…, it is possible to obtain r # m=2, the

choice of ak is justified. Furthermore, there exist â . 0, r [ ð0; 1Þ such that

ak $ â . 0, r $ r̂ . 0.
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2.2 Quadratic Approximation Algorithm for Constrained Minimax

Saddle Points

If there are constraints on x, y given by hðxÞ # 0 and HðyÞ # 0, such that the

saddle point becomes

min
x

max
y

f ðx; yÞ j hðxÞ # 0;HðyÞ # 0f g ð2:4Þ

where h [ R
nh , H [ R

nH are vector functions of x, y, respectively.

Assumption 2.1 The functions h, H are convex in x and f , h;H [ C
2.

Consider the Lagrangian associated with (2.4)

Lðx; z;mx
;myÞ ¼ f ðx; yÞ1 khðxÞ;mxl2 kHðyÞ;myl ð2:5Þ

where mx
[ R

nh ;my
[ R

nH are the shadow prices of h, H (see CN 2.2). Given

that f ðx; yÞ is convex in x, concave in y, hðxÞ is convex and HðyÞ is concave,
x�; y� are said to satisfy the necessary and sufficient conditions of optimality

for (2.4) if there are vectors mx, my such that

7xLðx�; y�;mx
;myÞ ¼ 0 ð2:6Þ

7yLðx�; y�;mx
;myÞ ¼ 0 ð2:7Þ

hðx�Þ # 0; Hðy�Þ # 0 ð2:8Þ

khðx�Þ;mxl ¼ 0; kHðy�Þ;myl ¼ 0; mx
$ 0; my

$ 0: ð2:9Þ
An approach to the constrained saddle point problem is suggested by Qi and

Sun (1995). This is based on the generation of a search direction which solves

a quadratic minimax saddle point problem, subject to linear approximations to

the inequality constraints. The search direction at point xk; yk, is defined as

dk ;
d
h
k

d
H
k

2
4

3
5 ¼

x2 xk

y2 yk

" #
ð2:10Þ

and the quadratic function

LkðdÞ ; Lkðdh; dHÞ ¼
7xf ðxk; ykÞ
7yf ðxk; ykÞ

" #
;

d
h

d
H

" #* +

1
1

2

dh

d
H

" #
;

72
xxL 272

xyL

272
yxL 272

yyL

2
4

3
5 dh

d
H

" #* +

where 72
xxL;272

xyL;272
yyL are the corresponding approximations of the
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Hessian of the Lagrangian at xk, yk, m
x
k, m

y
k and 72

xxL;7
2
yyL are assumed to be

positive definite. We also define the linear approximations

hðxkÞ1 7hðxkÞ
� 	

T
d
h
# 0; HðykÞ1 7HðykÞ

� 	
T
d
H
# 0

where 7hðxkÞ
� 	

, 7HðykÞ
� 	

are the Jacobian matrices associated with hðxÞ, HðyÞ,
evaluated at xk, yk, respectively. The vector dk is then given by

dk ¼ argmin
dh

max
dH

n
Lkðdh; dHÞ j hðxkÞ1 7hðxkÞ

� 	T
d
h
# 0;

HðykÞ1 7HðykÞ
� 	

T
d
H
# 0

o
: ð2:11Þ

It can be verified from CN 2.2 that, if idki
� ! 0, the first order necessary

conditions of this quadratic minimax, expressed as a mathematical program-

ming problem, coincide with the corresponding first order conditions for the

original saddle point in (1.1).

The algorithm thus consists of the iteration

xk11 ¼ xk 1 dk

where dk is given by (2.11), and suffers from two potential problems. The first

is that, although the quadratic minimax (2.11) can be formulated and solved as

a linear complementarity problem (see Wright, 1977), this solution can be

greatly improved by applying an interior-point algorithm to solve the optim-

ality conditions of the original problem (2.4). Hence the solution of subpro-

blem (2.11) can be bypassed. The second is a stepsize strategy such as the one

given in (2.2) which ensures sufficient progress during each iteration, stabiliz-

ing the algorithm and thereby ensuring its global convergence. Both of these

points are addressed in the algorithm discussed in Section 2.3.

2.3 Interior Point Saddle Point Algorithm for Constrained Problems

Problem (2.4) can be transformed into an unconstrained formulation such as

(1.1d) which penalizes the transgression of the constraints simultaneously

with the evaluation of the saddle point. To this end, slack variables,

0 # s
y
[ R

nH ; 0 # s
x
[ R

nh , are introduced to reduce the nonlinear inequal-

ities to equalities such that

min
x

max
y

f ðx; yÞ j hðxÞ1 sx ¼ 0;HðyÞ1 sy ¼ 0; sx $ 0; sx $ 0f g:

Given that f ðx; yÞ is convex in x and concave in y, the first-order optimality

conditions for this problem are

7xf ðx; yÞ1 7xhðxÞmx ¼ 0
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7yf ðx; yÞ2 7yHðyÞmy ¼ 0

mx
2 wx ¼ 0; 2my

1 wy ¼ 0

hðxÞ1 s
x ¼ 0; HðyÞ1 s

y ¼ 0; s
x
$ 0; s

y
$ 0

kwx
; sxl ¼ 0; kwy

; syl ¼ 0; wx
; sx;wy

; sy $ 0

where mx
[ R

nh , my
[ R

nH are the multipliers associated with the equality

constraints and wx, wy are the multipliers associated with the bounds on x and y

(see CN 2.2). These conditions are equivalent to

7xf ðx; yÞ1 7xhðxÞmx ¼ 0

7yf ðx; yÞ2 7yHðyÞmy ¼ 0

hðxÞ1 s
x ¼ 0; HðyÞ1 s

y ¼ 0; s
x
$ 0; s

y
$ 0

kmx
; s

xl ¼ 0; kmy
; s

yl ¼ 0; mx
; s

x
;my

; s
y
$ 0:

The penalty formulation to ensure feasibility regarding the inequality

constraints on the slack variables is realized using a barrier function such as

2 log sy
i

and 2 log sx
j

where i, j denote the corresponding elements of the

slack vectors. An earlier attempt to formulate constrained minimax problems

in terms of barrier, or interior penalty methods, is discussed by Sasai (1974).

The approach in this section differs significantly from Sasai’s in the choice of

the barrier function as well as in the framework for the solution which is

closely related to the interior point literature (e.g., El-Bakry et al., 1996;

Akrotirianakis and Rustem, 1998). The transformed objective function and

minimax problem is given by

‘ðx; y; nÞ ; f ðx; yÞ2 n
Xnh
i¼1

log sx
i

2

XnH

j¼1

log sy
j

2
4

3
5 ð2:12aÞ

min
x;sx

max
y;sy

‘ðx; y; nÞ j hðxÞ1 s
x ¼ 0;HðyÞ1 s

y ¼ 0; s
x
. 0; s

y
. 0f g: ð2:12bÞ

Given the convexity-concavity Assumptions (1.1), (2.1), the vectors x�ðnÞ,
y�ðnÞ are said to satisfy the first order necessary and sufficient conditions

(see CN 2.2) for (2.12) if

7xf x�ðnÞ; y�ðnÞÞ1 7xh x�ðnÞ
� �

mx ¼ 0
� ð2:13aÞ

7yf x�ðnÞ; y�ðnÞ
� �

2 7yH y�ðnÞÞmy
$ 0

� ð2:13bÞ

mx
2 n S

x
� 	�1

1
x ¼ 0; 2my

1 S
y

� 	�1
1
y ¼ 0 ð2:13cÞ
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h x�ðnÞ
� �

1 s
x ¼ 0; Hðy�ðnÞÞ1 s

y ¼ 0 ð2:13dÞ

sx . 0 sy . 0 mx
;my

$ 0

where

Sx ¼ diagðsxÞ ; diagðsx1;…; s
x
nh
Þ ;

s
x
1 0 0

0 . .
.

0

0 0 s
x
nh

2
6664

3
7775

S
y ¼ diagðsyÞ ; diagðsy1;…; s

y
nH
Þ ;

s
y
1 0 0

0 . .
.

0

0 0 s
y
nH

2
66664

3
77775

1
x ¼

1

..

.

1

2
6664

3
7775 [ R

nh ; 1
y ¼

1

..

.

1

2
6664

3
7775 [ R

nH :

If we let

Mx ¼ diagðmxÞ ; diagðmx
1;…;mx

nh
Þ ;

mx
1 0 0

0 . .
.

0

0 0 mx
nh

2
66664

3
77775

My ¼ diagðmyÞ ; diagðmy
1;…;my

nH
Þ ;

m
y
1 0 0

0 . .
.

0

0 0 my
nH

2
66664

3
77775

we can express these conditions as the perturbed version of the optimality

conditions given by

7xf x�ðnÞ; y�ðnÞ
� �

1 7xh x�ðnÞ
� �

mx ¼ 0 ð2:14aÞ

7yf x�ðnÞ; y�ðnÞ
� �

2 7yH y�ðnÞ
� �

my ¼ 0 ð2:14bÞ

S
x
M

x ¼ n1x; S
y
M

y ¼ n1y ð2:14cÞ

hðx�ðnÞÞ1 s
x ¼ 0; Hðy�ðnÞÞ1 s

y ¼ 0 ð2:14dÞ
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sx . 0; sy . 0; mx
;my

$ 0:

Equations (2.14a–d) are the perturbed version of conditions (2.6)–(2.9). It can

be seen from (2.14c) that, with n ! 0, the sequence of solutions to (2.14a–d)

converges to the solution of the original saddle point problem (2.4), given by

(2.6)–(2.9), and hence fðx�ðnÞ; y�ðnÞg ! ðx�; y�Þ. The formal discussion of

this is given by Fiacco and McCormick (1968). We illustrate the property

with an example.

Example Consider the problem

min
x1;x2

max
y1;y2

n
ðx1 2 1Þ2 1 ðx2 � 1Þ2 2 ðy1 2 2Þ2 2 ðy2 2 2Þ2 j y1 1 y

2
# 2;

x
1
1 x

2
$ 1

o
:

Without slack variables, we apply the barrier function directly to the inequal-

ity constraints

min
x1;x2

max
y1;y2

n
ðx1 2 1Þ2 1 ðx2 2 1Þ2 2 ðy1 2 2Þ2 2 ðy2 2 2Þ2

1n log ð22 y
1
2 y

2Þ2 log x1 1 x
2
2 1Þ

h io
:

The first order conditions for a saddle point of the barrier function yield

ðx1 2 1Þ2 n=2

x1 1 x2 2 1
¼ 0; ðx2 2 1Þ2 n=2

x1 1 x2 2 1
¼ 0

ðy1 2 2Þ1 n=2

22 y1 2 y2
¼ 0; ðy2 2 2Þ1 n=2

22 y1 2 y2
¼ 0:

The solution of the above system of nonlinear equations is

x
1ðnÞ ¼ x

2ðnÞ ¼ 3^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
92 8ð12 ðn=2ÞÞp

4

y1ðnÞ ¼ y
2ðnÞ ¼ 3^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
92 2ð42 ðn=2ÞÞp

2
:

The negative term in both cases correspond to the minimum with respect to x

and maximum with respect to y. As n ! 0, the constrained minimax solution

is given by

x
1 ¼ x

2 ¼ 1

2

y1 ¼ y
2 ¼ 1:
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The perturbed conditions (2.14) of (2.4) are equivalent to the saddle point

conditions of the barrier function problem (2.12), given by (2.13). Following

the discussion in El-Bakry et al. (1996), we note that the perturbed conditions

(2.14) are not the saddle point conditions (2.13) of the barrier function

problem. Furthermore, the iterates of the Newton algorithm, discussed

below, applied to the perturbed conditions (2.14) are not the same as the

iterates of the Newton algorithm applied to conditions (2.13). In other

words, (2.14) and (2.13) have the same solutions, and are consequently

equivalent. However, the sequence of iterates generated by the Newton algo-

rithm for solving (2.14) or (2.13) are not equivalent.

In the spirit of the development in Section 1, we redefine the vector z as

z ;

x

y

mx

my

sx

sy

2
6666666666664

3
7777777777775

:

Let

F nðzÞ ¼ 0

denote the system (2.14a–d). The method for solving F nðzÞ ¼ 0 is a Newton-

type algorithm for each value of n. In addition, a stepsize strategy is required

to ensure sufficient progress with respect to x, y, for fixed n, and this is

discussed in relation to the quasi-Newton algorithm below. Another strategy

is required to reduce n, such that fng ! 0, and finally a stepsize strategy is

required to ensure sx, sy;mx
;my

. 0. The latter two strategies are discussed

further by El-Bakry et al. (1996), Zakovic et al. (2000) and Akrotirianakis and

Rustem (1998). Most of the analysis below is directed at the property of

Newton-type algorithms for solving F nðzÞ ¼ 0 for fixed n. Hence, the super-

script n is omitted and we refer to (2.14a–d) as FðzÞ ¼ 0. The analysis related

to convergence of the overall algorithm, while reducing n, is a consequence of

the optimization algorithm in Akrotirianakis and Rustem (1998).

2.4 Quasi-Newton Algorithm for Nonlinear Systems

The final algorithm we consider approximates the Jacobian 7F j with a quasi-

Newton scheme. There are numerous schemes for this purpose, especially in

view of the underlying problem structure. We discuss the general case. The

basic algorithm aims to solve a system of equations such as (1.4) or (2.14a–d).
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Let the system be denoted by FðzÞ ¼ 0. Starting from an initial point z0, the

algorithm generates a sequence fzkg by using (1.16) where dk is given by

7F̂ kdk ¼ 2F k ð2:15Þ
and ak is determined using (2.2). The matrix 7F̂ k is an approximation to 7F k.

The principal approximation procedure is the Broyden update given by

7F̂ k ¼ 7F̂ k�1 1
½F k 2F k�1 2 7F̂ k�1ðzk 2 zk�1Þ�ðzk 2 zk�1ÞT

kðzk 2 zk�1Þ; ðzk 2 zk�1Þl
: ð2:16Þ

In Becker and Rustem (1993), this approximation is augmented with periodic

re-evaluation of columns of 7F k by numerical differentiation. The corre-

sponding approximate columns of 7F̂ k are replaced with these re-evaluated

columns. The full re-evaluation of all columns at every iteration would yield

the discrete Newton algorithm (Ortega and Rheinboldt, 1970). The Broyden

update may not always converge elementwise to the Jacobian at the solution.

Dennis and Schnabel (1983) give an example in which the update converges to

a different matrix. However, this does not alter the desirable theoretical prop-

erties of the method, especially when it is coupled with periodic numerical

reevaluation of the Jacobian (Moré and Trangenstein, 1976). Furthermore,

numerical experience with the method is generally reported to be good.

3 GLOBAL CONVERGENCE OF NEWTON-TYPE ALGORITHMS

In this section, we consider the convergence properties of the quasi-Newton

algorithm based on (1.16), (2.2), (2.15), (2.16). We establish global conver-

gence with relaxed descent directions and relate the achievement of unit

stepsizes to the difference of the Jacobian approximation and the actual Jaco-

bian at the solution. In Section 4, we discuss the local convergence rate by

providing a simple derivation of the Dennis–Moré characterization of Q-

superlinear convergence.

The direction dk employed by the algorithm need not necessarily satisfy

(2.2). The global convergence of the algorithm requires that dk is a descent

direction for the sum of squares merit function such that

k½7F k�TF k; dkl # 2midki
2 ð3:1aÞ

for some m . 0. This is clearly satisfied by the steepest descent and, with a

nonsingular Jacobian, the Newton directions. The quasi-Newton direction

satisfies

k½7F̂ k�TF k; dkl # 2midki
2
: ð3:1bÞ

The stepsize is adjusted to ensure the inequality
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1

2
iFðzk 1 akdkÞi22 2

1

2
iF ki

2
2 # akrk½7F k�TF k; dkl ð3:2Þ

where k½7F k�TF k; dkl # 0. If, even for small stepsizes, the Newton or the

quasi-Newton direction (2.2) does not satisfy (3.2), then the steepest descent

direction dk ¼ 2½7F k�TF k in Section 1, 2F k, as discussed in Section 2, or

even 2dk may be tried (Li, 1989).

When an approximate Jacobian 7F̂ k is used and (3.2) is not satisfied for

ak ¼ 1, with this approximation, then the algorithm computes columns of the

Jacobian numerically before attempting to reduce the stepsize in order to

satisfy the stepsize criterion (3.2).

Assumption 3.1

(i) There exists a solution, z
p
, to FðzÞ ¼ 0.

(ii) F [ C
1ðRnÞ.

(iii) The direction dk satisfies (3.1).

Assumption 3.1 (i) is required to ensure that the algorithm is well defined.

We also require that 7F is Lipschitz continuous to establish the monotonic

decrease of the sequence fiF ki
2
2g discussed in Theorem 3.1 and also to estab-

lish global convergence. The monotonic decrease may also be obtained with-

out Lipschitz continuity if it is assumed that iF ki ¼ fidki, for some

f [ ð0;1Þ. The latter is satisfied both by the steepest descent with a non-

singular Jacobian approximation and with the Newton and quasi-Newton

directions.

In Theorems 4.1–4.3, we further require F [ C
2ðRnÞ to establish the

achievement of unit stepsizes (i.e., ak ¼ 1Þ. The descent condition in Assump-

tion 3.1 (iii) is satisfied by the Newton and steepest descent directions. For the

quasi-Newton direction, the algorithm ensures satisfaction by refining the

Jacobian approximation. If the descent condition is not satisfied, even after

a full numerical evaluation of the Jacobian, then the algorithm fails. In Theo-

rem 3.1, we have allowed for a general descent direction including the

Newton, quasi-Newton or steepest descent steps. For example, one reasonable

way of establishing the quasi-Newton case is by assuming iF ki ¼ fidki as in
Theorem 3.1 (ii).

Theorem 3.1 (Monotonic Decrease) Let Assumptions 3.1 be satisfied and

furthermore let either

(i) 7F be Lipschitz continuous: i7FðzÞ2 7FðẑÞi # ‘iz2 ẑi, for ‘ . 0;

or

(ii) dk satisfies iF ki ¼ fidki, for some f [ ð0;1Þ.
(iii) dk satisfies (3.1).
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Then, the stepsize computed in the N-SCE and N-B-SCE algorithms is such

that ak [ ð0; 1� and hence the sequence fzkg generates a corresponding mono-
tonically decreasing sequence fiF ki

2
2g.

Remark In Theorems 3.1–3.2, the bound r [ ð0; 1� is sufficient. However,
we have adopted the tighter bound r #

1
2
since the latter is required to establish

the convergence to unit stepsizes.

Proof. Using the first order expansion of iF i22, we have

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 ¼ akk½7F k�TF k; dkl

1ak

Z1

0
½7FðzðtÞÞ�T FðzðtÞÞ2F kf g1 ½7FðzðtÞÞ�T 2 ½7F k�T

n o
F k; dk

D E
dt

ð3:3Þ
where zðtÞ ¼ zk 1 takdk. For (i), given the Lipschitz continuity and (3.1a) we

have

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 # akk½7F k�TF k; dkl 12

ak

2m
fc2

1 ‘iF kig
� �

ð3:4Þ

where i7F i # c. The scalar r [ ð0; 1Þ in the stepsize strategy (3.2) clearly

determines ak such that

r # 12
ak

2m
fc2

1 ‘iF kig #
1

2
:

By (3.1), there exists ak [ ½0; 1� satisfying the inequalities (3.2) and (3.3).

Suppose a0 is the largest a [ ½0; 1� satisfying these inequalities. Thus, all a #

a0 also satisfy these conditions and that the stepsize strategy selects a

ak [ ½aa0
;a0�, where a [ ð0; 1Þ. By (3.1), it follows that fiF ki

2
2g is a mono-

tonically decreasing sequence. For (ii), we can use (3.3) to derive a relation-

ship similar to (3.4) by invoking iF ki ¼ fidki. A

We discuss the global convergence of the basic Newton and quasi-Newton

algorithms. A review of convergence concepts is given in CN 1.7.

Lemma 3.1 Let the assumptions of Theorem 3.1 be satisfied. We then have

lim
k!1

k½7F k�TF k; dkl ¼ 0: 3:5Þ

Proof. The level set

F ¼ z [ R
n j iFðzÞi22 # iFðzk0 i22

n o
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is bounded (see CN 2) for some k0 $ 0. We state the proof for the Lipschitz

continuous case (i) in Theorem 3.1. Case (ii) can also be similarly established

using the compactness of F. Given r [ ð0; 1
2
), by (3.4), the choice

a0 ¼ min 1;
12 r

1
2m
ðc2 1 ‘iF kiÞ

( )

always satisfies the stepsize strategy (3.2). Clearly, ak, chosen in the algo-

rithms is in the range ak [ ½aa0;a0� and thereby also satisfies (3.2). As F is

Lipschitz continuous and F is compact, there exists a scalar M , 1 and

iF ki , M. Thus, as ‘ [ ð0;1Þ and m . 0, we have ak $ â . 0;8j, for

some â and stepsize strategy (3.2). The boundedness of iFðzÞi22 on F and

k½7F k�TF k; dkl # 0 imply

0 # r
X
j

akjk½7F k�TF k; dklj #
X
j

1

2
iF ki

2
2 2

1

2
iF k11i

2
2


 �
, 1

which yields (3.5). A

Lemma 3.2 Inequality (3.1) and Lemma 3.1 imply limk!1
idki ¼ 0.

Proof. The result follows from (3.1) and (3.5). A

We can hence show the global convergence for any algorithm satisfying

(3.1) as well as iF ki ¼ fidki, for some f [ ð0;1Þ. As mentioned earlier, this

is satisfied by the Newton, quasi-Newton directions and the steepest descent

direction with a nonsingular Jacobian.

Theorem 3.2 (Global Convergence) Let Assumptions 3.1 be satisfied and

let dk satisfy iF ki ¼ fidki, for some f [ ð0;1Þ. Then the algorithms either

terminate at a solution of the system FðzÞ ¼ 0 or they generate an infinite

sequence fzkg with a subsequence k [ K , f0; 1;…g such that idki
� ! 0 and

thus every accumulation point z
p
of the infinite sequence fzkg is a solution of

FðzÞ ¼ 0.

Proof. By Lemmas 3.1 and 3.2, there exists a subsequence fzkg; k [ K, such

that idki ! 0. Let there exist z
p
such that fzkg ! z

p
. The existence of such

points is ensured since the algorithms decrease iFðzkÞi22 at each iteration,

thereby ensuring zk [ F, with F compact (see CN 2). The result then follows

by letting k ! 1; k [ K, since iFðz
p
Þi ¼ limk!1 iFðzkÞi ¼ limk!1 fidki ¼

0. A
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4 ACHIEVEMENT OF UNIT STEPSIZES AND SUPERLINEAR

CONVERGENCE

In this section, we demonstrate convergence to unit stepsizes in terms of a

condition on the Jacobian or its approximation. To establish these results, we

need to further assume that dk is a Newton or quasi-(or approximate) Newton

direction and strengthen the assumption on differentiability. We show that the

convergence to unit stepsizes depends on the Jacobian. We first establish the

result for an exact Jacobian and in Theorem 4.2 discuss the case for an

approximate Jacobian such as a quasi-Newton approximation. Let F � ;
Fðz�Þ and 7F � ; 7Fðz�Þ:

Theorem 4.1 (Convergence to Unit Stepsizes – Exact Jacobian) Let

Assumptions 3.1 be satisfied. Also let F [ C
2ðRnÞ and

mivi2 # kv; ½7F k�T½7F k�vl # Mivi2; m . 0; 8v – 0:

Then there is a stage K such that strategy (3.2) is satisfied with ak ¼ 1,

8k $ K.

Proof. Premultiplying the relationship 7F kdk ¼ 2F k by F k, we obtain

kð½7F k�TF k; dkl ¼ 2kF k;F kl ¼ 2kdk; ½7F k�T½7F k�dkl: ð4:1Þ
Consider the second order expansion of iF i22

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 ¼ k½7F k�TF k; dkl1

1

2
kdk; ½7F k�T½7F k�dkl

1

Z1

0
ð12 tÞkdk; Qðzk 1 tdkÞ2 ½7F

p
�T½7F

p
�

n

1½7F
p
�T½7F

p
�2 ½7F k�T½7F k�

o
dkl dt ð4:2Þ

where Q (·) is the Hessian of 1
2
iFð·Þi22, given by ½7Fð·Þ�T½7Fð·Þ�

1
P

i 7
2F ið·ÞF ið·Þ, with the last term vanishing at the solution Fðz�Þ ¼ 0.

Using (4.1), (4.2) becomes

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 # k½7F k�TF k; dkl

1

2
2 hk 1

jk
2


 �� �

where

hk ¼
Z1

0
ð12 tÞiQðzk 1 tdkÞ2 ½7F

p
�T½7F

p
�i dt

jk ¼ i½7F
p
�T½7F

p
�2 ½7F k�T½7F k� i:

Since, by Theorem 3.2, fzkg ! z
p
, we have fhkg, fjkg ! 0. For ak ¼ 1, the
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scalar r [ ½0; 1
2
Þ of the stepsize strategy is bounded by

r #
1

2
2 hk 1

jk
2


 �
:

Thus, when 1
2
2 r $ ðhk 1 ðjk=2ÞÞ, the stepsize strategy is satisfied with

ak ¼ 1. A

The main difficulty about the use of approximate Jacobians is that dk does

not always satisfy the descent condition k½7F k�TF k; dkl # 0, and that

k½7F̂ k�TF k; dkl # 0 does not necessarily imply descent. If descent is not

ensured, then global convergence cannot be established. A better Jacobian

approximation is required and the algorithms in the previous section aim to

achieve this.

Theorem 4.2 (Convergence to Unit Stepsizes – Approximate Jacobian)

Let Assumptions 3.1 be satisfied. Also let F [ C
2ðRnÞ and

mivi2 # kv; ½7F̂ k�T½7F̂ k�vl # Mivi2; m . 0; 8v – 0

and let dk that solves

7F̂ kd ¼ 2F k ð4:3Þ
satisfy the descent condition

k½7F k�TF k; dkl # 2kF k;F kl: ð4:4Þ
Then the stepsize strategy is satisfied for some ak [ ð0; 1� and the monotonic

decrease of the sequence fiF ki
2
2g is ensured. Also, there is a number x such

that if

i½7F
p
�T½7F

p
�2 ½7F̂ k�T½7F̂ k�i # x

then the stepsize strategy is satisfied for ak ¼ 1.

Proof. Consider the second order expansion (4.2)

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 # akk½7F̂ k�TF k; dkl1 akk½7F k 2 7F̂ k�TF k; dkl

1
1

2
ðakÞ2kdk; ½7F̂ k�T½7F̂ k�dkl

1ðakÞ2 hk 1
1

2
i½7F

p
�T½7F

p
�2 ½7F̂ k�T½7F̂ k�i

� �
idki

2
. dt:

ð4:6Þ
From (4.3) and (4.4), we note that k½7F k 2 7F̂ k�TF k; dkl # 0. Also, from
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(4.3), we have

kð½7F̂ k�TF k; dkl ¼ 2kF k;F kl ¼ 2kdk; ½7F̂ k�T½7F̂ k�dkl: ð4:7Þ
Using (4.7), (4.6) becomes

1

2
iF k11i

2
2 2

1

2
iF ki

2
2 # akk½7F̂ k�TF k; dkl

£ 12
1

2
ak 11

1

m

n
2hk 1 i½7F

p
�T½7F

p
�2 ½7F̂ k�T½7F̂ k�i

o� �� �
:

Thus, there exists an ak [ ð0; 1� such that

r # 12
1

2
ak 11

1

m

n
2hk 1 i½7F

p
�T½7F

p
�2 ½7F̂ k�T½7F̂ k�i

o� �
#

1

2
ð4:8Þ

which satisfies the stepsize strategy. The monotonic decrease of the sequence

fiF ki
2
2g follows from this property. Global convergence follows from Theo-

rem 3.2. Thus, fzkg ! z
p
and fhkg ! 0.

We can use (4.8) to conclude that if x . 0 is such that

1

2
2 r $

1

m
2hk 1 xf g

� �

(in view of fhkg ! 0, this defines the number x) then the stepsize strategy

holds with ak ¼ 1. A

The local superlinear convergence rate of the quasi-Newton algorithm is

established by the Dennis and Moré (1974) characterization (see CN 3). The

following is a simple derivation of this characterization which only requires

the once continuous differentiability of F and does not require the Lipschitz

continuity of the Jacobian.

Lemma 4.1 Let fz j ! zp, then fz jg is Q-superlinearly convergent if and

only if id ji # g jid j�1i; limj!1 g j ¼ 0.

Proof. Suppose idki # gkidk�1i; limj!1 gk ¼ 0, holds. We have

iz
p
2 zki # lim

t!1

Xt�1

i¼k

izi11 2 zii

# gk idk�1i ð11 v1 v2
1 v3

1…Þ

#
gk

12 v
izk 2 z

p
i1 iz

p
2 zk�1i

� 

for some v [ ½0; 1Þ. As fgkg ! 0, v is chosen such that gk 1 v , 1,
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8k $ K0. K0 is an integer and is such that gk , 1;8k $ K0. Rearranging the

above expression,

izk 2 z
p
i

izk 2 z
p
i1 izk�1 2 z

p
i
#

gk
12 v

iz
p
2 zki #

gk
12 v2 gk

iz
p
2 zk�1i

which establishes the Q-superlinear convergence of fzkg.
Suppose that iz

p
2 zki # bkizp 2 zk�1i; limj!1

bk ¼ 0, with bk , 1. This

yields the inequality

iz
p
2 zki # bkizp 2 zki1 bkidk�1i

#
bk

12 bk


 �
idk�1i: ð4:9Þ

Next, consider

27F̂ dk ¼ F k ¼ F � 1

Z1

0
7Fðzk 1 tðz� 2 zkÞÞðz� 2 zkÞ dt

which yields, for c1 [ ½0;1Þ,
idki # c1iz� 2 zki: ð4:10Þ

Using (4.10) in (4.9), leads to the required result

idki # c1
bk

1�bk


 �
idk�1i: A

We give a simple proof of the Dennis and Moré (1974) characterization of the

local Q-superlinear convergence rate of the algorithms.

Theorem 4.3 Let D , R
n
be an open convex set, Assumptions 3.1 be satis-

fied and let f7F̂ kg be a sequence of nonsingular matrices and suppose that for
some z0 [ D the sequence generated by

zk11 ¼ zk 1 dk with 7F̂ kdk ¼ 2F k ð4:11Þ
remains in D, and limj!1 zk ¼ z

p
. Then fzkg satisfies idki # gkidk�1i,

limk!1
gk ¼ 0, and thence converges Q-superlinearly to z

p
, in some norm

i · i and Fðz
p
Þ ¼ 0 if and only if

lim
j!1

���� 7F̂ k 2 7F
p

h i
dk

����
idki

¼ 0:
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Proof. In order to establish this result in both directions, we need only to

consider (4.11) and the first order expansion of FðxÞ
27F̂ kdk ¼ F k ¼ F k�1 1 7F̂ k�1dk�1 1Ck 1 7F

p
2 7F̂ k�1

h i
dk�1

where

Ck ¼
Z1

0
½7FðzðtÞÞ2 7F

p
�dk�1 dt

with fCkg ! 0 and F k�1 1 7F̂ k�1dk�1 ¼ 0. As 7F̂ k is nonsingular, dividing

the above expression by idk�1i and invoking Lemma 4.1 yields the required

result. A

5 CONCLUDING REMARKS

The computation of saddle points can be done using numerous approaches. A

number of algorithms are developed and discussed for this purpose. A general

quasi-Newton algorithm is discussed and its properties are established. It is

shown that the stepsize a is guaranteed to converge to unity as the Jacobian

approximation is sufficiently close to its value at the solution. A novel short

proof of Q-superlinear convergence is given.

The convergence and accuracy of the solution can be regulated in Newton-

type algorithms. One advantage of Newton-type algorithms, is that they solve

for the zero of a system FðzÞ ¼ 0 and it is possible to apply them to general

structures.
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COMMENTS AND NOTES

CN 1: A Mean Value Theorem for f : F , R
n!R

m
, m . 1

We note that mean value theorems usually apply to mappings f : F , R
n !

R
1 and do not hold in general for mappings : F , R

n ! R
m, m . 1. We

construct the result by treating each element of the vector individually (see

Ortega and Rheinboldt, 1970, Theorem 3.2.2).

CN 2: Notes on Convergence

A sequence of vectors x0; x1;…; xk;…, in S # R
n, denoted by fxkg, is said to

converge to the limit x� [ S if

lim
k!1

ixk 2 x�i ¼ 0
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(i.e., given e . 0, there is a N such that k $ N implies ixk 2 x�i , eÞ. If fxkg
converges to x, we write fxkg ! x�.

The open ball around a point x is a set of the form

y [ R
n j iy2 xi , e

� 

for some e . 0. A subset S # R
n is open if around every point x [ S , there is

an open ball contained in S (i.e., for x [ S, there is an e . 0 such that

iy2 xi , e, with y [ S). For example, the ball y [ R
n j iyi , e

� 
is open.

The interior of any set S # R
n
is the set of points x [ S which are at the

center of some ball contained in S. A set is said to be open if all its points are

all interior points. Thus, the interior of a set is always open. The interior of the

ball

y [ R
n j iyi # eg�

is the open ball

y [ R
n j iyi , e

� 
:

A point x is a limit of fxkg if there is a subsequence of fxkg convergent to x. The
subsequence is denoted in terms of the subset K of the positive integers such

that fxkg ! x for k [ K . A related concept is an accumulation point: if S #

R
n and x [ R

n, then x is called an accumulation point of S if every ball around

x contains at least one point of S distinct from x. For example, the set of

numbers 1=n; n ¼ 1; 2; 3;…, has zero as an accumulation point.

A set S is closed if its complement Rn
2 S is open. Alternatively, a set S is

closed if every point arbitrarily close to S is a member of S (i.e., S is closed if

fxkg [ S and fxkg ! x imply that x [ S). For example, the ball fy [ R
n j

iyi # eg is closed. The closure of any set S # R
n is the smallest closed set

containing S . The boundary of a set is that part of the set that is not its interior.
A set is bounded if it lies entirely within a ball of some radius e . 0,

y [ R
n j i y2 xi # e

� 
:

A set is compact if and only if it is closed and bounded.

For a compact set S, the Bolzano-Weierstrass theorem (Apostol, 1981) can

be used to show that every infinite subset of S has an accumulation point in S .
Thus, if fxkg , S (i.e., each member of the sequence is in S), then fxkg has a
limit point in S . This establishes that there is a subsequence of fxkg converging
to a point in S . (For example, the sequence defined by xk11 ¼ 2xk; x0 ¼ 1, has

a subsequence fx2kg with limit point 1 and a subsequence fx2k11g with limit

point 21. Both sequences and their limits are clearly in the compact set

fx j ixi # 1g.)
The convergence of the algorithms in this chapter and in Chapters 7, 8, 9

and 12 depends on the Bolzano–Weierstrass theorem. We are concerned with

algorithms that aim to solve for a fixed optimal point while generating a
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sequence fxkg within a compact set S such that a certain descent property is

satisfied for a merit function (e.g., f ðxk11Þ , f ðxkÞ and for x� solving the

problem, f ðx�Þ # f ðxkÞ;8k). There need not be a unique accumulation point

for each subsequence. However, each accumulation point would need to

satisfy the optimality condition of the problem.

CN 3: Q-Rates of Convergence of a Sequence fxkg ! x�

If there exists a constant g [ ½0; 1Þ, and an integer k̂ $ 0 such that 8k $ k̂

ix� 2 xk11i # g ix� 2 xki

then fxkg is said to be convergent to x� at a Q-linear rate. If for some sequence

fgkg,
lim
k!1

gk ¼ 0

and

ix� 2 xk11i # gkix� 2 xki

then fxkg is said to be convergent to x� at a Q-superlinear rate. If, instead of

this rate, for some integer j, we have

ix� 2 xk1ji # gkix� 2 xki

then fxjg is said to be convergent to x� at a j-step Q-superlinear rate. If there

exist constant values i . 1; g $ 0 and an integer k̂ $ 0 such that 8k $ k̂

ix� 2 xk11i # gix� 2 xki
i

then fxkg is said to be converge to x� with a Q-order at least i. For i ¼ 2, the

rate is said to be Q-quadratic. An authoritative discussion of general rates of

convergence is given by Ortega and Rheinboldt (1970, Chapter 9).
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Chapter 4

A quasi-Newton algorithm for continuous minimax

In this chapter, we develop the algorithm models considered in Chapter 2 to

consider a fast algorithm for the continuous minimax problem. This extends

the steepest descent approach of Panin (1981) and the convex combination

rule for subgradients of Kiwiel (1987) to quasi-Newton search directions,

conditional on an approximate maximizer.

In effect, we evaluate the choice between two alternative directions. The

first is relatively easy to compute and is based on an augmented maximization

to ensure that the multiplicity of maximizers does not result in an inferior

search direction. The second involves a quadratic suproblem to determine the

minimum norm subgradient. In Chapter 5, we discuss the relative merits of an

algorithm based only on the former, simpler, direction.

We establish the descent property of the direction chosen by the algorithm.

A step is taken using an Armijo-type stepsize strategy consistent with the

direction. This ensures the monotonic decrease of the maximizing function

and the convergence of the algorithm. We show that the stepsize selected by

the algorithm converges to unity and that the local convergence rate is Q-

superlinear.

1 INTRODUCTION

As in Chapters 1 and 2, we consider the problem

min
x[Rn

max
y[Y

f ðx; yÞ ð1:1Þ

where Y � R
m and f : Rn

£Y 7 !R
1. Let

FðxÞ ¼ max
y[Y

f ðx; yÞ ð1:2Þ

for all x [ R
n. We call FðxÞ the max-function. Hence, (1.1) can be written as

min
x[Rn

FðxÞ: ð1:3Þ

In this chapter, we discuss a quasi-Newton algorithm to solve (1.3). The

salient features of the algorithm are the generation of a descent direction

based on a subgradient of f ðx; ·Þ and an approximate Hessian, in the presence



of possible multiple maximizers of (1.2), and a stepsize strategy that ensures

sufficient decrease in FðxÞ at each iteration.

Assumption 1.1 Y � R
m
is a convex and compact infinite set.

Remarks Convexity is required to ensure a global maximum (see CN 1.11)

for y. This is important for the algorithm below. If an algorithm for computing

global maxima is assumed to exist for feasible sets which may not necessarily

be convex, this assumption would not be needed. It should be noted that a

similar assumption regarding the concavity of f ð·; yÞ is not made as it is

assumed the global maximization of f ð·; yÞ over a convex feasible set is possi-

ble.

Compactness ensures that, by Weierstrass’ theorem, the sequence generated

by the algorithm has a limit point in this set (see CN 3.2, Apostol, 1981;

Luenberger, 1984)

Assumption 1.2 f ðx; yÞ is continuous in x and y; twice continuously differ-

entiable in x

Assumption 1.3 In the neighborhood of the solution x
p
of (1.3), there exists

a scalar b . 0 such that

8x [ x [ R
n j x2 x

pk k , bf g
the Hessian with respect to x of f ðx; yÞ for all y [ Y is positive definite.

Remark Positive definiteness is required for the demonstration of conver-

gence to unit stepsize and local superlinear convergence.

As we discuss in Chapter 1, if Y is a finite set, (1.3) becomes the discrete

minimax problem

min
x[Rn

max
j[1;…;J

f
jðxÞ

n o
ð1:4Þ

and this is discussed in Chapters 6 and 7. Most algorithms for solving (1.4)

involve the transformation of (1.4) into the nonlinear programming problem

min
x;z[Rn1 1

z j f jðxÞ # z; j ¼ 1;…; J
n o

: ð1:5Þ

In the continuous case for Y, the formulation of (1.5) is the semi-infinite

optimization problem

min
x;z[Rn1 1

z j f ðx; yÞ # z;8y [ Yg;f ð1:6Þ

with an infinite number of constraints corresponding to the elements in Y.
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Problem (1.3) poses several difficulties. First, FðxÞ is, in general, contin-

uous but may have kinks. Therefore, it may not be straightforwardly differ-

entiable. The presence of kinks makes the optimization problem difficult to

solve. At a kink, the maximizer is not unique and the choice of subgradient to

generate a search direction is not simple compared to smooth functions.

Furthermore, the Hessian of the Lagrangian of (1.6), is viewed in the context

of multiple maximizers. The existence of the Hessian of the max-function for

finite Y (i.e., the discrete minimax case) is discussed by Wierzbicki (1982).

The approach can be used to establish that the Hessian of (1.6) represents the

Hessian of the max-function at the solution. The results below require the

existence of the Hessian of (1.6) and the algorithm utilizes an approximation

to this. Second, FðxÞ may not be computed accurately as it would require

infinitely many iterations of an algorithm to maximize f ðx; yÞ, with respect to

y [ Y. In practice, the maximization algorithm is terminated when a suffi-

ciently good maximum is attained. (We assume that FðxÞ is the exact value of
the max-function. In the numerical experiments reported in Chapter 5, FðxÞ is
computed with an accuracy of at least 1028.) Third, (1.3) requires a global

maximum, in view of possible multiple maximizers, such as corner solutions

(see Remark 3.1a). The use of nonglobal maxima cannot guarantee a mono-

tonic decrease in FðxÞ.
In this chapter, we discuss an algorithm for solving (1.1) which extends the

first order approach of Panin (1981) and Kiwiel (1987) to quasi-Newton

descent directions, conditional on the maximizer, and attempts to deal with

the problem of multiple maximizers. Two alternative directions are consid-

ered. The first is based on the maximizer at x, corresponding to the minimum

norm subgradient of 7xf ðx; ·Þ, and a Hessian approximation. It involves an

augmented maximization subproblem to ensure that any multiplicity of maxi-

mizers does not result in an inferior search direction. For this purpose, the

quasi-Newton descent direction is based on a quadratic approximation of

f ðx; yÞ and on ykþ1 which minimizes (with respect to y) simultaneously

FðxkÞ2 f ðxk; yÞ
� 	2

and 7xf ðxk; yÞk k2C21
k :

Following Lemma 3.1 below, whenever possible, the maximizer with the

minimum-norm subgradient is chosen. The second direction involves more

computation. This is a quasi-Newton descent direction based on the combina-

tion of the gradients corresponding to the multiple maximizers. The evaluation

of the combination entails the solution of a quadratic programming problem.

The descent property is established in Lemma 3.2 below. In the discrete

minimax case, it can be shown that the algorithm based on the second direc-

tion only is equivalent to the discrete minimax algorithm in Rustem (1992).

An Armijo-type stepsize strategy, consistent with the search direction, is used

to determine the stepsize. The algorithm is shown to be globally convergent.
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The algorithm also attains unit stepsizes and a Q-superlinear convergence rate,

depending on the accuracy of the Hessian approximation used.

We introduce useful basic concepts in Section 2 and present the algorithm

and its basic descent property in Section 3. The monotonic decrease of the

sequence FðxkÞf g is discussed in Section 4. Convergence to unit stepsizes,

global and local convergence results are discussed in Section 5.

Numerical results for test problems with f ðx; yÞ convex-concave in x � y;

convex in both x, y; generally nonlinear in x and linear in y are reported in

Chapter 5 using the quasi-Newton algorithm below, a simplified version,

based on the direction d only, and Kiwiel’s (1987) algorithm.

2 BASIC CONCEPTS AND DEFINITIONS

At any point x, we define the set of maximizers by

YðxÞ ; y j y ¼ argmax
h[Y

f ðx;hÞ
( )

: ð2:1Þ

Assumption 2.1 At a point x, all members of the set YðxÞ are computable.

We define the directional derivative of FðxÞ, along the direction d [ R
n, at

xk, as

2FðxkÞ
2d

; max
y[YðxkÞ

k7xf ðxk; yÞ; dl

(Demyanov and Malozemov, 1974). The proposed algorithm generates quasi-

Newton directions that ensure descent. To this end, let fkðd; yÞ denote an

augmented quadratic approximation to f ðx; yÞ

fkðd; yÞ ¼ f ðxk; yÞ1 k7xf ðxk; yÞ; dl1
1

2
dk k2Ck

2C FðxkÞ2 f ðxk; yÞ
� 	2 ð2:2Þ

where C $ 0 is a penalty parameter for deviations from the maximizer at xk
(see Appendix B); Ck is a positive definite approximation to the Hessian, with

respect to x, of the Lagrangian of (1.6) at the kth iteration; and

dk k2Ck
¼ kd;Ckdl. The max-function corresponding to this approximation is

given by

FkðdÞ ¼ max
y[Y

fkðd; yÞ: ð2:3Þ

Assumption 2.2 For the Hessian approximation Ck, k ¼ 1; 2;…, there exist

numbers z; z . 0 such that

z xk k2# xk k2Ck
# z xk k2; 8x [ R

n
:

CHAPTER 466



The choice of Hessian, discussed below, is consistent with the convex duality

theory in Wierzbicki (1982; Lemma 1), for determining the minimum-norm

subgradient in the subdifferential

2FðxÞ ¼ conv 7xf ðx; yÞ j y ¼ argmax f ðx; yÞf g

¼ conv7xf ðx; yÞ j f ðx; yÞ ¼ FðxÞf g
of themax-function. ByWierzbicki (1982), this is equivalent to the problem of

minimizing the quadratic approximation to the Lagrangian of (1.6). The

equivalence holds for y ¼ argmax f ðx; yÞ, or f ðx; yÞ ¼ FðxÞ, ensured for suffi-

ciently large C in (2.2)–(2.3). Hence we can express the above subdifferential

equivalently as

2FðxÞ ¼ conv 7xf ðx; yÞ j y [ YðxÞf g:
Furthermore, we note that

max
y[YxkÞ

k7xf ðxk; yÞ; dkl ¼ max
7xf ðxk ;yÞ[2FðxkÞ

k7xf ðxk; yÞ; dkl ð2:4Þ

(Demyanov and Malozemov, 1974, p. 195, proof of Theorem 3.1). This

follows from the equivalence of the maximum over the convex combination

of jYðxkÞj numbers (i.e., the inner product of the gradient (2.12) below with

dk) to the maximum of these jYðxkÞj numbers, corresponding to the individual

inner products k7xf ðxk; yÞ; dkl arising from each maximizer.

Let d be the direction that minimizes the approximation to the max-func-

tion, that is,

d ¼ argmin
d[Rn

FkðdÞ: ð2:5Þ

To evaluate d, we note that (2.3) is minimized by dðyÞ ¼ 2C
21
k 7xf ðxk; yÞ, for

y [ Y. Using this d in (2.3) determines the maximizer ykþ1 given by

ykþ1 ¼ argmax
y[Y

f ðxk; yÞ2
1

2
7xf ðxk; yÞk k2C�1

k
2C FðxkÞ2 f ðxk; yÞ

� 	
2

� �
: ð2:6Þ

It is shown in Lemma 3.1, that the set of y [ Y that solve (2.3) (or (2.6)) is a

subset of YðxkÞ.
We define the set of maximizers of fkðd; yÞ as

Ykþ1 ; ykþ1 [ YðxkÞ j ykþ1 ¼ argmax fkðd; yÞ
� 

: ð2:7Þ
The resulting direction

d ¼ 2C
�1
k 7xf ðxk; ykþ1Þ ð2:8Þ

is a descent direction for kd;7xf ðxk; ykþ1Þl and, if d is a descent direction for all
the other maximizers, it is a descent direction for the max-function. If ykþ1 is

nonunique (i.e., jYkþ1j . 1Þ, we choose an arbitrary element of Ykþ1 and
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compute

y ¼ argmax
y[YðxkÞ

k7xf ðxk; yÞ; dl: ð2:9Þ

Remark The computation in (2.9) can be realized by evaluating the inner

product for the maximizers y [ YðxkÞ, or by solving

max
y[Y

k7xf ðxk; yÞ; dl2 C FðxkÞ2 f ðxk; yÞ
� 	2

:

To solve (1.3), the quasi-Newton algorithm constructs the sequence

xkþ1 ¼ xk 1 akdk ð2:10Þ
where ak is calculated according to a rule discussed below while dk is given by

dk ¼
2C

�1
k 7Fk if k7xf ðxk; yÞ; dl $ 2j

d otherwise:

(
ð2:11Þ

j is the termination accuracy and 7Fk is a convex combination of

7xf ðxk; yÞ; y [ YðxkÞ, given by (2.12)–(2.13) below.

For nonunique y [ YðxkÞ, by Caratheodory’s Theorem (Theorem 1.1.1, see

also Rockafeller, 1972), a vector 7Fk [ 2FðxkÞ can be characterized by at

most (n1 1) vectors

7xf ðxk; yÞ [ 2FðxkÞ
such that

7Fk ;
X

y[YðxkÞ
l
y
kþ17xf ðxk; yÞ; l

y
kþ1 $ 0;

X
y[YðxkÞ

l
y
kþ1 ¼ 1: ð2:12Þ

As in Wierzbicki (1982, Lemmas 1 and 3), l
y
kþ1 are chosen to ensure that 7Fk

is the minimum-norm subgradient in 2Fðx�Þ and hence

l
y
kþ1 ¼ argmin

ly

X
y[YðxkÞ

ly7x f ðxk; yÞ
������

������

2

C�1
k

�������
ly $ 0;

X
y

ly ¼ 1

8><
>:

9>=
>;
: ð2:13Þ

As all y [ YðxkÞ correspond to the same function value, 7Fk and the Hessian

using l
y
kþ1, are consistent. The solution to the minimum-norm problem is

unique when 7xf ðxk; yÞ, y [ YðxkÞ, are linearly independent. Otherwise, a

minimum length l
y
kþ1 is determined.

We note that dk based on argmind[Rn FkðdÞ corresponds to the selection

of the direction based on the maximizer that yields the least steep gradient.

This is straightforward to compute. On the other hand dk based on (2.12)–

(2.13) entails the solution of a quadratic programming problem. The former
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is an overall descent direction if it is also a descent direction for the other

maximizers. The latter is always a descent direction.

In Proposition 1 below, we discuss the restriction that ensures either way of

computing dk yields the same direction. The equivalence is considered further

in Assumption A.1 (see Appendix A).

Proposition 1 (Equivalence of Both Choices for dk) Directions d and

2C
�1
k 7Fk are equivalent if the minimization in (2.13) is solved by

l
y
kþ1 ¼ 1

corresponding to a unique ykþ1

ykþ1 ¼ argmin
y[YðxkÞ

1

2
7xf ðxk; yÞk k2C�1

k

� �
: ð2:14Þ

Proof. The condition that ensures the equivalence of both choices for dk in

(2.11),

2C
�1
k 7xf ðxk; ykþ1Þ ¼ 2C

�1
k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

is given by

7xf ðxk; ykþ1Þ ¼
X

y[YðxkÞ
l
y
kþ17xf ðxk; yÞ: A ð2:15Þ

The Lagrangian of (1.6) is considered given the maximizers at xk,

Lðx; v; lÞ ¼ v1
X

y[YðxkÞ
f ðx; yÞ2 v
� �

ly: ð2:16Þ

Thus, at xk, the Hessian of L, with respect to x, is given by
X

y[YðxkÞ
72
x f ðxk; yÞlykþ1 ð2:17Þ

where, consistent with the above discussion, l
y
kþ1 is the solution of (2.13). We

also define the difference

Ck ;
2

1
2

7Fkk k2C�1
k

if k7xf ðxk; yÞ; dl $ 2j

min
d[Rn

FkðdÞ2FðxkÞf g otherwise

8><
>:

ð2:18Þ

which is used in the algorithm.

Let x� be the solution of the minimax problem (1.1). We note that, by

Theorem 1.3.1, at x� the following variational inequality is satisfied as the

necessary condition for an extremum (nce):
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2Fðx�Þ
2d

¼ max
y[Yðx

p
Þ
k7xf ðx�; yÞ; dl $ 0;8d [ R

n ð2:19Þ

(see also Demyanov and Malozemov, 1974, p. 191, Theorem 2.2).

3 THE QUASI-NEWTON ALGORITHM

The algorithm utilizes the direction d whenever possible as the evaluation of

7Fk entails the solution of a quadratic programming problem. If d is a descent

direction, as discussed above, it is used to determine dk in Step 2, and subse-

quently Ck in Step 3. It then utilizes a stepsize strategy to determine the

progress along dk and updates the Hessian approximation dk.

The full quasi-Newton algorithm (QN1) is discussed below. An alternative,

simplified algorithm (QN2), based on direction d alone, is also evaluated

empirically in Chapter 5. The default parameter values are those used in the

numerical experiments in Chapter 5.

Quasi-Newton Algorithm (QN1)

Step 0: Given x0, y0, C0, set: k ¼ 0;

termination accuracy: 1 � j $ 0, ðj ¼ 10�8);

line search parameter c [ ð0; 1Þ, ðc ¼ 10�4);

stepsize factor s [ ð0; 1Þ, ðs ¼ 0:5Þ;
penalty coefficient C [ ½0;1Þ, ðC ¼ 106Þ

Step 1: Maximization at xk: compute the global solution to the nonlinear

programming problem

FðxkÞ ¼ max
y[Y

ff ðxk; yÞg: ð3:1Þ

Step 2: Direction-finding subproblem:

(a) compute ykþ1 given by (2.6): if ykþ1 is nonunique (i.e., jYkþ1j . 1Þ,
choose an arbitrary element of Ykþ1.

(b) Compute d and y given by (2.8) and (2.9), respectively. Set dk given

by (2.11):

if

k7xf ðxk; yÞ; dl , 2j ð3:2Þ
go to Step 3 (b). Else, compute 7Fk given by (2.12)–(2.13) and go to

Step 3 (a).
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Step 3: (a) ðif k7xf ðxk; yÞ; dl $ 2jÞ compute

Ck ¼ 2
1

2
7Fkk k2C�1

k
: ð3:3Þ

(b) ðif k7xf ðxk; yÞ; dl , �jÞ compute

Ck ¼ f ðxk; ykþ1Þ þ k7xf ðxk; ykþ1Þ; dkl

þ 1

2
dkk k2Ck

�C FðxkÞ � f ðxk; ykþ1Þ
� 	

2�FðxkÞ: ð3:4Þ

Stop if

Ck $ �j: ð3:5Þ
Else, perform the line search

ak ¼ max a j Fðxk þ adkÞ �FðxkÞ # caCk;a ¼ ðsÞi; i ¼ 0; 1; 2;…
n o

:

ð3:6Þ
Set xkþ1 using (2.10), update the Hessian and set k ¼ k þ 1, go to Step 1.

In Step 3, while updating the Hessian, although xkþ1 is known, lkþ2 in

(2.13) cannot be computed as Ckþ1 is not yet known. To overcome this diffi-

culty, an approximate lkþ2 is evaluated using Ck in (2.13). With this

lkþ2;7Fkþ1 in (2.12) is approximated and the matrix Ck is updated to Ckþ1.

Given this Ckþ1, the algorithm proceeds to Steps 1 and 2 to compute ykþ2 and a

more accurate 7Fkþ1.

The condition

max
y[YðxkÞ

k7xf ðxk; yÞ; dl , �j ð3:7Þ

ensures that the direction dk chosen by the algorithm is a descent direction for

the max-function. This property is established in Lemma 3.2.

In the case of the discrete minimax problem (1.4), with Assumption 2.1 and

the direction of search given by dk ¼ �C�1
k 7Fk, the above algorithm is

equivalent to the discrete minimax algorithm discussed in Rustem (1992).

In particular, this equivalence applies to the computation of 7Fk in (2.12)–

(2.13) and the quadratic subproblem in Rustem (1992) as well as the stepsize

strategies of either algorithm.

Remark 3.1 (Choice of Maximizer) (a) If the maximum in (3.1) is attained

by more than one y, these constitute YðxkÞ. In the case of Y given by upper

and lower bounds as in some examples in Chapter 5, a potential subset of

YðxkÞ is evaluated by considering local solutions of the nonlinear program and

the value of f ðxk; yÞ at every vertex of the hypercube Y. This practical
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approach can be refined, with increased algorithmic complexity, by adopting a

global optimization procedure, based on branch-and-bound, with greater

assurance to reach the global maximum (e.g., Pardalos and Rosen, 1987;

Floudas and Pardalos, 1992, 1995).

If the minimum in (2.6) is attained by more than one y, these constitute

Ykþ1. By Lemma 3.2 below, dk is a descent direction, for all

ykþ1 [ Ykþ1; jYkþ1j . 1. The algorithm is shown to be convergent for any

choice of ykþ1 [ Ykþ1. (As in Step 1, in numerical experiments with problems

with only upper and lower bounds on y, the objective in (2.6) is checked at

every vertex.)

(b) Let (3.7) be satisfied. We have, ykþ1 [ Ykþ1 � YðxkÞ; dk ¼ d in (2.8)

and

7xf ðxk; ykþ1Þ þ Ckdk ¼ 0: A

Remark 3.2 (The BFGS Hessian Approximation Formula) The approx-

imate Hessian Ck is computed using the BFGS quasi-Newton formula (Broy-

den, 1969, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). We have

dk ¼ xkþ1 � xk

gk ¼
X

y[Yðxkþ1Þ
l
y
kþ27xf ðxkþ1; yÞ �

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ ð3:8aÞ

and

Ckþ1 ¼ Ck �
Ckdkd

T
kCk

kdk;Ckdkl
þ gkg

T
k

kgk; dkl
ð3:8bÞ

The use of this formula in the case of a unique maximizer is discussed in CN 1.

Following Theorem 5.1 below, the algorithm converges for any positive defi-

nite matrix Ck. The BFGS formula is used to approximate the Hessian for

achieving unit stepsizes and superlinear convergence.

It is possible for a maximizing algorithm to terminate at a solution for (2.6),

satisfying

0 # FðxkÞ � f ðxk; ykþ1Þ # 1ðCÞ ð3:9aÞ
for a small number 1ðCÞ $ 0. In Lemma 3.2, dk is a descent direction even

when Assumption 3.1 below is not satisfied. This is due to the fact that

� FðxkÞ � f ðxk; ykþ1Þ
� 	 � C FðxkÞ � f ðxk; ykþ1Þ

� 	2
# 0 ð3:9bÞ

(see (3.4) and Lemma 3.1). Nevertheless, the satisfaction of equality (3.10)

below is required by subsequent results, and enforced in the algorithm by

appropriate choice of C .
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Assumption 3.1 There exists a C $ 0 such that equality

FðxkÞ � f ðxk; ykþ1Þ ¼ 0 ð3:10Þ
is satisfied for all k.

Remark 3.3 Assumption 3.1 can be replaced by a strategy for adjusting C in

the algorithm to satisfy (3.10) (Fiacco and McCormick, 1968). The default

value of C has, in practice, been sufficient to ensure (3.10).

Subproblem (2.6) ensures ykþ1 [ YðxkÞ through the penalty term. By

Remark 3.3, Assumption 3.1 can be relaxed using a strategy for increasing

C to ensure (3.10). This is discussed in Lemma 3.1 along with the possible

nonuniqueness of ykþ1. In the latter case, the descent property and subsequent

convergence results apply to all members of Ykþ1.

Lemma 3.1 Let

(i) Assumptions (1.1)–(1.3), (2.1), (2.2) and (3.1) hold,

(ii) f ðx; yÞ be continuous in y and once continuously differentiable in x; and

(iii) the scalar C be chosen from the range 0 # C , 1.

Then

(a) in (2.6), we have ykþ1 [ YðxkÞ, and
(b)

ykþ1 [ Ykþ1 ¼ y [ YðxkÞ j y ¼ argmin
y[YðxkÞ

1

2
7xf ðxk; yÞk k2C�1

k

� �( )
:

Proof. For a given C ; ykþ1 [ Y \YðxkÞ in (2.6) implies that

FðxkÞ � f ðxk; ykþ1Þ . 0:

By Assumption 3.1, appropriately increasing C [ ½0;1Þ, ensures (3.10), and
consequently ykþ1 [ YðxkÞ.

To show (b), we use the definition (2.7) and since FðxkÞ � f ðxk; yÞ ¼ 0, for

all y [ YðxkÞ, we have

ykþ1 ¼ argmin
y[YðxkÞ

2f ðxk; yÞ þ
1

2
7xf ðxk; yÞk k2C�1

k
þC FðxkÞ � f ðxk; yÞ

� 	
2

� �

¼ argmin
y[YðxkÞ

�FðxkÞ þ
1

2
7xf ðxk; yÞk k2C�1

k
þC FðxkÞ �FðxkÞ

� 	2
� �
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¼ argmin
y[YðxkÞ

�FðxkÞ þ
1

2
7xf ðxk; yÞk k2C�1

k

� �
:

Thus, ykþ1 [ YðxkÞ is chosen to satisfy (b). A

Corollary 3.1 Let Assumptions (2.1) and (2.2) be satisfied. Then,

(a) for max
y[YðxkÞ

k7xf ðxk; yÞ; dl , �j , we have d ¼ dk, and

�j . k7xf ðxk; yÞ; dl $ � dkk k2Ck

(b) for dk ¼ �C�1
k 7Fk, we have

max
y[YðxkÞ

� k7xf ðxk; yÞ;C�1
k 7Fkl ¼ � dkk k2Ck

:

Proof. By (2.11) and Lemma 3.1 (b), we have

max
y[YðxkÞ

k7xf ðxk; yÞ; dl ¼ max
y[YðxkÞ

� k7xf ðxk; yÞ;C�1
k 7xf ðxk; ykþ1Þl

$ �k7xf ðxk; ykþ1Þ;C�1
k 7xf ðxk; ykþ1Þl

¼ max
y[YðxkÞ

� k7xf ðxk; yÞ;C�1
k 7xf ðxk; yÞl

¼ � dkk k2Ck

which yields (a).

For (b), consider

max
y[YðxkÞ

� 7xf ðxk; yÞ;C�1
k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

* +

¼ max
ly

�
X

y[YðxkÞ
ly7xf ðxk; yÞ;C�1

k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

* + ������l
y
$ 0;

X
y[YðxkÞ

ly ¼ 1

8<
:

9=
;

¼ max
ly

�
X

y[YðxkÞ
ly7xf ðxk; yÞ;C�1

k

X
y[YðxkÞ

ly7xf ðxk; yÞ
* + ������ l

y
$ 0;

X
y[YðxkÞ

ly ¼ 1

8<
:

9=
;

; �
X

y[YðxkÞ
l
y
kþ17xf ðxk; yÞ

2
4

3
5;C�1

k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

2
4

3
5

* +

¼ � dkk k2Ck

CHAPTER 474



where the first equality is due to the equivalence of the maximum over y [

YðxkÞ to the maximum over the convex combination. The second equality is

due to the symmetry of the two convex combinations which leads to equiva-

lent maximizers. A

Corollary 3.2 Let l
y
kþ1 be computed by (2.12)–(2.13) and ykþ1 be computed

using (2.6). We have

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

������

������

2

C�1
k

# 7xf ðxk; ykþ1Þ
�� ��2

C�1
k
# 7xf ðxk; yÞk k2C�1

k
; y [ YðxkÞ:

Proof. The first inequality follows from (2.12)–(2.13) and the second follows

from Lemma 3.1 (b). A

Lemma 3.2 (Descent Property of dk) Let

(i) Assumptions (1.1), (2.1), (2.2) and (3.1) hold; and,

(ii) f ðx; yÞ be continuous in y and once continuously differentiable in x.

Then,

(a) we have

Ck ¼ � 1

2
dkk k2Ck

# � z

2
dkk k2# 0 ð3:11Þ

(b) if, furthermore, max
y[YðxkÞ

k7xf ðxk; yÞ; dl , �j; we have

� 1

2
d
���
���2
Ck

# � 1

2
C
�1
k 7Fk

���
���2
Ck

and

Ck $ max
y[YðxkÞ

k7xf ðxk; yÞ; dkl:

Remark 3.4 In (a), we establish the relation of Ck with the directional

derivative, and dk as a descent direction. Using (3.9, b), the descent property

can also be demonstrated for approximate solutions satisfying (3.9, a). In (b),

the relation of d to �C�17Fk is shown and the directional derivative along dk
is related to Ck.

Proof of Lemma 3.2. Inequality (3.11) is immediate for (3.3) and (3.4). For (b),

we note that
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k7xf ðxk; ykþ1Þ; dlþ
1

2
d
���
���2
Ck

¼ � 1

2
7xf ðxk; ykþ1Þ
�� ��2

C�1
k

# � 1

2

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ

������

������

2

C�1
k

¼ � 1

2
k7Fk;C

�1
k 7Fkl:

Using (2.11) and Assumption 3.1, this yields

Ck ¼ k7xf ðxk; ykþ1Þ; dlþ
1

2
d
���
���2
Ck

¼ � 1

2
d
���
���2
Ck

# � 1

2
7Fkk k2C�1

k
: ð3:12Þ

To show the second inequality in (b), we note that if d is a descent direction for

the max-function, dk ¼ d, and, with Assumption 3.1

FkðdkÞ ¼ max
y[Y

f ðxk; yÞ þ k7xf ðxk; yÞ; dklþ
1

2
dkk k2Ck

�C FðxkÞ � f ðxk; yÞ
� 	2

� �

$ FðxkÞ þmax
y[Y

k7xf ðxk; yÞ; dklþ
1

2
dkk k2Ck

�C FðxkÞ � f ðxk; yÞ
� 	

2

� �

$ FðxkÞ þmax
y[Y

k7xf ðxk; yÞ; dklf g

$ FðxkÞ þ max
y[YðxkÞ

k7xf ðxk; yÞ; dklf g

where the last inequality is due to YðxkÞ � Y. Thus, Ck can be expressed as

Ck ¼ FkðdkÞ �FðxkÞ $ max
y[YðxkÞ

k7xf ðxk; yÞ; dkl: A

Lemma 3.3 Let

(i) Assumptions (1.1), (2.1), (2.2) and (3.1) hold; and,

(ii) f ðx; yÞ be continuous in y and once continuously differentiable in x.

Then, fdkg ! 0 if and only if Ckf g ! 0.

Proof. The result follows from (3.11). A

4 BASIC CONVERGENCE RESULTS

In this section, we establish the monotonic decrease of the sequence of max-

function values, FðxkÞf g, generated by the algorithm.
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Assumption 4.1 For some xk0 , the set F ;
�
x [ R

n
��FðxÞ # Fðxk0 Þ


is

bounded.

Remark An implication of F being bounded is that the Hessian of the f ðx; yÞ,
with respect to x, has an upper bound 8x; y and consequently, for bounded

l
y
kþ1, the Hessian of the Lagrangian with respect to x, given by (2.17), has an

upper bound:

X
y[YðxkÞ

72
x f ðxk; yÞlykþ1

������

������ # M; 8xk [ F

(see Theorem 5.1).

We note that (1.2) has a solution since f ðx; yÞ is continuous on the compact

set Y.

Lemma 4.1 Let

(i) Assumptions (1.1), (2.1), (2.2) and (3.1) hold; and,

(ii) f ðx; yÞ be continuous in y and once continuously differentiable in x.

Then, condition dk ¼ 0 is necessary and sufficient for point xk to satisfy the nce

of (1.1).

Proof. For dk ¼ �C�1
k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ as Ck is nonsingular, we note that

dk ¼ 0 is equivalent to nce (2.19). For dk ¼ d, consider subproblem (2.5)

expressed as

min
d[Rn

FkðdÞ ¼ min
d[Rn

max
y[Ykþ1

n
f ðxk; yÞ þ k7xf ðxk; yÞ; dl

þ 1

2
dk k2Ck

�C FðxkÞ � f ðxk; yÞ
� 	2o ð4:1Þ

where dk is the minimizer of FkðdÞ. With d ¼ dk, (4.1) becomes

FkðdkÞ ¼ max
y[Ykþ1

f ðxk; yÞ þ k7xf ðxk; yÞ; dklþ
1

2
dkk k2Ck

�C FðxkÞ � f ðxk; yÞ
� 	

2

� �
:

ð4:2Þ
Since Ykþ1 � YðxkÞ, the last term in (4.2) vanishes. Using (2.19), the nce of

(4.1) is thus given by

max
y[Ykþ1

k7xf ðxk; yÞ þ Ckdk; dlf g $ 0; 8d [ R
n
: ð4:3Þ

For dk ¼ 0, by (2.2), we have fkð0; yÞ ¼ f ðxk; yÞ;Ykþ1 ¼ YðxkÞ and (4.3) coin-
cides with the nce of the original problem.
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Conversely, let the nce be satisfied at point xk ¼ x� and let

f�ðx � x�; yÞ ¼ f ðx�; yÞ þ k7xf ðx�; yÞ; x � x�l

þ 1

2
x � x�k k2C�C Fðx�Þ � f ðx�; yÞ

� 	2

F�ðx � x�Þ ¼ max
y[Y

f�ðx � x�; yÞf g ð4:4Þ

where C is a symmetric positive definite matrix satisfying Assumption 2.2. At

point xk ¼ x�, subproblem in (2.5) has the form

min
x[Rn

F�ðx � x�Þ: ð4:5Þ

Let x be the solution of (4.5) and let Y ; y [ Yf j y ¼
argmaxh f�ðx � x�;hÞg. The nce of (4.5), is given by

max
y[Y

k7xf ðx�; yÞ þ Cðx � x�Þ; x � x�l $ 0; 8x [ R
n
: ð4:6Þ

The functions fkðd; yÞ and f�ðx � x�; yÞ are strictly convex in d, x, for all y [ Y:

Thus, dk and x are unique solutions to problems (2.3) and (4.5), respectively.

Since the nce of the original problem is satisfied at x�, (4.6) also holds for x ¼
x� and, as xk ¼ x�, we have Y ¼ Yðx�Þ ¼ YðxkÞ and hence dk ¼ 0. A

Corollary 4.1 Let

(i) Assumptions (1.1), (2.1), (2.2) and (3.1) hold; and,

(ii) f ðx; yÞ be continuous in y and once continuously differentiable in x.

ConditionCk ¼ 0 is necessary and sufficient for the nce of (1.1) to be satisfied

at xk.

Proof. The proof follows from Lemma 3.2 and Lemma 4.1. A

Lemma 4.2 Let Assumptions (1.1), (1.2), (2.1), (2.2), (3.1) and (4.1) hold.

Then, the stepsize computed in Step 3 of the algorithm is such that ak [ ð0; 1�
and the sequence fxk; ykg computed by the algorithm satisfies the stepsize

strategy

Fðxkþ1Þ �FðxkÞ # cakCk ð4:7Þ
and generates a corresponding monotonically decreasing sequence FðxkÞf g.

Proof. Consider the case dk ¼ d. Since the maximum of a set of numbers is

equal to the maximum of their convex combination, we have
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Fðxkþ1Þ ¼ max
ly

X
y[Y

lyf ðxkþ1; yÞ
������ l

y
$ 0;

X
y[Y

ly ¼ 1

8<
:

9=
;

¼ max
ly

X
y[Yðxkþ1Þ

lyf ðxkþ1; yÞ
������ l

y
$ 0;

X
y[Yðxkþ1Þ

ly ¼ 1

8<
:

9=
;:

Let l
y
kþ2 be the solution of the above problem. The second order expansion of

f ðx; ·Þ yields

Fðxkþ1Þ ¼ max
ly

( X
y[Yðxkþ1Þ

ly
�
f ðxk; yÞ þ akk7xf ðxk; yÞ; dklþ

1

2
a2
k dkk k2Ck

þa2
k

Z1

0
ð1 � tÞkdk; ½72

x f ðxk þ takdk; yÞ � Ck�dkl dt
� �����

ly $ 0;
X

y[Yðxkþ1Þ
ly ¼ 1

)

.

# max
ly

( X
y[Yðxkþ1Þ

ly
�
f ðxk; yÞ þ akk7xf ðxk; yÞ; dklþ

1

2
a2
k dkk k2Ck

� ������

ly $ 0;
X

y[Yðxkþ1Þ
ly ¼ 1

)
þ rka

2
k dkk k2 ð4:8Þ

# max
y[Y

f ðxk; yÞ þ akk7xf ðxk; yÞ; dklþ
1

2
a2
k dkk k2Ck

� �
þ rka

2
k dkk k2

where the last inequality is due to YðxkÞ � Y and

rk ¼
Z1

0
ð1 � tÞ

�����
X

y[Yðxkþ1Þ
l
y
kþ27

2
x f ðxk þ takdk; yÞ � Ck

����� dt: ð4:9Þ

We also have the relation

max
y[Y

� FðxkÞ � f ðxk; yÞ
� �2þmin

y[Y
FðxkÞ � f ðxk; yÞ
� �2¼ 0

Hence
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Fðxkþ1Þ # max
y[Y

f ðxk; yÞ þ akk7xf ðxk; yÞ; dklþ
1

2
a2
k dkk k2Ck

� �
þ rka

2
k dkk k2

þmax
y[Y

� C FðxkÞ � f ðxk; yÞ
� �2þmin

y[Y
C FðxkÞ � f ðxk; yÞ
� �2

# max
y[Y

n
f ðxk; yÞ þ akk7xf ðxk; yÞ; dkl

þ 1

2
a2
k dkk k2Ck

�C FðxkÞ � f ðxk; yÞ
� �2o

þmin
y[Y

C FðxkÞ � f ðxk; yÞ
� �2þrka

2
k dkk k2:

In view of Assumption 3.1, we have ykþ1 [ YðxkÞ and
Fðxkþ1Þ ¼ Fðxk þ akdkÞ # FkðakdkÞ þ a2

krk dkk k2 ð4:10Þ
Since FkðdÞ is convex, and in view of (4.2), we can write the first term on the

right of (4.10) as

FkðakdkÞ # akFkðdkÞ þ ð1 � akÞFkð0Þ

# akFkðdkÞ þ ð1 � akÞFðxkÞ

¼ FðxkÞ þ ak FkðdkÞ �FðxkÞ
� 	

¼ FðxkÞ þ akCk: ð4:11Þ
Thus, (4.10) may be expressed as

Fðxkþ1Þ # FðxkÞ þ akCk þ a2
krk dkk k2: ð4:12aÞ

For dk ¼ �C�1
k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ, we invoke Corollary 3.1 (b) to write

(4.8) as

Fðxkþ1Þ # FðxkÞ �
1

2
ak dkk k2Ck

þa2
krk dkk k2 ð4:12bÞ

where we have also used the equality FðxkÞ ¼ maxy[Y f ðxk; yÞ. Using Lemma

3.2 and (3.11), (4.12) can be written as

Fðxk þ akdkÞ �FðxkÞ # akCk 1 � 2akrk
z

" #
: ð4:13Þ

The scalar c [ ð0; 1Þ in (4.7) determines ak such that

0 , c # 1 � 2akrk
z

# 1: ð4:14Þ
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SinceCk # � z

2
dkk k2# 0, there exists a ak [ ð0; 1� to ensure (4.14) and (4.7).

Suppose a0 is the largest a [ ð0; 1� satisfying (4.13). It follows that all a #

a0 also satisfy this condition. Thus, the strategy in Step 3 selects

ak [ ½sa0
;a0�. It follows that FðxkÞf g is a monotonically decreasing sequen-

ce. A

5 GLOBAL CONVERGENCE AND LOCAL CONVERGENCE RATES

In this section, we discuss the global convergence of fxkg generated by the

quasi-Newton algorithm, the convergence of the stepsize ak to unity and the

convergence rate of fxkg.

Theorem 5.1 [Global Convergence] Let

(i) Assumptions (1.1), (1.2), (2.1), (2.2), (3.1) and (4.1) hold; and,

(ii) the nce of (1.1) be satisfied at x�.

Then:

(a) the algorithm either terminates with Ck ¼ 0 or it generates an infinite

sequence fCkg with limk!1
Ck ¼ 0;

(b) the algorithm either terminates with dk ¼ 0 or it generates an infinite

sequence fdkg with limk!1
dk ¼ 0; and,

(c) the algorithm either terminates at x� or it generates an infinite sequence

fxkg in which there exists a subsequence fxkg with k [ K � f1; 2;…g
such that fdkg ! 0 and every accumulation point x� of the infinite

sequence fxkg satisfies the nce of (1.1).

Proof. To show (a), note that, by (2.11), Lemma 3.3 and Lemma 4.1, the

algorithm terminates if Ck ¼ 0. Alternatively, given c [ ð0; 1Þ, by (4.13)

the choice

a0 ¼ min 1;
ð1 � cÞz
2rk

� �
ð5:1Þ

always satisfies the stepsize strategyFðxk þ akdkÞ �FðxkÞ # cakCk. Clearly,

ak ¼ ðsÞi chosen in Step 3 is in the range ak [ ½sa0
;a0� and thereby also

satisfies this strategy.

Since f ðx; yÞ is twice continuously differentiable with respect to x and F is

compact, there is a scalar M , 1 such that k 72
x f ðx; yÞ k# M. As the Hessian

in (4.9) is a convex combination of 72
x f ðx; yÞ, we have rk # M , 1.

As z . 0, we have established that there is an a . 0 such that the stepsize

ak $ a . 0;8 k. The boundedness of FðxÞ on F and Ck # 0 imply
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0 # c
X
k

ak j Ck j#
X
k

FðxkÞ �Fðxkþ1Þ
� 	

, 1 ð5:2Þ

which yields (a). Results (b) and (c) follow from Lemma 3.3 and Lemma

4.1.A

Remark 5.1 When j Ykþ1 j. 1, there is more than one minimum-norm

subgradient 7xf ðxk; yÞ with corresponding Hessian 72
x f ðxk; yÞ. It is then possi-

ble for each of these subgradient and Hessian pairs to generate a descent

direction leading to a local minimax solution. For f ðx; yÞ convex in x, this

would imply the existence of more than one direction leading to a global

minimax solution. For f ðx; yÞ nonconvex in x, it would indicate the existence

of possibly more than one direction leading to possibly more than one local

minimax solution.

We note that Theorems 2 and 3 apply to a local solution within a neighbor-

hood such that Assumption 1.3 (the local convexity of f ðx; yÞ in x) holds.

Theorem 5.2 (Unit Stepsize Achievement) Let

(i) Assumptions (1.1)–(1.3), (2.1), (2.2), (3.1) and (4.1) hold;

(ii) C� be the Hessian (2.17) at x�; and,

(iii) the sequence fxkg converges to a local solution, x�, satisfying the nce of

(1.1).

Then there exist a number t . 0, and an integer K0 . 0 such that if

Ck � C�k k # t; k $ K0; ð5:3Þ
the stepsize strategy in Step 3 is satisfied for ak ¼ 1; k $ K0.

Proof. Writing (4.9) as

rk ¼
Z1

0
ð1 � tÞ

X
y[Yðxkþ1Þ

l
y
kþ27

2
x f ðxk þ takdk; yÞ � C� þ C� � Ck

������

������ dt ð5:4Þ

(4.12) becomes

Fðxk þ akdkÞ # FðxkÞ þ akCk þ a2
kr

�
k dkk k2þ 1

2
a2
kkdk; C� � Ckf gdkl ð5:5Þ

where

r�k ¼
Z1

0
ð1 � tÞ

X
y[Yðxkþ1Þ

l
y
kþ27

2
x f ðxk þ takdk; yÞ � C�

������

������ dt: ð5:6Þ

From Lemma 3.2, we haveCk # � 1
2
z dkk k2# 0. Thus, (5.5) can be written as
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Fðxk þ akdkÞ �FðxkÞ # akCk 1 � ak

z
2r�k þ C� � Ckk k
� 	" #

ð5:7Þ

The scalar c [ ð0; 1Þ in Step 3 requires ak to satisfy

0 , c # 1 � ak

z
2r�k þ C� � Ckk k
� 	

# 1: ð5:8Þ

From Lemma 4.2, (4.13)–(4.14), there exists an ak [ ð0; 1� satisfying (5.7)

and hence (4.7). If t in (5.3) is such that

1

z
2r�kþt
� 	

# 1 � c ð5:9Þ

(in view of fxkg ! x�; fr�k g ! 0 this defines the number t) then (5.8) holds

with ak ¼ 1, and therefore, because Ck # 0, the stepsize computed in (5.7)

and Step 3 is ak ¼ 1. A

Lemma 5.1 Let fxkg ! x
p
. Then, fxkg is Q-superlinearly convergent, that is,

lim
k!1

k x
p
� xkþ1 k

k x
p
� xk k

¼ 0 ð5:10Þ

if

k dk k# pk k dk�1 k; lim
k!1

pk ¼ 0: ð5:11Þ

Proof. Suppose (5.11) holds. We have

k x
p
� xk k # lim

t!1

Xt�1

i¼k

k xiþ1 � xi k# pk k dk�1 k ð1þ wþ w
2 þ w

3 þ…Þ

#
pk

1 � w
k xk � x

p
k þ k x

p
� xk�1 kf g

for some w [ ½0; 1Þ. As fpkg ! 0, w is chosen such that pk þ w , 1,

8k $ K0. K0 is an integer and is such that pk , 1;8k $ K0. Rearranging

the above expression,

k x
p
� xk k#

pk

1 � w � pk

k x
p
� xk�1 k

which establishes the Q-superlinear convergence of fxkg. A

We give a proof of the Dennis and Moré (1974) characterization of the local

Q-superlinear convergence rate of the algorithm.
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Theorem 5.3 (Q-Superlinear Convergence) Let

(i) Assumptions of Theorem 5.2 be satisfied, C� be the Hessian (2.17) at x�,
and

(ii) for some x0 [ D, the sequence fxkg generated by xkþ1 ¼ xk þ dk
remains in D, and limk!1 xk ¼ x

p
.

Then, fxkg satisfies (5.11) and thence converges Q-superlinearly to xp, in some
norm k · k if

lim
k!1

Ck � C�
� �ðxkþ1 � xkÞ
�� ��

xkþ1 � xk
�� �� ¼ 0: ð5:12Þ

Proof. Consider the first order expansion

kd;7xf ðxk; yÞl ¼ d;
h
7xf ðxk�1; yÞ þ

�
Ck�1 þ ½C

p
� Ck�1

D
�

þ
Z1

0
½72

x f ðxk�1 þ tdk�1; yÞ � C
p
� dt	dk�1

iE
:

Evaluating the maximum of both sides with respect to y [ YðxkÞ yields
max

y[YðxkÞ
kd;7xf ðxk; yÞl

¼ max
y[Y

kd;7xf ðxk; yÞl � C FðxkÞ � f ðxk; yÞ
� �

2
n o

¼ max
y[Y

(
kd;7xf ðxk�1; yÞ þ Ck�1dk�1l � C FðxkÞ � f ðxk; yÞ

� �
2

þ
�
d; C

p
� Ck�1

� 	 þ
Z1

0
72
x f ðxk�1 þ tdk�1; yÞ � C

p

h i
dt

� �
dk�1

�)

$ max
y[Y

�
kd; 7xf ðxk�1; yÞ þ Ck�1dk�1

� 	
lg

þ max
y[Y

(*
d; C

p
� Ck�1

� 	þ
Z1

0
72
x f ðxk�1 þ tdk�1; yÞ � C

p

h i
dt

� �
dk�1

+

� C FðxkÞ � f ðxk; yÞ
� �2

)
: ð5:13Þ

For dk ¼ �C�1
k

X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ, we have the inequality
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max
y[Y

kd; 7xf ðxk�1; yÞ þ Ck�1dk�1
� 	

l
� 

$ max
y[Yðxk�1Þ

kd; 7xf ðxk�1; yÞ þ Ck�1dk�1
� 	

l
� 

$ d;

" X
y[YðxkÞ

l
y
kþ17xf ðxk; yÞ þ Ck�1dk�1

#* +

¼ 0:

For dk ¼ d, in view of the nce (4.3), we have

max
y[Y

kd; 7xf ðxk�1; yÞ þ Ck�1dk�1
� 	

l
� 

$ max
y[Ykþ1

kd; 7xf ðxk�1; yÞ þ Ck�1dk�1
� 	

l
� 

$ 0:

Hence, the following inequality applies for dk in general

max
y[YðxkÞ

kd;7xf ðxk; yÞl

$ max
y[Y

(
d; C

p
� Ck�1

� 	þ
Z1

0
72
x f ðxk�1 þ tdk�1; yÞ � C

p

h i
dt

� �
dk�1

� �

�C FðxkÞ � f ðxk; yÞ
� �2

)

¼ max
y[YðxkÞ

d; C
p
� Ck�1

� 	þ
Z1

0
72
x f ðxk�1 þ tdk�1; yÞ � C

p

h i
dt

� �
dk�1

� �� �

¼ max
ly

(*
d;

�
C
p
� Ck�1

� 	

þ
Z1

0

X
y[YðxkÞ

ly72
x f ðxk�1 þ tdk�1; yÞ � C

p

h i
dt

�
dk�1

+ ����� l
y
$ 0;

X
y[Yðxkþ1Þ

ly ¼ 1

)

$ kd; C
p
� Ck�1

� 	þ Lk�1
� 	

dk�1l
� 
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where

Lk�1 ¼
Z1

0

X
y[YðxkÞ

l
y
kþ17

2
x f ðxk�1 þ tdk�1; yÞ

2
4

3
5 � C

p

2
4

3
5 dt

and we have used the fact that l
y
kþ1 is not necessarily the maximizer of the last

expression. Choosing d ¼ dk, using Lemma 3.2, Corollary 3.1, Assumption

2.2 and (2.11) yields

z dkk k2# kdk;Ckdkl # Lk�1k k dk�1k k þ C
p
� Ck�1

� 	
dk�1

�� ��� 	
dkk k

and therefore

dkk k #
1

z

"
Lk�1k k þ C

p
� Ck�1

� 	
dk�1

�� ��
dk�1k k

#
dk�1k k:

As fxkg ! x�; Lkk kf g ! 0. Using Lemma 5.1, we have the desired result. A
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APPENDIX A: IMPLEMENTATION ISSUES

In Proposition 1, the condition that ensures the equivalence of d and �C�17Fk

is discussed. In some problems, this condition may be naturally satisfied in

which case the algorithm simplifies considerably. Assumption A.1 below

addresses such situations.

Assumption A.1 Let D � R
n
be an open convex neighborhood of x�. For

xk [ D; y [ YðxkÞ, the minimization in (2.13) is solved by lykþ1 ¼ 1 [ R
1
for

a unique ykþ1 given by (2.14).

A QUASI-NEWTON ALGORITHM FOR CONTINUOUS MINIMAX 87



Assumption A.1 can be seen as a straightforward extension of the unique

maximizer case to multiple maximizers. We note that the maximizer is unique

for f ð·; yÞ concave in y. However, the requirement in Assumption A.1 is that

the maximizer with minimum norm subgradient to be unique. This ensures a

simplified gradient representation and consistent Hessian approximation when

there is more than one maximizer.

Justification of Assumption A.1 For ykþ1 given by (2.14), Corollary 3.1(a)

and 1(b) coincide such that

ykþ1 ¼ argmax
y[YðxkÞ

k7xf ðxk; yÞ; dkl

and

max
y[YðxkÞ

� k7xf ðxk; yÞ; dkl ¼ � dkk k2Ck
:

The expression on the left is the directional derivative along dk (see also

Lemma 3.1). In view of (2.4), 7xf ðxk; ykþ1Þ corresponds to the subgradient

in 2FðxkÞ that yields the maximal directional derivative for dk. The same

7xf ðxk; ykþ1Þ also corresponds to the minimum-norm subgradient. On the

other hand, the failure of Assumption A.1 is significant when, at the solution,

7xf ðxk; ykþ1Þ may not necessarily correspond to the minimum-norm subgra-

dient 0 [ 2Fðx�Þ. Hence, a linear combination of at most nþ 1 elements of

Yðx�Þ may be required to find [ 2Fðx�Þ.

Approximation implied by Assumption A.1 (i) If l
y
kþ1 ¼ 1 in (2.12)–

(2.13), then strict equality holds for

X
y[YðxkÞ

ly7xf ðxk; yÞ
������

������

2

C�1
k

#

X
y[YðxkÞ

ly 7xf ðxk; yÞk k2C�1
k
:

(ii) For

7xf ðxk; ykþ1Þ
�� ��2

C�1
k
¼ min

y[YðxkÞ
7xf ðxk; yÞk k2C�1

k

the problem

min
ly

X
y[YðxkÞ

ly 7xf ðxk; yÞk k2C�1
k

������ l
y
$ 0;

X
y[YðxkÞ

ly ¼ 1

8<
:

9=
;

is solved by l
y
kþ1 ¼ 1. Thus, ykþ1 provides an approximate solution to the

minimization in (2.13) even when Assumption A.1 is not satisfied.

(iii) When ykþ1 in (2.14) is nonunique, as the subgradient norm is the same

for all kþ1, the inequality
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X
y[YðxkÞ

ly7xf ðxk; yÞ
������

������

2

C�1
k

#

X
y[YðxkÞ

ly

2
4

3
5 7xf ðxk; ykþ1Þ
�� ��2

C�1
k
¼ 7xf ðxk; ykþ1Þ
�� ��2

C�1
k
:

holds for all ykþ1.

Hessian approximation in problems with unique and multiple

maximizers

In general, the max-function is characterized by regions of smoothness and the

boundaries between these smooth regions are characterized by kinks. When xk
is in a smooth region, 2FðxkÞ has only one subgradient, with a corresponding

Hessian. When xk coincides with a kink, the Hessian corresponding to the

subgradient of minimum-norm, 7xf ðxk; ykþ1Þ, is used to define the curvature of
the max-function at that kink. The Hessian update may then be corrupted by

the sudden change of Hessian at the kink and the algorithm may exhibit linear

convergence, rather than the superlinear rate discussed in Theorem 5.3. For

this reason, the Hessian approximation is computed using (3.8). If, however, d

is used in (2.11) consistently throughout the algorithm (such as cases in which

Assumption A.1 is satisfied) we can replace gk in (3.8a) with the simplified

version

gk ¼ 7xf ðxkþ1; ykþ2Þ � 7xf ðxk; ykþ1Þ
where ykþ1 is given by (2.6). Thus, with Assumption A.1, the BFGS formula

uses the fact that ykþ1 in Step 2 is such that ykþ1 [ Ykþ1 � YðxkÞ and

7xf ðxk; ykþ1Þ [ 2FðxkÞ (see Lemma 3.1). Thus, 7xf ðxk; ykþ1Þ is used in the

quasi-Newton approximation as a subgradient at xk. Hence, the subgradient

corresponding to the maximizer solving (2.6) is used to represent the subgra-

dient of the max-function. We mention this explicitly because numerical

experience in Chapter 5 indicates that the choice in (2.11) is almost invariably

d except in the very last two or three iterations and restricting the choice

exclusively to d does not alter the performance of the algorithm for low levels

of termination accuracy at j ¼ 10�8.
The idealized instance, therefore, for the use of (3.8a) is the general case of

multiple maximizers, such asY defined by upper and lower bounds on y, with

multiple maximizers arising at the vertices (although even in this case, when d

is used in (2.11), the simplified gk is still justified). The corresponding case for

the simplified gk is f ð·; yÞ, concave in y.

Another source of poor convergence is ill-conditioning in Ck. As discussed

in Byrd et al. (1992), the condition number of Ck may become large if kgk; dkl
is small in relation to gkk k dkk k. Even when we have unique maximizers at

each iteration, the subgradient is a function of ykþ1 and a sequence fykg that
successively produces an ill-conditioned Ck will result in linear convergence.
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As an illustration, consider f ðx; yÞ maximized alternately by y1 and y2, where

7xf ðx; y1Þ is a steep subgradient and 7xf ðx; y2Þ is a flat subgradient. These

subgradients may result in an ill-conditioned Hessian, similar to the situation

in nonlinear programming where successive iterates alternate between steep

and flat gradients. Superlinear convergence may be achieved when there is a

stable sequence fykg that does not produce an ill-conditioned Hessian. For

example, this may arise when Y is given by upper and lower bounds on y,

with the maximizer due to one vertex of the hypercube dominating the other

vertices. It may also arise when there is a unique maximizer for each x, with

7FðxkÞ ¼ 7xf ðxk; ykþ1Þ;C½xk� ¼ 72
x f ðxk; ykþ1Þ and 7Fðx�Þ ¼ 7xf ðx�; y�Þ ¼ 0.

Provided fykg does not generate an ill-conditioned Hessian, then the Hessian

approximation may increasingly approach the true Hessian and superlinear

convergence can be achieved as discussed in Theorem 5.3. Nevertheless, an

ill-conditioned Hessian may also be generated in the minimization of FðxÞ for
the same reasons as in nonlinear programming problems.

APPENDIX B: MOTIVATION FOR THE SEARCH DIRECTION d

If the difference Fðxk þ dÞ �FðxkÞ can be approximated by FkðdÞ �FðxkÞ,
then a descent direction for FðxÞ, at xk, can be generated by solving (2.5). The
quasi-Newton direction d is the minimizer of FkðdÞ, while ykþ1 is determined

by (2.6).

To motivate the penalty term in (2.6), consider the nonlinear program

minx FðxÞf g which can be solved by successively minimizing a quadratic

approximation to FðxÞ:

min
d

F kðdÞf g; F kðdÞ ¼ FðxkÞ þ k7xFðxkÞ; dlþ
1

2
dk k2Ck

: ðB1Þ

For d ¼ 0, (B1) implies that F kð0Þ ¼ FðxkÞ. In other words, the graph of

F kðdÞ touches the graph of FðxÞ at xk. The same consideration motivates

the search direction of the minimax algorithm: (1.1) is solved by considering

the sequential quadratic approximation (2.2) and minimizing (2.3). We note

that in Makela and Neittaanmaki (1992, Theorem 5.2.8, p. 81), (1.1) is solved

by considering (2.1.5) and which results in a descent direction – g where

g ¼ argmin
g[2FðxkÞ

k g kf g:

We note from Kiwiel (1987), and also Polak (1989), that the auxiliary algo-

rithm to solve (2.1.5) aims to find the descent direction of minimum norm and

at the same time aims to minimize the difference FðxkÞ � f ðxk; ykþ1Þ. Extend-
ing Kiwiel (1987, p. 274), we consider a quadratic approximation to the

change in objective function value Fðxk þ dÞ �FðxkÞ, given by

FkðdÞ �FðxkÞ. When d ¼ 0, (2.3) is reduced to

CHAPTER 490



Fkð0Þ ¼ max
y[Y

f ðxk; yÞ � C FðxkÞ � f ðxk; yÞ
� 	

2
n o

# FðxkÞ:

In other words, the graph of FkðdÞ touches the graph of FðxÞ at xk if

FðxkÞ � f ðxk; yÞ ¼ 0:

When d – 0, a maximizer ykþ1 [ Y is determined such that f ðxk; ykþ1Þ is as
close as possible to the max-function FðxkÞ. This ensures that the quadratic

approximation is close to the max-function: hence, (3.9, a) is satisfied for

FkðdÞ ¼ f ðxk; ykþ1Þ þ k7xf ðxk; ykþ1Þ; dlþ
1

2
k d k2Ck

�C FðxkÞ � f ðxk; ykþ1Þ
� 	2

:

To compute ykþ1, using the quasi-Newton direction in dðyÞ ¼ 2C
�1
k 7xf ðxk; yÞ

yields (2.6). While maximizing the quadratic approximation, given d, (2.6)

simultaneously aims to determine y to minimize the difference

FðxkÞ � f ðxk; yÞ. This ensures that the quadratic approximation is close to

the max-function FðxkÞ.
For a given xk, there may be a set of maximizers for (1.1), defined asYðxkÞ.

We solve the maximization problem at xk and denote its value by FðxkÞ. With

Assumption 3.1, for C sufficiently large, 0 # C , 1, the solution ykþ1

ensures (3.10). If (3.7) is satisfied, it is shown in Lemma 3.2 that for ykþ1

solving (2.6), dk is a descent direction since (3.4) reduces to

Ck ¼ � 1

2
7xf ðxk; ykþ1Þ
�� ��2

C�1
k
¼ � 1

2
k d k2Ck

:

COMMENTS AND NOTES

CN 1: 7FðxkÞ for a unique maximizer

Consider the case with a unique maximizer: the set YðxÞ is thus a singleton,

FðxÞ ¼ f x;YðxÞ� �
:

ykþ1 ¼ YðxkÞ solves (3.1) and (2.6). Let

Y ; y [ R
mf jH ðyÞ # 0



and, in addition to Assumptions 1.1 and 1.2, assume further that H ðyÞ,
f ð·; yÞ [ C

1. The Lagrangian of (3.1) is given by

L
YðxÞ y; u

� � ¼ f ðx; yÞ þ kH ðyÞ; ul
where u is the vector of multipliers. At the solution of (3.1), y; uYðxÞ, we have
y ¼ YðxÞ and the first order optimality conditions
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kH YðxÞ� �
; uYðxÞl ¼ 0

7yL
YðxÞ YðxÞ; uYðxÞ

� �
¼ 0:

We thus have

f x;YðxÞ� � ¼ L
YðxÞ YðxÞ; uYðxÞ

� �

FðxkÞ ¼ f ðxk; ykþ1Þ ¼ LYðxkÞ ykþ1; u
YðxkÞ

� �
:

The gradient of the max-function, at xk; ykþ1, is obtained by

7FðxkÞ ¼
2f ðxk; ykþ1Þ

2x
þ 2y

2x

� �
T

x¼xk y¼ykþ1

2LYðxkÞðykþ1; u
YðxkÞÞ

2y

¼ 7xf ðxk; ykþ1Þ þ
2y

2x

� �
T

x¼xk y¼ykþ1

7yL
YðxkÞ YðxkÞ; uYðxkÞ

� �

¼ 7xf ðxk; ykþ1Þ:
Thus, in the case of a unique maximizer, we have 7FðxkÞ ¼ 7xf ðxk; ykþ1Þ
(Chaney, 1982, Proposition 1.3, p. 203).
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Chapter 5

Numerical experiments with continuous minimax
algorithms

In this chapter, we consider the implementation of continuous minimax algo-

rithms. The first is the gradient-based algorithm due to Kiwiel (1987),

discussed in Section 2.4, and the second is the quasi-Newton algorithm in

Chapter 4, and a simplified variant derived from this algorithm.

An important complication of continuous minimax is the presence of multi-

ple maximizers. The contribution of these maximizers to the definition of the

direction of search of an algorithm is often difficult to evaluate. We consider

several strategies suggested by these algorithms for this purpose. The utility of

adopting a simplified direction is evaluated. In addition, the general perfor-

mance of the algorithms are considered in terms of termination criteria, accu-

racy of the solution and convergence rates.

We observe a superior performance of the full quasi-Newton algorithm and

promising results obtained by adopting the variant with a simplified search

direction, not requiring convex combination of subgradients.

1 INTRODUCTION

As in Chapters 3 and 4, we consider the continuous minimax problem,

constrained in y, but unconstrained in x

min
x[Rn

max
y[Y

f ðx; yÞ

and express it as

min
x[Rn

FðxÞ

where FðxÞ is the max-function

FðxÞ ¼ max
y[Y

f ðx; yÞ:

The vector x is defined on the n-dimensional Euclidian space, Y is a convex

compact set, f ðx; yÞ is continuous in x; y and twice continuously differentiable

in x. In this chapter, we discuss numerical experience using two versions of a

quasi-Newton algorithm and Kiwiel’s (1987) algorithm for continuous mini-



max. The aim is to test the performance of the algorithms as well as the

effectiveness of a simplified strategy. This is intended to address an important

difficulty in continuous minimax algorithms when, at a given x, there are

multiple maximizers y. The computation of the search direction at such points

is difficult and complex. We consider strategies for computing the direction

and compare these with the choice of direction based on only one of the

multiple maximizers.

Test problems of specific categories are considered. When the function

f ðx; yÞ is convex in both x and y, with the elements of y bounded above and

below, the continuous minimax problem can be expressed as a discrete mini-

max problem. We have tested the algorithms in such convex-convex problems

as the behavior of the algorithms can be clearly observed in the presence of

multiple maximizers which can be straightforwardly identified. In addition,

the optima obtained in these cases are checked using a nonlinear programming

formulation of the equivalent discrete minimax problem using a NAG library

optimization subroutine.

Section 2 provides a brief description of the algorithms, implementation

issues are considered in Section 3, Section 4 presents the test problems and the

results of the experiments and Section 5 provides a summary discussion of the

results. The test problems are grouped according to the convexity in the x-

space and concavity in the y-space of the objective function.

2 THE ALGORITHMS

2.1 Kiwiel’s Algorithm (Kiw)

Based on Panin’s (1981) approach, as discussed in Section 2.4, Kiwiel (1987)

has proposed the linear approximation to the max-function (2.4.2). A descent

direction is computed at xk by an auxiliary algorithm which solves (2.4.4), in

finite number of iterations. In addition to the set of maximizers at xk, given by

YðxkÞ where

YðxÞ ; yðxÞ [ Y j yðxÞ ¼ argmax
y[Y

f ðx; yÞ
( )

the algorithm utilizes the set of maximizers of f ‘k ðd; yÞ, defined as

Ykþ1 ; ykþ1 [ Y j ykþ1 ¼ argmax
y[Y

f ‘k ðd; yÞ
( )

and the termination criterion for the algorithm determined in terms of the

function

C‘
k ¼ 2 dkk k21FðxkÞ2 f ðxk; ykþ1Þ

n o
:
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2.2 Quasi-Newton Methods

The main quasi-Newton Algorithm (QN1) is discussed in Section 4.3. An

important aspect of both quasi-Newton algorithms is the following:

Assumption At a point x, all members of the set YðxÞ are computable.

The algorithm proceeds using the search direction

dk ¼
�C21

k 7Fk if k7xf ðxk; y; dl $ �j
d otherwise:

(

Thus, whenever possible, d is used as the evaluation of 7Fk entails the solu-

tion of a quadratic programming problem. If d is a descent direction, as

discussed above, it is used to determine dk in Step 2, and subsequently Ck

in Step 3. It then utilizes a stepsize strategy to determine the progress along dk
and updates the Hessian approximation dk.

The condition maxy[YðxkÞ k7xf ðxk; yÞ; dl , �j ensures that dk chosen by the

algorithm is a descent direction for FðxkÞ. This is established in Lemma 4.3.2.

The condition for the equivalence of both choices, d and 2C
217Fk, for dk

is discussed in Chapter 4. In some problems, this condition may be naturally

satisfied in which case the algorithm simplifies considerably. The following

assumption addresses such situations.

Assumption Let D , R
n
be an open convex neighborhood of x�. For

xk [ D; y [ YðxkÞ, the minimization in (4.2.13) is solved by l
y
kþ1 ¼ 1 [

R
1 for a unique ykþ1 given by (4.2.14).

The above assumption can be seen as a straightforward extension of the

unique maximizer case to multiple maximizers. We note that the maximizer

is unique for f ð·; yÞ concave in y. However, the requirement in the assumption

is that the maximizer with minimum norm subgradient to be unique. This

ensures a simplified gradient representation and consistent Hessian approxi-

mation when there is more than one maximizer.

The simplified quasi-Newton algorithm (QN2) below is evaluated to inves-

tigate the effectiveness of the search direction d and an algorithm based only

on this direction.

Quasi-Newton Algorithm 2 (QN2)

In this version, we assume dk ¼ d. The alternative direction, 2C
21
k 7Fk, is

ignored.
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3 IMPLEMENTATION

The quasi-Newton algorithms (QN1 and QN2) and Kiwiel’s algorithm (Kiw)

both require a maximization subproblem to be solved in Step 1. Because this is

an optimization problem within the main body of the algorithms, the minimax

solution is computationally more expensive compared to most nonlinear

programming algorithms. For maximization subproblems, the NAG nonlinear

programming optimization subroutine E04UCC is used which can handle both

linear and nonlinear constraints.

As a comprehensive gradient-based method, Kiw is used as an independent

check for the solutions computed by QN1, QN2 as well as the various experi-

ments with stopping criteria choices and directions of search. All the test

problems given in this section were solved by using all the algorithms.

Problems 8–16 can be formulated as, and problems 17–21 are originally,

discrete minimax problems. These discrete minimax formulations are further

reformulated as nonlinear programming problems and solved using NAG

E04UCC as an independent check for the solutions found by the minimax

algorithms.

3.1 Terminology

We specify the parameters, tests and the general output of the experiments

together with a short description of their meaning. In the implementation of

Kiw, the setting of the linear approximation parameter is given by m ¼ 2:0 £

1023 for all the test problems. QN1, QN2 were solved using the parameter

values specified in Section 2. Any deviation from these values are specified

explicitly in the results discussed in Section 4. In addition, the data corre-

sponding to each problem are represented as follows:

x0; y0 initial values of x, y

x
ijj
� ; y

ijj
� solution values obtained by algorithm i =

QN1, QN2, Kiw for solution accuracy j =

A, B

Fðx�Þ objective function value at computed

solution

x�; y� computed solution x, y

kg j k7xf ðxkg; yÞ; dl $ 2j iterations in QN1 where direction d is not

chosen by QN1 (i.e., the directional deri-

vative is greater than 2j). kg ¼ none

indicates that the condition is not satisfied
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at any iteration and d is chosen throughout

that run.

ka j a ¼ 1;8k $ ka iteration where stepsize a ¼ 1 is achieved

and maintained for all subsequent itera-

tions. ka ¼ not attained indicates that

ak ¼ 1 is not achieved during any itera-

tion.

No. of iterations total number of iterations taken to solve

the problem

Time total computer time taken using a 200

megaHertz Pentium processor.

Failure: a� ¼ 0 and Fðx�Þ ¼ max-function value F attained, stepsize

a� ¼ 0 caused the algorithm to terminate

due to insufficient progress in the direc-

tion generated.

3.2 The Stopping Criterion

The termination criterion (4.3.5) is the condition, Ck $ �j and C‘
k $ �j for

Kiw. The values used in the test problems are in the range j [ ½10207
; 10211�.

Every test problem is solved twice using all algorithms: first, using a higher

value such as j ¼ 10208, and second with a lower value such as j ¼ 1:0210.

The purpose of solving the problems twice is to investigate the benefits of

evaluating the minimum-norm subgradient 7Fk. Some test problems demon-

strate that without the evaluation of the directional derivative, and of 7Fk,

QN2 is able to attain the solution, generally with superlinear convergence, for

an accuracy of say j ¼ 10208, but cannot maintain superlinear convergence

for a higher accuracy of say j ¼ 10210. Whereas the quasi-Newton algorithm

without the evaluation of the directional derivative, QN2, may deteriorate in

performance at such high accuracy, the quasi-Newton with the evaluation of

the directional derivative, QN1, generally maintains superlinear convergence,

even for very high accuracies. It is therefore possible to observe the trade-off

between attaining very high accuracy with QN1 and saving computation time

with QN2. In general, the performance of QN2 with high accuracy, together

with the savings in computation time, make it a practical alternative to QN1.

3.3 Evaluation of the Direction of Descent

In QN1, dk is either determined by 2C
21
k 7Fk or d. If the condition

max
y[YðxkÞ

k7xf ðxk; yÞ; dl , 2j
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is satisfied, 7Fk is not computed and dk is determined by d which in turn

depends on ykþ1 that maximizes the penalty function. However, if the above

condition is not satisfied, dk is determined by the value that corresponds to the

minimum-norm subgradient 7Fk. In the test problems, the evaluation of 7Fk

depends on the type of problem.

In convex-convex problems (i.e., f ðx; yÞ convex in x and convex in y) where
Y consists of upper and lower bounds on y, all candidate solutions at each

vertex of the hypercube Y are explicitly evaluated. (This is because maxima

of a convex function are at extreme points of the feasible region Y.) The

calculation of the minimum-norm subgradient 7Fk is based on all corner

point y-values that yield a function value equal to the max-function at that

iteration. For example, in Problem 15, there are 16 corner points and 8 of these

are maximizers at the solution. In this case 7Fk is obtained by a linear

combination of 8 subgradients based on 8 corner maximizers. At any iteration,

only corner point maximizers are considered when evaluating 7Fk. So, at

early iterations, where there may only be 2 or 4 corner point maximizers,

only these points are used for the computation. A criterion was implemented

to test whether a corner point is a maximizer: if close to the max-function by

10208, then a corner point qualifies as a corner maximizer.

For the general case of nonconvex-nonconcave problems, the calculation of

the minimum-norm subgradient 7Fk should be based on ykþ1 and y. Problems

in this general case are not included in the test problems as they are not helpful

in exhibiting the properties of the algorithms. These are more readily explored

with the convex maximization problems discussed above and the continuous

minimax formulations of equality constrained general nonlinear discrete mini-

max problems (Rustem and Nguyen, 1998).

4 TEST PROBLEMS

Tests on 21 problems are reported below. The objectives of problems 1–7 are

convex-concave. These examples illustrate the algorithms when themax-func-

tion has a unique ymaximizer for each fixed x. Although these initial problems

do not test algorithm behavior for multiple maximizers, they provide insight

into the work done by algorithms intended for more general problems.

Problems 8–16 have convex-convex objectives and illustrate the perfor-

mance of the algorithms when the max-function may have multiple maximi-

zers for a fixed x. The set of corner points comprises the extreme points in the

y-space defined by the upper and lower bounds on y. At any iteration, the set of

maximizers comprises the subset of corner points whose function value equals

the max-function at that iteration.

Problems 8–16 which are convex-convex, subject to bounds constraints in

y, can also be reformulated as discrete minimax to obtain an independent

confirmation of the solution and consequently of the computations of contin-
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uous minimax algorithms. Consider the continuous minimax problem

min
x[Rn

max
y[Rm

f ðx; yÞ j y‘i
# yi # yUi

; i ¼ 1;…;m
n o

where f ðx; yÞ is convex-convex. The maxima are situated at the vertices of the

hypercube. Let the vertices be given by yt; t [ T ; f1;…; 2mg. Discrete mini-

max formulation is then given by

min
x[Rn

max
t[T

f ðx; ytÞf g:

The discrete minimax formulation is equivalent to the following nonlinear

programming problem in nþ 1 variables

min
x[Rn;n[R1

n j ftðx; ytÞ # n; t [ Tf g

where ftðx; ytÞ are the objective values at vertex yt. As an independent check on
the computed solution, the nonlinear programming formulation is solved using

the NAG nonlinear programming subroutine E04UCC.

Problems 17–21 are published constrained discrete minimax problems

which have been reformulated as continuous minimax, unconstrained in

x [ R
n. In this case, the maximizer may or may not be at a vertex. To obtain

the continuous minimax formulations, consider the discrete minimax problem

min
x[Rn

max
i

fiðxÞ j i ¼ 1;…;m; gjðxÞ ¼ 0; j ¼ 1;…; J
n o

where fi is one of m objective functions, and gj is one of J constraints. This is

reformulated as the continuous minimax problem

min
x[Rn

max
y[Rm

Xm

i¼1

yifiðxÞ þ m
XJ

j¼1

gjðxÞ
� �2 �����

Xm

i¼1

yi ¼ 1; 0 # yi # 1; i ¼ 1;…;m

8<
:

9=
;:

where m $ 0 is a penalty parameter to ensure that the constraints on x are

satisfied. The equivalence of these discrete and continuous minimax problems

are discussed in Lemma 6.2.1. In the computations, the value m ¼ 108 has

been used. A similar penalty approach is adopted to enforce the equality

constraint on y. For Problems 17–21, the objective function values ft at the

solution are reported. Although these problems do not appear to have multiple

maximizers, they are difficult test problems and thus test the robustness of the

algorithms.
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Problem 1 [A: j ¼ 10
28
; B: j ¼ 10

210�

f ðx; yÞ ¼ 5
X2

i¼1

x2i 2
X2

i¼1

y2i 1 x1ð�y1 1 y2 1 5Þ1 x2ðy1 � y2 1 3Þ j 25 # yi # 5; i ¼ 1; 2

x0 ¼ ½10:0;�10:0�; y0 ¼ ½5:0;�5:0�

xijA� ¼ ½�:4833563;�:3166436�; yijA� ¼ ½:08335633;�:08335633�; i ¼ QN1;QN2

xKiwjA� ¼ ½�:4833371;�:3166634�; yKiwjA� ¼ ½:08333694;�:08333694�

xQN1jB� ¼ ½�:4833563;�:3166436�; yQN1jB� ¼ ½:08335633;�:08335633�

xQN2jB� ¼ ½�:4833340;�:3166659�; yQN2jB� ¼ ½:08333408;�:08333408�

xKiwjB� ¼ ½�:4833332;�:3166667�; yKiwjB� ¼ ½:08333322;�:08333322�

Fijjðx�Þ ¼ �1:683333; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 2 ½C ¼ 10
10�; [A: j ¼ 10

28�; B: j ¼ 10
210

]

f ðx; yÞ ¼ 4ðx1 � 2Þ2 � 2y21 þ x21y1 � y22 þ 2x22y2 j �5 # yi # 5; i ¼ 1; 2

x0 ¼ ½4:0; 4:0�; y0 ¼ ½5:0; 5:0�

xQN1jA� ¼ ½1:695415;�:2245884 £ 1021�; yQN1jA� ¼ ½:7186081; :5043996 £ 1023�

x
QN2jA
� ¼ ½1:695415;�:1202846 £ 1021�; yQN2jA� ¼ ½:7186081; :1447486 £ 1023�

x
KiwjA
� ¼ ½1:695410;�:2677936 £ 1021�; yKiwjA� ¼ ½:7186039; :7171342 £ 1023�

x
QN1jB
� ¼ ½1:695415;�:3170148 £ 1022�; yQN1jB� ¼ ½:7186081; :1004984 £ 1024�

x
QN2jB
� ¼ ½1:695415;�:3178420 £ 1022�; yQN2jB� ¼ ½:7186081; :1010232 £ 1024�

x
KiwjB
� ¼ ½1:695414;�:1257688 £ 1021�; yKiwjB� ¼ ½:7186077; :1581781 £ 1023�

Fijjðx�Þ ¼ 1:403883; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 3 ½C ¼ 10
10
]; [A: j ¼ 10

28
; B: j ¼ 10

210
]

f ðx; yÞ ¼ x41y2 1 2x31y1 � x22y2ðy2 � 3Þ � 2x2ðy1 � 3Þ2 j 0 # yi # 3; i ¼ 1; 2
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x0 ¼ ½10:0; 0:1�; y0 ¼ ½3:0; 3:0�

Fðx�Þ ¼ �2:468775

xijA� ¼ ½�1:180675; :9128218�; yijA� ¼ ½2:098478; 2:666058�; i ¼ QN1;QN2

xKiwjA� ¼ ½�1:180675; :9128322�; yKiwjA� ¼ ½2:098490; 2:666029�

xijB� ¼ ½�1:180674; :9128242�; yijB� ¼ ½2:098483; 2:666048�; i ¼ QN1;QN2

xKiwjB� ¼ ½�1:180674; :9128261�; yKiwjB� ¼ ½2:098486; 2:666042�

Fijjðx�Þ ¼ �2:468775; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 4 ½C ¼ 10
10�; ½A :j ¼ 10

28; B: j ¼ 10
210�

f ðx; yÞ ¼ �
X3

i¼1

ðyi � 1Þ2 1
X2

i¼1

ðxi � 1Þ2 1 y3ðx2 � 1Þ1 y1ðx1 � 1Þ1 y2x1x2

�3 # yi # 3; i ¼ 1; 2; 3

x0 ¼ ½�2:0;�1:0�; y0 ¼ ½0:0; 0:0; 0:0�

x
QN1jA
� ¼ ½:4181272; :4181122�; y

QN1jA
� ¼ ½:7090636; 1:087412; :7090561�

xQN2jA� ¼ ½:4181271; :4181124�; yQN2jA� ¼ ½:7090635; 1:087412; :7090562�

x
KiwjA
� ¼ ½:4181456; :4181456�; y

KiwjA
� ¼ ½:7090728; 1:087422; :7090728�

xQN1jB� ¼ ½:4181405; :4181230�; 2yQN1jB� ¼ ½:7090702; 1:087417; :7090615�

x
QN2jB
� ¼ ½:4181376; :4181119�; y

QN2jB
� ¼ ½:7090688; 1:087414; :7090559�

xKiwjB� ¼ ½:4181300; :4181300�; yKiwjB� ¼ ½:7090650; 1:087416; :7090650�

Fijjðx�Þ ¼ �:1348339; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 5 ½C ¼ 10
10�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼ �ðx1 � 1Þy1 � ðx2 � 2Þy2 � ðx3 � 1Þy3 1 2x21 1 3x22 1 x23 �
X3

i¼1

y2i

�1 # yi # 1; i ¼ 1; 2; 3
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x0 ¼ ½2:0; 2:0; 2:0�; y0 ¼ ½1:0; 1:0; 1:0�

xijA� ¼ ½:1111101; :1538398; :2000022�; yijA� ¼ ½:4444449; :9230800; :3999988�;

i ¼ QN1;QN2

xKiwjA� ¼ ½:1111111; :1538355; :2000000�; yKiwjA� ¼ ½:4444444; :9230822; :4000000�

xijB� ¼ ½:1111110; :1538457; :2000003�; yijB� ¼ ½:4444444; :9230770; :3999998�;

i ¼ QN1;QN2

xKiwjB� ¼ ½:1111111; :1538471; :2000000�; yKiwjB� ¼ ½:4444444; :9230763; :4000000�

Fijjðx�Þ ¼ :1345299; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 6 ½C ¼ 10
10�; [A: j ¼ 1028

; B: j ¼ 10
210�

f ðx; yÞ ¼ y1ðx21 � x2 1 x3 � x4 1 2Þ1 y2ð�x1 1 2x22 � x23 1 2x4 1 1Þ

þy3ð2x1 � x2 1 2x3 � x24 1 5Þ1 5x21 1 4x22 1 3x23 1 2x24

�
X3

i¼1

y2i

�2 # yi # 2; i ¼ 1; 2; 3

x0 ¼ ½�2:0; 2:0;�2:0; 2:0�; y0 ¼ ½2:0; 2:0; 2:0�

xQN1jA� ¼ ½�:2315507; :2228134;�:6755366;�:08376960�;

yQN1jA� ¼ ½:6195175; :3534766; 1:477997�

xQN2jA� ¼ ½�:2315505; :2228133;�:6755375;�:08377083�;

yQN2jA� ¼ ½:6195178; :3534747; 1:477996�

xKiwjA� ¼ ½�:2315566; :2228125;�:6755220;�:08376166�;

yKiwjA� ¼ ½:6195227; :3534970; 1:478006�

xQN1jB� ¼ ½�:2315586; :2228107;�:6755238;�:08376519�;

yQN1jB� ¼ ½:6195250; :3534925; 1:478003�
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xQN2jB� ¼ ½�:2315585; :2228105;�:6755239;�:08376509�;

yQN2jB� ¼ ½:6195249; :3534923; 1:478003�

xKiwjB� ¼ ½�:2315600; :2228110;�:6755205;�:08376863�;

yKiwjB� ¼ ½:6195285; :3534921; 1:478005�

Fijjðx�Þ ¼ 4:542969; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 7 ½C ¼ 10
10�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼ 2x5x1 1 3x4x2 1 x5x3 1 5x24 1 5x25 � x4ðy4 � y5 � 5Þ1 x5ðy4 � y5 1 3Þ

þ
X3

i¼1

yiðx2i � 1Þ �
X5

i¼1

y2i

�3 # yi # 3; i ¼ 1; 2; 3; 4; 5

x0 ¼ ½�4:0;�4:0;�4:0;�4:0;�4:0�; y0 ¼ ½2:0; 2:0; 2:0; 2:0; 2:0�

xQN1jj� ¼ ½1:425210; 1:661231; 1:258522;�:9744131;�:7348520�; j ¼ A;B

yQN1jj� ¼ ½:5156123; :8798455; :2919393; :1197805;�:1197805�; j ¼ A;B

xQN2jj� ¼ ½1:425210; 1:661231; 1:258522;�:9744131;�:7348521�; j ¼ A;B

yQN2jj� ¼ ½:5156128; :8798452; :2919395; :1197804;�:1197804�; j ¼ A;B

xKiwjA� ¼ ½1:425208; 1:661239; 1:258526;�:9744230;�:7348516�;

yKiwjA� ¼ ½:5156097; :8798588; :2919450; :1197857;�:1197857�;

xKiwjB� ¼ ½1:425208; 1:661228; 1:258529;�:9744119;�:7348506�;

yKiwjB� ¼ ½:5156093; :8798407; :2919481; :1197806;�:1197806�;

Fijjðx� ¼ �6:350915; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 8 [A: j ¼ 10
28
; B: j ¼ 10

210�

f ðx; yÞ ¼ 3

2

1

2
x11ð41 x1Þy1


 �2
j �2 # y1 # 2;
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x0 ¼ 3:0; y0 ¼ 2:0

xijA� ¼ ½�3:999999�; i ¼ QN1;QN2; xKiwjA� ¼ ½�4:000000�

xijB� ¼ ½�4:000000�; i ¼ QN1;QN2;Kiw

yijj� ¼ ½2�; ½�2� ðtwo maximizersÞ;8i; j; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 6:000000; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 9 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

29�

f ðx; yÞ ¼ 1

2
ð2x214y11x1y1Þ21ðx112x1y11x2y2Þ2
� �

j �5 # yi # 5; i ¼ 1; 2

x0 ¼ ½0:0; 0:0�; y0 ¼ ½5:0; 5:0�

xQN1jj� ¼ ½�:6849296;�:6715307 £ 1027�; j ¼ A;B

xQN2jA� ¼ ½�:6849318;�:5766055 £ 1027�; xQN2jB� ¼ ½�:6849442;�:1776339 £ 10213�;

xKiwjA� ¼ ½�:6849312;�:1574302 £ 1028�; xKiwjB� ¼ ½�:6849314;�:1634144 £ 1029�

yijj� ¼ ½5:0; 5:0�; ½5:0;�5:0�ðtwo maximizersÞ; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 1:657534 £ 102; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 10 ½C ¼ 10
15�; [A: j ¼ 10

27
; B: j ¼ 10

29�

f ðx; yÞ ¼ 1

2
ð5x215y113x1y1Þ21ð2x115x1y11 3x2y2Þ2
� �

j �5 # yi # 5; i ¼ 1; 2

x0 ¼ ½1:0; 1:0�; y0 ¼ ½5:0; 5:0�

xijA� ¼ ½�:3930712;�:7271695 £ 1028�; xijB� ¼ ½�:3930818;�:3121502 £ 10210�;

i ¼ QN1;QN2

xKiwjA� ¼ ½�:3930819;�:8013015 £ 1029�; xKiwjB� ¼ ½�:3930817;�:8128688 £ 10211�

yijj� ¼ ½5:0; 5:0�; ½5:0;�5:0� ðtwo maximizersÞ;8i; j; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 2:387971 £ 102; i ¼ QN1;QN2;Kiw; j ¼ A;B
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Problem 11 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼ 1

2
ðx1x2 � y1ð1 � x3x4ÞÞ21ðx2x3 � y2ð21 x4x1ÞÞ21

X2

i¼1

y2i

 !
j �5 # yi # 5;

i ¼ 1; 2

x0 ¼ ½1:0; 1:0; 1:0; 1:0�; y0 ¼ ½3:0; 3:0�

xijA� ¼ ½�1:541662;�:1086857 £ 1024
; :7708296; 1:297309�; i ¼ QN1;QN2

xKiwjA� ¼ ½�1:691932; :5904574 £ 1025
; :8459655; 1:182080�

xijB� ¼ ½�1:541658;�:2811413 £ 1026
; :7708293; 1:297303�; i ¼ QN1;QN2

xKiwjB� ¼ ½�1:691932; :6060316 £ 1026
; :8459661; 1:182080�

yijj� ¼ ½5:0; 5:0�; ½5:0;�5:0�; ½�5:0; 5:0�; ½�5:0;�5:0�ðfour maximizersÞ;

i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 2:5 £ 101; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 12 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼
X3

i¼1

y2i 1 y1ðx21 � x2 1 x3 � x4 1 2Þ1 y2ð�x1 1 2x22 � x23 1 2x4 � 10Þ

þy3ð2x1 � x2 1 2x3 � x24 � 5Þ1 5
X4

i¼1

x2i

�2 # yi # 2; i ¼ 1; 2; 3

x0 ¼ ½10:0; 1:0; 1:0; 10:0�; y0 ¼ ½2:0; 2:0; 2:0�

xijj� ¼ ½:1428570; :1232059 £ 1025
; :1428569; :4285713�; i ¼ QN1;QN2; j ¼ A;B

xKiwjA� ¼ ½:1428532;�:7079020 £ 1026
; :1428573; :4285667�

xKiwjB� ¼ ½:1428567;�:7087013 £ 1027
; :1428571; :4285709�

yijj� ¼ ½2:0;�2:0;�2:0�; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 4:442857 £ 101; i ¼ QN1;QN2;Kiw; j ¼ A;B
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Problem 13 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼
X4

i¼1

y2i 1 y1ðx21 � x2 1 x3 � x4 1 2Þ1 y2ð�x1 1 2x22 � x23 1 2x4 � 10Þ

þy3ð2x1 � x2 1 2x3 � x24 � 5Þ1 5y4ðx21 1 x22Þ1 5
X4

i¼3

x2i

�2 # yi # 2; i ¼ 1; 2; 3; 4

x0 ¼ ½1:0;�1:0;�1:0; 1:0�; y0 ¼ ½2:0; 2:0; 2:0; 2:0�

xijA� ¼ ½:8333487 £ 1021
; :8263346 £ 1025

; :1428512; :4285743�; i ¼ QN1;QN2

xijB� ¼ ½:8333332 £ 1021
; :6406437 £ 1029

; :1428571; :4285714�; i ¼ QN1;QN2

xKiwjA� ¼ ½:8333627 £ 1021
; :0000000; :1428571; :4285714�;

xKiwjB� ¼ ½:8333296 £ 1021
; :0000000; :1428571; :4285714�;

yijj� ¼ ½2:0;�2:0;�2:0; 2:0�; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 4:848809 £ 101;8i; j; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 14 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼
X4

i¼1

y2i 1 y1ðx21 � 2:2x2 1 x3 � 10x4 1 10Þ1 y2ð�2x1 1 2x22 � x23 1 3x4 � 10Þ

þy3ð2x1 � x2 1 6x3 � x24 � 5Þ1 5y4ðx21 1 x22Þ1 5
X4

i¼3

x2i

�2 # yi # 2; i ¼ 1; 2; 3; 4

x0 ¼ ½0:0; 0:0; 0:0; 0:0�; y0 ¼ ½2:0; 2:0; 2:0; 2:0�

xijA� ¼ ½�:1151853 £ 1026
; :4685527 £ 1023

; :7920836; 1:079105�; i ¼ QN1;QN2

x
ijB
� ¼ ½:1692001 £ 10

26
; :4589308 £ 10

23
; :7920886; 1:079107�; i ¼ QN1;QN2

xKiwjj� ¼ ½�:3438374; :4667710; :1742058; 1:178821�; j ¼ A;B

y
ijj
� ¼ ½2:0;�2:0;�2:0; 2:0�; ½�2:0;�2:0;�2:0; 2:0�; ½2:0;�2:0;�2:0;�2:0�;
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½�2:0;�2:0;�2:0;�2:0� ðfour maximizersÞ;8i; j; i ¼ QN1;QN2; j ¼ A;B

yKiwjj� ¼ ½�2:0;�2:0;�2:0; 2:0�ðone maximizerÞ; j ¼ A;B

Fijjðx�Þ ¼ 4:256435 £ 101; i ¼ QN1;QN2; j ¼ A;B;

FKiwjjðx�Þ ¼ 5:524477 £ 101; j ¼ A;B

Problem 15 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼
X4

i¼1

y2i 1 y1ðx21 � 2:2x2 1 x3 � 10x4 1 10Þ1 y2ð�2x1 1 2x22 � x23 1 3x4 � 10Þ

þy3ð2x1 � x2 1 5:91x3 � x24 � 15Þ1 5y4ðx21 1 x22Þ1 5
X4

i¼3

x2i

�2 # yi # 2; i ¼ 1; 2; 3; 4

x0 ¼ ½1:0; 1:0; 1:0; 1:0�; y0 ¼ ½2:0; 2:0; 2:0; 2:0�

xijA� ¼ ½�:2384806 £ 1025
; :7624597 £ 1026

; :7793389; 1:077933�; i ¼ QN1;QN2

xijB� ¼ ½�:1476035 £ 1025
; :1873070 £ 1025

; :7793423; 1:077933�; i ¼ QN1;QN2

xKiwjj� ¼ ½:115145; :3474200; :8373482; :9378763�; j ¼ A;B

yijj� ¼ ½2:0;�2:0;�2:0; 2:0�; ½�2:0;�2:0;�2:0; 2:0�; ½2:0;�2:0;�2:0;�2:0�;

½�2:0;�2:0;�2:0;�2:0� ðfour maximizersÞ; i ¼ QN1;QN2; j ¼ A;B

yKiwjj� ¼ ½2:0;�2:0;�2:0; 2:0� ðone maximizerÞ; j ¼ A;B

Fijjðx�Þ ¼ 6:270578 £ 101; i ¼ QN1;QN2; j ¼ A;B;

FKiwjjðx�Þ ¼ 6:450730 £ 101; j ¼ A;B

Problem 16 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210�

f ðx; yÞ ¼ 1

2

X4

i¼1

y2i 1 y1ðx21 � 2x2 1 x3 � 10x4 1 2Þ1 y2ð�2x1 1 2x22 � x23 1 3x4 � 5Þ

þy3ð2x1 � x2 1 5x3 � x
2
4 1 2Þ1 y4ðx21 1 x

2
2 1

X4

i¼3

x
2
i Þ
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�2 # yi # 2; i ¼ 1; 2; 3; 4

x0 ¼ ½0:1; 0:0; 1:0; 0:0�; y0 ¼ ½2:0; 2:0; 2:0; 2:0�

xijj� ¼ ½�:7466470;�1:062980;�:2750698; :4408373�;8i; j; i ¼ QN1;QN2; j ¼ A;B

xKiwjj� ¼ ½�:6159915;�1:117989;�:2436400; :4410787�; j ¼ A;B

yijj� ¼ ½2:0; 2:0; 2:0; 2:0�; ½2:0; 2:0;�2:0; 2:0�; ½2:0;�2:0; 2:0; 2:0�; ½2:0;�2:0;�2:0; 2:0�;

½�2:0; 2:0; 2:0; 2:0�; ½�2:0; 2:0;�2:0; 2:0�; ½�2:0;�2:0; 2:0; 2:0�;

½�2:0;�2:0;�2:0; 2:0�; ðeight maximizersÞ; i ¼ QN1;QN2; j ¼ A;B

yKiwjj� ¼ ½�2:0;�2:0; 2:0; 2:0� ðone maximizerÞ; j ¼ A;B

Fijjðx�Þ ¼ 1:191482 £ 101; i ¼ QN1;QN2; j ¼ A;B;

FKiwjjðx�Þ ¼ 1:279971 £ 101; j ¼ A;B

Problem 17 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210� (Charalambous

and Bandler, 1976)

f1ðxÞ ¼ x21 1 x42; f2ðxÞ ¼ ð2 � x1Þ2 1 ð2 � x2Þ2; f3ðxÞ ¼ 2eðx2�x1Þ

x0 ¼ ½5:5;�2:0�; y0 ¼ ½1:00:0; 0:0�

xijA� ¼ ½1:139049; :8995505�; xijB� ¼ ½1:139041; :8995568�; i ¼ QN1;QN2;

xKiwjA� ¼ ½1:139030:8995658�; xKiwjB� ¼ ½1:139038; :8995595�

y
ijj
� ¼ ½0:0; 1:0; 0:0�; i ¼ QN1;QN2; j ¼ A;B; y

Kiwjj
� ¼ ½1:0; 0:0; 0:0�; j ¼ A;B

Fijjðx�Þ ¼ 1:952224; i ¼ QN1;QN2;Kiw; j ¼ A;B

Problem 18 ½C ¼ 10
15�; [A: j ¼ 10

28
; B: j ¼ 10

210� (Charalambous

and Bandler, 1976)

f1ðxÞ ¼ x
4
1 1 x

2
2; f2ðxÞ ¼ ð2 � x1Þ2 1 ð2 � x2Þ2; f3ðxÞ ¼ 2e

ðx2�x1Þ

x0 ¼ ½0:0;�0:1�; y0 ¼ ½0:01:0; 0:0�

xijA� ¼ ½1:000000; 1:000053�; yijA� ¼ ½1:0; 0:0; 0:0�; i ¼ QN1;QN2
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xijB� ¼ ½:9999999; 1:000004�; yijB� ¼ ½0:0; 0:0; 1:0�; i ¼ QN1;QN2

xKiwjA� ¼ ½:9999999; :9999999�; xKiwjB� ¼ ½1:000000; 1:000000�;

yKiwjj� ¼ ½0:0; 1:0; 0:0�; j ¼ A;B

FijAðx�Þ ¼ 2:000106; FijBðx�Þ ¼ 2:000000; i ¼ QN1;QN2;

FKiwjjðx�Þ ¼ 2:000000; j ¼ A;B

Problem 19 ½C ¼ 10
15�; [A: j ¼ 10

27
; B: j ¼ 10

210� (Demyanov and

Malozemov, 1974)

f1ðxÞ ¼ 5x1 1 x2; f2ðxÞ ¼ �5x1 1 x2; f3ðxÞ ¼ x21 1 x22 1 4x2

x0 ¼ ½�2:1;�0:1�; y0 ¼ ½:333333; :333333; :333333�

xijA� ¼ ½�:4606293 £ 1027
;�2:999999�; yijj� ¼ ½0:0; 1:0; 0:0�; i ¼ QN1;QN2; j ¼ A;B

x
ijB
� ¼ ½�:2133713 £ 10

27
;�3:000000�; i ¼ QN1;QN2;

xKiwjA� ¼ ½:4050685 £ 1027
;�3:000000�; yKiwjj� ¼ ½1:0; 0:0; 0:0�; j ¼ A;B

x
KiwjB
� ¼ ½:5556585 £ 10

210
;�3:000000�;

FijAðx�Þ ¼ �2:999999; FijBðx�Þ ¼ �3:000000; i ¼ QN1;QN2;Kiw:

Problem 20 ½C ¼ 10
15�; [A: j ¼ 10

27
; B: j ¼ 10

210� (Conn, 1979)

f1ðxÞ ¼ x21 1 x22; f2ðxÞ ¼ ð2 � x1Þ2 1 ð2 � x2Þ2; f3ðxÞ ¼ 2eðx2�x1Þ

g1ðxÞ ¼ x1 1 x2 � 2; g2ðxÞ ¼ �x21 � x22 1 2:25

x0 ¼ ½1:1; 0:1�; y0 ¼ ½0:0; 1:0; 0:0�

xijj� ¼ ½1:353553; :6464466�; yijj� ¼ ½1:0; 0:0; 0:0�; i ¼ QN1;QN2;Kiw; j ¼ A;B

FijAðx�Þ ¼ 2:250000; i ¼ QN1;QN2; FKiwjAðx�Þ ¼ 2:249999;

FijBðx�Þ ¼ 2:249999; i ¼ QN1;QN2;Kiw
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Problem 21 ½C ¼ 10
15�; [A: j ¼ 10

29
; B: j ¼ 10

211� (Polak et al.,

1991)

f1ðxÞ ¼ exp
x21

1000
1ðx2 � 1Þ2

 !
; f2ðxÞ ¼ exp

x21

1000
1ðx211Þ2

 !

x0 ¼ ½0:02; 0:15�; y0 ¼ ½0:0; 1:0�

xijj� ¼ ½�:3082574 £ 1024
; :6049532 £ 1029�; i ¼ QN1;QN2; j ¼ A;B

xKiwjA� ¼ ½:1007579 £ 1024
; :1085434 £ 1029�;

xKiwjB� ¼ ½:1005085 £ 1022
; :105424 £ 10211�;

yijj� ¼ ½0:0; 1:0�; i ¼ QN1;QN2;Kiw; j ¼ A;B

Fijjðx�Þ ¼ 2:718282; i ¼ QN1;QN2;Kiw; j ¼ A;B

5 SUMMARY OF THE RESULTS

A number of test problems are used to test the performance of QN1 and QN2.

In general, superlinear convergence is observed, and the solutions found are

consistent with those found by Kiw. Where applicable, the problems are also

solved using a nonlinear programming formulation and consistent results were

confirmed.

The test problems, reported in Table 1A–E, highlight a number of issues

regarding the performance of the optimizer, namely: iterations when the

condition in (4.2.11),

k7xf ðxk; yÞ; dl $ �j
which triggers the use of 7Fk, is satisfied. This affects the calculation of 7Fk;

superlinear convergence; the termination criterion and accuracy of the solu-

tion. We discuss these issues below.

5.1 Iterations When k7xf ðxk; yÞ; dl $ �j is Satisfied

In all test problems, the satisfaction of the above condition is observed in

general during the last few iterations. Mostly, this occurs in the very last

iteration. Thus, QN1 and QN2 performed comparably through all iterations

except at the very last iterations where the algorithm may attempt to satisfy a

possibly stringent termination criterion. This result also suggests that the

algorithm without the evaluation of 7Fk (i.e., QN2) is a good approximation

to QN1 which includes the evaluation of 7Fk.
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The parameter j represents the accuracy of both the solution in the termina-

tion criterion (4.3.5) and the descent test for d in (4.2.11). The advantage of

higher solution accuracy (i.e., a smaller value of j) is clear. However, a

smaller threshold value in (4.2.11) implies that d is accepted as a descent

direction even when this descent is quite weak. This may be desirable for

choosing d, over 2C
21
k 7Fk, as the former is simpler to compute. For larger

values of j, while termination is potentially easier to achieve, the descent

condition is less easily satisfied, as the threshold is higher. This effect has

been observed in Problem 14 only, as discussed in Section 5.4. The overall

observation in Section 5.4 is that the actual solution is unaffected by the failure

of d satisfying the descent condition for the higher threshold value of j. It is

possible to choose a higher threshold value for the descent test in (4.2.11) than

the solution accuracy. In the present examples, the same consistent value for

both has been adopted as both are related to similar quantities.

5.2 Calculation of Minimum-norm Subgradient

The effect of the calculation of 7Fk is demonstrated by the convex-convex

problems, Test Problems 8–16. For these problems, we can evaluate the multi-

ple maximizers at any iteration and explicitly construct the minimum-norm

subgradient. These problems demonstrate that when the satisfaction of

k7xf ðxk; yÞ; dl $ �j occurred at the very last iteration, there is no improve-

ment in the value of the norm of d, and the algorithm does not benefit from the

calculation of 7Fk. However, where this condition is satisfied in the last few

iterations, as in Problem 15, the computed 7Fk results in an improvement in

both the norm of dk andCk. This result suggests that if a stringent termination

criterion needs to be implemented, then QN1 which computes 7Fk improves

the satisfaction of the termination criterion.

We note that several of the problems 8–16 have infinite numbers of maxi-

mizers at the solution. For example, For example, in Problem 8, the value x1 ¼
�4 ensures that the problem does not depend on y1 and hence any

y1;�2 # y1 # 2, is a solution. Similarly, in Problem 9, x2 ¼ 0 makes the

problem independent of y2 and hence the problem has infinite maximizers

y� ¼ ½5; y2�, �5 # y2 # 5. The latter observation also applies to Problem 10.

In these situations, by Caratheodory’s Theorem (Theorem 1.1.1) at most

(mþ 1) gradient vectors, arising from the maximizers, can be used to char-

acterize the subgradient. (In practice, however, the results reported are based

on the use of only the appropriate vertices or the upper and lower bounds for

the corresponding y.)

5.3 Superlinear Convergence

In general, superlinear convergence rates are observed for QN1 and QN2 with
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the test problems, supporting the use of the anticipatory BFGS Hessian

approximation. A unit stepsize is reached at early iterations, and the number

of iterations and/or time taken to convergence by QN1 and QN2 are signifi-

cantly less than the number it took Kiw.

5.4 Termination Criterion and Accuracy of the Solution

The test problems are solved using two levels of stringency of the termination

criterion. In general, QN2 performs similarly to QN1 when j is in the order of

10207 or 10208, but fails in Test Problems 9 and 15, for j in the order 10209 or

10210. The full quasi-Newton algorithm, QN1, did not fail. Kiw failed to

converge in a number of test problems even for the less stringent termination

criterion.

In Problem 14, the computation of 7Fk is triggered in iteration 32 as the

direction generated does not satisfy the descent condition for j ¼ 1028.

However, this descent condition is satisfied for j ¼ 10210 and 7Fk is not

computed. This is the only example observed where 7Fk is computed for

the lower but not the higher accuracy as the descent condition k7xf ðxk; yÞ; dl ,
�j is satisfied for the latter.

The results suggest that QN2 is a good approximation to the full algorithm

QN1 which incorporates the evaluation of 7Fk, with possible deterioration of

performance if high accuracy is demanded with small values of j.
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Table 1A Performance of QN1, QN2 and Kiw

Problem QN1 QN2 Kiw

1A ka j ak ¼ 1;;k $ ka 4 4 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 7 – –

Number of iterations 7 7 22

Time (seconds) 3.766 3.415 14.621

1B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

4 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 7, 8 – –

Number of iterations 8 8 27

Time (seconds) 5.267 3.806 19.478

2A ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 17, 18 – –

Number of iterations 18 19 549

Time (seconds) 8.853 7.932 333.790
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Table 1A (continued)

Problem QN1 QN2 Kiw

2B ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 24 – –

Number of iterations 24 24 2689

Time (seconds) 11.987 10.004 1697.661

3A ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 15 – –

Number of iterations 15 15 47

Time (seconds) 7.270 6.168 47.398

3B ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 16 – –

Number of iterations 16 16 85

Time (seconds) 7.711 6.729 95.117

4A ka j ak ¼ 1;;k $ ka 2 2 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 6 – –

Number of iterations 6 6 72

Time (seconds) 3.555 3.115 33.248

4B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 11, 12, 13, 14 – –

Number of iterations 14 12 90

Time (seconds) 10.805 16.154 44.263

5A ka j ak ¼ 1;;k $ ka 5 5 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 7 –

Number of iterations 7 7 26

Time (seconds) 4.357 3.946 11.096

5B ka j ak ¼ 1;;k $ ka 5 5 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 8 –

Number of iterations 8 8 31

Time (seconds) 4.877 4.186 14.742



Table 1B Performance of QN1, QN2 and Kiw

Problem QN1 QN2 Kiw

6A ka j ak ¼ 1;;k $ ka 7 7 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 15 – –

Number of iterations 15 15 19

Time (seconds) 7.802 6.940 11.867

6B ka j ak ¼ 1;;k $ ka 7 7 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 16 – –

Number of iterations 16 16 23

Time (seconds) 8.882 7.200 14.911

7A ka j ak ¼ 1;;k $ ka 10 10 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 16 – –

Number of iterations 16 16 65

Time (seconds) 10.676 9.223 39.257

7B ka j ak ¼ 1;;k $ ka 10 10 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 16 – –

Number of iterations 16 16 70

Time (seconds) 10.515 9.194 42.290

8A ka j ak ¼ 1;;k $ ka 16 14 2

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 16 16 5

Time (seconds) 8.052 6.149 2.524

8B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

14 2

kg j k7xf ðxkg ; yÞ; dl $ 2j 18, 19 – –

Number of iterations 19 18 6

Time (seconds) 10.856 7.351 2.724

9A ka j ak ¼ 1;;k $ ka 22 22 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 23, 24, 25 – –

Number of iterations 25 25 684

Time (seconds) 19.899 23.443 683.012

9B ka j ak ¼ 1;;k $ ka 22 a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 23, 24, 25 – –

Number of iterations 25 36 777

Time (seconds) 19.919 40.558 807.360
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Table 1B (continued)

Problem QN1 QN2 Kiw

Failure:

a*¼ 0 and

Fðx*Þ ¼
165:7534

10A ka j ak ¼ 1;;k $ ka 24 24 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 26 26 7211

Time (seconds) 25.366 21.972 14913.485

10B ka j ak ¼ 1;;k $ ka 31 31 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 34 – –

Number of iterations 34 34 9284

Time (seconds) 29.242 28.971 19580.756

Table 1C Performance of QN1, QN2 and Kiw

Problem QN1 QN2 Kiw

11A ka j ak ¼ 1;;k $ ka 8 8 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 19 – –

Number of iterations 19 19 113

Time (seconds) 7.060 6.399 88.557

11B ka j ak ¼ 1;;k $ ka 8 8 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 22 – –

Number of iterations 22 22 141

Time (seconds) 9.835 7.571 109.378

12A ka j ak ¼ 1;;k $ ka 7 7 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 14 – –

Number of iterations 14 14 52

Time (seconds) 6.259 4.987 37.644

12B ka j ak ¼ 1;;k $ ka 7 7 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 14 – –

Number of iterations 14 14 60
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Table 1D Performance of QN1, QN2 and Kiw

Problem QN1 QN2 Kiw

15A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 30 – –

Number of iterations 30 30 20

Time (seconds) 28.591 25.887 35.421

Failure: a*¼ 0

Fðx*Þ ¼ 64:50730

15B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

Table 1C (continued)

Problem QN1 QN2 Kiw

Time (seconds) 6.259 4.987 45.676

13A ka j ak ¼ 1;;k $ ka 4 4 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 7 – –

Number of iterations 7 7 42

Time (seconds) 3.615 3.234 40.699

13B ka j ak ¼ 1;;k $ ka 4 4 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 8 – –

Number of iterations 8 8 45

Time (seconds) 3.926 3.375 41.630

14A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 32 – –

Number of iterations 32 32 6

Time (seconds) 25.637 21.461 9.193

Failure: a*¼ 0

Fðx*Þ ¼55.24477

14B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 40 40 6

Time (seconds) 32.257 27.210 9.193

Failure: a*¼ 0

Fðx*Þ ¼55.24477
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Table 1D (continued)

Problem QN1 QN2 Kiw

kg j k7xf ðxkg ; yÞ; dl $ 2j 34, 35 – –

Number of iterations 35 35 20

Time (seconds) 39.938 41.620 35.421

Failure: a*¼ 0 Failure: a*¼ 0

Fðx*Þ ¼ 62:70578 Fðx*Þ ¼ 64:50730

16A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 53 53 11

Time (seconds) 56.631 50.272 17.546

Failure: a*¼ 0

Fðx*Þ ¼ 12:79971

16B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 60 60 11

Time (seconds) 61.909 56.221 17.546

Failure: a*¼ 0

Fðx*Þ ¼ 12:79971

17A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 21 – –

Number of iterations 21 21 29

Time (seconds) 1.492 0.601 2.583

17B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 23 – –

Number of iterations 23 23 35

Time (seconds) 1.512 0.611 3.014

18A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 12 – –

Number of iterations 12 12 36

Time (seconds) 1.412 0.551 5.187

18B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 22 – –

Number of iterations 22 22 46

Time (seconds) 1.712 0.681 6.830
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Table 1E Performance of QN1, QN2 and Kiw

Problem QN1 QN2 Kiw

19A ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j None – –

Number of iterations 25 25 17

Time (seconds) 0.711 0.661 3.665

19B ka j ak ¼ 1;;k $ ka a ¼ 1 not

achieved

a ¼ 1 not

achieved

a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 28 – –

Number of iterations 28 28 23

Time (seconds) 1.572 0.711 4.336

Failure: a*¼ 0

Fðx*Þ ¼
23:000000

20A ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 13 – –

Number of iterations 13 13 140

Time (seconds) 0.541 0.531 4.487

20B ka j ak ¼ 1;;k $ ka 3 3 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 13 – –

Number of iterations 14 14 144

Time (seconds) 0.551 0.571 4.796

Failure: a*¼ 0

Fðx*Þ ¼ 2:249999

21A ka j ak ¼ 1;;k $ ka 20 20 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 22 – –

Number of iterations 22 22 423

Time (seconds) 0.591 0.591 44.274

21B ka j ak ¼ 1;;k $ ka 20 20 a ¼ 1 not

achieved

kg j k7xf ðxkg ; yÞ; dl $ 2j 22 – –

Number of iterations 22 22 1817

Time (seconds) 0.591 0.591 197.534
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Chapter 6

Minimax as a robust strategy for discrete rival scenarios

The discrete minimax problem arises when the worst-case is to be determined

over a discrete set. The latter is characterized by a discrete number of scenar-

ios. Minimax is thus the best strategy in view of the worst-case scenario.

In the presence of a discrete set of rival decision models, forecasts or

scenarios purporting to describe the same system, the optimal decision

needs to take account of all possible representations. The minimax problem

arises when statistical or economic analysis cannot rule out all but one of the

rival possibilities. We then need to consider the optimal strategy correspond-

ing to the worst case. Optimality is no longer determined by a single scenario

but by all scenarios simultaneously.

In this chapter, we discuss the discrete minimax problem and the robust

character of its solution. We consider nonlinear equality and inequality

constraints and use an augmented Lagrangian formulation to characterize

the problem. The solution algorithm is discussed in Chapter 7.

1 INTRODUCTION TO RIVAL MODELS AND FORECAST

SCENARIOS

Forecasting with rival models is usually resolved by some form of forecast

pooling (see, e.g., Fuhrer and Haltmaier, 1986; Granger and Newbold, 1977;

Lawrence et al., 1986; Makridakis and Winkler, 1983). In policy optimization,

a similar approach leads to the pooling of objective functions derived from the

rival models (see Rustem, 1987, 1994). Chow (1979) initially formulated a

robust policy approach for two rival economic models. This approach obtains

the optimal policy based only on one model and evaluates its effect if the

second model turns out to actually represent the system. A ‘‘payoff matrix‘‘ is

constructed and the strategy chosen is the optimal strategy based on the model

that inflicts the lesser damage when implemented on the rival model. There is

a discrete choice set of policy strategies. Each member of the set is an optimal

policy derived using only one of the models as the true representation of the

economy.



In this chapter, we extend the intuitive concept considered by Chow to the

determination of the worst-case rival scenario simultaneously with the mini-

mization over x. Policy choice is no longer restricted to be discrete, dependent

on any one model, as optimality is no longer based on one model only. The

best decision is computed given that the worst case is determined using all the

scenarios. An example of this approach, with two rival macroeconomic

models, is discussed in Becker et al. (1986).

We introduce the minimax strategy by considering the pooling of rival

objective functions. Let q denote pooling weights, with

q [ E
msce

1 ; q [ R
msce j q $ 0; k1;ql ¼ 1

n o

where 1[ R
m

sce

denotes the vector with every component unity. Consider the

optimal decision problem formulated as the constrained optimization of the

pooled objective functions subject to nonlinear constraints

min
x

kq; f ðxÞl j gðxÞ ¼ 0; hðxÞ # 0f g ð1:1Þ

where q [ E
msce

1 , x [ R
n, f : Rn ! R

msce

, g : Rn ! R
e, h : Rn ! R

i and f, g

and h are twice continuously differentiable functions. In (1.1) each element of

f, denoted by f j, represents a rival objective function corresponding to the jth

rival model or scenario. The restrictions gðxÞ ¼ 0 and hðxÞ # 0 are the equality

and inequality constraints imposed on the overall decision problem. In the

above formulation, the vector q is fixed and defines the pooling weights. Also,

generally, the number of scenarios or models is much less than the number of

decision variables, that is, n q m
sce. One reason for this is that policy opti-

mization is essentially dynamic in nature and the total number of decision

variables is the product of the decision variables for one time period and the

number of time periods. Further motivation for (1.1) is discussed in Rustem

(1987).

Among possible choices of pooling weights, the robust pooling corresponds

to the strategy that is invariant to whichever rival scenario, or model, actually

turns out to represent the system. The pooling that corresponds to the robust

policy is given by the solution of the minimax problem

min
x

max
q

kf ðxÞ;ql j gðxÞ ¼ 0; hðxÞ # 0; q [ E
m

sce

1

n o
ð1:2Þ

where the worst-case rival model scenario is computed simultaneously with

the minimization over x. It is shown in Lemma 3.1 below that the solution of

(1.2) has a robust character. Whichever rival model turns out to represent the

actual system, the optimal (minimax) strategy ensures that the objective func-

tion value will not deteriorate: it will be at least as good as the minimax value.

The solution of (1.2) yields a value of q corresponding to the robust minimax

strategy. If the insurance provided by the robust, and cautious, policy has too
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high a cost in policy terms, then the decision maker could base the optimal

policy on (1.1) with q chosen in the neighborhood of the minimax value such

that the policy can be made ‘‘acceptable‘‘ and at the same time as robust as

possible. It must be said that this strategy is only robust with respect to the

known rival representations of the system. If a further, possibly unknown,

model of the economy exists and is not included in the set of rival models

in (1.2), clearly the computed strategy cannot be expected to be robust with

respect to this additional model.

In Chapter 7, we discuss an algorithm for solving the equality and inequality

constrained the minimax problem (1.2). In Section 2, the equivalent discrete

minimax formulation of (1.2) and its reformulation as a nonlinear program-

ming problem is given. The optimality condition of (1.2) is consequently

derived. In Section 3, the robustness of the minimax formulation is described

and in Section 4, an augmented Lagrangian formulation is introduced as a

convexification procedure for the underlying problem.

2 THE DISCRETE MINIMAX PROBLEM

The pooling minimax formulation (1.2) can be reformulated as a discrete

minimax problem. The advantages of the latter are that its interpretation as

a worst-case design problem is emphasized in terms of the discrete scenarios

and that the complexity of the algorithm for solving the discrete minimax

problem is the same as that of a nonlinear programming algorithm. This is

in contrast to the continuous minimax algorithms in Chapters 2, 4 and 5, each

iteration of which may require nonlinear programming solutions.

Lemma 2.1 The minimax problem (1.2) is equivalent to

min
x

max
i[{1;2;…;msce}

f
iðxÞ j gðxÞ ¼ 0; hðxÞ # 0

n o
: ð2:1Þ

Proof. The result follows from the fact that the maximum of msce numbers is

equal to the maximum of their convex combination (Medanic and Andjelic,

1971, 1972; Cohen, 1981). A

It should also be noted that (2.1) can be solved by the nonlinear program-

ming problem

min
x;v

v j f ðxÞ # 1v; gðxÞ ¼ 0; hðxÞ # 0f g ð2:2Þ

where v [ R
1 is the scalar variable introduced to represent the maximum

value.
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Remark Lemma 2.1 is used to represent (1.2) with (2.1)–(2.2) whenever

this becomes necessary.

Let the Lagrangian function associated with (1.2) be given by

Lðx;q;me
;mi

; l;hÞ ¼ kf ðxÞ;ql1 kgðxÞ;mel1 khðxÞ;mil1 kq; ll1 ðk1;ql2 1Þh
ð2:3Þ

where me
[ R

e,

mi
[ R

i
1 ; mi

[ R
i j mi

$ 0
n o

l [ R
msce

1 ; l [ R
msce j l $ 0

n o

and h [ R
1 are the multipliers associated with gðxÞ ¼ 0, hðxÞ # 0, q $ 0 and

k1,ql ¼ 1, respectively.

We consider the first order necessary conditions of optimality of (1.2) and

(2.2). For the former, we apply the optimality conditions for nonlinear

programming problems (see CN 2.2), mindful of the fact that the objective

is minimized with respect to x and maximized with respect to q . Let ðx
p
;q

p
Þ

solve problem (1.2). Then there are values ðme
p
;mi

p
;l

p
;h

p
Þ which satisfy the

following first order necessary conditions:

7f ðx*Þq* 1 7gðx*Þme
* 1 7hðx*Þmi

* ¼ 0 ð2:4Þ

f ðx*Þ1 l* 1 1h* ¼ 0 ð2:5Þ

hðx*Þ # 0; gðx*Þ ¼ 0; kmi
*; hðx*Þl ¼ 0; mi

[ R
i
1 ð2:6Þ

kq*;l*l ¼ 0; l* [ R
msce

1 ; q* [ E
msce

1 ð2:7Þ
As (2.2) is a nonlinear programming problem in ðx; vÞ [ R

n11, the optimality

conditions are obtained by simple application of the first optimality conditions

in CN 2.2. Let ðx
p
;q

p
Þ solve problem (2.2). Then, by applying CN 2.2, we

conclude that there are values ðq*;m
e
p
;mi

p
Þ which satisfy

7f ðx*Þq* 1 7gðx*Þme
* 1 7hðx*Þmi

* ¼ 0 ð2:8Þ

hðx*Þ # 0; gðx*Þ ¼ 0; kmi
*; hðx*Þl ¼ 0; mi

[ R
i
1 ð2:9Þ

f ðx*Þ # 1v*; q
j
* f

jðx*Þ2 v*

� �
¼ 0; j ¼ 1;…;m

sce
; q* [ E

msce

1 ð2:10Þ
where q is the multiplier corresponding to the constraint f ðxÞ # 1v. The value

v* is the maximum among the elements of vector f and corresponds to 2h* in

(2.5). The vector l* is the slack
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l* ¼ 1v* 2 f ðx*Þ:
By complimentarity, the shadow price q* and the slack satisfy kq*;l*l ¼ 0.

Hence, ðq*;m
e
p
;mi

p
Þ is equivalent to ðq*;m

e
p
;mi

p
Þ and thus the optimality condi-

tions for the two problems are equivalent.

3 THE ROBUST CHARACTER OF THE DISCRETE MINIMAX

STRATEGY

The minimax strategy is essentially the best decision determined simulta-

neously with the worst-case discrete (rival) scenario. Its character is thus

based on the assertion that the worst case can and will occur. The question

that arises is the performance of the minimax strategy if the worst case does

not happen. The answer to that is that if the worst case does not happen, the

performance of the system, measured by the objective value, will be superior.

In other words, the decision maker will be better off. This is discussed in detail

in Lemma 3.1.

3.1 Naive Minimax

A related strategy is naive minimax. To explain what we mean by that term

consider three scenarios represented by three objective functions: f1, f2, f3.

Assuming that scenario i will occur, the optimal strategy is given by

min f
iðxÞ j gðxÞ ¼ 0; hðxÞ # 0

n o

and this can be evaluated for i ¼ 1; 2; 3. We denote the solution of each

problem as xi*. Having optimized each problem, it is then possible to evaluate

the effect of adopting xi* if another scenario j – i occurs. The cross-evalua-

tions are given by

f
iðxj*Þ; i – j:

Adopting xi*, we can evaluate the worst damage if any scenario, other than i, is

realized by considering

max
j–i

f
iðxj*Þ2 f

iðxi*Þ

for i ¼ 1; 2; 3. Evaluating the strategy that minimizes the worst-case damage

corresponds to

min
i¼1;2;3

max
j–i

f
iðxj*Þ2 f

iðxi*Þ:

Adopting the value xi*, i ¼ 1; 2; 3, which results in the least damage, or dete-

rioration, if having implemented decision xi*, scenario j – i is realized, yields
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naive minimax. In this case, x i* is the optimal solution corresponding to the ith

scenario and the naive minimax solution adopted is one of i ¼ 1; 2; 3.

The naive strategy is therefore to choose the xi* which would be least

damaging if some other scenario, j – i, occurs. Thus, optimality in naive

minimax is defined in terms of a single scenario. By contrast, optimality for

(1.2), or (2.1)–(2.2), is defined in terms of all the scenarios, as indicated in the

conditions (2.4)–(2.7). Hence, in (1.2), or (2.1)–(2.2), the determination of x*
and the worst case is simultaneous and not sequential as in naive minimax.

Furthermore, in (2.2), inequality f ðxÞ # 1v, in which v corresponds to the

maximum value being minimized, indicates that the minimax solution is

noninferior to naive minimax

f
iðxj*Þ2 f iðxi*Þ $ f iðxj*Þ2v*; i ¼ 1; 2; 3; i – j

as xi*, i ¼ 1; 2; 3, is also a feasible point of (2.2).

3.2 Robustness of the Minimax Strategy

The robustness of minimax arises from the fact that it is simply the best

strategy determined simultaneously with, and corresponding to, the worst

case. As optimality is defined in view of all the scenarios, the performance

level of the minimax strategy is guaranteed and will improve if any scenario,

other than the worst case, is realized. These characteristics are formalized in

the following result.

Lemma 3.1 (Guaranteed Performance, Noninferiority, Robustness of

Minimax) Let

(i) there exist a minimax solution to (1.2), denoted by ðx
p
;q

p
Þ, with asso-

ciated multipliers ðme
p
;mi

p
; l

p
;h

p
Þ;

(ii) f ðxÞ; gðxÞ; hðxÞ [ C
1 at xp; and,

(iii) strict complementarity holds for q $ 0 at the solution (i.e., q* ¼ 0 )
l* . 0 and q* . 0 ) l* ¼ 0).

Then, for i; j;‘ [ {1; 2;…;m
sce}, we have

(a) f
iðx

p
Þ ¼ f

jðx
p
Þ;;i; j ði – jÞ iff qi

p
;q

j
p
[ ð0; 1Þ;

(b) f iðx
p
Þ ¼ f

jðx
p
Þ . f

‘ðx
p
Þ, ;i; j;‘ð‘ – i; jÞ iff q‘

p
¼ 0 and qi

p
;q

j
p
[ ð0; 1Þ;

(c) f
iðx

p
Þ . f

jðx
p
Þ;;j; ðj – iÞ iff qi

p
¼ 1;

(d) f iðx
p
Þ , f

jðx
p
Þ, ;jðj – iÞ iff qi

p
¼ 0.
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Proof. Necessity in case (a) can be shown by considering (2.7), which, for

qi
p
;q

j
p
[ ð0; 1Þ, yields

qi
p
li
p
¼ q

j
p
l
j
p
¼ 0

and thence li
p
¼ l

j
p ¼ 0. Using (2.5) we have f

iðx
p
Þ ¼ f

jðx
p
Þ. Sufficiency is

established with f iðx
p
Þ ¼ f jðx

p
Þ and noting from (2.5)

kq*; f ðx*Þ2 l* 1 1h*l ¼ 0:

From (2.7), we have k1;q*l ¼ 1 and kq*;l*l ¼ 0, and

h
p
¼ 2kf ðx

p
Þ;q

p
l:

Premultiplying the equality (2.5) by 1 and using this equality yields

0 ¼ k1; f ðx
p
Þl2 k1;l

p
l1 k1; 1lh

p
¼ 2k1;l

p
l:

By (2.7), l
p
¼ 0 and strict complementarity implies that qi

p
;q

j
p [ ð0; 1Þ, ;i; j.

Case (b) can be shown by considering (2.7) for qi
p
;q

j
p
[ ð0; 1Þ, q‘

p
¼ 0. We

have

qi
p
li
p
¼ q

j
p
l
j
p
¼ q‘

p
l‘
p
¼ 0

thence li
p
¼ l

j
p
¼ 0 and, by strict complementarity, l‘

p
. 0. From (2.5) we

have

0 ¼ f
mðx

p
Þ1 lm

p
1 1h

p
; m ¼ i; j ð3:1Þ

0 ¼ f
‘ðx

p
Þ1 l‘

p
1 1h

p
ð3:2Þ

and combining these yields

f
‘ðx

p
Þ2 f

mðx
p
Þ ¼ 2l‘

p
, 0; m ¼ i; j:

For sufficiency, let f iðx
p
Þ ¼ f jðx

p
Þ . f ‘ðx

p
Þ. Combining (3.1), (3.2) and using

(2.7), we have

q‘
p
f ‘ðx

p
Þ2 fmðx

p
Þ

� �
¼ q‘

p
lm
p
2 l‘

p

� �
¼ q‘

p
lm
p
$ 0:

Since f
‘ðx

p
Þ2 f

mðx
p
Þ , 0, we have q‘

p
¼ 0. With q‘

p
¼ 0, ;‘; f

‘ðx
p
Þ

, f
mðx

p
Þ, we can use (a) for those i; j for which f

iðx
p
Þ ¼ f

jðx
p
Þ to establish

li
p
¼ l

j
p
¼ 0. By strict complementarity this implies that qi

p
;q

j
p
[ ð0; 1Þ.

Case (c) can be established noting that for qi
p
¼ 1, we have li

p
¼ 0, q

j
p ¼ 0,

;j – i and, by strict complementarity, l
j
p
. 0. From (2.5) and (2.7) we obtain

f
jðx

p
Þ2 f

iðx
p
Þ # li

p
2 l

j
p
¼ 2l

j
p
, 0:

Conversely, f iðx
p
Þ . f iðx

p
Þ implies
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q
j
p
f
jðx

p
Þ2 f

iðx
p
Þ

� �
¼ q

j
p
li
p
$ 0

and thus q
j
p
¼ 0, ;j – i. Case (d) is the converse of (c). A

If the min max over three functions f 1ðxÞ, f 2ðxÞ and f 3ðxÞ is being computed,

then, at the solution, f 1 ¼ f
2
. f

3 iff q1;q2 [ ð0; 1� and q3 ¼ 0 or f
1
.

f
2ðxÞ $ f

3 iff q1 ¼ 1 and q2 ¼ q3 ¼ 0. Suppose that f 1, f 2, f 3 correspond

to three rival forecast scenarios, one of which is the description of the actual

system in the future. With f 1 ¼ f
2
. f

3, at the minimax solution, the decision

maker need not care, as far as the objective function values are concerned, if

the actual state turns out to be f1 or f2. If it is f3, then the decision maker is

better off. The value of the multiplier vector q reflects this. Lemma 3.1 states

this in greater generality. Since q is chosen to maximize the Lagrangian, the

solution can be seen as a robust optimum in the sense of a worst-case design

problem.

This result illustrates the way in which q
p
is related to f ðx

p
Þ. When some of

the elements of q
p
are such that qi

p
[ ð0; 1Þ for some i [ M # {1; 2;…;m

sce},

it is shown that the f iðx
p
Þ, i [ M, have the same value. In this case, the optimal

policy x
p
yields the same objective function value whichever forecast scenario

happens to be realized. Thus, xp is a robust policy. The investor is ensured that

implementing xp will yield an objective function value that is at least as good

as the minimax optimum. This noninferiority of xp may, on the other hand,

amount to a cautious approach with a high cost. The investor can, in such

circumstances, use q
p
as a guide and seek in its neighborhood a slightly less

cautious scheme that is politically more acceptable. Choosing q ¼ q from a

reasonably close neighborhood of q*, the optimal strategy is based on (1.1). In

(1.1), q is fixed and represents a pooling of all the scenarios. In general, q [

R
msce

1 can be chosen arbitrarily to reflect the views and expectations of the

investor. However, as all expected value optimization needs to be justified in

view of the worst-case scenario, a choice in the neighborhood of q* would be

desirable.

3.3 An Example

In order to motivate the minimax formulation, consider the multiple objective

problem (1.1) where f is given by

f ðxÞ ;
f
1ðxÞ
f 2ðxÞ
f
3ðxÞ

2
6664

3
7775 ¼

ðax2 bÞ2

ðcx2 dÞ2
1
2
ðcx*2 dÞ2 2 g

2
6664

3
7775

where a; b; c; d;– 0 and g . 0. f 1ðxÞ, f 2ðxÞ, f 3ðxÞ are minimized by x
1
* ¼ b=a,
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x2* ¼ x3* ¼ d=c, respectively, and

0 ¼ f
1ðx1*Þ ¼ f

2ðx2*Þ . f
3ðx3*Þ ¼ 2g:

We note that, f 3ðxÞ , f
2ðxÞ, for all x. Thus, by Lemma (3.1), the solution of

(1.2) is such that q3
* ¼ 0.

Furthermore, since

X3

i¼1

qi ¼ 1;q1 ¼ 12 q2

we can reduce the three-dimensional problem in ðq1
;q2

;q3Þ a single dimen-

sion, q . Hence, (1.1) can be written as

min
x

qf 1ðxÞ1 ð12 qÞf 2ðxÞ
n o

: ð3:3Þ

Given a specified value of q , x(q) that minimizes (3.3) is given by the

optimality condition

2 qf 1ðxÞ1 ð12 qÞf 2ðxÞ
� �

2x
¼ 2qaðax2 bÞ1 2ð12 qÞcðcx2 dÞ ¼ 0

ð3:4Þ
where q [ ½0; 1�, and

xðqÞ ¼ qab1 ð12 qÞcd
qa2 1 ð12 qÞc2 : ð3:5Þ

In addition, (1.2) indicates the conditions for determining q . Assuming, for

simplicity, that q [ ð0; 1Þ we only need to consider

2 qf 1ðxÞ1 ð12 qÞf 2ðxÞ
� �

2q
¼ 0: ð3:6Þ

The other conditions relate to the constraints on q involving a lagrangian and:

q $ 0; 12 q $ 0; m1q ¼ m2ð12 qÞ ¼ 0; m1
$ 0; m2

$ 0 ð3:7Þ
and, by appropriate choice of the problem parameters, these may be satisfied.

Hence, they are ignored in this example. Nevertheless, (3.4)–(3.7) are deduced

from the optimality conditions discussed in CN 2.2, and (2.4)–(2.10) for the

general discrete minimax problem (1.2). The significance of (3.6) is that, when

q [ ð0; 1Þ, the minimax solution aims to make both objectives equal in value.

Hence the solution implied by (3.6) is

x* ¼
b^ d

a^ c
: ð3:8Þ

The corresponding value of q in (3.5) is given by the choice
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q ¼ ^c

a^ c
: ð3:9Þ

In other words, for q given by (3.9), (3.5) reduces to (3.8) with the minimax

objective function values

f
1ðx*Þ ¼ f

2ðx*Þ ¼
ðad 2 bcÞ2
ða^ cÞ2 : ð3:10Þ

The third objective function, on the other hand, does not correspond to the

maximum since

f
3ðx*Þ ¼

1

2

ðad 2 bcÞ2
ða^ cÞ2 2 g ¼ 1

2
f 1ðx*Þ2 g ¼ 1

2
f 2ðx*Þ2 g , f

2ðx*Þ:

In Figure 3.1, the values of f 1ðxðqÞ, f 2ðxðqÞ and qf 1ðxðqÞ1 ð12 qÞf 2ðxðqÞ
are plotted for a given set of the parameters a, b, c, d used in Table 3.2. The

satisfaction of (3.6) and (3.10) are illustrated at the minimax point.
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Table 3.1 The payoff matrix for each strategy and scenario

Scenario 1

(i.e., ðax2 bÞ2)
realized

Scenario 2

(i.e., ðcx2 dÞ2)
realized

Scenario 3

(i.e.,
1
2
ðcx2 dÞ2 2 g)

realized

Optimal strategy applied

based on scenario 1

(i.e., b=a)

0
ðbc2 adÞ2

a2
1

2

ðbc2 adÞ2
a2

2 g

Optimal strategy applied:

based on scenario 2

(i.e., d=c)

ðad 2 bcÞ2
c2

0 2 g

Optimal strategy applied:

based on scenario 3

(i.e., d=c)

ðad 2 bcÞ2
c2

0 2 g

Minimax strategy

applied: based on

scenarios 1, 2, 3

(i.e., ðb^ dÞ=ða^ cÞ)

ðad 2 bcÞ2
ða^ cÞ2

ðad 2 bcÞ2
ða^ cÞ2

1

2

ðad 2 bcÞ2
ða^ cÞ2 2 g

Table 3.2 The payoff matrix for a ¼1, b ¼2, c ¼3, d ¼4, g ¼5

Scenario 1

(i.e., ðx2 2Þ2Þ
realized

Scenario 2

(i.e., ð3x2 4Þ2)
realized

Scenario 3

(i.e.,
1
2
ð3x2 4Þ2 2 5)

realized

Scenario 1 optimal

strategy applied

(i.e., x* ¼ 2)

0 4 23

Scenario 2 optimal

strategy applied

(i.e., x* ¼ 4
3
)

4
9

0 25

Scenario 3 optimal

strategy applied

(i.e., x* ¼ 4
3
)

4
9

0 25

Minimax strategy

applied: based on

scenarios 1, 2, 3

(q* ¼ 3
4
; x* ¼ 3

2
)

1
4

1
4

24 7
8



In order to compare these results with naive minimax, we construct Table

3.1. The significance of minimax may be indicated by assigning values to a, b,

c, d, g. Table 3.2 illustrates such an example.

From the figures in Table 3.2, it can be verified that, scenario 3 is consis-

tently more optimistic than scenario 2. Thus, scenario 3 cannot represent the

worst case and column and row 3 and can be eliminated from consideration.

An individual scenario (i.e., 1, 2 or 3) does yield the best result (i.e., 0 is

attained), assuming that it is actually realized. Performance deteriorates to 4 or

4/9 if another scenario (i.e., scenario 2 or scenario 3) is realized. The minimax

strategy ensures that performance is the same (i.e., 1/4) for both scenarios.

This is a small deterioration from the optima of 0 for both individual scenarios

but the strategy also provides protection against deterioration from 0 to 4, or
4
9
. In addition, the performance of minimax is assured to improve if any

scenario other than the worst case is realized. This is illustrated in the perfor-

mance of minimax strategy for scenario 3 (i.e., 24 7
8
).

Finally, naiveminimax would choose the optimal strategy corresponding to

scenario 2 (in contrast to the optimal strategy corresponding to scenario 1) as it

gives rise to lesser damage if scenario 1 is realized.

4 AUGMENTED LAGRANGIANS AND CONVEXIFICATION OF

DISCRETE MINIMAX

In Section 2, we formulated the Lagrangian associated with (1.2) as

Lðx;q;me
;mi

; l;hÞ, given by (2.3). The characterization of the solution of

a constrained minimax problem such as (1.2) as a saddle point of the Lagran-

gian function is heavily dependent on the convexity properties of the under-

lying problem (see Demyanov and Malomezov, 1974; Arrow et al., 1973;

Rockafeller, 1973). Motivated by the discussions in Arrow and Solow

(1958), it has been shown that, in the case of the nonlinear programming

problem (i.e., just the min case of the minimax problem below), convexity

assumptions can be relaxed via a modified Lagrangian approach (see Arrow

et al., 1973; Rockafeller, 1973). Thus, we adopt an augmented Lagrangian

approach, which is essentially a convexification procedure, to solve the

minimax problem. In this section, we invoke these results to characterize

the solution of the minimax problem as a saddle point. The saddle-point

formulation and the convexification are subsequently used by the algorithm

discussed in Chapter 7.

The characterization of the minimax solution of (1.2) as a saddle point

requires the relaxation of convexity assumptions (see Demyanov and Malo-

mezov, 1974; Cohen, 1981). In order to achieve this characterization, we

modify (2.3) by augmenting it with a penalty function. Hence, we define

the augmented Lagrangian for (1.2) by
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L
aðx;q;me

;mi
;l;h; c;pÞ ¼ Lðx;q;me

;mi
;l;hÞ

1
1

2c
iðchðxÞ1 pÞ1i22 1

c

2
igðxÞi22 ð4:1Þ

where 0 # c [ R
1
1, 0 # p [ R

i
1 and ð·Þ1 is such that its ith element is given

by
ð·Þi1 ¼ max ð·Þi; 0

n o
:

The augmented Lagrangian ensures that the local convexity assumed to estab-

lish the optimality conditions in Section 2 can, to some extent, be extended

beyond this locality. This convexification is based on results established in

Arrow et al. (1973); Rockafeller (1973). We establish the following result due

to Finsler (1937) (also, Arrow et al., 1973; Bellman, 1995) while taking

account of the difference in the penalty function

1

2c
iðchðxÞ1 pÞ1i22

used in (4.1).

Lemma 4.1 (Finsler’s Lemma) Let Q be a real n £ n matrix and let JT be a

real n £ m matrix. Suppose kx;Qxl . 0 for all x – 0 such that J
T
x ¼ 0. Then,

for all x – 0 and for c sufficiently large, we have

kx; ðQ1 cJJ
TÞxl . 0:

That is, if Q is positive definite on the null space of J
T
, then for c sufficiently

large Q1 cJJ
T
is positive definite on the whole space.

Proof. Let

K ; x [ R
n j kx; xl ¼ 1f g

and kJTx; JTxl $ 0, for all x [ K. Then, we shall show that the following two

statements are equivalent in K:

(a) kx;Qxl . 0 whenever kJTx; JTxl ¼ 0;

(b) for all c sufficiently large, kx;Qxl1 ckJTx; JTxl . 0, for all x.

By assumption, (a) is satisfied. Hence, from (b), for all c sufficiently large,

kx; ðQ1 cJJ
TÞxl . 0

for kx; xl ¼ 1, and hence whenever x – 0.

To establish the equivalence of (a) and (b), we note that (b) trivially implies

(a). We consider the converse. Let K 0 be a subset of K on which kx;Qxl # 0.

K
0 is compact. Since
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kJTx; JTxl $ 0

on K, we have

kx;Qxl1 ckJTx; JTxl $ kx;Qxl . 0; ;x [ K \K
0 and ;c $ 0:

If K 0 ¼ �, the proof would be finished. If K 0
– �, let

jQ ¼ min kx;Qxl j x [ K
0� 

jJ ¼ min kJTx; JTxl j x [ K
0

n o

and jj ¼ kJTx 0; JTx 0l, for some x
0
[ K

0. We have kJTx; JTxl $ 0, ;x [ K
0.

But if

kJTx 0; JTx 0l ¼ 0

then, by (a) kx 0;Qx 0l . 0, contrary to the definition of K 0. Hence,

jJ ¼ kJTx 0; JTx 0l . 0

and clearly for all c sufficiently large, we have

jQ 1 cjJ . 0:

Then, ;x [ K
0, by definition of a minimum, the inequality

kx;Qxl1 ckJTx; JTxl $ jQ 1 cjJ . 0

follows for all c sufficiently large. We have thus established the result for x [

K \K
0 and x [ K

0. A

Let the jth element of the vector p be defined by

pjðxÞ ¼ 2ch
jðxÞ if hjðxÞ # 0

k if hjðxÞ . 0

(

where k $ 0 is a constant and c $ 0. We note that the minimax algorithm in

Chapter 7 adjusts p iteratively, such that at convergence to the solution x*, we

have p* ¼ 2chðx*Þ.

Theorem 4.1 Suppose

(i) p is determined as above, with p* ¼ 2chðx*Þ;
(ii) x*, q*, m

e
*, m

i
*, l*, h* satisfy the second order sufficiency conditions in

CN 2.2 (with ½7gðx*Þ ..
.
7hðx*Þ� linearly independent) for x*, q* to be a

strict local solution to (1.2);
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(iii) strict complementarity holds for hðxÞ # 0 (i.e., hiðx*Þ . 0 ! ðmi
*Þi ¼ 0

and h
iðx*Þ ¼ 0 ! ðmi

*Þi . 0Þ;
(iv) c is sufficiently large;

(v) the function La (xp, q p, m
e
p, m

i
p, l p, h p, c, p *) has an unconstrained strict

local minimum at x*; and

(vi) for all i and j, the expressions

22
1

2c
iðchðxÞ1 p*Þ1i22


 �

2ðhiÞ2 and

22
c

2
igðxÞi22


 �

2ðgjÞ2
are continuous at the points ðhiðx*Þ; cÞ and ðgjðx*Þ; cÞ, respectively,

where h
iðx*Þ # 0 and g

jðx*Þ ¼ 0.

Then:

(a) for all ðme
;miÞ sufficiently close to ðme

*;m
i
*Þ, Laðx;q;me

;mi
;l;h; c;pÞ is

strictly convex in x close to x*, and concave in me
, mi

, l, h and q;

(b) the function L
aðx

p
;q

p
;me

p
;mi

p
; l

p
;h

p
; c;pÞ has an unconstrained local

minimum with respect to x and maximum with respect to q.

Remark The equivalent result for the minimax formulation (2.2) follows

directly from Arrow et al. (1973); Rockafeller (1973).

Proof. For any c . 0, we have, by the first order necessary conditions of

optimality of (1.1) (see CN 2.2),

7Laxðx*;q*;m
e
*;m

i
*; lp;hp

; c;p*Þ ¼ 7f ðx
p
Þq* 1 7gðx

p
Þ cgðx*Þ1 me

p

� 	

17hðx
p
Þ ðchðx

p
Þ1 p

p
Þ1 1 mi

p

h i

¼ 7f ðx
p
Þq* 1 7gðx

p
Þme

p
1 7hðx

p
Þmi

p

¼ 7Lðx*;q*;m
e
*;m

i
*Þ

¼ 0:

The Hessian of La is given by

72
xL

aðx*;q*;m
e
*;m

i
*; lp;hp

; c;p*Þ ¼
Xmsce

j¼1

72
f
jðx*Þqj

*
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1c
Xe

i¼1

72 giðx*Þgiðx*Þ1 7gðx*Þ7gTðx*Þ
( )

1

Xi

i¼1

72
h
iðx*Þðchiðx*Þ1 pi

*Þ1 1 c7hðx*Þ7hTðx*Þ

1

Xe

i¼1

72giðx*Þðme
*Þi 1

Xi

i¼1

72 hiðx*Þðmi
*Þi

¼ 72
xLðx*;q*;m

e
*;m

i
*Þ

1c 7gðx*Þ7gTðx*Þ1 7hðx*Þ7hTðx*Þ
n o

: ð4:2Þ
Defining the index set

I0 ¼ i j hiðx*Þ ¼ 0; ðmiÞi . 0
n o

and the Jacobian matrix of active constraints

J ¼ 7g1ðx*Þ ..
.
7g2ðx*Þ ..

.
… ..

.
7geðx*Þ ..

.
7hiðx*Þ;…; i [ I0

" #

by CN 2.2 we have

kv;72
xLðx*;q*;m

e
*;m

i
*Þvl . 0; ;v – 0; JTv ¼ 0:

By Lemma 4.1, 72
xLðx*;q*;m

e
*;m

i
*Þ1 yJJT is positive definite for some scalar

y sufficiently large. Now, if c is sufficiently large, we have c . y and the

matrix

72
L
aðx*;q*;m

e
*;m

i
*;lp;hp

; c;p*Þ ¼ 72
Lðx*;q*;m

e
*;m

i
*Þ1 yJJT

1 c 7gðx*Þ7gTðx*Þ1 7hðx*Þ7hTðx*Þ
h i

2 yJJT
h i

is positive definite since

kv; 72
xLðx*;q*;m

e
*;m

i
*Þ1 yJJT 1 c 7gðx*Þ7gTðx*Þ1 7hðx*Þ7hTðx*Þ

h i
yJJT

h ih i
vl

$ kv; 72
xLðx*;q*;m

e
*;m

i
*Þ1 yJJT

h i
vl

. 0:

The inequality constraints, not in I0, add a nonnegative term to the right-hand
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side of the above inequality. By continuity, 72
xL

aðx;q;me
;mi

;l
p
;h

p
; c;pÞ is

positive definite for ðx;q;me
;mi

; l;hÞ sufficiently close to ðx*;q*;m
e
*;

mi
*; lp;hp

Þ.
The proof for x, q, m, h follows from Demyanov and Malomezov (1974,

Theorem 5.1).

We now state the saddle point property of Lað·Þ in the neighborhood of the

minimax solution. This is largely a consequence of Theorem 4.1.

Theorem 4.2 Let the conditions of Theorem 4.1 be satisfied. Then, we have

the saddle point

Laðx
p
q;me

;mi
; l;h; c;p*Þ # L

aðx
p
;q

p
;me

p
;mi

p
; l

p
;h

p
; c;p*Þ

# L
aðx;q

p
;me

p
;mi

p
; l

p
;h

p
; c;p*Þ

for every x in some neighborhood of x
p
and for every q, me

, mi
, l, h.

Remark The equivalent result for the minimax formulation (2.2) follows

directly from Arrow et al. (1973) and Rockafeller (1973).

Proof. The proof follows from Theorem 4.1 above for the nonlinear program-

ming part involving x, me
, mi

and Demyanov and Malomezov (1974, Theorem

5.2) for x, q, l, h.

The left inequality is a consequence of Theorem 4.1. Also, the way p is

determined ensures

p* ¼ 2chðx*Þ:
The right inequality follows from the fact that gðx*Þ ¼ 0 and hðx*Þ # 0 and

any deviation of the multipliers at their optimal value will result in a value of

L
aðx*;me

;mi
;l;h; c;p*Þ that is either the same as, or inferior to (i.e., less than),

Laðx*;me
*;m

i
*; l;h; c;p*Þ: A
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Finsler, P. (1937). ‘‘Über das Vorkommen definiter und semidefiniter Formen in schä-

ren quadratischen Formen’’, Commentarii Mathematicii Helveticii, 9, 188-192.

Fuhrer, J. and J. Haltmaier (1986). ‘‘Minimum Variance Pooling of Forecasts at Differ-

ent Levels of Aggregation’’, Special Studies Paper 208, Federal Reserve Board,

Washington, DC.

Granger, C. and P. Newbold (1977). Forecasting Economic Time Series, Academic

Press, New York.

Lawrence, M.J., R.H. Edmunson and M.J. O’Connor (1986). ‘‘The Accuracy of

Combining Judgemental and Statistical Forecasts’’, Management Science, 32,

1521–1532.

Makridakis, S. and R. Winkler (1983). ‘‘Averages of Forecasts: Some Empirical

Results‘‘ Management Science, 29, 987–996.

Medanic, J. and M. Andjelic (1971). ‘‘On a Class of Differential Games without

Saddle-point Solutions’’, Journal of Optimization Theory and Applications, 8,

413–430.

Medanic, J. and M. Andjelic (1972). ‘‘Minmax Solution of the Multiple Target

Problem’’, IEEE Transactions on Automatic Control, 17, 597–604.

Rockafeller, R.T. (1973). ‘‘A Dual Approach to Solving Nonlinear Programming

Problems by Unconstrained Minimization’’, Mathematical Programming, 5, 354–

373.

Rustem, B. (1987). ‘‘Methods for the Simultaneous Use of Multiple Models in Optimal

Policy Design’’, in: C. Carraro and D. Sartore (editors), Developments in Control

Theory for Economic Analysis, Martinus Nijhoff Kluwer, Dordrecht, 157–186.

Rustem, B. (1994). ‘‘Robust Min-max Decisions with Rival Models’’, in: D. Belsley

(editor), Computational Techniques for Econometrics and Economic Analysis,

Kluwer, Dordrecht, 109–136.

CHAPTER 6138



Chapter 7

Discrete minimax algorithm for equality and inequality
constrained models

In this chapter, we consider a sequential quadratic programming algorithm for

the discrete minimax problem. As described in Chapter 6, the constraints are

used to formulate an augmented Lagrangian. The algorithm involves a sequen-

tial quadratic programming subproblem, an adaptive penalty parameter selec-

tion rule to regulate the emphasis on constraint satisfaction, an Armijo-type

stepsize strategy, convergent to unit steps, that ensures progress towards

optimality and feasibility of the constraints.

The algorithm is formulated for general nonlinear constrained problems in

which the objective and the constraints are twice continuously differentiable.

In the case of linear constraints, the algorithm simplifies considerably. The

global convergence of the general algorithm is shown, along with the conver-

gence of the stepsize to unity. It is also shown that the penalty parameter does

not grow indefinitely. The local Q-superlinear convergence of the algorithm is

demonstrated. The algorithm for linear constraints is also discussed and the

convergence properties of this special case are deduced.

1 INTRODUCTION

In this chapter, we consider an algorithm for solving the discrete minimax

problem

min
x

max
i[f1;2;…;msceg

f
iðxÞ

��� gðxÞ ¼ 0; hðxÞ # 0
n o

ð1:1Þ

introduced in Chapter 6. As we have already discussed, this formulation

applies to decision models with a discrete set of scenarios. Throughout this

chapter, the discussion relies on the equivalence of the above discrete mini-

max problem with a continuous minimax and a nonlinear programming

problem. Thus, using the terminology introduced in Chapter 6, it is established

in Lemma 6.2.1 that (1.1) is equivalent to

min
x

max
q

kf ðxÞ;ql j gðxÞ ¼ 0; hðxÞ # 0; q [ E
msce

þ
on

ð1:2Þ

where



q [ E
msce

þ ; q [ R
msce

��� q $ 0; k1;ql ¼ 1
n o

: ð1:3Þ
Finally, it is shown in Section 6.2 that (1.1) is also equivalent to the nonlinear

programming problem

min
x;v

v j f ðxÞ # 1v; gðxÞ ¼ 0; hðxÞ # 0f g: ð1:4Þ

These equivalences are explicitly noted whenever they are invoked in the

discussion below.

Formulation (1.4) indicates that a specialized algorithm for (1.1) or (1.2) or

(1.4) would be worth considering if it is an improvement on the application of

existing nonlinear programming algorithms (e.g., Rustem, 1998) to (1.4).

Otherwise, the discrete minimax problem (1.1) can be solved using a nonlinear

programming algorithm applied to (1.4).

Algorithms for solving mostly the unconstrained discrete minimax problem

have been considered by a number of authors, including Charalambous and

Conn (1978), Coleman (1978), Conn (1979), Conn and Li (1992), Demyanov

and Malozemov (1974), Demyanov and Pevnyi (1972), Dutta and Vidyasagar

(1977), Hald and Madsen (1981), Han (1978, 1981), Murray and Overton

(1980), Polak et al. (1988), and Womersley and Fletcher (1986).

In the constrained case, discussed in some of the above studies, convergence

results to unit step lengths, global convergence and local convergence rates

have not been established (e.g., Coleman, 1978; Dutta and Vidyagasar, 1977).

In this chapter, we discuss an algorithm for the general equality and inequal-

ity constrained discrete minimax problem. The equality constrained case is

based on the algorithm in Rustem (1992) and the inequality constrained case is

based on Rustem and Nguyen (1998). In the combined equality and inequality

constrained algorithm below, the dual approach in (1.2), formulated originally

by Medanic and Andjelic (1971, 1972) and Cohen (1981), is initially adopted.

Subsequently, both (1.1) and (1.2) are utilized to formulate the algorithm. The

approach uses the augmented Lagrangian formulation (6.4.1) to directly solve

the equality and inequality constrained case. The algorithm involves a sequen-

tial quadratic programming subproblem, an adaptive penalty parameter selec-

tion rule and a stepsize strategy, convergent to unit steps, that ensures progress

towards optimality and feasibility for the inequality constraints. The method

used for handling the constraints is based on the nonlinear programming

algorithm discussed in Rustem (1993). Numerical results are discussed in

Rustem (1994b) and Rustem and Nguyen (1998).

The stepsize strategy used by the algorithm aims at measuring progress

towards feasibility and the minimax solution. The algorithm defines the direc-

tion of progress as a quasi-Newton step obtained from a quadratic subproblem.

The penalty parameter of the augmented Lagrangian function is determined

adaptively. The growth in the penalty parameter is required only to ensure a
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descent property. It is shown that this penalty parameter does not grow indefi-

nitely. Convergence of the overall algorithm, convergence to unit steplengths

and Q-superlinear convergence rates are discussed.

In the unconstrained case, the algorithm discussed in this chapter is similar

to that of Han (1978, 1981). One difference is the stepsize strategy, (3.9a)

below. Both in the unconstrained and the constrained cases, the conditions for

the attainment of unit stepsizes are established below. These are related to the

accuracy of the projection of the Hessian approximation used by the quadratic

subproblem. Various characterizations of the Q-superlinear convergence of

the algorithm are discussed in Section 6. The attainment of unit stepsizes are

illustrated with numerical examples in Rustem (1994a) and Rustem and

Nguyen (1998). These results highlight the properties of the algorithm related

to the penalty parameter and the unit stepsize achievement.

2 BASIC CONCEPTS

Let C(·) denote the Hessian of L
a, with respect to x, evaluated at (·) (see

(6.4.2)).

We also denote by H ð·Þ, Gð·Þ the matrices

H ðxÞ ¼ ½7xh
1ðxÞ;…;7xh

iðxÞ�

GðxÞ ¼ ½7xg
1ðxÞ;…;7xg

eðxÞ�:
Sometimes, H ðxÞ;GðxÞ evaluated at xk will be denoted by H k, Gk and

hðxkÞ; gðxkÞ will be denoted by hk; gk, respectively. Thus, local linearizations

of hðxÞ and gðxÞ, at xk, can be written as

hðxÞ e¼ hk þH T
k x � xk
� 	

gðxÞ e¼ gk þGT
k x � xk
� 	

:

Let the linearized active inequality constraints

i [ f1;…; ig j hik þ k7hiðxkÞ; x � xkl ¼ 0
n o

ð2:1Þ
be given by

hk þH T
k x � xk
� 	 ¼ 0: ð2:2Þ

Assumption 2.1 The columns of

Gk ; Gk
..
. H k

" #
ð2:3aÞ

are assumed to be linearly independent.
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We therefore write the active constraints as

GT
k x � xk
� 	þ gk ¼ 0 ð2:3bÞ

where

gk ¼
"
gk

h k

#
: ð2:3cÞ

Assumption (2.1) is used to simplify the quadratic subproblem used in the

algorithm in Section 3 for solving (1.3). It can be relaxed by increasing the

complexity of the quadratic subproblem.

The augmented Lagrangian (6.4.1) does not possess a continuous Hessian.

In order to overcome the difficulties arising from this, we shall, at appropriate

junctures, consider the effect of replacing the Hessian of (4.2.2) by that of

L
aðx;q;me

;mi
; l;h; c;pÞ ¼ Lðx;q;me

;mi
; l;hÞ þ 1

2c

�
chðxÞþp

����
���2
2
þ c

2
gðxÞk k22
ð2:4Þ

In contrast to (2.2), the Hessian of L
a
exists, provided f , g and h are suitably

differentiable. The role of p in replacing the Hessian of (1.2) by that of (2.4) is

crucial and resembles the smearing procedure adopted by Polak and Tits

(1981). The difference is in the choice of p and c. It is shown below that

this choice allows the treatment of the active constraints locally as equality

constraints.

In nonlinear programming algorithms, the penalty parameter c in the

augmented Lagrangian (6.4.1) is either taken as a constant, or increased by

a prefixed rate, or is adapted as the algorithm progresses. Of the latter type of

strategy, Biggs (1974), Mayne and Polak (1982), Polak and Mayne (1981) and

Polak and Tits (1981) are specific examples. We also adopt an adaptive strat-

egy below which departs from other works mainly in the relationship of c and

the descent property of the direction of search, discussed in Lemmas 3.2 and

3.4 below. In particular, c is only adjusted to ensure that the direction of search

is a descent direction for the penalty function that governs the stepsize strategy

(3.9) below. This approach, discussed originally in Rustem (1992, 1994b), is

an extension of a strategy for nonlinear programming in Rustem (1986, 1993).

In Section 3, we introduce the discrete minimax algorithm and establish its

basic properties. In Section 4, we establish its global convergence.

3 THE DISCRETE MINIMAX ALGORITHM

3.1 Inequality Constraints

We first define the way in which the vector p is determined to ensure the
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existence of the Hessian of the augmented Lagrangian at specific points of

interest. Let the ith element of the vectors h and p be respectively denoted by

h
i and pi. Let

pi
kþ1

2
¼
(�ckþ1h

i
k if hik # 0

pi
k if hik . 0

ð3:1aÞ

and

pi
kþ1 ¼

(�ckþ1h
i
kþ1 if hikþ1 # 0

pi
kþ1=2 if hikþ1 . 0

ð3:1bÞ

where p0 is set in Step 0. ckþ1 is set in Step 3 below, with c0 [ ð0;1� a given
constant. The reason for distinguishing between pkþ1;pkþ1=2 is to ensure

(3.13b) below. It is shown below that ck is not altered at the later stages of

the algorithm and ck ¼ c
p
. For such a constant c

p
, it can be verified from (3.1)

that pkþ1
2
¼ pk since

pi
k ¼ pi

kþ1
2
¼
(�c

p
h
i
k if hik # 0

pi
k if h

i
k . 0:

3.2 Quadratic Programming Subproblem

To construct the algorithm, consider the objective function

Vðx;qÞ ¼ kq; f ðxÞl ð3:2Þ
and its linear approximations, with respect to x, at a point xk,

V kðx;qÞ ¼ kq; f ðxkÞ þ 7f ðxkÞTðx � xkÞl ð3:3aÞ
where

7f ðxÞ ¼ 7f 1ðxÞ;…;7fm
sce ðxÞ

h i
:

We shall sometimes denote f ðxÞ and 7f ðxÞ, evaluated at xk, by fk and 7fk,

respectively. Thus, for d ¼ x � xk (3.3a) can be written as

V kðxk þ d;qÞ ¼ kq; fk þ 7f Tk dl: ð3:3bÞ
The quadratic objective used to compute the direction of progress is given by

V kðxk þ d;qÞ þ kd; ckGkgkþH kðckhkþpkÞþ
� 	

lþ 1

2
kd; Ĉkdl: ð3:4Þ

The matrix Ĉk is a positive definite approximation to
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Xmsce

j¼1

q
j
k7

2
f
jðxkÞ þ

Xe

i¼1

ðme
kÞi72

g
iðxkÞ þ

Xi

i¼1

ðmi
kÞi72

h
iðxkÞ þ c H kH T

kþGkGT
k

h i
:

ð3:5Þ
We note that (3.5) is obtained by excluding from Ck, the Hessian of La, the

second derivatives due to the penalty term in the augmented Lagrangian

(Tapia, 1986). The values qk, m
e
k, m

i
k are given by the solution of the quadratic

subproblem of the previous iteration. The direction of progress at each itera-

tion of the algorithm is determined by the quadratic subproblem

min
d

max
q

�
V kðxk þ d;qÞ þ d; ckGkgkþH k ckhkþpk

� �
þ

� 	� �þ 1

2
kd; Ĉkdl

����

GT
k d þ gk ¼ 0; H T

k d þ hk # 0; q [ E
msce

þ

�
: ð3:6aÞ

An equivalent but simpler subproblem is given by the quadratic program

min
d;v

�
vþ d; ckGkgkþH k ckhkþpk

� �
þ

� 	� �þ 1

2
kd; ĈkdljGT

kd þ gk ¼ 0;

H T
k d þ hk # 0; 7f Tk d þ fk # 1v

)
: ð3:6bÞ

Also, (3.6b) involves fewer variables. It is shown below that the multipliers

associated with

7f Tk d þ fk # 1v

are the values q that solve (3.6a) since the solution of either subproblem

satisfies common optimality properties.

Assumption 3.1 The quadratic subproblems have a finite solution.

The assumption implies that the gradients of all equality constraints and the

inequality constraints satisfied as equalities at the solution of (3.6) are linearly

independent. This may be relaxed by increasing the complexity of the quad-

ratic subproblem.

3.3 Stepsize Strategy

Let the value of d;q; v solving (3.6) be denoted by dk;qkþ1, vkþ1. The stepsize

to be taken along dk is determined using the equivalent minimax formulation

(2.1). Consider the max-function for the discrete minimax problem
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FðxÞ ¼ max
j[f1;2;…;m

sceg
f
jðxÞ

n o
ð3:7Þ

and

FkðxÞ ¼ max
j[f1;2;…;msceg

n
f jðxkÞ þ k7f jðxkÞ; x � xkl

o

Let Fkðxk þ dkÞ be given by

Fkðxk þ dkÞ ¼ max
j[f1;2;…;msceg

f
jðxkÞ þ k7f jðxkÞ; dkl

n o
: ð3:8Þ

We define the merit function to be used in the stepsize strategy by

‘ðx; c;pÞ ¼ FðxÞ þ c

2
gðxÞk k22þ

1

2c

�
chðxÞþp

�
þ

���
���2
2
:

The stepsize strategy determines the smallest nonnegative integer tk such that

ak ¼ at
k;a [ ð0; 1Þ, yields

xkþ1 ¼ xk þ akdk

which satisfies the inequality

‘ðxkþ1; ckþ1;pkþ1Þ � ‘ðxk; ckþ1;pkþ1=2Þ # rakCðdk; ckþ1;pkþ1=2Þ ð3:9aÞ
where r [ ð0; 1Þ is a given scalar and Cðdk, ckþ1, pkþ1=2Þ

Cðdk; ckþ1;pkþ1=2Þ ¼ Fkðxk þ dkÞ �FðxkÞ ð3:9bÞ

þ dk; ckþ1GkgkþH k ckþ1hkþpkþ1
2

� �
þ

h iD E
þ 1

2
kdk; Ĉkdkl:

The stepsize ak determined by (3.9) ensures that xkþ1 simultaneously

improves the objective function and the feasibility with respect to the

constraints. The penalty term used to measure feasibility is a quadratic consis-

tent with the augmented Lagrangian (6.4.1). It is shown in Theorem (4.1)

below that (3.9) can always be fulfilled by the algorithm.

The determination of the penalty parameter c is an important aspect of the

algorithm. This is specified in the following algorithm description.

3.4 The Algorithm

Step 0: Given x0; c0 [ ½0;1Þ, and small positive numbers d; r; e;a such that

d [ ð0;1Þ; r [ ð0; 1Þ; e [ ð0; 1
2
�;a [ ð0; 1Þ; Ĉ0, set k ¼ 0.

Step 1: Compute 7fk, Gk, H k. Solve the quadratic subproblem (3.6b) (adopt-

ing subproblem (3.6a) also yields an equivalent algorithm) to obtain

dk;qkþ1; vkþ1;m
e
kþ1;m

i
kþ1 (in (3.6a) we compute qkþ1 and in (3.6b) we

compute vkþ1).
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Step 2: Test for optimality: If optimality is achieved, stop. Else go to Step 3.

Step 3: If

Fkðxk þ dkÞ �FðxkÞ � ck gkk k22þ hk
� �

þ
�� ��2

2

h i
� hk
� �

þ;pk

� �þ eþ 1

2


 �
dk; Ĉkdk

D E

# 0; ð3:10Þ
then ckþ1 ¼ ck. Else set

ckþ1 ¼ max
FkðxkþdkÞ �FðxkÞ þ eþ 1

2

� �
kdk; Ĉkdkl � hk

� �
þ;pk

� �

gkk k22þ hk
� �

þ
�� ��2

2

; ck þ d

8<
:

9=
;:

ð3:11Þ
Step 4: Find the smallest nonnegative integer tk such that ak ¼ atk with

xkþ1 ¼ xk þ akdk

such that the inequality (3.9) is satisfied.

Step 5: Update Ĉk to compute Ĉkþ1, set k ¼ k þ 1 and go to Step 1.

In Step 3, the penalty parameter ckþ1 is adjusted to ensure that progress

towards feasibility is maintained. In particular, ckþ1 is chosen to make dk a

descent direction for the function ‘ðx; c;pÞ.
The matrix Ĉk is approximated using Powell’s (1978) modification to a

quasi-Newton formula due to Broyden (1969, 1970), Fletcher (1970), Gold-

farb (1970) and Shanno (1970) for approximating the Hessian of a Lagrangian.

This modified BFGS (Broyden–Fletcher–Goldfarb–Shanno) formula is given

by

Ĉkþ1 ¼ Ĉk �
Ĉkdxd

T
x Ĉk

kdx; Ĉkdxl
þ nnT

kdx;nl

where

dx ¼ xkþ1 � xk

g ¼ 7xL
aðxkþ1;qkþ1;m

e
kþ1;m

i
kþ1;lkþ1;hkþ1; ckþ1;pkþ1

�7xL
aðxk;qkþ1;m

e
kþ1;m

i
kþ1;lkþ1;hkþ1; ckþ1;pkþ1=2Þ

n ¼ ugþ ð1 � uÞĈkdx
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u ¼
1 if kdxgl $ 0:2kdx; Ĉkdxl

0:8kdxĈkdxl

kdx;ðĈkdx�gÞl
if kdx;gl , 0:2kdx; Ĉkdxl:

8<
:

3.5 Basic Properties

The following two lemmas establish the basic properties of the penalty term.

Lemma 3.1 Let p $ 0 be a constant, ckþ1 $ 0, and let

pi
kþ1ðxÞ ¼

�ckþ1h
iðxÞ if hiðxÞ # 0

p if h
iðxÞ . 0:

(

Then, we have

ckþ1h
iðxÞ þ p i

kþ1ðxÞ
� �

þ¼ ckþ1h
iðxÞ þ p i

kþ1ðxÞ
� �

$ 0 ð3:12Þ
and

hk
� �T

þpkþ1
2
¼ hk
� �T

þpk ð3:13aÞ
and

ckþ1hkþ1 þ pkþ1

� �
þ

�� ��2
2� ckþ1hk þ pkþ1=2

� �
þ

�� ��2
2

# ckþ1hkþ1 þ pkþ1
2

� ����
���2
2
� ckþ1hk þ pkþ1

2

� ����
���2
2
: ð3:13bÞ

Proof. When hjðxÞ # 0, p
j
kþ1ðxÞ ¼ �ckþ1h

jðxÞ $ 0 and when hjðxÞ . 0,

p
j
kþ1ðxÞ ¼ p $ 0.

Thus, we have

h
jðxÞ # 0 ) ckþ1h

jðxÞ þ p
j
kþ1ðxÞ

� �
þ¼ ckþ1h

jðxÞ þ p
j
kþ1ðxÞ

� �
¼ 0

hjðxÞ . 0 ) ckþ1h
jðxÞ þ p

j
kþ1ðxÞ

� �
þ¼ ckþ1h

jðxÞ þ p
j
kþ1ðxÞ

� �
$ 0

from which (3.12) follows directly.

Equality (3.13a) follows from (3.1) since p
j
kþ1=2 – p

j
k if h

j
k # 0, in which

case ðhjkÞþ ¼ 0.

To establish inequality (3.13b), consider (3.1a,b) which yields

0 ¼ ckþ1h
j
kþ1 þ p

j
kþ1

� �
þ# ckþ1h

j
kþ1 þ p

j
kþ1=2

� �
þ; for h

j
kþ1 # 0:

Also, we have p
j
kþ1 ¼ p

j
kþ1=2,

ckþ1h
j
kþ1 þ p

j
kþ1

� �
þ¼ ckþ1h

j
kþ1 þ p

j
kþ1=2

� �
þ; for h

j
kþ1 . 0:

This yields the inequality
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ckþ1h
j
kþ1 þ p

j
kþ1

� �
þ# ckþ1h

j
kþ1 þ p

j
kþ1=2

� �
þ:

Furthermore, we have ð·Þ2þ # ð·Þ2. Finally, using (3.1), we obtain the equality

ckþ1h
j
k þ p

j
kþ1=2

� �
þ¼ ckþ1h

j
k þ p

j
kþ1=2

� �
:

Hence we have the desired result. A

Inequality (3.13b) ensures that the descent discussion in Lemma 3.3 and

Theorem 4.1 can always be related to the stepsize strategy in Step 4, when the

penalty parameter is not necessarily a constant. Starting with a penalty term,

which is not differentiable, we ensure equivalence with kðckþ1hk þ pkþ1=2Þk22
at points generated by the algorithm to invoke the twice differentiability of the

latter in the convergence results of the next section.

We summarize the optimality conditions of the quadratic subprobrem (3.6).

Subsequently, we establish the descent property of dk and that ck determined

by (3.11) is not increased indefinitely.

Lemma 3.2 The Lagrangian function for the quadratic subproblem (3.6a) is

given by

Lkðx;q;me
;mi

; l;h; ck;pkÞ ¼ V kðxk þ d;qÞ þ 1

2
kd; Ĉkdl

þ d; ckGkgkþH kðckhkþpkÞþ
� 	� i

þ me
;GT

k d þ gk

D E
þ mi

;H T
k d þ hk

D E

�kq;llþ k1;ql � 1
� �

h ð3:14aÞ
The first order necessary conditions of optimality for problem (3.6a) are

7fkqkþ1 þ Ĉkdk þGk ckgk þ me
kþ1

� 	þH k ckhk þ pk

� �
þþmi

kþ1

h i
¼ 0 ð3:14bÞ

fk þ 7f Tk dk � lkþ1 þ 1hkþ1 ¼ 0 ð3:14cÞ

qkþ1 [ E
msce

þ ; lkþ1 $ 0; q
j
kþ1l

j
kþ1 ¼ 0; 8j [ f1;…;m

sceg ð3:14dÞ

GT
kd þ gk ¼ 0; H T

k dk þ hk # 0

mi
kþ1;H T

k dk þ hk

D E
¼ 0; mi

kþ1 $ 0: ð3:14eÞ
and for the quadratic programming subproblem (3.6b) the necessary condi-

tions are given by (3.14b), (3.14e) and
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fk þ 7f Tk dk # 1vkþ1

qj
kþ1 f

j
k þ k7f jk ; dkl � vkþ1

� �
¼ 0; j ¼ 1;…;msce

; qkþ1 [ E
msce

þ : ð3:14fÞ

Lemma 3.3 (The Descent Property of dk) Let

gk

ðhkÞþ

" #
– 0

(the case when

gk

ðhkÞþ

" #
¼ 0

is discussed in Lemma 3.5) and let Ĉk be positive semi-definite. The direction

dk satisfying the linearized inequality constraints (3.14e) of the quadratic

subproblem (3.6) and ckþ1 chosen as in Step 3 of the above algorithm ensure

the inequality

C dk; ckþ1;pkþ1=2

� �
# �e dk; Ĉkdk

D E
: ð3:15Þ

Proof. Using (3.12), (3.14a), (3.14e) and noting that (3.12) equally applies to

pk and pkþ1=2, we can write

dk;H k ckþ1hk þ pkþ1=2

� �
þ

� �
# � hk; ckþ1hk þ pkþ1=2

� �
þ

� �

¼ �ck ðhkk
�
þk22 � hk

� �
þ;pk

� �

and ckþ1 chosen in Step 3 ensures that (3.9b) is bounded by

Cðdk; ckþ1;pkþ1=2Þ # Fkðxk þ dkÞ �FðxkÞ

�ckþ1 gkk k22þ hk
� �

þ
�� ��2

2

h i
� hk
� �

þ;pk

� �þ 1

2
dk; Ĉkdk

D E
# �ehdk; Ĉkdki: ð3:16Þ

Thereby (3.15) is established. A

Lemma 3.4 Let dk and qkþ1 be the solutions of the quadratic subproblem

(3.6), then

Fkðxk þ dkÞ ¼ max
q[E

msce

þ
V kðxk þ dk;qÞ ¼ V kðxk þ dk;qkþ1Þ:

Proof. The first equality follows, from the fact that Fkðxk þ dkÞ is the maxi-

mum of msce numbers (evaluated at xk þ dk) and this is equal to the maximum

of the convex combination of these numbers.
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It can be verified using (3.14a), or its equivalent for subproblem (3.6b), that

for dk, m
e
kþ1, m

i
kþ1, lkþ1, hkþ1, vkþ1 solving (3.6) we have

qkþ1 ¼ arg max
q[E

msce

þ

Lkðxk þ dk;q;m
e
kþ1;m

i
kþ1; lkþ1;hkþ1; ck;pkÞ

¼ arg max
q[E

msce

þ

V kðxk þ dk;qÞ: ð3:17Þ

The implication of (3.17) is that since at dk, m
e
kþ1, m

i
kþ1, lkþ1, hkþ1 the

maximization of Lk is independent of terms not included in V k, qkþ1 maxi-

mizes both functions. This establishes the second equality. The same result

also follows for subproblem (3.6b), since q is the multiplier of

7f Tkd þ fk # 1v: A

It is shown in Lemma (3.5) below that (3.16) is nonpositive and the descent

property of Lemma (3.3) also holds when

gk

ðhkÞþ

" #
¼ 0:

Lemma 3.5 (The Finiteness of the Penalty Parameter) Let f ; g; h [

C
1
; Ĉk be positive semi-definite and ðdk;qkþ1;m

e
kþ1;m

i
kþ1; lkþ1;hkþ1Þ,

computed by (3.6a), and ðdk; vkþ1;qkþ1;m
e
kþ1;m

i
kþ1Þ, computed by (3.6b), be

bounded. Then

(i) If the nonlinear constraints of (1.2) are satisfied, that is, gðxkÞ ¼ 0;

hðxkÞ # 0, then the descent property (3.15) of Lemma 3.3 is satisfied

for any choice of ck [ ½0;1Þ.
(ii) Let ck [ ½0;1Þ and gðxkÞ ¼ 0; hðxkÞ # 0, for some k. Then, Step 3 of the

algorithm chooses ckþ1 ¼ ck. For this choice of ckþ1, the direction dk
ensures the descent property (3.15).

(iii) 8k; 9ckþ1 [ ½0;1Þ satisfying Step 3 of the algorithm.

(iv) Let the sequence fxkg generated by the algorithm be bounded. Then, ck is

increased finitely often and there exists an integer k
p
$ 0 and

exists c
p
[ ½0;1Þ such that the algorithm chooses ck ¼ c

p
;8k $ k

p
.

Remark The penalty ck is the value used in the quadratic subproblems when

computing dk, qkþ1, m
e
kþ1, m

i
kþ1, vkþ1.
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Proof. To show (i) consider (3.14b,e) and (3.1) for gk ¼ 0; hk # 0,

0 ¼ dk; 7f kqkþ1 þ ĈkdkþGk ckgkþme
kþ1

� 	þH k ckhk þ pk

� �
þþmi

kþ1

h ih iD E

¼ kdk;7fkqkþ1lþ kdk; Ĉkdkl � khk;m
i
kþ1l

and hence we have

kdk;7fkqkþ1l ¼ �kdk; Ĉkdkl: ð3:18Þ
Consider (3.16) for gk ¼ 0; hk # 0

Cðdk; ckþ1;pkþ1=2Þ þ ekdk; Ĉkdkl

¼ Fkðxk þ dkÞ �FðxkÞ þ
1

2
þ e


 �
kdk; Ĉkdkl

�ckþ1kgk; gklþ kd;H kðckþ1hk þ pkþ1=2Þþl

¼ max
q[E

msce

þ
kq; fk þ 7f Tk dkl � max

q[E
msce

þ
kq; fklþ

1

2
þ e


 �
kdk; Ĉkdkl

¼ kqkþ1; fk þ 7f Tk dkl � max
q[E

msce

þ
kq; fklþ eþ 1

2


 �
kdk; Ĉkdkl

# e � 1

2


 �
kdk; Ĉkdkl # 0: ð3:19Þ

Equality (3.19) follows from the definition ofFkðxk þ dkÞ and thatFðxkÞ is the
maximum of the convex combination of msce numbers f 1ðxkÞ;…; f

msce ðxkÞ. The
subsequent equality follows from Lemma 3.4. The last two inequalities follow

from (3.18) and the fact that qkþ1 does not necessarily optimize

maxq[E
msce

þ
kq; fkl. Thus, the descent condition (3.15) is satisfied for gk ¼ 0,

hk # 0.

To show (ii), consider the condition (3.10) which is satisfied for all ck [

½0;1Þ since descent is ensured for gk ¼ 0, hk # 0. Thus, the algorithm

chooses ckþ1 ¼ ck. For this choice, it can simply be verified that Lemma

3.3 and (i) above hold. (iii) follows simply from (i) and (ii) since Step 3 of

the algorithm generates a finite ckþ1. To establish (iv), we note that in Step 3,

ckþ1 [ ½0;1Þ such that the descent condition of Lemma 3.3 and (i) above

hold. If ck is increased infinitely often then, by Step 3, we have fckþ1g ! 1.

As there exists a ckþ1 [ ½0;1Þ that the algorithm can choose at every itera-

tion, then there exists a c�½0;1Þ such that the test of Step 3 is always

satisfied for ck ¼ c�;8k $ k�. kp is the iteration at which the algorithm

reaches c
p
. A
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The algorithm increases the penalty parameter until c
p
is attained. An

increase of the penalty parameter is not required after this since the condition

in Step 3 is satisfied with ck ¼ c
p
.

4 CONVERGENCE OF THE ALGORITHM

We consider in this section the global convergence of the method. The equal-

ity constrained case is discussed in Rustem (1992). The inequality constrained

case is discussed in Rustem and Nguyen (1998). Inequality constraints require

a substantially different approach to establish these results. Convergence of

the stepsize sequence fakg to unity and the superlinear rates of convergence

are consequences of results in Rustem (1992, 1993).

We first establish that the stepsize strategy (3.9) can always be satisfied. If

the satisfaction of (3.9) was assumed, then the final inequality in the proof,

given by (4.8) below, could be replaced by (3.9). Lemmas 3.3 and 3.5 (i)

would provide the monotonicity of the merit function ‘ðx; c;pÞ in Theorem

4.1.

Assumption 4.1 f ; g; h [ C
2ðRnÞ.

Theorem 4.1 Let

(i) Assumption (4.1) be satisfied;

(ii) the approximate Hessian be such that, for each k,

m yk k22# y
T
Ĉky # M yk k22; M $ m . 0; 0 – y [ R

n ð4:1Þ

(iii) for each k, there exists a bounded optimal point ðdk;qkþ1, m
e
kþ1, m

i
kþ1,

lkþ1;hkþ1Þ [ R
n
£ R

m
sce

£ R
e
£ R

i
£ R

m
sce

£ R
1

of the quadratic

subproblem (3.6a); similarly, there exists a bounded Kuhn–Tucker

point ðdk; vkþ1;qkþ1;m
e
kþ1;m

i
kþ1Þ [ R

n
£ R

1
£ R

msce

£ R
e
£ R

i
for

(3.6b);

(iv) there exist an integer k
p
and a scalar c

p
$ 0 such that (3.10) is satisfied,

for all k $ k
p
with ck ¼ c

p
.

Then, the stepsize computed in Step 4 is such that ak [ ð0; 1� and the sequence
fxk;qkg, computed by the algorithm, satisfies the stepsize strategy (3.9) and

generates a corresponding sequence f‘ðxk; c�;pkÞg which is monotonically

decreasing for k $ k
p
.

Remarks Along with assumptions (i) and (ii), boundedness in (iii) is

ensured when the active constraint normals at the solution of the quadratic

subproblem are linearly independent. Another condition implied by (iii) is that

the feasible set of the quadratic subproblem is nonempty.
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By Lemmas 3.3 and 3.5, ck chosen by Step 3 is finite. Also, there exists

c
p
[ ½0;1Þ, for which (3.10) is satisfied with ck ¼ c�;8k $ k

p
. The integer

k
p
is the iteration at which c

p
is attained. The result can be extended to show

that there exists ak [ ð0; 1� satisfying the stepsize strategy before the algo-

rithm achieves the constant ck ¼ c
p
. This can be done by considering the

expansion of 1=ð2ckþ1Þkðckþ1hðxÞ þ pkþ1
2
Þk22 instead of 1=ð2c�Þkðc�hðxÞ þ

pkÞk22 below. The assumption of ck ¼ c
p
is required to establish the overall

monotonicity.

Proof. For ck ¼ c�, (3.1) yields pkþ1=2 ¼ pk. Using this in (3.13b) and consid-

ering the second order expansion of ½c�=2kgðxÞk22þ1=2c�kðc�hðxÞ þ pkÞk22�,
we have

c�
2

gkþ1

�� ��2
2þ

1

2c�

�
c�hkþ1 þ pkþ1

�
þ

���
���2
2

�
� c�

2
gkk k22þ

1

2c�

�
c�hk þ pk

�
þ

���
���2
2

���

#
c�
2

gkþ1

�� ��2
2þ

1

2c�

�
c�hkþ1 þ pk

����
���2
2

�
� c�

2
gkk k22þ

1

2c�

�
c�hk þ pk

����
���2
2

���

# ak dk; c�GkgkþH k

�
c
p
hkþpk

�
þ ak

2
Ĉkdk

� �� �
þ a2

knk k dk k22 ð4:2aÞ

for xðtÞ ¼ xk þ takdk and

A1ðxðtÞ; c�Þ ; c
p
GðxðtÞÞGðxðtÞÞTþH ðxðtÞÞH ðxðtÞÞT
h i

ð4:2bÞ

A2ðxðtÞ; c�Þ ; c�
Xe

i¼1

72
g
iðxðtÞÞgiðxðtÞÞ þ

Xi

i¼1

72
h
iðxðtÞÞ c�h

iðxðtÞÞþpi
k

h i

ð4:2cÞ

nk ¼
Z1

0
ð1 � tÞ A1ðxðtÞ; c�Þ þA2ðxðtÞ; c�Þ � Ĉk

���
��� dt: ð4:2dÞ

By definition of FðxÞ we have,
Fðxkþ1Þ ¼ max

q[E
msce

þ

n
kq; f ðxk þ akdkÞl

o
ð4:3aÞ

# max
q[E

msce

þ

n
kq; f ðxkÞ þ ak7f

T
k dkl

o

þa2
k k dk k22

Z1

0
ð1 � tÞ max

q[E
msce

þ

Xmsce

j¼1

qi72
f
j
xðtÞð Þ

8<
:

9=
;

������

������ dt: ð4:3bÞ
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Using (3.3) we can write

max
q[E

msce

þ

n
kq; f ðxkÞ þ ak7f

T
k dkl

o
¼ max

q[E
msce

þ
V kðxk þ akdk;qÞ: ð4:4Þ

Since maxq[E
msce

þ
V kðxk þ d;qÞ is convex with respect to d, we have for

ak [ ½0; 1�,
max

q[E
msce

þ
V kðxk þ akdk;qÞ # max

q[E
msce

þ
V kðxk;qÞ

þak

n
max

q[E
msce

þ
V kðxk þ dk;qÞ � max

q[E
msce

þ
V kðxk;qÞ

o
: ð4:5Þ

Furthermore, we have

FðxkÞ ¼ max
q[E

msce

þ
V kðxk;qÞ ð4:6bÞ

FkðxkÞ ¼ max
q[E

msce

þ
V kðxk þ d;qÞ: ð4:6bÞ

Using (4.6), (4.5), (4.4), Lemmas 3.3, 3.5 (i) and combining (4.2) and (4.3b)

yields

‘ðxkþ1; c�;pkþ1Þ # ‘ðxk; c�;pkÞ þ akCðdk; cpÞ 1 � ak

em
jk

� �
ð4:7Þ

jk ¼
Z1

0
ð1 � tÞ max

q[E
msce

þ

Xmsce

j¼1

qj72
f
jðxðtÞÞ

8<
:

9=
;þA1ðxðtÞ; c�Þ þA2ðxðtÞ; c�Þ � Ĉk

������

������ dt:

The scalar r [ ð0; 1Þ in the stepsize strategy (3.9) determines ak such that

r # 1 � ak

em
jk # 1:

By Lemma 3.3 and Lemma 3.5 (i), the descent property Cðdk; c�;pkÞ # 0

holds. Thus, there exists a ak [ ð0; 1� to ensure (4.7), and thence (3.9).

Suppose a0 is the largest a [ ½0; 1� satisfying inequalities (4.7) and (3.9). It

follows that all a # a0 also satisfy these conditions and that the strategy in

Step 4 selects ak [ ½aa0
;a0�. Since Cðdk; c�;pkÞ # 0, the required mono-

tonic decrease follows. A

Lemma 4.1 Let the assumptions of Theorem (4.1) be satisfied, and let, for

some k0 and k $ k0, the set

F ¼ x [ R
n j ‘ x; c�;pkðxÞ

� �
# ‘ xk0 ; c�;pk0

ðxk0 Þ
� �n o
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be bounded. We then have

lim
k!1

Cðdk; cp;pkÞ ¼ 0: ð4:8Þ

Proof. For ck ¼ c�, we have, for a constant p̂ $ 0,

pi
kðxÞ ¼

(�c�hiðxÞ if hiðxÞ # 0

p̂ if hiðxÞ . 0:

Given r [ ð0; 1Þ, by (4.7), the choice

a0 ¼ min 1;
ð1 � rÞem

jk

� �

always satisfies stepsize strategy (3.9). Clearly, ak ¼ a tk chosen in Step 4 is in

the range ak [ ½aa0
;a0� and thereby also satisfies (3.9). As f and h are twice

continuously differentiable and F is compact, there is a scalar M , 1 such

that jk # M. Thus, as m . 0, we have ak $ a . 0;8k, for (3.9). The bound-

edness of ‘ðx; c�;pkðxÞÞ on F and Cðdk; cp;pkÞ # 0 imply

0 # r
X
k

ak Cðdk; cp;pkÞj j #
X
k

‘ðxk; c�;pkÞ � ‘ðxkþ1; c�;pkþ1Þ , 1

which yields (4.8). A

Lemma (4.2) Let the assumptions of Theorem 4.1 be satisfied. Inequality

(3.15), Lemmas 3.5 (i) and 4.1 imply limk!1 dkk k ¼ 0.

Proof. Using (4.8) with (3.15) yields the required result. A

Theorem 4.2 Let the first order necessary conditions of problem (2.1) be

satisfied by x
p
;q

p
;me

�;m
i
p
; v

p
. Let the assumptions of Theorem 4.1 be satisfied.

Then:

(i) the algorithm either terminates at x
p
;q

p
;me

�;m
i
p
; v

p
or it generates an

infinite sequence fxkg in which there exists a subsequence fxkg with kp #
k [ K � f0; 1;…g such that fk dk kg ! 0 and thus every accumulation

point x
p
of the infinite sequence fxkg satisfies the necessary condition of

optimality of the minimax problem;

(ii) if, furthermore, strict complementarity holds at the solution of (3.6b), for

large k, qk;m
i
k predict the active inequality constraints at x�.

Proof. By Lemmas 3.5, 4.1 and 4.2, there exists a subsequence fxkg such that

fk dk kg ! 0. Let there exist x
p
[ R

n, q
p
[ E

msce

þ , me
[ R

e, mi
p
[ R

i
þ, vp [

R
1 such that fxkg ! x

p
, fqkg ! q

p
, fme

kg ! me
�, fmi

kg ! mi
p
, fvkg ! v

p
;
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k
p
# k � K. The existence of such points is ensured since, by Theorem 4.1, the

algorithm decreases ‘ðxk; c�;pkÞ sufficiently at each iteration, thereby ensur-

ing xk [ F , for compact F .

In order to show that x
p
;q

p
;me

�;m
i
p
; v

p
satisfy the first order necessary

conditions of optimality, we consider the optimality conditions (3.14) of the

subproblem (3.6). Applying Lemma 4.2, for k ! 1, k
p
# k [ K, we derive

the first order conditions of (2.1) which define x
p
;q

p
;me

�;m
i
p
; v

p
. Thus, (3.14b)

reduces to

0 ¼ 7f ðx�Þq� þ c�G� gðx�Þþme
�

� 	þH �
�
c�hðx�Þ þ p�

�
þ þ mi

�
h i

¼ 7f ðx�Þq� þG�m
e
� þH �m

i
�

since for hðx�Þ # 0, (3.1) yields p� ¼ �c�hðx�Þ and
gðx�Þ ¼ 0; hðx�Þ # 0; kmi

�; hðx�Þl ¼ 0; mi
� $ 0

f ðx�Þ # 1v�; q
j
�ðf jðx�Þ � v�Þ ¼ 0; j ¼ 1;…;m

sce
; q� [ E

m
sce

þ :

To show (ii), we note that, in view of the last two conditions, for sufficiently

large k, with strict complementarity holding, none of the inactive constraints,

that is,

hik þ dTk7h
i
k , 0; ðmi

kþ1Þi ¼ 0

f jk þ d
T
k7f

j
k , vkþ1; q

j
kþ1 ¼ 0

are predicted to be active at x�, h
i
� , 0, ðmi

�Þi ¼ 0, f
j
� , v�, q

j
� ¼ 0. A

The convergence of the stepsizes to unity and the Q-superlinear conver-

gence rate of the algorithm can be studied by invoking Theorem 4.2 (ii) and

considering the inequality constraints active at the solution. In Section 5,

convergence of the stepsize ak to unity is related to the accuracy of the

Hessian approximation used in the quadratic subproblem. In Section 6, it is

shown that the one-sided-projected-Hessian condition ensures the Q-super-

linear convergence of fxkg and fxk;qk; vkg and the two-step Q-superlinear

convergence of fxk;qk;m
e
k;m

i
k; vkg. An extended one-sided-projected-Hessian

necessary and sufficient condition is also established for the Q-superlinear

convergence of fxkg and fxk; vkg.

5 ACHIEVEMENT OF UNIT STEPSIZES

We consider first the attainment of unit stepsizes. The conditions that ensure

unit stepsizes turn out to be the closeness of the algorithm to the solution as

well as the accuracy of the Hessian approximation used near this solution. The
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condition that ensures a superlinear convergence rate is shown in the next

section to be the increasing accuracy of the Hessian approximation.

We shall first establish Lemma 5.1 below which ensures, for a set of

specially constructed multipliers,

eme
kþ1ðeckþ1Þ
emi
kþ1ðeckþ1Þ

" #

a specially constructed eckþ1, and gk given by (2.3), that the inequality

gk;
eme
kþ1ðeckþ1Þ
emi
kþ1ðeckþ1Þ

" #* +
$ 0

is satisfied. Also, as the solution is approached, it is shown that

eme
kþ1ðeckþ1Þ
emi
kþ1ðeckþ1Þ

" #
� eme

kþ1

emi
kþ1

" #������

������! 0

ðeckþ1Þ � c
p

� 	! 0:

The values eme, emi and ec are constructed to show that unit stepsizes are attained

such that ak ¼ 1;8k $ ka $ k
p
: they are not used in any computational

procedure in the algorithm. The integer ka is the iteration at which ak ¼ 1

is achieved and maintained thereafter.

Consider problem (3.6a,b) in terms of the constraints active at its solution

min
d

max
q

n
V kðxk þ d;qÞ þ d; ckGkgkþH kðckhkþpkÞþ

h iD E

þ1

2
d; Ĉkd

ED ��� GT
k d þ gk ¼ 0;H T

k d þ hk ¼ 0;q [ E
m

sce

þ
o
:

Let mi
kþ1 denote the multipliers corresponding to the active inequality

constraints (2.3) at the solution of (3.14). Following Assumption 2.1, that

the columns of Gk defined in (2.3) are linearly independent, the assumption

in Sections 3–4 that Ĉk is positive definite, considering only the active inequal-

ities at the solution of (3.14), using (3.14b) and (3.14e) we have

dk ¼ �Pk½Ĉk�Ĉ�1
k 7fkqkþ1 � Ĉ

�1
k Gk

�
GT

k Ĉ
�1
k Gk

��1 gk

hk

" #
ð5:1Þ

Pk½Ĉk� ¼ I � Ĉ
�1
k Gk

�
GT

k Ĉ
�1
k Gk

��1GT
k ð5:2Þ
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me
kþ1

mi
kþ1

" #
¼ � GT

k Ĉ
�1
k Gk

h i�1 GT

k Ĉ
�1
k 7f kqkþ1 � gk

h i
�

ckgk�
ckhk þ pk

�
þ

2
4

3
5:

ð5:3Þ
Furthermore, for eckþ1 [ ð�1;þ1Þ let

eme
kþ1ðeckþ1Þ

emi
kþ1ðeck þ 1Þ

" #
¼ � GT

k Ĉ
�1
k Gk

h i�1 GT

k Ĉ
�1
k 7f kqkþ1 � gk

h i
� eckþ1gk: ð5:4Þ

In the discussion below, we sometimes refer to eme
kþ1ðeckþ1Þ; emi

kþ1ðeckþ1Þ, as
eme
kþ1; emi

kþ1.

Lemma 5.1 Let the assumptions of Theorem 4.2 be satisfied, fxkg be conver-
gent and let the columns of Gk be linearly independent. Then

(i) for eme
kþ1; emi

kþ1 given by (5.4), there exists eckþ1 [ ð�1;þ1Þ such that

gk;
eme
kþ1ðeckþ1Þ

emi
kþ1ðeck þ 1Þ

" #* +
$ 0

and

(ii)

eme
kþ1ðeckþ1Þ

emi
kþ1ðeck þ 1Þ

" #
�

me
kþ1

mi
kþ1

" #������

������! 0; ðeckþ1 � c
p
Þ ! 0 ð5:5Þ

Proof. To show (i), consider (5.4) and let

ak ¼ gk; GT
k Ĉ

�1
k Gk

� ��1 GT
k Ĉ

�1
k 7fkqkþ1 � gk

n o� �
; bk ¼ gkk k22

gk;
eme
kþ1

emi
kþ1

" #* +
¼ ak � eckþ1bk; eckþ1 ¼

c
p

if ak � c
p
bk $ 0

ak
bk

if ak � c
p
bk , 0;

8<
:

By definition, bk $ 0. Also, if bk ¼ 0 we have ak ¼ 0. Thus, this choice of ec
ensures (i). A natural initial value is ec0 ¼ 0. As fbkg ! 0, it is clear from the

above that feckg!c
p
. To show (ii), consider (5.3) and (5.4). According to

Lemma 4.2 and Theorem 4.2, for k $ k
p
, we have

me
kþ1

mi
kþ1

" #
� eme

kþ1ðeckþ1Þ
emi
kþ1ðeck þ 1Þ

" #������

������ ¼
ckgk

ðckhk þ pkÞþ

" #�����

����� �
gk

hk

" #�����

�����! 0

since c
p
;eckþ1 are finite, gk!0, hk!0 and pk ¼ �c

p
hk!0. A
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Theorem 5.1 Let the assumptions of Lemma 5.1 be satisfied and let C
p

denote the value of the Hessian (3.5) at the solution. There is a small number

s . 0 such that if fk # s, for all large k, with

fk ¼
PT
k C

p
� Ĉk

h i
Pkdk

���
���

dkk k þ
gTk ðG†

kÞT C
p
� Ĉk

h in
G†

kgk � 2Pkdk

o���
���

dkk k2

and Pk ¼ Pk½Ĉk�, given by (5.2), G†
k ¼ Ĉ

�1
k GkðGT

k Ĉ
�1
k GkÞ�1 or Pk ¼ Pk½I�;

G†
k ¼ GkðGT

kGkÞ�1. Then, stepsize strategy (3.9) is satisfied for ak ¼ 1;

8k $ ka $ k
p
.

Proof. Let the matrix Gðx;mÞ be defined by

A3ðx;me
;miÞ ;

Xe

i¼1

ðmeÞi72
g
iðxÞ þ

Xi

i¼1

ðmiÞi72
h
iðxÞ

" #
:

We show that there is a k $ kt with xkþ1 with tk ¼ 1 satisfies (3.10).

Consider the second order expansion of

gðxÞ;
me
kþ1

mi
kþ1

" #* +

gkþ1;
me
kþ1

mi
kþ1

" #* +
¼ gk;

me
kþ1

mi
kþ1

" #* +
þ dk;Gk

me
kþ1

mi
kþ1

" #* +

þ 1

2
dk;A3ðx�;me

�;m
i
�Þdk

D E
þ n1k

where

n1k ¼
Z1

0
ð1 � tÞ dk; Aðxk þ tdk;m

e
kþ1;m

i
kþ1Þ � A3ðx�;me

�;m
i
�Þ

h i
dk

D E
dt

where A3ðx�;me
�;m

i
�Þ is the constraint second derivatives at x

p
, to be

subsumed in C
p
. Using the fact that dk satisfies the linearized constraints,

GT
k dk þ gk ¼ 0, and using Lemma 5.1 we have

gkþ1;
me
kþ1

mi
kþ1

" #* +
¼ 1

2
dk;A3ðx�;me

�;m
i
�Þdk

D E
þ n1k

# gkþ1;
eme
kþ2ðeckþ2Þ

emi
kþ2ðeck þ 2Þ

" #* +
þ 1

2
dk;A3ðx�;me

�;m
i
�Þdk

D E
þ n1k :

Now consider the expression
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Gk ¼ gkþ1;
eme
kþ2ðeckþ2Þ

emi
kþ2ðeck þ 2Þ

" #* +
� gkþ1;

me
kþ2

mi
kþ2

" #* +

þ gkþ1;
me
kþ2

mi
kþ2

" #* +
� gkþ1;

me
kþ1

mi
kþ1

" #* +
: ð5:7Þ

Using the second order expansion of gðxÞ and (3.14,e) we can write

gkþ1

�� �� # gk þGT

k dk

���
���þ e1 dkk k22¼ e1 dkk k22 ð5:8Þ

for some e1 $ 0. Furthermore, as

me
k

mi
k

" #
�

me
kþ1

mi
kþ1

" #�����

�����

( )
! 0

and, by Lemma 5.1,

eme
kþ1ðeckþ1Þ

emi
kþ1ðeck þ 1Þ

" #
�

me
kþ1

mi
kþ1

" #������

������

8<
:

9=
;! 0

Gkk k can be expressed as

Gkk k # bk dkk k22 ð5:9aÞ

lim
k!1

bk ¼ lim
k!1

e1
eme
kþ2ðeckþ2Þ

emi
kþ2ðeck þ 2Þ

" #
�

me
kþ2

mi
kþ2

" #������

������þ
me
kþ2

mi
kþ2

" #
�

me
kþ1

mi
kþ1

" #�����
�����

2
4

3
5

¼ 0:

ð5:9bÞ
Consider expression (4.3a). Let the value of q corresponding to the solution of

the right-hand side be given by qp

k thus, using Lemma 6.2.1,

Fðxkþ1Þ þ c
p
gðxkþ1Þ; gðxkþ1Þ
� � ¼ qp

k ; f ðxk þ dkÞ
� �� þ c

p
gkþ1; gkþ1

� �
:

By Theorem 4.2, fxkg ! x
p
, then clearly fqp

kg ! q
p
. Thus, using (4.3) we can

write

Fðxkþ1Þ þ c
p
gðxkþ1Þ; gðxkþ1Þ
� �

# qp

k ; f ðxkÞ þ 7f Tk dk

D En o
þ 1

2
dk; Ĉk � Ĉk þ C

g
p

h i
dk

D E

þ c
p

2
gk; gkh i þ gk;GT

k dk

D Eh i
þ n2k
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# max
q[E

msce

þ
q; f ðxkÞ þ 7f Tk dk

D En o
þ 1

2
dk; Ĉk � Ĉk þ C

g
p

h i
dk

D E

þ c
p

2
gk; gkh i þ gk;GT

k dk

D Eh i
þ n2k ð5:10Þ

where, with xðtÞ ¼ xk þ tdk,

n2k ¼
Z1

0
ð1 � tÞ

*
dk;

( Xmsce

i¼1

q�i
k 7

2
f
iðxðtÞÞ

( )

þc
p
GðxðtÞÞGðxðtÞÞT þA2ðxðtÞ; c�Þ � C

g
p

)
dk

+
dt

where A2 is given by (4.2c) and C
g
p
is the the second derivative matrix

evaluated at x
p
;q

p

C
g
p
¼
Xmsce

i¼1

qi
p
72f iðx

p
Þ þ cG

p
GT

p
:

Using (5.6), (5.7) and (5.10) we can rewrite (4.7) as

Fðxkþ1Þ þ
c
p

2
gðxkþ1Þ; gðxkþ1Þ
� �

# FðxkÞ þ
c
p

2
gk; gkh i þ

n
Fkðxk þ dkÞ �FðxkÞ þ c

p
gk;GT

k dk

D E

þ 1

2
dk; Ĉk � Ĉk þ C

p

h i
dk

D E
þ Gk þ n1k þ n2k

o
: ð5:11Þ

We note that

n1k þ n2k

���
��� ¼ dkk k22jpk

jpk ¼
�����
Z1

0
ð1 � tÞ

(nXmsce

i¼1

q�i
k 7

2
f
iðxðtÞÞ

o

þc
p
G xðtÞð ÞG xðtÞð ÞTþA3 xðtÞ;me

kþ1;m
i
kþ1

� �

þA2 xðtÞ; c�
� � � C

g
p
�A3ðx�;me

�;m
i
�Þ
)����� dt

and C
p
¼ C

g
p
þA3ðx�;me

�;m
i
�Þ. Using (5.9), the descent property (3.14) in

Lemma 3.2 and also Lemma 3.4 (i), we can write (5.11) as
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Fðxkþ1Þ þ
c
p

2
gðxkþ1Þ; gðxkþ1Þ
� �

# FðxkÞ þ
c
p

2
gk; gkh i þ

n
Fkðxk þ dkÞ �FðxkÞ þ c

p
gk;GT

k dk

D E

þ 1

2
dk; Ĉk � Ĉk þ C

p

h i
dk

D E
þ bk dkk k22þ dkk k22jpk

o

# FðxkÞ þ
c
p

2
gk; gkh i þCðdk; cpÞ 1 � 1

me

1

2
fk þ bk þ jpk

� �� �
ð5:12Þ

where the last expression is obtained by invoking the equality dk ¼ Pk � G†
kgk.

Since, by Theorem 4.2, fxkg ! x
p
, fme

kg ! me
�, fmi

kg ! mi
�, fhkg ! h

p
,

fvkg ! v
p
, we have fjpkg ! 0 and fbkg ! 0. The scalar

r [ ð0; 1Þ
in (3.9) is bounded by

r # 1 � 1

me

1

2
fk þ bk þ jpk

� �
: ð5:13Þ

If s . 0 is such that ð1=meÞ½ð1=2Þsþ bk þ jpk� # 1 � r (in view of jk ! 0,

bk ! 0, this defines the number r) then (5.13) holds, and therefore, because

Cðdk; cpÞ # 0, (3.9) is satisfied with ak ¼ 1. A

6 SUPERLINEAR CONVERGENCE RATES OF THE ALGORITHM

The superlinear convergence of the algorithm is discussed only for the quad-

ratic programming subproblem (3.6b). An interesting aspect of the subpro-

blem and the convergence rate is that the Hessian of the quadratic objective

function is singular. The results below discuss the superlinear convergence of

fxkg, fxk; vkg, fxk;qk; vkg, fxk;qk;m
e
k;m

i
k; vkg and relate these to the accuracy of

the projected Hessian. The reason for discussing the convergence rate of fxkg,
as well as the rates of fxk; vkg, fxk;qk; vkg, fxk;qk;m

e
k;m

i
k; vkg is that, as

mentioned by Boggs et al. (1982), the Q-superlinear convergence of the latter

three sequences only imply the R-superlinear convergence of the former. The

situation is further complicated by the fact that the superlinear convergence

results for the latter two sequences are not necessarily the same as the results

for the former two sequences when projected Hessians are being considered.

The effect of the inequality constraints through the use of the penalty term

in the quadratic subproblem (3.6a) is ignored since it is shown in Rustem

(1998, Chapter 8) in the context of nonlinear programming that this term

does not affect the convergence rate estimates. Instead, we adopt the equality

constrained framework established in Theorem 4.2 that all constraints are
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active at the solution and consider only the constraints gðxÞ ¼ 0 and the linear

approximation gk þGT
k dk ¼ 0.

Assumptions 6.1

(i) There exists x
p
;q

p
;me

p
;mi

p
;l�;hp

satisfying the first order conditions of

(1.2) or, equivalently, there exists x
p
;q

p
;me

p
;mi

p
;l

p
; v

p
satisfying the first

order conditions of (1.4).

(ii) Strict complementarity holds for the inequality constraints of the quad-

ratic programming subproblem (3.6b).

(iii) vTC
p
v . 0;8v [ R

n
;GT

p
v ¼ 0.

(iv) The coefficient matrix

7Ĝk ¼

Ĉk 7f k Gk 0

7f Tk 0 0 1

GT
k 0 0 0

0 1
T 0 0

2
6666664

3
7777775

ð6:1Þ

arising from the first order necessary conditions of the quadratic

subproblem (3.6b), is nonsingular. The matrix 7f k corresponds to the

columns of 7fk of the inequality constraints in (3.6b) satisfied as equal-

ities at the solution x
p
of the minimax problem. Similarly, the vector 1

corresponds to the right hands of the inequality constraints in (3.6b)

satisfied as equalities at x
p
.

(v) The columns of Gk; ½7f Tk ; 1�T are linearly independent at the solution xp.

As a result of the convergence of Algorithm 3.1, established in Theorem 4.2,

there is a stage, near the solution of the minimax problem, when the inequality

constraints satisfied as equalities at the solution, are also satisfied as equalities

for the quadratic program (3.5b). At this stage, with strict complementarity

holding, the multipliers qi
k . 0 if the constraint i is satisfied as an equality at

the solution x
p
. Also, k7f ik ; dklþ f

i
k , vkþ1 and qi

k ¼ 0 if the constraint is

strictly satisfied at the solution. Thus, at this stage, the multipliers can predict

the constraints active at the solution. These active constraints are written as

k7f ik; dklþ f
i
k ¼ vkþ1. Since the other constraints do not affect the solution x

p
,

they can be ignored for the convergence rate analysis. Thus, the quadratic

subproblem (3.6b) can be rewritten as

min
d;v

vþ c� Gkgk; d
D E

þ 1

2
d; Ĉkd

ED ��� GT
k d þ gk ¼ 0;7f Tk d þ f k ¼ 1v

� �
:

The first order optimality conditions for (6.2) can be written as
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7Ĝk

dk

qkþ1 � qk

me
kþ1

mi
kþ1

" #
�

me
k

mi
k

" #

�Dvk

2
6666666664

3
7777777775

¼ �Gk ð6:3Þ

where

Dvk ¼ vkþ1 � vk

Gk ¼

7f kqk þGk

me
k

mi
k

" #
þ c

p
gk

" #

gk

f k � 1vk

k1;qkl � 1

2
6666666664

3
7777777775

ð6:4Þ

and qk relate to the strictly positive elements of qk which correspond to the

inequality constraints satisfied as equalities.

The quadratic subproblem computes dk such that GT
k�1dk�1 þ gk�1 ¼ 0.

Thus, using the second order expansion of gðxÞ at xk, we have for some e1 $ 0,

k gk k¼ e1 k dk�1 k2 : ð6:5Þ
Since the inequality constraints are satisfied as equalities, we have

1vk ¼ 7f Tk�1dk�1 þ f k�1: ð6:6Þ
The second order expansion of f ðxÞ about xk�1 yields, for some e2 $ 0,

f k � f k�1 � 7f Tk�1dk�1 ¼ e2 k dk�1 k2 :
Thus, f k � 1vk in (6.4) can be written as

f k � 1vk ¼ e2 k dk�1 k2 : ð6:7Þ
The first order expansion of the gradient, with respect to x, of the Lagrangian

of either minimax formulation,

7f ðxÞqþGðxÞ
me

mi

" #
þ c

p
gðxÞ

" #

yields
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7f kqk þGk

me
k

mi
k

" #
þ c

p
gk

" #
¼ 7f k�1qk�1 þGk�1

me
k�1

mi
k�1

" #
þ c

p
gk�1

" #

þ Ĉk�1dk�1 þ DCðtÞdk�1
ð6:8aÞ

DCðtÞ ¼
Z1

0
Cðxk�1 þ tdk�1Þ � C

p
þ C

p
� Ĉk�1

n o
dt: ð6:8bÞ

Clearly, as fxkg ! x
p
,

Z1

0
Cðxk�1 þ tdk�1Þ � C

pf g dt
� �

! 0

and, as shown below, the condition for superlinear convergence ensures that

the rest of (6.8b) also vanishes at the solution.

It should be noted from the first order optimality condition (3.14b), for

either quadratic subproblem, at xk�1 is

7f k�1qk�1 þGk�1
me
k�1

mi
k�1

" #
þ c

p
gk�1

" #
¼ 0

and thus (6.8a) can be written as

7f kqk þGk

me
k

mi
k

" #
þ c

p
gk

" #
¼ DCðtÞdk�1: ð6:9Þ

We can now state the superlinear convergence theorem. In this result condi-

tions are discussed which are similar to the characterization of Boggs et al.

(1982), Powell (1983) for nonlinear programming. The results below are

established without invoking a prior linear convergence rate argument. As

opposed to the necessary and sufficient result of Boggs et al. (1982), the result

below only establishes the necessary part in the case of minimax problems.

The analogous necessary and sufficient condition is discussed in Theorem 6.2.

The following lemma is used in the latter part of Theorem 6.1.

Lemma 6.1 Let Assumptions (2.1), (4.1) and (6.1) hold. Then, for some

e0 [ ½0;1Þ,
dkk k # e0 x

p
� xkk k

and

dk

Dvk

�����

����� # e0
x
p

v�

" #
�

xk

vk

" #�����

�����:
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Proof. The first order optimality condition of the quadratic programming

subproblem can be written as

7Ĝk

h i

dk

qkþ1 � q
p

me
kþ1

mi
kþ1

" #
�

me
p

mi
p

" #
þ c

p
gk

�ðvkþ1 � v
p
Þ

2
666666664

3
777777775

¼ �

7f kqp
þGk

me
p

mi
p

" #

gk

f k � 1v
p

k1;q
p
l � 1

2
6666666664

3
7777777775

Using the first order expansion of the right side of the above expression about

ðx
p
;q

p
;me

�;m
i
p
; v

p
Þ; by the nonsingularity of the coefficient matrix on the left

and by the first order optimality condition of (2.1b), that is,

7f ðx
p
Þq

p
þG

p

me
p

mi
p

" #
¼ 0; gðx

p
Þ ¼ 0; f ðx

p
Þ ¼ 1v

p

we have

dkk k #

dk

qkþ1 � q
p

me
kþ1

mi
kþ1

" #
�

me
p

mi
p

" #
þ c

p
gk

�ðvkþ1 � v
p
Þ

���������������

���������������

# 7Ĝk

h i�1
x
p
� xkk k

for some ê [ ½0;1Þ. Hence, the first result follows from the above expression.

To establish the second result, we use a similar argument with

7Ĝk

h i

dk

qkþ1 � q
p

me
kþ1

mi
kþ1

" #
�

me
p

mi
p

" #
þ c

p
gk

�Dvk

2
6666666664

3
7777777775

¼ �

7f kqp
þGk

me
p

mi
p

" #

gk

f k � 1vk

k1;qkl � 1

2
6666666664

3
7777777775

where the right side is expanded to yield

dk

Dvk

�����

����� #

dk

qkþ1 � q
p

me
kþ1

mi
kþ1

" #
�

me
p

mi
p

" #
þ c

p
gk

�Dvk

���������������

���������������

# ê 7Ĝk

h i�1 x
p

v�

" #
�

xk

vk

" #�����
�����: A
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Lemma 6.2

(i) Let fxkg ! x
p
:fxk; vkg ! ðx�; v�Þ. Then, the sequence fxkg is Q-superli-

nearly convergent, that is,

lim
k!1

x
p
� xkþ1

�� ��
x
p
� xkk k ¼ 0

if and only if

k dk k# kk k dk�1 k; lim
k!1

kk ¼ 0:

(ii) Let fxk; vkg ! ðx�; v�Þ. Then the sequence fxk; vkg is Q-superlinearly

convergent, that is,

lim
k!1

x
p

v�

" #
�

xkþ1

vkþ1

" #�����
�����

x
p

v�

" #
�

xk

vk

" #�����

�����
¼ 0

if and only if

dk

Dvk

�����

����� # kk
dk�1

Dvk�1

�����

�����; lim
k!1

kk ¼ 0:

Proof. We have

k x
p
� xk k# lim

t!1

Xt�1

j¼k

k xjþ1 � xj k

# kk k dk�1 k ð1þ vþ v2 þ v3 þ…Þ

#
kk

1 � v
k xk � x

p
k þ k x

p
� xk�1 kf g

for some v [ ½0; 1Þ. As fkkg ! 0;v is chosen such that kk # v , 1;8k $

K0: K0 is an integer and is such that kk , 1;8k $ K0. Rearranging the above

expression yields

k xk � x
p
k

k xk � x
p
k þ k xk�1 � x

p
k #

kk
1 � v

which yields the required result.

Suppose that k x
p
� xk k# k0k k x

p
� xk�1 k; limk!1 k0k ¼ 0, with k0k , 1.

This yields the inequality

k x
p
� xk k# k0k k x

p
� xk k þ k dk�1 kf g # k0k

1 � k0k

 !
k dk�1 k :
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Lemma 2.1 yields the desired result for (i). We can establish (ii) following

the same argument. A

Theorem 6.1 Let Assumptions 2.1, 4.1 and 6.1 be satisfied.

(i) The sequence fxkg satisfies k dk k# kk k dk�1 k with limk!1 kk ¼ 0 and

thence converges Q-superlinearly if, for Pk ¼ I � GkðGT
kGkÞ�1GT

k ,

lim
k!1

k PkðCp
� ĈkÞdk k

k dk k
¼ 0: ð6:10Þ

(ii) Let Dqk ¼ qkþ1 � qk. The sequence fxk;qk; vkg satisfies
dk

Dqk

Dvk

��������

��������
# kk k dk�1 k # kk

dk�1

Dqk�1

Dvk�1

��������

��������
ð6:11Þ

and thence converges Q-superlinearly if (6.10) is satisfied.

(iii) The sequence fxk;qk;m
e
k;m

i
k; vkg converges at a two-step Q-superlinear

rate if (6.10) holds.

(iv) The sequence fxk;qk;m
e
k;m

i
k; vkg converges at a Q-superlinear rate if

lim
k!1

k PkðCp
� ĈkÞdk k

k dk k
¼ 0 and lim

k!1

k ðFT
k FkÞ�1FT

k ðCp
� ĈkÞdk k

k dk k
¼ 0

ð6:12Þ
where Fk ¼ Gk 7f k

h i
.

Proof. Using (6.9), expression (6.3) can be written as

7Ĝk

h i

dk

Dqk

D
me
k

mi
k

" #
þ ðGT

k�1Gk�1Þ�1GT
k�1DCðtÞdk�1

�Dvk

2
666666664

3
777777775

¼ �

Pk�1DCðtÞdk�1
gk

f k � 1vk

k1;qkl � 1

2
6666664

3
7777775
:

ð6:13Þ
Since the matrix 7Ĝk is nonsingular, (6.13), (6.10), (6.5), (6.7) and fk dk kg !
0 yield

k dk k#
dk

Dqk

Dvk

��������

��������
# kk k dk�1 k# kk

dk�1

Dqk�1

Dvk�1

��������

��������
; with lim

k!1

kk ¼ 0: ð6:14Þ
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Thence, Lemma 6.2 establishes the Q-superlinear convergence of fxkg, fxk,
qk; vkg. This establishes (i) and (ii).

In order to show (iii), we first show that

q
p
� qk

me
p

mi
p

" #
�

me
k

mi
k

" #

v
p
� vk

�����������

�����������

# k1k k x
p
� xk�2 k; with lim

k!1

k1k ¼ 0: ð6:15Þ

From (6.3), (6.4), (6.5), (6.7) and (6.9) we have

Dqk

D
me
k

mi
k

" #

Dvk

�����������

�����������

# e3 k dk k þe4 k dk�1 k þe5 k dk�1 k2 ð6:16Þ

for some e3; e4; e5 $ 0. We can use k dk k# kk k dk�1 k in (6.16) to obtain

Dqk

D
me
k

mi
k

" #

Dvk

�����������

�����������

# k2k k dk k; lim
k!1

k2k ¼ 0: ð6:17Þ

This leads to

q
p
� qk

me
p

mi
p

" #
�

me
k

mi
k

" #

v
p
� vk

�����������

�����������

# lim
t!1

Xt�1

j¼k

Dqj

D
me
j

mi
j

2
4

3
5

Dvj

�������������

�������������

# lim
t!1

Xt�1

j¼k

k2j k dj�2 k

# k2k k dk�2 k ð1þ vþ v2 þ v3 þ…Þ
for some v [ ½0; 1Þ. Combining this with Lemma 6.1 yields (6.15). Using

(6.15) with the superlinear convergence of fxkg, we have, for limk!1 k3k ¼ 0,
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x
p
� xk

q
p
� qk

me
p

mi
p

" #
�

me
k

mi
k

" #

v
p
� vk

��������������

��������������

# kk k x
p
� xk�1 k þk1k k x

p
� xk�2 k

# k3k

x
p
� xk�2

q
p
� qk�2

me
p

mi
p

" #
�

me
k�2

mi
k�2

" #

v
p
� vk�2

��������������

��������������

: ð6:18Þ

To establish (iv), we consider the first equation of (6.3) with (6.5), (6.7) and

(6.9). We have

Fk

Dqk

D
me
k

mi
k

" #
2
664

3
775 ¼ � Ĉkdk þ DCðtÞdk�1

h i

Dqk

D
me
k

mi
k

" #
2
664

3
775 ¼ �ðFT

k FkÞ�1FT
k Ĉkdk þ DCðtÞdk�1
h i

:

Using k dk k# kk k dk�1 k with limk!1 kk ¼ 0 established above, we have

Dqk

D
me
k

mi
k

" #
��������

��������
# kk ðFT

kFkÞ�1FT
k Ĉk

���
���þ

ðFT
kFkÞ�1FT

kDCðtÞdk�1
���

���
k dk�1 k

2
4

3
5 dk�1k k

which, with (6.11) and Lemma 6.2, yields the Q-superlinear convergence of

fxk;qk;m
e
k;m

i
k; vkg. A

We now consider an alternative Q-superlinear convergence theorem which

establishes the necessary and sufficient condition for this rate. We first define

the following matrices which are used below:

Q̂k ¼
Ĉk 0n£1

01£n 01£1

2
4

3
5; DQðtÞ ¼ DCðtÞ 0

n£1

01£n 01£1

" #
; Fk ¼

7f k Gk

1
T 01£e

2
4

3
5

and the corresponding projection operator is given by Pk ¼ I�
FkðFT

kFkÞ�1FT
k . The superscript on the 0s indicate the dimensions.
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Theorem 6.2 Under the same assumptions as Theorem 6.1, the sequences

fxkg and fxk; vkg satisfy k dk k# kk k dk�1 k and

dk

Dvk

�����

����� # k4k
dk�1

Dvk�1

�����

�����

respectively and thereby fxkg converges Q-superlinearly if and only if

lim
k!1

Pk

C
p
� Ĉk

01£n

2
4

3
5dk

������

������
k dk k

¼ 0: ð6:19Þ

Proof. The optimality condition given by (6.3) can be rewritten using the

above matrices and (6.5), (6.7), (6.9) as

Q̂k Fk

F
T
k 0

" #
dk

�Dvk
Dqk

D
me
k

mi
k

" #
2
664

3
775þ ðFT

kFkÞ�1FT
k

DCðtÞ
01£n

" #
dk�1

2
666666664

3
777777775

¼ �
Pk

DCðtÞdk�1
01£n

" #

f k � 1vk

gk

2
6666664

3
7777775
: ð6:20Þ

Using the same arguments as in Theorem 6.1 for (6.13) and that

fk Pk � Pk�1 kg ! 0, the Q-superlinear convergence of fxkg and fxk; vkg can
be demonstrated if (6.19) is satisfied.

Suppose, conversely that k dk k# kk k dk�1 k and

dk

Dvk

�����

����� # k4k
dk�1

Dvk�1

�����

�����

respectively for the two sequences. Premultiplying the first equation of (6.20)

and using the identity

Pk

dk

Dvk

" #
¼

dk

Dvk

" #
� FkðFT

kFkÞ�1FT
k

dk

Dvk

" #

we have
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PkQ̂kPk

dk

Dvk

" #
þPkQ̂kFkðFT

kFkÞ�1FT
k

dk

Dvk

" #

¼ � Pk � Pk�1
� 	

DQðtÞ
dk�1

Dvk�1

" #
� Pk�1DQðtÞ

dk�1

Dvk�1

" #
:

Assumption 6.1 (iv, v) ensures that PkQ̂kPk

���
��� [ ð0;1Þ. Also, as

fk dk kg ! 0, f Pk � Pk�1k kg ! 0.

Using the facts that

k dk k#
dk

Dvk

�����

����� and DQðtÞ
dk

Dvk

" #
¼

DCðtÞdk�1
0

" #

and dividing the above expression by k dk�1 k and

dk�1

Dvk�1

�����
�����

respectively yields (6.19) and the result follows from Lemma 6.2. A

7 THE ALGORITHM FOR ONLY LINEAR CONSTRAINTS

In the presence of linear constraints only, the algorithm can maintain feasi-

bility at every iteration through the solution of the quadratic programming

subproblem and convexity of the feasible region. Therefore, the penalty

approach for constraints is not required. This simplifies the implementation

of the algorithm and a number of the results in Sections 4–5 involving the

vector
gðxÞ
hðxÞ

" #

benefit from the fact that

gðxkÞ
hðxkÞ

" #
¼ 0

at every iteration.

Optimal portfolio problems in finance mostly involve linear equality or

inequality constraints. This simplifies the algorithm considerably and and

makes it relatively easy to implement. In this section, we describe the algo-

rithm for linear constraints. Consider the classical mean-variance framework

for given @ [ ½0;1�
min
x

f@ðxÞ
��� x [ V

n o
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where f@ðxÞ is the quadratic objective function
f@ðxÞ ¼ �kEðrÞ; xlþ @kx � x;Cðx � xÞl;

EðrÞ [ R
n is the expected return vector of the set of investments, such as

equities, being considered with

r ¼ EðrÞ þ e

e , N ð0;CÞ is the random error, C [ R
n£n is the covariance matrix of the

returns, x [ R
n is the portfolio weights to be optimally determined, x denotes

the benchmark weights which x should follow closely, andV is the feasible set

of these weights, which includes the restrictions imposed by the investor. The

error e can be seen as either the error of the expected return from the historical

mean or the error between the actual return and its forecast. Consequently, the

covariance matrix used can be the historical covariance of the return vector or

the covariance of the return forecast errors. The latter seems to be the risk

measure more consistent with the return forecasts. As @ increases from zero,

the optimal investment reflects the efficient risk-return trade-off indicated by

this variation.

The main difficulty with the above mean variance optimization framework

is the importance of the forecast return, EðrÞ, and risk, C, estimates in the

determination of the investment strategy. Although it seems natural that these

data should be sufficiently precise for the optimal strategy to be useful, the

inherent inaccuracy of these estimates is well known in finance.

In practice, therefore, the formulation of the classical optimal portfolio

problem above is an oversimplification. Originating from rival economic

and financial theories, there exist rival return forecasts purporting to represent

the same financial system. As mentioned in Section 6.1, the problem of fore-

casting has been approached through forecast pooling by Fuhrer and Haltma-

ier (1986), Granger and Newbold (1977), Lawrence et al. (1986) and

Makridakis and Winkler (1983). The extension of pooling to optimal policy

design is often achieved using stochastic programming approaches by consid-

ering the probability of each scenario and evaluating approximate expected

values (e.g., Kall and Wallace, 1994; Pardalos and Sandstrom, 1994). An

alternative is discussed in Becker et al. (1986) where the robust pooling is

computed using a minimax approach.

In the presence of rival forecasts, the investor may also wish to take account

of all existing rival scenarios in the design of optimal policy. One strategy in

such a situation is to adopt the worst-case design problem

min
x

max
i

f
i
@ðxÞ

��� x [ V; i ¼ 1;…;m
sce

n o

where there are i ¼ 1;…;m
sce scenarios, f i@, denoting the objective for the ith

scenario. Each scenario may be related to the forecast return EðrÞ or forecast
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variance C. This is an extension of the intuitive but suboptimal approach of

naive minimax, discussed in Section 6.3.1 (Chow, 1979). The robustness of

minimax stems from its basic property: it is the best decision determined

simultaneously with the worst-case scenario, as discussed in Chapter 6. Mini-

max seeks the optimal strategy corresponding to the most adverse circum-

stance due to choice of scenario. All rival scenarios are assumed to be known.

The minimax solution clearly does not provide general insurance against the

eventuality that an unknown ðmsce þ 1Þst scenario might actually represent the

system; it is just a robust strategy against known competing ‘‘scenarios’’.

To introduce the basic terminology, let f ðxÞ : Rn ! R
n be a twice continu-

ously differentiable functions

f ðxÞ ¼

f 1@ ðxÞ
..
.

f i@ðxÞ
..
.

f
msce

@ ðxÞ

2
6666666666664

3
7777777777775

:

Let the set Enþ be given by

E
n
þ ¼ x [ R

njkx; 1xl ¼ 1; x $ 0f g
and consider the feasible set

V ¼ x [ E
n
þ
�� JTx # J

n o

where J
T
x # J is a system of linear inequalities with J a matrix of n rows.

Furthermore, we assume that V – �.

Let Cð·Þ denote the Hessian of the Lagrangian (6.2.3), with respect to x,

evaluated at ð·Þ.
Consider the pooled objective function

Vðx;qÞ ¼ kq; f ðxÞl
and its linear approximation, with respect to x, at a point xk,

V kðx;qÞ ¼ q; f ðxkÞ þ 7f ðxkÞTðx � xkÞ
� �D E

ð7:1Þ
where 7f ðxÞ [ R

n
£ m

sce
is the matrix

7f ðxÞ ¼ 7f 1@ðxÞ ..
.
… ..

.
7fm

sce

@ ðxÞ
" #

:

We shall sometimes denote f ðxÞ and 7f ðxÞ, evaluated at xk, by fk and 7fk,
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respectively. Thus, for d ¼ x � xk, (7.1) can be written as

V kðxk þ d;qÞ ¼ kq; fk þ 7f Tk dl:

The quadratic objective function used to compute the direction of progress is

given by

V kðx;qÞ þ
1

2
kx � xk; Ĉkðx � xkÞl

where the matrix Ĉk is a symmetric positive semi-definite approximation to

CðxkÞ. The direction of progress at each iteration of the algorithm is deter-

mined by the quadratic subproblem

min
x

max
q

V kðx;qÞ þ
1

2
x � xk; Ĉkðx � xkÞ
D E ��� x [ V; q [ R

m
sce

þ

� �
: ð7:2Þ

Since the minimax subproblem is more complex, we also consider the quad-

ratic programming subproblem

min
x;n[Rnþ1

nþ 1

2
x � xk; Ĉkðx � xkÞ
D E ��� x [ V; 7f Tk ðx � xkÞ þ fk # 1

ln

� �
: ð7:3Þ

The two subproblems are equivalent, but (7.3) involves fewer variables. It is

shown in Rustem (1992) that the multipliers associated with 7f Tk ðx � xkÞ þ
fk # 1ln are the values q and that the solution of either subproblem satisfies

common optimality conditions.

Let the value of ðx;q; nÞ solving (7.2) and (7.3) be denoted by ðx̂;qkþ1;

nkþ1Þ. The stepsize along ðx̂ � xkÞ is defined using the function

FðxÞ ¼ max
i[f1;2;…;msceg

f i@ðxÞ
n o

and

FkðxÞ ¼ max
i[f1;2;…;msceg

f
i
@ðxkÞ þ k7f i@ðxkÞ; x � xkl

n o
:

The stepsize strategy determines ak as the largest value of a ¼ ðaÞj,
a [ ð0; 1Þ, j ¼ 0; 1; 2;… such that xkþ1 given by

xkþ1 ¼ xk þ akðx̂ � xkÞ ð7:4Þ
satisfies the inequality

F ðxkþ1Þ �FðxkÞ # rakCðx̂Þ ð7:5aÞ
where r [ ð0; 1Þ is a given scalar and

Cðx̂Þ ¼ Fkðx̂Þ �FðxkÞ þ
1

2
ðx̂ � xkÞ; Ĉkðx̂ � xkÞ
D E

: ð7:5bÞ

DISCRETE MINIMAX ALGORITHM FOR EQUALITY AND INEQUALITY CONSTRAINED MODELS 175



The stepsize ak determined by (7.5) basically ensures that xkþ1 reduces the

objective FðxÞ and, since V is convex, remains feasible.

The Algorithm

Step 0: Given x0 [ V, and small positive numbers r;a such that r [ ð0; 1Þ,
a [ ð0; 1Þ, the initial Hessian approximation, Ĉ0, set k ¼ 0.

Step 1: Compute 7fk. Solve the quadratic subproblem (7.2) or (7.3) (choosing

(7.2) or (7.3) defines a particular algorithm) to obtain x̂;qkþ1, and the

associated multiplier vectors. In (7.3), we also compute nkþ1.

Step 2: Test for optimality. If optimality is achieved, stop. Else, go to Step 3.

Step 3: Find the smallest nonnegative integer jk such that ak ¼ a jk , with xkþ1

given by (7.4), such that the inequality (7.5) is satisfied.

Step 4: Update Ĉk to compute Ĉkþ1, set k ¼ k þ 1 and go to Step 1.

The main difference between the algorithm in this section and the general

algorithm for nonlinear constraints is that in the case of linear constraints,

feasibility is maintained throughout the algorithm. In this case, GT
k dk ¼ gk ¼

0;Pkdk ¼ dk and these can be used to simplify the results in Theorems 5.1, 6.1

and 6.2.
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Chapter 8

A continuous minimax strategy for options hedging

In this chapter, we consider how minimax can provide a robust hedging

strategy for written call options. The contingent nature of the liability behind

an option makes it important to address the management of this kind of

liability. We formulate a minimax hedging strategy that minimizes the effect

of a predefined worst-case scenario, mainly in terms of bounds on the under-

lying source of uncertainty, that is, the future price of the asset that underlies

the option. We then identify variants, including multiperiod strategies, and

discuss their performance relative to a standard strategy referred to as delta

hedging. We also look into an alternative formulation of the minimax strategy

using an evaluation of asset returns via the Capital Asset Pricing Model, or

CAPM, and discuss its performance. We present the application of minimax to

bond options and discuss the complexity involved in such an application.

Finally, we include numerical results from an algorithmic point of view to

demonstrate the performance of the minimax algorithm when applied to the

hedging problem.

1 INTRODUCTION

We present an application of continuous minimax within the context of

options hedging. An option is a contract that entitles the holder to buy or

sell a specific number of shares of a given stock, at or within a certain period

of time, for an agreed price1. The problem of hedging the risk of an option is

mainly confined to the selling of the option where the seller incurs a liability

contingent on the asset underlying the option. Because of the contingent

nature of the liability, the seller of the option has to adjust her expectation

of the magnitude of the liability, and in some cases the timing as well, and

prepare her position such that she minimizes the potential negative impact to

her of such a liability. Whereas the selling of an option is risky, with a

potential loss of possibly unlimited magnitude, the buying of an option is

mainly regarded as nonrisky in the sense that the buyer is acquiring an insur-

ance policy for which the buyer pays a price to have the opportunity to

exercise the option and benefit from it. The only risk to the buyer is the

1 The price that a buyer of an option pays is called the premium.



potential loss of the amount she paid for the option if she decides not to

exercise it.

The seller of the option can use a number of strategies to hedge the risk,

depending on her appetite for risk taking. Clearly for a risk averse seller,

finding a strategy that minimizes the potential loss in the value of her portfolio

is important. Classical hedging strategies require the seller to be active in

managing the options. We discuss a standard hedging strategy, called delta

hedging, and use it as a reference strategy for comparing the strategies we

develop in this chapter.

The minimax strategy optimizes the worst-case potential hedging error. We

present the generic minimax formulation for hedging, hereafter in this chapter

referred to as the minimax hedging strategy or minimax, and develop it into a

number of specific strategies which we call variants. Just as with any other

hedging strategy, minimax hedging is implemented over a time horizon, say, a

9-month period corresponding to the life of an option, and it may involve more

than one rebalancing2 date. At such a date, the hedge is adjusted to reflect the

hedger’s desired risk profile. At a rebalancing date, the minimax hedging

strategy is computed using the algorithm in Chapter 4 to evaluate the worst-

case potential hedging error and the corresponding solution.

In Sections 2 and 3, we give a general introduction to options and to an

option pricing model. In Section 2, we describe call options on a stock from

the point of view of the hedger who writes3 one. In Section 3, we describe an

option pricing model and a dynamic hedging strategy. In Section 4, we define

the minimax hedging strategy as described in Howe et al. (1994). In Section 5,

we present a simulation study designed to identify the properties of the

variants of minimax and to ascertain whether minimax performs best for a

set of options for which it is designed to perform best. In Section 6, we present

an empirical illustration showing the performance of minimax when real data

are used. In Sections 7 and 9, we give three extensions to the basic strategy

given in Section 4; two of these extensions, presented in Section 7, are those of

a multiperiod formulation as described in Howe et al. (1996), with the last

extension, presented in Section 9, being motivated by the CAPM as described

in Howe et al. (1998). We present simulation studies in Sections 8, 10 and 11.

In Section 12, we discuss the application of minimax to bond options. Finally,

Appendix B contains numerical results illustrating the performance of the

continuous minimax algorithm.
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NOTATION

B ¼ BðyS; tÞ call price

y
S
t stock price at time t

y
S;lower
t the lower bound on y

S
t

y
S;upper
t the upper bound on y

S
t

X exercise price

r risk-free interest rate

t current date

T expiration date

T 2 t time to maturity

s volatility

QðdÞ the cumulative normal distribution function

Dt hedging interval

N the contracted number of shares

x number of shares to hold

K transaction cost as percent of transaction volume

The subscripts:

0 time 0, the initiation date of the contract

t time t, any time such that 0 , t , T

T time T, the expiration date

i refers to stock i or option i

2 OPTIONS AND THE HEDGING PROBLEM

We apply minimax to the problem of hedging the risk of selling, or writing, a

stock option, hereafter referred to as an option. An option contract is defined

by the following: the premium B0, that is, the price paid by the buyer; the

underlying stock S; the contracted number of shares N; the date of the contract;

the expiration date; the exercise price X, that is, the price at which the offer to

buy or sell is to be made.

The two most widely traded options are called calls and puts: a call gives

the holder the right to buy a specific number of shares; a put gives the holder

the right to sell a specific number of shares. If the exercise of the option can

take place only at the expiration date, it is called a European option. If the

exercise can take place at any time on or before the exercise date, it is called an
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American option. The hedging problem described below pertains to the writ-

ing or selling of European call options. For American call options, and in the

case of the underlying stock not paying dividends, it is never optimal to

exercise an American call before the expiration date4; our analysis equally

applies.

Our analysis does not apply to put options. Although there is a certain

symmetry between puts and calls, it is not perfect. The potential profit or

loss, respectively, from buying or selling a call is unlimited whereas that

from buying or selling a put is limited. In particular, when transaction costs

are introduced, separate analyses are necessary.5

The hedging problem we consider is relevant to a writer of a European call

option who receives the call premium but incurs a potential liability in case of

exercise by the buyer at the expiration date. If the writer of the option does not

own the contracted amount of stock, the potential liability is unlimited; this is

shown by a graph of profit or loss against final stock price in Figure 2.1.

Unlimited liability occurs when, at the time of exercise, the stock price is

higher than the exercise price; a call option holder stands to gain the difference

between these prices, which could potentially be very high, while the writer

loses the difference, particularly in the situation where she does not have the

stocks to deliver and would have to acquire the stocks from the open market at

the prevailing high price.

The writer, hereafter also called the hedger, wishes to modify her exposure

to risk: she would like to avoid a potentially large loss in case the final stock

price is above the exercise price. She would hedge this risk by holding part or

all of the contracted number of shares. If she chooses to hold all of the

contracted number of shares at the time the contract was made, then she has

implemented a covered write strategy. This is a static hedging strategy where a

decision is made only at one point in time. If she chooses to hold part of the

contracted number of shares and, in particular, adjust her holding based on the

option’s ‘‘delta’’6, then she is implementing a delta hedging strategy. This is a

dynamic hedging approach where a decision, and a corresponding rebalan-

cing, is made at several points in time.

In practice, hedgers can choose from a variety of strategies ranging from ad

hoc to sophisticated ones based on option pricing theories. As hedging stra-

tegies with theoretical foundations including delta hedging are widely studied

and generally acknowledged to be efficient, we assume these are used by the
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6 The ‘‘delta’’ of an option is the marginal change in the value of the option for a marginal change

in the underlying stock’s price. This is discussed in more detail in Section 3.



hedger. We address this in Section 4 where we develop the minimax hedging

strategy: this strategy is based on the notion of a ‘‘minimax hedging error’’7.

3 THE BLACK AND SCHOLES OPTION PRICING MODEL AND

DELTA HEDGING

In a dynamic strategy the hedger modifies her position in response to move-

ments in the stock price. In this section, we present the Black and Scholes

(1973) option pricing model (BS)8. The BS model will be used in delta

hedging as well as in the minimax hedging strategy described in Section 4.

In this section, we present a method of adjusting the BS option pricing model

when transaction costs are included in the option valuation. Finally, we

discuss delta hedging.

Black and Scholes (1973) derive a formula for the value of a European call

option. The model states that at any time t, the hedger can set up a riskless

portfolio, consisting of a position in the option and a position in the stock. In

the hedging problem being considered in this chapter, the position in the

option is a written call option and the position in the stock is the amount of

stock purchased to cover the option. Since y
S
t and Bt are affected by the same

underlying source of uncertainty9, they are instantaneously perfectly corre-

lated. The model also stipulates that the hedger does not need to introduce any

cashflow into the portfolio in order to maintain the riskless nature of the

portfolio. Therefore, this riskless portfolio can also be self-financing. The

hedger can create a self-financing portfolio by financing any necessary
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Figure 2.1 Profit or loss graph at the expiration date.

7 The minimax hedging error is defined and discussed in section 4.

8 Other option pricing models, such as the model developed by Cox and Ross (1976), may be used

but this possibility is not explored here.

9 For stock options, an example of a source of uncertainty that affects both the option and the

underlying stock would be future earnings of the company.



purchases of shares of stock using sales of options. This can be expressed as

follows: let VH be the value of a ‘‘hedge’’ portfolio consisting of shares of

stock held long10 and N the contracted number of shares,

V
H ¼ xy

S
2 NB: ð3:1Þ

The dynamics of the stock price can be described by the following stochastic

differential equation:

dyS ¼ my
S

y
S
dt1 sy

S

y
S
dz ð3:2Þ

where myS is the instantaneous rate of return on the stock; syS is the volatility of

the rate of the return on the stock; dt is an increment of time; dz is an increment

of Brownian motion (see CN 1).

Assuming x ¼ xðyS; tÞ and N ¼ NðyS; tÞ, and using Ito’s formula (see CN 2),

the change in the value of the portfolio is

dV
H ¼ dxy

S
1 xdy

S
1 dxdy

S
2 ½dNB1 NdB1 dNdB� ð3:3Þ

or

dV
H ¼ xdy

S
2 NdB1 ½dx�½yS 1 dy

S�2 ½dN�½B1 dB�: ð3:4Þ
If the hedge portfolio is self-financing, then the sum of the third and fourth

terms on the right hand side of (3.4) equals zero, that is, ½dx�½yS 1 dy
S�2

½dN�½B1 dB� ¼ 0 because all purchases or sales of assets are made at ‘‘new

end of period prices’’. We now show that such a portfolio can also be riskless.

The dynamics of the option price can be described by a stochastic differ-

ential equation similar to (3.2) given by

dB ¼ mB
Bdt1 sB

Bdz ð3:5Þ
where mB is the instantaneous rate of return on the option; sB is the volatility

of the rate of the return on the option.

A key assumption of Black and Scholes is that the option price is solely

determined by the underlying stock price and time. Therefore, with the depen-

dency of the option price on the stock price, (3.5) can be expressed as

dB ¼ mySy
2B

2y
1

2B

2t
1

1
2
ðsysÞ2ðySÞ2 22B

2ðySÞ2
" #

dt1 sySyS
2B

2yS
dz: ð3:6Þ

Thus, (3.4) is written as

dV
H ¼ x myS

y
S
dt1 syS

y dz
h i

2 N mB
B dt1 sB

B dz
h i

: ð3:7Þ
In order to construct a riskless portfolio, the dz terms in (3.7) must cancel out.

This can be achieved by choosing x as follows:
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x ¼ N
2B

2yS
: ð3:8Þ

Therefore, if we have N call options, we should choose N 2B
2yS

shares to immu-

nize the risk of writing the calls. In other words, if we sell N call options, we

should purchase N 2B
2yS

shares to make the portfolio riskless. However, the

portfolio is only instantaneously riskless. In order to maintain a riskless port-

folio, the writer has to rebalance continuously. 2B=2yS is called the delta and

the strategy for maintaining a riskless portfolio using it is called delta hedging.

If the portfolio is riskless, then the instantaneous return is r. Substituting (3.6)

and (3.8) into (3.7) leads to the Black and Scholes partial differential equation:

1

2
ðsy

SÞ2ðySÞ2 22B

2ðySÞ2 1 ryS
2B

2yS
2 rB1

2B

2t
¼ 0: ð3:9Þ

The boundary conditions and initial conditions are

BðyS;TÞ ¼ maxðyS 2 X; 0Þ

BðyS; tÞ # y
S

;t

Bð0; tÞ ¼ 0 ;t:

The solution to this system is the Black and Scholes formula.

The Black and Scholes Formula

B ¼ y
SQðd1Þ2 Xe

2rðT2tÞQðd2Þ ð3:10Þ

d1 ¼
lnðys=xÞ1 ðr 1 ðs2

=2ÞÞðT 2 tÞ
s

ffiffiffiffiffiffiffi
T 2 t

p ð3:11Þ

d2 ¼
lnðyS=XÞ1 ðr 2 ðs2

=2ÞÞðT 2 tÞ
s

ffiffiffiffiffiffiffi
T 2 t

p ¼ d1 2 s
ffiffiffiffiffiffiffi
T 2 t

p
ð3:12Þ

where QðdÞ is the cumulative normal distribution function (see CN 3), that is,

QðdÞ ¼
Zd

21

1ffiffiffiffi
2p

p e
2z

2
=2
dz: ð3:13Þ

The above analysis also assumes nonsatiation, that is, investors prefer more

wealth to less, and that the option is neither a dominant11 nor a dominated

A CONTINUOUS MINIMAX STRATEGY FOR OPTIONS HEDGING 185

11 From Merton (1973), Security A is dominant over Security B if, on some known date in the

future, the return on A will exceed the return on B for some possible states of the world, and will

be at least as large as on B, in all possible states of the world.



security. Explicit assumptions about equilibrium or about investors’ prefer-

ences are not necessary. The fundamental requirement is the nonexistence of

arbitrage opportunities or opportunities that would enable market participants

to generate riskless profits. In this sense, the above result is preference inde-

pendent because all assets are perfect substitutes for each other instanta-

neously and the strategy for maintaining a riskless portfolio is independent

of the hedger’s attitude to risk.

The BS option pricing model does not include transaction costs. Other

models incorporate transaction costs that result in modified option prices

compared to the prices from the BS model. Leland (1985) develops an option

pricing model that includes transaction costs12 and this is extended by

Neuhaus (1990). In Leland’s (1985) model, the hedging errors, including

transaction costs, will almost surely approach zero as Dt ! 0. Leland

(1985) and Neuhaus (1990) both incorporate transaction costs in their models

by modifying the volatility. We present below the modification by Leland

(1985). This is more closely related to discrete delta hedging than is the

Neuhaus (1990) modification.

The revised volatility ŝ is given by

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

2

p

K

s
ffiffiffi
Dt

p
� �s

ð3:14Þ

where K13 is the roundtrip14 transaction cost expressed as a proportion of

trading volume.

We replace s by ŝ in the BS option pricing model when we include

transaction costs in the analysis. We define K ¼ 2K̂, where K̂ is half the

roundtrip transaction cost.

Delta, D, is the change in option price per unit change in stock price, that is

D ¼ 2B

2yS
: ð3:15Þ

Using the BS option pricing model (3.10), delta is given analytically by

D ¼ Qðd1Þ: ð3:16Þ
As discussed above, Black and Scholes (1973) argue that the writer can realize

a riskless portfolio by delta hedging; the writer computes the delta of an option
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12 Other option pricing models with transaction costs have been developed by other authors. We

used Leland’s (1985) model because it is applicable to discrete rebalancing and it fits in the

framework of the minimax hedging strategy. See Boyle and Emanuel (1980), Gilster and Lee

(1984), Panas (1993), Neuhaus (1990), and Davis and Norman (1990).

13 In Leland (1985), transaction costs varied from K ¼ 0:0 to K ¼ 0:04.

14 From Rosenberg (1993), a roundtrip trade is defined as any complete transaction made up of a

buy followed by a sale of the same stock or vice versa.



and bases the number of shares to hold on this value. For N, the contracted

number of shares, and xt, the number of shares to hold at any time, under delta

hedging, we have

xt ¼ DtN: ð3:17Þ
The hedger must rebalance continuously to keep the portfolio riskless. This

need arises from the fact that delta changes with time, and the hedge portfolio

is only instantaneously riskless. Such a portfolio strategy is called a ‘‘delta-

neutral’’ strategy. However, because she cannot rebalance continuously, she

uses discrete delta hedging where she rebalances at discrete intervals of time.

With discrete delta hedging, she incurs a hedging error which, for an interval

of time, is the net position of a hedge portfolio brought about by changes in ySt .

The hedging error (HE) for a portfolio of a written call option and stock held

long, for the interval t to t1 1 is

HE ¼ NðBt 2 Bt11Þ1 xtðySt11 2 y
S
t Þ: ð3:18Þ

Large hedging errors tend to increase the cost of rebalancing the hedge.

4 MINIMAX HEDGING STRATEGY

In this section, we present a strategy, based on Howe et al. (1994), to solve the

hedging problem. This strategy is based on the concept of a worst-case

scenario, which the hedger specifies in terms of movements in stock price,

and it finds a hedge that minimizes the effect of such a scenario15. In Section

4.1, we formulate the minimax problem. In Section 4.2, we present the worst-

case scenario and its two variants. In Section 4.3, we present the hedging error

which is the underlying cost to be minimized. In Section 4.4, we present the

objective function. In Section 4.5, we define the minimax hedging error. In

Section 4.6, we discuss the treatment of transaction costs. In Section 4.7, we

present the variants of the minimax hedging strategy. In Section 4.8, we

discuss the minimax solution to the problem given in Section 4.1.

4.1 Minimax Problem Formulation

The problem that minimax addresses is that of minimizing an objective func-

tion under a worst-case scenario. In the context of the hedging problem, the
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returns is rarely satisfied. The effect of volatility variations is frequently as bad, if not worse,

than that of the variations of the underlying variable and neither delta hedging nor the minimax

hedging approach in this chapter can hedge against these variations. We address this problem in

Section 7.



minimizing variable is xt and the maximizing variable is ySt , which is allowed

to take any value within predefined bounds.

The minimax problem is

min
xt

max
yS
t1 1

f ðxt; ySt11Þ ð4:1Þ

subject to

yS;lowert11 # ySt11 # y
S;upper
t11 ð4:2Þ

where f ðxt; ySt11Þ is the objective function, presented in Section 4.4, and

yS;lowert11 # y
S
t11 # y

S;upper
t11 is either the range defined under Worst Case 1,

presented in Section 4.2.1, or under Worst Case 2, presented in Section

4.2.2.

There are no constraints on xt, the number of shares to be held at time t:

nonnegative xt implies a long position in shares16; negative xt implies a short

position in shares17.

4.2 The Worst-case Scenario

4.2.1 Worst Case 1

In Worst Case 1, the hedger defines the worst case over extreme movements

in stock price. The range of ySt11 has upper and lower bounds that describe the

95% confidence interval18 of all possible values of the future stock price, that

is, two standard deviations about the expected value of the stock price at time

t1 1. This 95% confidence interval is based on an estimate of the volatility of

the stock price and on the assumption that the stock price follows a lognormal

distribution function. Worst Case 1 is hereafter referred to as the 95%-level.

However, it is not always the case that the worst case corresponds to the edges

of this interval19.

4.2.2 Worst Case 2

We define the state of the option as one of three possibilities: in-the-money20,
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16 The hedger bought the shares.

17 The hedger sold the shares. This situation is possible in the minimax context.

18 We consider the 95% confidence interval as a reasonable range to consider under normal

market conditions. Under abnormal market conditions, 99% confidence interval may be

more appropriate.

19 In examples at the end of the chapter, it is shown that the worst case may indeed occur in the

middle of these ranges.

20 If the current stock price is greater than the exercise price, then the option is said to be in-the-

money.



at-the-money21, and out-of-the-money22. Most of the business in exchange

traded options is with respect to options that are at-the-money. The prices

of the underlying stocks of these options usually oscillate about the exercise

price23. That is, they move from sometimes being in-the-money to sometimes

being out-of-the-money. In this scenario we focus on movements of the stock

price which may result in a switch in the state of the option, that is, from being

in-the-money at time t, to being out-of-the-money at time t1 1, and vice

versa. This switch in the state of the option means that there is the danger

of a higher hedging error being incurred in the interval between tand t1 1. In

contrast to Worst Case 1, we define the range of ySt11 as the range whose upper

and lower bounds describe the possible values of the future stock price within

one and three standard deviations (sd) from the expected value of the stock

price at time t1 1, in the direction of the exercise price X. This means that if

y
S
t . X, the relevant range would be on the left side of the distribution of future

stock price, with a lower bound of 3 sd and an upper bound of 1 sd; if ySt # X,

the relevant range would be on the right side, with a lower bound of 1 sd and

an upper bound of 3 sd. Worst Case 2 is hereafter referred to as the Abrupt

Change.

4.3 The Hedging Error

From the discussion on delta hedging in Section 3, the hedging error is given

by (3.18). When actual values of Bt, y
S
t , Bt11 and y

S
t11 are substituted into

(3.18), we have the actual hedging error under delta hedging. When actual

values of Bt and y
S
t and potential values of Bt11 and y

S
t11 are substituted into

(3.18), we have the potential hedging error under delta hedging. The latter is

the basis of the objective function in the minimax hedging strategy. In mini-

max, potential y
S
t11 is taken from a predefined range that maximizes the

objective function; potential Bt11 is the value of the call option based on

the pricing model24 given potential ySt11, that is, potential Bt11 ¼ Bt11ðySt11Þ.
The minimax strategy minimizes the maximum potential hedging error plus
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21 If the current stock price is equal to the exercise price, then the option is said to be at-the-

money.

22 If the current stock price is lower than the exercise price, then the option is said to be out-of-the-

money.

23 This is the region of greatest elasticity (curvature) and therefore the area about which market

makers are mostly concerned. Formally, we are talking about the effects of the option’s

‘‘gamma’’, the change in the option’s delta for a unit change in the stock price.

24 We use the Black and Scholes (1973) option pricing model, (3.10), with a modified volatility,

(3.14).



interest payments on borrowed money25. In Section 4.5, we define the mini-

max hedging error and give the definition of actual hedging error and potential

hedging error in the context of minimax.

4.4 The Objective Function

In any dynamic hedging strategy, hedging errors are incurred; in order to

correct for these errors, the hedge is rebalanced, with the cost of rebalancing

being added to the cost of hedging. At time t, the hedger can aim to minimize

the potential hedging error in the period between t and t1 1. Her decision at

time t on xt, the number of shares to hold, affects the actual hedging error

between t and t1 1. The minimax hedging strategy aims to minimize the

maximum potential hedging error between t and t1 1. The objective function

used is thus the potential hedging error. In discrete delta hedging, where

rebalancing is done at discrete intervals, we expect that the desirable proper-

ties of delta hedging given in Section 3 will not be observed consistently in

time. The hedger adopts a cautious strategy by minimizing the maximum

potential hedging error plus interest payments on borrowed money, should

the worst case occur. If the worst case does occur, she has effectively mini-

mized its worst effect. If it does not, she will incur a hedging error more

favorable than the worst case due to the noninferiority of the minimax solution

(see Theorem 1.3.1).

This direct way of minimizing the potential hedging error is based on the

no-arbitrage argument of Merton (1973) where a portfolio containing an

option is considered. The underlying stock and a riskless bond (i.e., riskless

in the sense of default) are suitably chosen such that the aggregate investment

in the portfolio is zero. Merton (1973) demonstrates that there is a strategy of

finding the mix of option, stock and bond that would ensure that the return on

the portfolio would be nonstochastic. Because of the condition of zero aggre-

gate investment, in order to avoid arbitrage profits, the return on this portfolio

must be zero. In the case of a portfolio of written call options, underlying stock

and bonds, given Merton’s (1973) assumptions, the return on this particular

portfolio must be zero. We consider such a portfolio and we call it the ‘‘ideal

portfolio’’. This ‘‘ideal portfolio’’ is the benchmark used in the definition of the

objective function. We derive basic properties of the minimax hedging strat-

egy on the basis of a self-financing portfolio; conditional on these results, we

add the effect of costs. We return to this when we discuss (4.6) below.

We define U1 : R
k
£R

k ! R
1, U2 : R

k ! R
k, U : Rk

£R
k ! R

k11,

xt [ R
k, ySt11 [ R

k and Q is a ðk1 1Þ £ ðk1 1Þ positive definite weighting

matrix. Ud
[ R

k11 is the vector of desired values for the potential hedging
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error and the transaction cost terms: we use a desired value of zero, that is, the

desired hedging error is zero26 and the desired transaction cost is zero.

The objective function is given by

f ðxt;ySt11Þ ¼ 1

2
U 2 Ud

;QðU 2 U
dÞ

D E
ð4:3Þ

where

xt ¼

x1;t

..

.

xk;t

2
66664

3
77775 and y

S
t11 ¼

y
S
1;t11

..

.

ySk;t11

2
66664

3
77775 ð4:4Þ

Uðxt; ySt11Þ ¼
U1ðxt; ySt11Þ
::::::::::::::

U2ðxtÞ

2
6664

3
7775 and U

d ¼
Ud

1

:::::

Ud
2

2
6664

3
7775 ¼

0

:::::

0

2
664

3
775 ð4:5Þ

U1ðxt; ySt11Þ ¼
Xk

i¼1

xi;tðySi;t11 2 ySt Þ1
Xk

i¼1

Ni Bi;t 2 Bi;t11ðySt11Þ
� �

1

Xk

i¼1

2ðxi;t 2 xi;t21ÞySi;t 1 Ci;t21ð11 rDtÞ
� �

rDt ð4:6Þ

where

Ci;t21 ¼ Ci;t22ð11 rDtÞ2 ðxi;t21 2 xi;t22ÞySi;t21 2 K̂ ðxi;t21 2 xi;t22ÞySt21

���
���:

ð4:7Þ

U2ðxtÞ ¼

U1;2ðx1;tÞ
..
.

Uk;2ðxk;tÞ

2
66664

3
77775 ð4:8Þ

where

Ui;2ðxi;tÞ ¼ K̂ xi;t 2 xi;t21

� �
y
S
i;t: ð4:9Þ

We identify all the variables in (4.4)–(4.9) and then give the economic

interpretation of (4.6). Ci;t21 is the cumulative value of cash inflow minus

cash outflow at time t2 1. Ci;t21ð11 rDtÞ is Ci;t21 with interest payments.
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zero because in delta hedging, the expected value of the hedging error is zero.



The first term of (4.7) is the cumulative value of cash inflow minus cash

outflow from the previous period with interest payments. The second term

is a cash outflow if the xi;t21 . xi;t22; otherwise, it is a cash inflow. The third

term is always a cash outflow. We note that Ci;t21 will normally be a negative

number. At time t, Ci;t21 is a constant: all the variables in (4.7) have actual

values. We also note that the transaction cost term on (4.7) is the cost from the

previous period and that this term, along with the other terms in (4.7), does not

affect the optimization.

Because transaction costs for the current period introduce nondifferentia-

bility into the equation, they do enter the objective function directly as part of

U1. Instead, we introduce a penalty term, Ui;2 to represent a penalty for

transaction costs for each option i at time t. The treatment of transaction

costs is discussed in detail in Section 4.6.

In the weighting matrix Q, we use diagonal weights qi, i ¼ 1;…; k1 1,

which are specified by the hedger, represent her preferences: with a high q1
she prefers to minimize the potential hedging error that may be incurred from

time t to time t1 1; with a high qi, i ¼ 2;…; k1 1, she prefers to minimize the

penalty term.

For each option i ¼ 1;…; k, Bi;t11ðySi;t11Þ is determined using (3.10), (3.11)

and (3.12) with the modified volatility estimate (3.14).

The economic interpretation of (4.6) is that U1 represents the potential

hedging error, including interest payments on borrowed money, between

time tand time t1 1. It comprises the potential shift in the stock position,

the potential shift in the option position and the potential interest payment.

The first two terms of (4.6) give the return on a portfolio of written call options

and underlying stocks. The third term represents the opportunity cost of

money, that is, the interest payments on borrowed money, because the port-

folio is not self-financing.

We wish to find the mix of options and stocks that minimizes the deviation

of the return on the portfolio, including opportunity cost, from the return on

the ‘‘ideal portfolio’’, the value of which is zero, based on Merton’s (1973)

conditions of zero aggregate investment and no-arbitrage.

4.5 The Minimax Hedging Error

In minimax, we distinguish actual from potential hedging error. Actual

hedging error, inclusive of interest payments on borrowed money, is calcu-

lated when actual Bt, y
S
t , Bt11 and y

S
t11 are used in (4.6). Potential hedging

error, including interest payments on borrowed money, is calculated when

actual values of Bt and y
S
t and potential values of Bt11 and y

S
t11 are used in

(4.6). Potential ySt11 is taken from a predefined range that maximizes the
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objective function. Potential Bt11 is the value of the call option based on the

pricing model given potential ySt11, that is, potential Bt11 ¼ Bt11ðySt11Þ.
We define the minimax hedging error at time t as

minimax hedging error ¼ U1ðxpt ; yS
p

t11Þ: ð4:10Þ
The minimax hedging error is the worst-case potential hedging error, inclusive

of interest payments on borrowed money, given the solution x
p

t and y
S
p

t11.

4.6 Transaction Costs

In this section, we discuss the treatment of transaction costs in the minimax

hedging strategy. The roundtrip transaction cost K is used in valuing the

option and K̂, with K̂ ¼ 1=2K, is used as part of the cumulative value of

cash inflow minus cash outflow and as part of the penalty term in the objective

function. We first consider transaction costs as part of the cumulative value of

cash inflow minus cash outflow. Subsequently we formulate transaction costs

as part of the objective function.

The performance of delta hedging and the variants of minimax is measured

by the final cumulative value of cash inflow minus cash outflow at the maturity

of the option. After finding xt by solving the minimax problem using (4.4)–

(4.9), we can evaluate the actual cumulative value of cash inflow minus cash

outflow at time t. This is given by

Ci;t ¼ Ci;t21ð11 rDtÞ2 ðxi;t 2 xi;t21ÞySi;t 2 K̂ ðxi;t 2 xi;t21ÞySi;t
���

���: ð4:11Þ
The last term is the transaction cost at time t: this is always incurred and it is

always a cash outflow. At time t ¼ 0, the actual cumulative value of cash

inflowminus cash outflow includes the option premiumwhich is a cash inflow.

This is given by

Ci;0 ¼ 2xi;0y
S
i;0 1 NBi;0 2 K̂ xi;0y

S
i;0

���
���: ð4:12Þ

In all variants of the minimax hedging strategy we use (4.11) and (4.12) to

compute the actual cumulative value of cash inflow minus cash outflow.

In the objective function, from (4.4), (4.8) and (4.9), the transaction cost

term (TC) can be expressed as the penalty term

TC ¼
Xk

i¼1

qiðUi;2 2 U
d
i;2Þ2 ¼

Xk

i¼1

qi K̂ðxi;t 2 xi;t21ÞySi;t
� �

2
: ð4:13Þ

The right equality follows as Ud
2 ¼ 0 holds. The effect of this term on the

solution is dependent on the level of transaction cost K̂ and on the weights qi.

We adopt below a uniform weighting system: qi ¼ q, i ¼ 1;…; k, where q is a

given constant.
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For low values of K̂, a high value of q is needed so that the transaction cost

term TC is not dominated by other terms in the objective function. Conversely,

for high values of K̂, a low value of q is needed to ensure that TC does not

dominate the objective function. For the simulation and empirical illustration

below, the roundtrip transaction cost is set27 to K ¼ 0:02 and q ¼ 100.

4.7 The Variants of the Minimax Hedging Strategy

We consider delta hedging28 and five variants of minimax: A, B, B*, C, and D,

where each variant has a specific objective function and definition of worst

case. Transaction costs are included when computing the cumulative value of

cash inflow minus cash outflow for all the strategies (Table 4.7).

B* is a weighted version of B in which the minimax recommendation on the

number of shares to hold is weighted by a factor ranging from 0 to 1 repre-

senting the hedger’s assessment of the information contained in changes in the

underlying stock29.

4.8 The Minimax Solution

The solution to (4.1)–(4.2) is obtained using the algorithm discussed in Chap-

ter 4. The algorithm is based on generating successive directions of descent for
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27 This value is based on simulation results, reported in Howe (1994), showing the variation of K

with q.

28 Delta with gamma hedging is not considered here.

29 This is a heuristic method of adjusting the hedge recommendations. The method is given in

Appendix A.

Table 4.7 The hedging strategies to be used in the empirical illustration and simula-

tion study.

Code Strategy Objective function Condition ofySt11 Transaction costs

in objective

function

Delta Delta neutrality n.a No

A Minimax Potential hedging error 95% level No

B Minimax Potential hedging error Abrupt change No

B* (Described in the next paragraph)

C As A As A As A Yes

D As B As B As B Yes



f ðx; ySÞ in x, while ensuring that the direction chosen maximizes f ðx; ySÞ with
respect to y

S. The direction chosen is therefore one that iteratively progresses

towards the minimax solution.

Because the hedge recommendation under minimax is different from the

hedge recommendation under delta hedging, following Black and Scholes

(1973), the hedge recommendation under minimax is suboptimal. In the mini-

max hedging strategy, for any fixed xt, we determine ySt11, from the predefined

range y
S;lower
t11 # y

S
t11 # y

S;upper
t11 , that maximizes the hedging error. We can,

therefore, identify theoretically all the maxima corresponding to all possible

values of xt. The strategy calculates xt that minimizes over these maxima.

Although the number of shares xt introduces some risk into the portfolio

because it is not the same as the hedge recommendation under delta hedging,

xt ensures that if the actual y
S
t11, as opposed to the minimax value, falls within

the range yS;lowert11 # y
S
t11 # y

S;upper
t11 , the absolute value of the actual hedging

error, inclusive of interest payments on borrowed money, will not be worse

(higher) than the absolute value of the minimax hedging error. This is the

minimax robustness property discussed in Theorem 1.3.1. The xt value thus

computed results in a robust strategy that is noninferior in performance for any

stock price within the predefined range.

Given the 95% level as the definition of the worst-case scenario,

y
S;lower
t11 # ySt11 # y

S;upper
t11 , the minimax algorithm ensures that either

† xt is chosen such that, for extreme point maximizers, the objective function

value is the same for all those upper and lower bounds corresponding to

those maximizers, or

† the objective function value corresponds to a worst-case price that is in the

middle of the range.

Given the abrupt change as the definition of the worst-case scenario,

yS;lowert11 # y
S
t11 # y

S;upper
t11 , the minimax algorithm ensures that either

† xt is chosen such that, for extreme point maximizers, the objective function

value for the upper limit is as close as possible to the value for the lower

limit, or

† the objective function value corresponds to a worst-case price that is in the

middle of the range.

In all cases, it can be shown that the chosen xt places an upper bound on the

absolute value of the hedging error that can be incurred for any price in the

given range.
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5 SIMULATION

We describe the simulation of the performance of the minimax variants

against that of delta hedging when they are used to hedge the risk of writing

a European call option. Options with their underlying stock series are gener-

ated and then categorized under five general groups of options. The objective

of the simulation is to identify which variants, for which groups of options,

outperform delta hedging. Thus, we aim to establish the characteristics of

options, in terms of crossovers and abrupt changes in the price of the under-

lying stock, for which the different variants of minimax are particularly suited.

5.1 Generation of Simulation Data

For the generation of the full data set for the simulation, five volatility levels

were used, namely, 0.20, 0.30, 0.40, 0.50 and 0.60. Holding the volatility

constant, 1250 sets of option and stock time series were generated which

were then screened based on a selection procedure described below. Selection

is based on whether a particular set of option and stock time series falls within

any of the specified groups identified below.

For all sets having the same volatility, each set is placed into one of five

option groups. These groups are defined based on two events: the crossover

and the abrupt change (Table 5.1a).

† A crossover is an event such that ySt # X and y
S
t11 . X.

† An abrupt change is an event such that ySt11 [ Abrupt Change.

The allocation of a set (an option/stock time series) to any of the above groups

is determined by the distribution of the total number of crossovers per series,

the distribution of the total number of abrupt changes per series and the

distribution of the total number of simultaneous crossovers and abrupt changes

per series.
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Table 5.1a The idealized groups.

Crossovers Abrupt changes

Group 1 None None

Group 2 Several None

Group 3 None Several

Group 4 Several Several

Group 5 Few Few



Allocating a Stock Price Series to a Group

Given the exercise price and the Abrupt Change range defined in Section 4, the

following numbers are known for each stock series:

JX total number of crossovers

JAC total number of abrupt changes

JX&AC total number of simultaneous crossovers and abrupt changes

The distributions of JX , JAC and JX&AC, each based on a sample of 1250

stock series (given a constant volatility s) are ascertained. These distributions

are used to allocate a time series of a specified volatility into one of the five

option groups. Given the means, mJX
, mJAC

, mJX&AC
, and standard deviations,

sJX
, sJAC

, sJX&AC
, of these distributions, a stock price series is allocated to a

group if it has the properties given below for that group:

Group 1:

JX , mJX
2 asJX

; JAC , mJAC
2 bsJAC

and JX&AC , mJX&AC
2 csJX&AC

Group 2:

JX . mJX
1 asJX

; JAC , mJAC
2 bsJAC

and JX&AC , mJX&AC
2 csJX&AC

Group 3:

JX , mJX
2 asJX

; JAC . mJAC
1 bsJAC

and JX&AC , mJX&AC
2 csJX&AC

Group 4:

JX&AC . mJX&AC
1 csJX&AC

Group 5:

mJX
2 asJX

# JX # mJX
1 asJX

and mJAC
2 bsJAC

# JAC # mJAC
1 bsJAC

In the simulation, the coefficients of the standard deviations are: a ¼ 1, b ¼ 1

and c ¼ 2. These values are chosen to ensure that the groups are sufficiently

differentiated and that there are a large number of elements within a group. We

set c ¼ 2 to ensure that all groups, except Group 4, have a low incidence of

simultaneous crossovers and abrupt changes. Each group has a total of 250

options, representing 50 options for each of the five volatility levels. We refer

to one simulation run for one option as a replication. A total of 1250 replica-

tions were done in the simulation.

In Table 5.1b, very roughly the allocation has generated actual groups of

time series of the underlying stock with the following characteristics.
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5.2 Setting Up and Winding Down the Hedge

In this section, we discuss the mechanics of hedging, from setting up to wind-

ing down of the hedge. We consider delta and five minimax hedging strate-

gies. These strategies involve rebalancing the hedge at uniform intervals of

time; in the simulation, the interval is 1 day. Daily data include the stock price,

the option price, the risk-free interest rate, the time to maturity and the vola-

tility. The risk-free interest rate30 is preset to 0.10. Dividends are excluded

from the analysis and N, the number of contracted shares, is 100.

At time 0, each strategy experiment is assumed to hold the same number of

shares (x0) based on delta, and the same initial cumulative value of cash inflow

minus cash outflow given by (4.12). Every day through to the maturity date, the

hedge is rebalanced according to the strategies’ recommendation. The trajectory

of the number of shares held at time t, xt, varies with the hedging strategy used.

The actual cumulative value of cash inflowminus cash outflow at time t is given

by (4.11). At time T, if the holder does not exercise her option to buy the shares,

each strategy disposes of its portfolio in the sameway: selling any shares held, or

buying any shares sold short, at time T 2 1 at yST .

5.3 Summary of Simulation Results

We present the results of this simulation mainly in terms of the performance

and the relative performance of the minimax strategy. We define the perfor-

mance of a strategy31 as the final cumulative value32 of cash inflow minus cash

outflow in using that strategy on an option, standardized33 as a percentage of
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30 This is the continuous rate.

31 A strategy can either be a minimax variant or delta hedging.

32 This is calculated after winding down the hedge.

33 Following Samuelson (1965), all cells in Table 5.5.1 have been standardized by dividing the

original profit by the exercise price. In the simulation study, we set the exercise price at

X ¼ 1000; this makes the original profit effectively standardized. In the empirical study,

because of the differences in exercise prices, the standardization becomes relevant.

Table 5.1b The actual groups.

Crossovers Abrupt changes

Group 1 Very few Very few

Group 2 Several Very few

Group 3 Very few Several

Group 4 Several Several

Group 5 Few Few



the notional34 contract value of that option. We define relative performance of

a minimax variant as the performance of that variant minus the performance of

delta hedging (DH). A variant is said below to outperform DH if its perfor-

mance is higher than that of DH and, for any group of options, the difference

for that group is significant at the 1% level.

5.3.1 Performance of Delta Hedging and Minimax

The performance of a strategy is averaged over all options in a group. Each

cell in the table gives the performance of a particular strategy, and the relative

performance of that strategy. Table 5.3.1 summarizing the simulation results is

accompanied by Figure 5.3.1 which gives a graphical representation of the

relative performance of the minimax variants. The horizontal axis gives the

average distance of a particular group from the exercise price. Each group

consists of 250 options or stock price series, corresponding to 250 replications;

each stock price series consists of 190 daily prices, corresponding to 38 weeks,
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34 The notional value of the contract is the number of contracted shares multiplied by the exercise

price. The total is the summation over all notional values.

Figure 5.3.1 Relationship between relative performance and average distance from

the exercise price.



with 5 trading days per week, for a 9-month option. The average squared

deviation from the exercise price over 47,500 ð¼ 190 £ 250Þ prices was calcu-
lated; the square root gives the ‘‘average distance from the exercise price’’ for

that group. Hence, we have

the average distance from the exercise price ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X250

i¼1

X190

l¼1

ðyS;il 2 XÞ2

190 £ 250

vuuuut ð5:1Þ
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Table 5.3.1 Performance and relative performance of the different strategies. Units:

percentage points of final cumulative value of cash inflow minus cash outflow divided

by the notional value of the contract

Delta

hedging

A B B* C D

Potential hedge error As B As A As B

95% level A.C. Weighted With TC With TC

Group 1 (no crossovers, no abrupt changes)

Average profit 0.7 0.8 20.3 5.4 6.8 6.9

Average profit

over DH

0.0 0.1 21.0 4.7 6.1 6.2

Group 2 (crossovers only)

Average profit 0.7 0.7 21.2 6.2 7.7 8.1

Average profit

over DH

0.0 0.0 21.9 5.5 7.0 7.4

Group 3 (abrupt changes only)

Average profit 23.3 23.3 25.4 22.6 20.5 21.4

Average profit

over DH

0.0 0.0 22.1 0.7 2.8 1.9

Group 4 (crossovers and abrupt changes)

Average profit 20.8 20.6 2.4 8.1 7.7 9.9

Average profit

over DH

0.0 0.2 3.2 8.9 8.5 10.7

Group 5 (general case)

Average profit 24.0 24.0 25.1 20.7 2.0 1.4

Average profit

over DH

0.0 0.0 21.1 3.3 6.0 5.4



where i refers to a particular time series in a group and l refers to a particular

price. The ‘‘average distance from the exercise price’’ represents the degree of

moneyness35 of the options in that group.

In Figure 5.3.1, the two groups closest to the origin consist of options which

are at-the-money. The group farthest from the origin has the largest distance

from the exercise price which indicates that it consists of options which are

either deep-in-the-money or deep-out-of-the-money.

Hypothesis testing has shown that variants B*, C and D are robust: they

perform better than delta hedging for the group for which they are designed to

perform best and in general they do not perform worse than delta hedging.

Variants B*, C and D are strategies designed to constrain transaction costs:

variants C and D both have a transaction cost term in their objective function

which is then minimized; Variant B* uses a heuristic method of constraining

transaction costs based on short-term trends and distance from the exercise

price.

Statistical hypothesis testing has also shown that:

1. Variants B*, C and D perform better than delta hedging for at-the-money

options; in particular, when there are crossovers as well as abrupt changes.

2. The abrupt change variants, B and D, are not suitable for deeply-in-the-

money or deeply-out-of-the-money options even if the corresponding price

series are characterized by a large number of abrupt changes.

3. The abrupt change variants, B and D, are more suitable than their 95% level

counterparts, A and C, for at-the-money options when the price series are

characterized by a large number of abrupt changes.

4. The transaction-costs variants, C and D, perform better than their no-trans-

action-costs counterparts, A and B. The inclusion of a transaction cost term

in the objective functions of variants C and D provides more cautious hedge

recommendations and this helps constrain trading costs.

5. The weighted minimax variant B* performs better than its nonweighted

variant, B. This implies that the proposed weighting system helps provide

hedge recommendations that are conditioned by recent stock price levels.

This conditioning leads to cautious trading and helps to constrain trading

costs.

In the next section, we present the high performing variants of minimax. These

are C, D and B*, the variants that explicitly constrained transaction costs.
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5.3.2 The High Performing Variants of Minimax

In Figures 5.3.2.1–5.3.2.3, respectively, we show the variation with volatility

in the relative performance of variants C, D and B*. Variant C uses the 95%

level to define the worst-case scenario. Variant D uses the abrupt change to

define its worst-case scenario. Variant B* uses the abrupt change to define its

worst-case scenario; it also uses a heuristic weighting system to give weighted

hedge recommendations. In the figures, for each of the five volatility levels, a

regression line has been fitted showing the relationship between relative

performance and degree of moneyness which is represented by the average

distance from the exercise price. All five regression lines have a negative

slope. The analysis also shows that the higher the volatility, the more robust

the performance of the minimax strategy. This is exhibited in the figures by the

decreasing slope with increasing volatility. For volatility levels 0.2 and 0.3,

the performances of the three variants are significantly better than that of delta

hedging for distances relatively close to the exercise price. For volatility levels

0.5 and 0.6, the performances are significantly better than that of delta hedging

for a wider range of distances from the exercise price.

Comparing the figures, we see a trend towards increasing parallelism

between the regression lines from Figure 5.3.2.1 to Figure 5.3.2.3. This can
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Figure 5.3.2.1 Performance of Variant C for different levels of sigma. C is the

objective function with penalty for transaction costs, 95% Level.
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Figure 5.3.2.2 Performance of Variant D for different levels of sigma. D is the

objective function with penalty for transaction costs, Abrupt Change.

Figure 5.3.2.3 Performance of Variant B* for different levels of sigma. B* is the

objective function without a penalty term for transaction costs, Abrupt Change,

weighted.



be interpreted as follows: in Figure 5.3.2.3, the lines have a relatively high

degree of parallelism which shows that the higher the volatility, the better the

performance; however, variant B* starts to perform badly when the lines cross

the x-axis. The point of intersection with the x-axis for each of the five vola-

tility levels are closer to zero when compared with the other figures (Figures

5.3.2.1 and 5.3.2.2). This implies that variant B* performs best for a limited

degree of moneyness.

In Figure 5.3.2.1, the lines have a relatively low degree of parallelism which

shows that there is a trade-off between degree of moneyness and volatility.

When the average distance is close to zero, variant C performed well for all

volatility levels but has a slightly better performance for lower volatilities. The

inverse relationship between relative performance and volatility can be

observed when the average distance is large. This implies that variant C

performs well for a wide degree of moneyness.

In Figure 5.3.2.2, the parallelism is intermediate between those in Figures

5.3.2.1 and 5.3.2.3. This strategy is the best performer of the three when the

distance is close to zero. This implies that variant D is the most suitable

strategy for at-the-money options. When the distance is large, variant D

performs worse than variant C. This implies that variant D is not suitable

for deeply-out or deeply-in-the money.

6 ILLUSTRATIVE HEDGING PROBLEM: A LIMITED EMPIRICAL

STUDY

We consider the problem of hedging the risk of writing a European call

option for a number of options available in the UK options market. We

present a limited empirical study of 30 options: this is done as an illustration

of the performance of the minimax hedging strategy when applied to real

data. Actual market prices were used for both the stock and the option. The

writer of the call incurs a potential liability in the case of exercise of the

option by the buyer, and receives a premium; she is obliged to offer the buyer

N shares of the stock at the exercise price, X, at the exercise date. In Section

6.1, we describe the mechanics of the hedging from set-up to wind-down. In

Section 6.2, we present a summary of the results of the limited empirical

study.

6.1 From Set-Up to Wind-Down

In Section 5.2, we discussed the mechanics of hedging used in the simulation,

from setting up to winding down of the hedge. For the illustration, we use the

same mechanics with a few changes in the parameters. The strategies involve

rebalancing the hedge at uniform intervals of time; in the illustration, the
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interval is 1 week, that is, 5 trading days. Weekly data36 include the market

price of the stock, the market price of the option, the risk-free interest rate, the

time to maturity and an estimate of the volatility of the stock price. The

estimates of volatility used in the illustration are based on the most recent

100 days of stock price movement and on implied volatility37. The risk-free

interest rate is based on the discount rate38 provided by a Treasury Bill that

expires at about the same time as the option. In the illustration, N, the number

of contracted shares, is 1000.

6.2 The Hedging Strategies Applied to 30 Options: Summary of

Results

The strategies defined in Section 4 were used to hedge the risk of writing one

call option; 30 options were used in the study. Table 6.1 presents the perfor-

mance of the different strategies relative to delta hedging. The final row of

Table 6.1 indicates that the relative performance of four of the five variants of

minimax averaged over 30 options is better than that of delta hedging, and that

for variant B, for which the relative performance is worse, the weighted

version B* performs better than delta hedging. Under variant B, the recom-

mended change in the number of shares to hold is highly volatile, and when

transaction costs are included, the cumulative cost of this variant can get very

high. The effect of the weighting is to dampen this volatility, and so reduce

transaction costs. The final row of Table 6.1 shows marked differences in the

relative performance of different minimax variants. The columns of Table 6.1

are generally highly variable. The variants of minimax are essentially specific

to different classes of options. This implies that as options change their

moneyness, then the minimax approach must also change. In other words,

the minimax approach to be implemented is a function of moneyness.

Because we have not established that the universe of calls from which the

sample of 30 was selected is representative of the universe of all calls, the

result that minimax performs better than delta hedging is not necessarily

generalizable. However, the criteria for the universe from which we selected

the 30 calls do not include requirements on the number or size of abrupt

changes, nor the number of crossovers. Therefore, it is possible that minimax

would perform (slightly) better than delta hedging for the universe of all calls

written for UK stocks.
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36 Data were supplied by Datastream, International. All prices are mid-prices. The stock price

series used were Datastream’s Adjusted Stock Price Series: these are the original stock price

series with dividend adjustments.

37 Implied volatility is the volatility implied by an option price observed in the market.

38 The discount rate was used to find the current value of the Treasury Bill based on a face value of

1 and the time to maturity. The risk-free interest rate is the continuous rate that discounts the

face value to the computed current value.
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Table 6.1 Gain over delta hedging for the different strategiesa (standardized values,

in hundred points)

Xprice A B B* C D

Tesco 220 24 2116 257 14 226

Boots 280 21 267 27 17 15

Sainsbury 360 21 2131 233 24 232

BAir 220 21 239 28 15 26

GEC 180 22 2140 292 2 248

Allied 650 21 281 11 35 37

Ladbroke 1 240 21 265 42 224 72

Ladbroke 2 260 22 280 263 223 249

Cadbury 1 420 23 256 2 22 25

Cadbury 2 460 8 217 60 78 93

Hanson 1 200 6 10 90 25 99

Hanson 2 180 22 262 243 12 24

P&O 600 7 0 66 45 53

Vodafone 1 390 21 2101 257 15 233

Vodafone 2 360 0 219 28 18 58

Prudential 1 240 15 26 131 76 142

Prudential 2 220 6 241 97 53 113

Marks&Spencer 300 4 31 89 17 119

Shell 1 460 2 28 69 23 76

Shell 2 500 1 2115 230 33 16

Eurotunnel 390 7 10 48 44 62

Glaxo 800 6 27 84 28 72

Guinness 1 500 7 298 6 42 55

Guinness 2 550 9 62 113 52 107

Forte 200 22 204 14 229 17

Thames Water 330 21 30 10 14 20

U. Biscuits 390 22 220 15 228 27

Btelecom 1 330 1 244 18 53 63

Btelecom 2 360 5 2126 228 78 52

Wellcome 900 4 219 62 37 76

Average 2 241 21 26 43

a See Table 4.7 (page 194).



7 MULTIPERIOD MINIMAX HEDGING STRATEGIES

In earlier sections, we consider several variants of a minimax strategy, here-

after called Basic minimax, that determines the number of shares that mini-

mizes the worst-case potential hedging error for the next period. In this section

and the next, we present strategies introduced in Howe et al. (1996). We

consider the 95% level variant (variant C in Section 4.7) and explore exten-

sions to this variant. The choice of variant C is due to its incorporation of

transaction costs in its objective function and that it computes the minimax

hedging error based on the most likely future values of the stock price, that is,

the worst-case scenario chosen from the 95% level range.

The first extension is a two-period minimax strategy, hereafter called Two-

Period minimax, where the worst case is defined over a two-period setting. In

this extension, the objective function of Basic minimax is augmented to

include the hedging error for the second period. In Basic minimax we have

a one time period setting that is equal to the rebalancing interval. In Two-

Period minimax we have a two time period setting, but the rebalancing inter-

val remains equal to one period.

The second extension is a variable minimax strategy, hereafter called Vari-

able minimax, where early rebalancing is triggered by the minimax hedging

error. In Basic minimax, we preset a rebalancing interval that is constant

throughout the life of the option and the hedger necessarily rebalances at

the end of each interval, and may not rebalance within that interval. In Vari-

able minimax we also preset a constant rebalancing interval, but the hedger

may rebalance before the end of that interval. Under Variable minimax the

hedger can monitor the actual hedging error within a rebalancing interval; if

she finds the actual hedging error unacceptable, she can rebalance before the

end of that interval.

In Section 7.1, we present Two-Period minimax, and in Section 7.2, Vari-

able minimax. In Section 8, we summarize the results of a simulation study

where the performances of Basic minimax, the two multiperiod extensions and

delta hedging are compared.

7.1 Two-Period Minimax Strategy

This strategy provides the hedger with a tool for computing the minimax

hedging error in two time periods. The strategy is designed for the hedger

who wishes to have a constant rebalancing interval, that is, Dt ! 0. She

decides on the number of shares to hold on the basis of the calculated minimax

hedging error for the following two time periods, and she rebalances at the end

of the first of the two periods. If she cannot rebalance at the end of the first

period (say due to a shortage of stock), the two-period minimax yields a

solution that ensures the worst case over both periods are adequately
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addressed. If the worst case in one or both periods is not realized, the nonin-

feriority of minimax ensures that the hedging error will improve (see Theorem

1.3.1).

The difference between the worst case under Two-Period minimax and the

worst case under Basic (single period) minimax is that the range of uncertainty

for the future stock price is wider for the two-period case. This results in a

higher minimax hedging error for the two periods compared to the summation

of the errors over two periods when using Basic minimax. In this sense, Two-

Period minimax is a more cautious strategy than Basic minimax. However,

when applying Basic minimax separately for two periods in succession, trans-

action cost contributions may result in less favorable hedging error. Indeed,

when Basic minimax is considered over two periods simultaneously, with

separate decision variables over both time periods, the best hedging error

may be improved in view of the inherent transaction cost minimization for

the second period.

7.1.1 Minimax Problem Formulation

The minimax problem is given by

min
xt

max
ðyS

t1 1
;yS
t1 2

Þ
f ðxt; ySt11; y

S
t12Þ ð7:1Þ

subject to

y
S;lower
t11 # y

S
t11 # y

S;upper
t11

yS;lowert12 # ySt12 # y
S;upper
t12 ð7:2Þ

where f ðxt; ySt11; y
S
t12Þ is the objective function, presented in Section 5.2,

yS;lowert11 # y
S
t11 # y

S;upper
t11 and y

S;lower
t12 # y

S
t12 # y

S;upper
t12 are ranges defined as

the 95% level.

As with Basic minimax, there are no constraints on xt, the number of shares

to hold at time t: nonnegative xt implies a long position in shares; negative xt
implies a short position in shares.

7.1.2 The Objective Function

We define U1 : R
k
£R

k ! R
1, U2 : R

k
£R

k
£R

k ! R
1, U3 : R

k ! R
k,

xt [ R
k, y

S
t11 [ R

k, y
S
t12 [ R

k, U : Rk
£R

k
£R

k ! R
k12 and Q as a

ðk1 2Þ £ ðk1 2Þ positive definite weighting matrix. U1 refers to the potential

hedging error for the first time period and U2 refers to that for the second time

period. U3 refers to a penalty term for transaction costs associated with buying

or selling of stocks. Ud : Rk
£R

k
£R

k ! R
k12 is the vector of desired values

for the potential hedging error for the two periods and the transaction cost
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terms: we use a desired value of zero, that is, the desired hedging error is zero

and the desired transaction cost is zero. The objective function is given by

f ðxt; ySt11; y
S
t12Þ ¼

1

2
U 2 Ud

;QðU 2 U
dÞ

D E
ð7:3Þ

where

xt ¼

x1;t

..

.

xk;t

2
66664

3
77775 ; y

S
t11 ¼

y
S
1;t11

..

.

yk;t11

2
66664

3
77775 ; y

S
t12 ¼

y
S
1;t12

..

.

yk;t12

2
66664

3
77775 ð7:4Þ

Uðxt; ySt11; y
S
t12Þ ¼

U1ðxt; ySt11Þ

U2 xt;
y
S
t11

ySt12

" # !

U3ðxtÞ

2
6666664

3
7777775

and Ud ¼
Ud

1

U
d
2

Ud
3

2
6664

3
7775 ¼

0

0

0

2
664

3
775ð7:5Þ

U1ðxt; ySt11Þ ¼
Xk

i¼1

xi;tðySi;t11 2 y
S
i;tÞ1

Xk

i¼1

NiðBi;t 2 Bi;t11ðySi;t11ÞÞ

1

Xk

i¼1

2ðxi;t 2 xi;t21ÞySi;t 1 Ci;t21ð11 rDtÞ
� �

rDt

ðfirst period hedging errorÞ

ð7:6Þ

U2 xt;
y
S
t11

y
S
t12

" # !
¼
Xk

i¼1

xi;tðySi;t12 2 y
S
i;t11Þ1

Xk

i¼1

NiðBi;t11ðySi;t11Þ2 Bi;t12ðySi;t12ÞÞ

1

Xk

i¼1

2ðxi;t 2 xi;t21ÞySi;t 1 Ci;t21ð11 rÞDt
� �

ð11 rDtÞðrDtÞ

ðsecond period hedging errorÞ
ð7:7Þ

where

Ci;t21 ¼ Ci;t22ð11 rDtÞ2 ðxi;t21 2 xi;t22ÞySi;t21 2 K̂ ðxi;t21 2 xi;t22ÞySi;t21

���
���

ðcumulative value of cash inflow minus cash outflow with transaction costÞ
ð7:8Þ
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U3ðxtÞ ¼

U1;3ðx1;tÞ
..
.

Uk;3ðxk;tÞ

2
66664

3
77775 ð7:9Þ

where

Ui;3ðxi;tÞ ¼ K̂ xi;t 2 xi;t21

� �
y
S
i;t ðtransaction penaltyÞ ð7:10Þ

We first identify all the variables in (7.3)–(7.10) and then give an economic

interpretation of (7.6) and (7.7). The variables and the treatment of transaction

costs are as discussed in Section 4, suitably extended for the two-period

strategy.

Ci;t21 is the cumulative value of cash inflow minus cash outflow at time

t2 1. Ci;t21ð11 rDtÞ is Ci;t21 with interest payments. The first term of (7.8) is

the cumulative value of cash inflow minus cash outflow from the previous

period with interest payments. The second term is a cash outflow if

xi;t21 . xi;t22; otherwise, it is a cash inflow. The third term is always a cash

outflow. We note that Ci;t21 will normally be a negative number. At time t,

Ci;t21 is a constant: all the variables in (7.8) have actual values.

Transaction costs introduce nondifferentiability into the equation. Thus,

they do not enter the objective function as part of U1 nor U2. Instead, we

introduce Ui;3 to represent a penalty for transaction costs for each option iat

time t.

In the weighting matrix Q, we adopt diagonal weights qi, i ¼ 1;…; k1 2,

which are specified by the hedger, represent her preferences: a high q1 repre-

sents an emphasis on minimizing the potential hedging error that may be

incurred from time t to time t1 1; a high q2 represents an emphasis on

minimizing the potential hedging error that may be incurred from time t1

1 to time t1 2. High qi, i ¼ 3;…; k1 2, represents an emphasis on minimiz-

ing the corresponding transaction cost term.

For each option i, i ¼ 1;…; k, Bi;t11ðySi;t11Þ and Bi;t12ðySi;t12Þ is determined

using the Black and Scholes (1973) option pricing model and using Leland’s

(1985) modified volatility.

In (7.6) and (7.7), U1 represents the potential hedging error between time

tand time t1 1; it comprises the potential shift in the stock position, the

potential shift in the option position and the potential interest payment. U2

represents the potential hedging error between time t1 1 and time t1 2. U3

refers to a penalty term for transaction costs associated with buying or selling

of stocks. We wish to minimize the potential hedging error, including interest

payments on borrowed money, for two time periods. At the same time, we

wish to constrain transaction costs.
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7.1.3 The Two-Period Minimax Hedging Error

In contrast to the minimax hedging error for one time period given by (4.10) in

Section 4.5, the minimax hedging error for two time periods is given by

Two-period minimax hedging error ¼ Û1ðxpt ; yS
p

t11Þ1 Û2ðxpt ; yS
p

t11; y
Sp

t12Þ:
ð7:11Þ

7.2 Variable Minimax Strategy

This strategy is the same as Basic minimax in all respects except that under

Variable minimax the hedger can rebalance within the preset interval, and in

deciding when to rebalance she takes account of the actual hedging error. If

the actual hedging error is unacceptable to her, she may wish to rebalance

before the end of the preset interval; if the actual hedging error is not unac-

ceptable, she would rebalance at the end of the preset interval.

At the start of each time period, the hedger specifies her worst-case scenario

for that time period. One such scenario may be a large movement in the price

of the underlying stock that results in an actual hedging error that is unac-

ceptable to her. She uses Basic minimax to minimize the potential hedging

error that corresponds to such a scenario. If the stock price moves in the

direction that makes the hedging error unacceptable to her, she may wish to

rebalance early. For example, if the preset rebalancing interval is 1 week, that

is 5 trading days, she may rebalance on day 1, 2, 3 or 4, and the next preset

interval will start on the following day.

Under Variable minimax, the hedger could use the minimax hedging error

calculated by Basic minimax as a criterion in deciding whether to rebalance

before the end of the preset interval. Because the minimax hedging error

corresponds to the worst-case scenario for the next period, if the stock price

is within the preset range, she knows that the absolute value of the actual

hedging error would not be higher than the minimax hedging error. Despite

this knowledge, she may consider such an actual hedging error to be unac-

ceptable. If so, she can avoid the accumulation of unacceptable hedging errors

by rebalancing early should the actual hedging error be worse than the thresh-

old, which is defined as the proportion of the minimax hedging error accep-

table to her. This threshold error serves as a trigger for early rebalancing.

If, in the preset interval, the hedger finds that the actual hedging error is

worse than her threshold error, she may rebalance at that time. However, if, at

any time within the preset interval, the actual error is not worse than her

threshold error, she would not rebalance before the end of the preset interval.

She can use the minimax hedging error as a criterion for deciding when to

rebalance. The time at which she rebalances becomes the start of the next

preset interval.
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Because Variable minimax uses a system to monitor the actual hedging

error and allows the hedger to rebalance early when the actual hedging

error becomes unacceptable to her, Variable minimax is more responsive to

unfavorable stock price movements than Basic minimax. In this sense, Vari-

able minimax is a more aggressive strategy than Basic minimax.

7.2.1 Basic Minimax Problem Formulation

We recall the Basic minimax problem (4.1)–(4.2) given by

min
xt

max
yS
t1 1

f ðxt; ySt11Þ

subject to

yS;lowert11 # y
S
t11 # y

S;upper
t11

where f ðxt; ySt11Þ is the objective function, presented in Section 4, and

y
S;lower
t11 # y

S
t11 # y

S;upper
t11 is the range defined under Worst Case 1, the 95%

level.

The definition of variables is identical to that in Section 4. The minimax

hedging error is the same as that in Section 4.5. Variable minimax is essen-

tially the above Basic minimax, augmented by a system to monitor the actual

hedging error.

7.2.2 The Monitoring System

The minimax potential hedging error, with the corresponding minimizing

variable xt, applies to the time period between t and t1 1; hereafter we

refer to this time period as t. We define a smaller interval Dt such that mDt ¼
t where m is the number of intervals of length Dt. Here, we consider multi-

periods within the period t. On solving the minimax problem, we find the

value of xt that minimizes the maximum hedging error that could occur within

the time period t to t1 1, given the preset range of ySt11, that is, the maximum

hedging error is the value that we have insured against, when using xt. It

should be noted that there may be combinations of time t1 m0Dt,

m0 ¼ 0; 1;…;m, and corresponding stock price ySt1m0Dt
, that give the same

hedging error as the one defined by the minimax solution.

For each small interval Dt, we define a certain percentage z% of the absolute

value of the minimax hedging error M as the threshold V , that is,

V ¼ z

100
M: ð7:14Þ

For each time period t to t1 m0Dt, m0 ¼ 0; 1;…;m, we calculate the absolute

value of the actual hedging error, A, and compare this with the threshold V . If
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the actual hedging error is negative and

At1m0Dt
$ V : ð7:15Þ

at time t1 m0Dt, with actual stock price ySt1m0Dt
, then we rebalance and solve

the minimax problem again, and update t, that is, set to t1 m0Dt (the current

time). If condition (7.15) is not satisfied for any time t1 m0Dt,

m0 ¼ 0; 1;…;m, then we rebalance at time t1 mDt.

8 SIMULATION STUDY OF THE PERFORMANCE OF DIFFERENT

MULTIPERIOD STRATEGIES

The simulation in this section is intended to serve as a feasibility study on

potential extensions to Basic minimax. Towards this, the simulation is used to

ascertain whether the two multiperiod extensions of Basic minimax outper-

form delta hedging (DH), to ascertain whether Basic minimax outperforms

Two-Period minimax, which is designed to be a more cautious strategy than

Basic minimax, and to ascertain whether Variable minimax, which is designed

to be a more aggressive strategy than Basic minimax, outperforms Basic

minimax.

8.1 The Simulation Structure

The method for generating stock price series and option price series is

described in Section 5. Also in Section 5, we discuss the mechanics of

hedging, from setting up to winding down the hedge. For this simulation,

we use the same mechanics with a few changes in parameters. Delta hedging,

Basic minimax, and Two-Period minimax involve rebalancing the hedge at

uniform intervals of time; in this simulation, the interval is 1 week. Variable

minimax involves the monitoring of the actual hedging error on a daily basis.

Weekly and daily data include the price of the stock, the price of the option,

the risk-free interest rate, the time to maturity and the volatility (sigma) of

returns on the stock, given as one of five preset levels: 0.2, 0.3, 0.4, 0.5, and

0.6. The risk-free interest rate is preset at 0.10. Dividends are excluded from

the analysis. In this simulation, N, the number of contracted shares, is 100. In

addition, for Variable minimax, we set the threshold level at 10% of the

minimax hedging error.

We apply delta hedging, Basic minimax, Two-Period minimax and Vari-

able minimax to 1250 options; as in Section 5, these are subdivided into five

levels of sigma: 0.2, 0.3, 0.4, 0.5 and 0.6. However, in contrast to the simula-

tion in Section 5, we do not stratify in terms of groups because, as mentioned

in Section 8.1, this simulation study is intended only to explore the feasibility

of extensions to Basic minimax.

A CONTINUOUS MINIMAX STRATEGY FOR OPTIONS HEDGING 213



8.2 Results of the Simulation Study

All four strategies were used to hedge the risk of writing each of the 1250

European call options. The average performance in using a strategy is calcu-

lated for all options with a constant sigma level. In Table 8.2a, we summarize

the relative performance of Basic minimax and the two multiperiod exten-

sions. In Table 8.2b, we summarize the difference in relative performance

between minimax strategies. These tables also contain, in parentheses, the

absolute value of the t-statistics, followed by ** if the difference is significant

at the 2% level, and * if it is significant at the 10% level.39

From Table 8.2a, each strategy outperforms DH by about 3 percentage

points, with Variable minimax being slightly the better performer. Two-Period

minimax is the worst performer, outperforming DH by just over 2 percentage

points. For all three strategies, their relative performances fall with increasing

sigma; the fall is most marked in Two-Period minimax.

From Table 8.2b, for low levels of sigma, Variable minimax outperforms

Basic minimax, but for high levels of sigma, Variable minimax performs

much the same as Basic minimax. For low levels of sigma, Two-Period mini-

max performs much the same as Basic minimax, but for high levels of sigma,

Basic minimax outperforms Two-Period minimax.

8.3 Rank Ordering

The simulation results suggest the following rank order of positive differences

in performance. Table 8.3 gives the rank ordering of the strategies. All mini-

max strategies for the five levels of sigma outperform delta hedging. For low

levels of sigma (sigma ¼ 0.2 or 0.3), Basic minimax has the same rank as
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Table 8.2a Relative performance of three minimax strategies (t-values in parenth-

eses) (Units: percentage points of final cumulative value of cash inflow minus cash

outflow divided by the notional value of the contract)

Sigma Strategy

Basic Two-Period Variable

0.2 3.3 (20.1)** 3.3 (26.4)** 3.6 (30.6)**

0.3 2.9 (19.7)** 2.9 (23.0)** 3.4 (14.4)**

0.4 2.9 (12.3)** 2.4 (10.4)** 3.2 (13.5)**

0.5 2.8 (11.9)** 1.5 (6.8)** 2.9 (13.2)**

0.6 2.8 (7.0)** 1.7 (10.1)** 2.8 (11.7)**

Average 2.9 2.3 3.1

39 We use significance levels of 2% and 10% to express the results of a two-tailed test; however,

we use a 1-tailed test for the sign of the difference at the 5% level.



Two-Period minimax while for a high level of sigma (sigma ¼ 0.6), Basic

minimax has the same rank as Variable minimax.

For the average rank order, Variable minimax outperforms Basic minimax,

which is consistent with the view that Variable minimax is more responsive to

the development of unacceptable hedging errors. Basic minimax outperforms

Two-Period minimax, which is consistent with the view that Two-Period

minimax is less suitable when the hedger rebalances at the end of one period.

9 CAPM-BASED MINIMAX HEDGING STRATEGY

In Section 4 above, we discuss several variants of a minimax strategy, which

we call Basic minimax, that determines for an individual option the number of

shares that minimizes the worst-case potential hedging error for the next

period. In Section 4.2 we consider the worst-case scenario in terms of move-
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Table 8.2b Difference in relative performance between minimax strategies (t-values

in parentheses) (Units: percentage points of final cumulative value of cash inflowminus

cash outflow divided by the notional value of the contract)

Sigma Strategy

Basic minus

Two-Period

Variable minus

Basic

Variable minus

Two-Period

0.2 0.0 (0.1) 0.3 (1.7)* 0.3 (2.5)**

0.3 0.0 (0.2) 0.5 (3.4)** 0.5 (3.6)**

0.4 0.5 (2.2)* 0.3 (1.7)* 0.8 (3.7)**

0.5 1.3 (4.7)** 0.1 (0.2) 1.4 (5.5)**

0.6 1.1 (2.7)** 0.0 (0.0) 1.1 (4.4)**

Average 0.6 0.2 0.8

Table 8.3 Rank order of positive significant differences in performance for each level

of sigma

Strategy Sigma level

0.2 0.3 0.4 0.5 0.6 Average

Variable Minimax 1 1 1 1 1.5 1.1

Basic Minimax 2.5 2.5 2 2 1.5 2.1

Two –period minimax 2.5 2.5 3 3 3 2.8

Delta Hedging 4 4 4 4 4 4.0



ments in the price of the underlying stock, with the source of uncertainty being

the total volatility of returns on the underlying stock. In this section, we

present the strategy from Howe et al. (1998). We define the worst-case

scenario in terms of the two components of total volatility: the market risk

and the specific risk. We use the Capital Asset Pricing Model (CAPM) as a

basis for a price determination function, and develop a CAPM-based minimax

hedging strategy that uses both components of total volatility; we refer to this

strategy as CAPM minimax.

The CAPM is an equilibrium model for the pricing of assets in capital

markets. It is a one-factor model that attempts to explain an asset’s expected

return in terms of a multiple, the beta, of the risk premium for holding the asset

market instead of holding risk-free assets, that is government bonds40.

Consider the problem of hedging the risk of holding a portfolio of written

call options. The risk of holding such a portfolio can be hedged by holding a

portfolio of underlying stocks. We define the hedge portfolio as the combina-

tion of the portfolio of written call options and the portfolio of the underlying

stocks.

We consider CAPM minimax because, as discussed in Section 10, when

Basic minimax is used to hedge the risk of holding a portfolio of more than one

written call option, the performance of Basic minimax is inferior compared to

its performance when used to hedge the risk of writing the options individu-

ally. This inferior performance of Basic minimax when it is applied to a

portfolio may be caused by a compounding of the worst-case scenarios the

hedger has specified for each option, giving a worst-case scenario for the

portfolio that may markedly overstate her view of the worst case for the

portfolio. The hedger may consider that this compounded scenario has a

very low likelihood of being realized, and so may choose a less severe

worst-case scenario for the portfolio.

As noted above, CAPM minimax uses both components of total volatility.

Therefore, the worst-case analysis incorporates information about these

components separately in the solution. For an individual written call option,

we express the worst-case scenario in terms of total volatility because we wish

to define a range for future stock price movements. In this case it is not

necessary to separate total volatility into its components to define the range.

In contrast, for a portfolio of several written call options, we express the worst-

case scenario in terms of the components of total volatility for the following

reasons. As the number of written options increases, the specific risk of the

portfolio of underlying stocks decreases. At the limit, where options are writ-

ten for all the stocks in the market, the specific risk of the portfolio of under-

lying stocks reaches a minimum value. For such a portfolio of underlying

stocks, where specific risk may be very small compared to the market risk,

CHAPTER 8216

40 See Elton and Gruber (1991) for a comprehensive introduction to the Capital Asset Pricing

Model.



the remaining source of uncertainty for the value of this portfolio becomes the

market risk. Further, for a given number of underlying stocks in a portfolio,

this portfolio’s market risk will be more dominant than its specific risk if the

underlying stocks in the portfolio have high market risks and low specific

risks. Equally, the portfolio’s market risk will be less dominant if the under-

lying stocks have low market risks and high specific risks. Furthermore, the

market risk is a shared component among all the stocks in the portfolio. Thus,

the worst case defined under the restriction of the CAPM model is less pessi-

mistic than that defined over the unrestricted individual stocks. Where the

portfolio’s market risk is more dominant than its specific risk, the compounded

scenario of individual worst cases based on total volatility would overstate the

worst-case scenario the hedger would specify if she based her specification on

market risk.

In Section 9.1, we present the Capital Asset Pricing Model and the Market

Model, and in Sections 9.2–9.4, CAPM minimax and the definitions of two

worst-case scenarios. In Section 10, we present the results from a simulation

when two variants of Basic minimax and of CAPM minimax are applied to

150 portfolios of 5 options. In Section 11, we present the beta-risk profile of a

hedge portfolio under CAPM minimax.

9.1 The Capital Asset Pricing Model

In this section we summarize the Capital Asset Pricing Model (CAPM) and

develop from it a price determination function. Let:

bi beta of stock i

Ri;t total return on stock i for the period up to time t

RM return on the market portfolio M for the period up to time t

ei disturbance variable

rf risk-free rate

y
S
i;t stock price i at time t

It market index level at time t

R
I
t return on the market index I for the period up to time t

The CAPM is an expectations theory where the expected return on a stock is a

function of the expected return on the market. This is given by41

EðRiÞ ¼ rf 1 bi EðRMÞ2 rf

� �
ð9:1Þ
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where M is the market portfolio and EðzÞ is the expectation or average over

some historical time series. Because the CAPM is an expectations theory, it is

frequently assumed that the underlying relationship between the realized

prices of the assets and the market portfolio can be modeled by the Market

Model.42 First we assume that there is a market proxy, represented by an index

I, having a beta equal to 1. The Market Model, based on the CAPM, uses the

returns on the market index as proxy to the returns on the market portfolio and

defines the return on stock i for the time interval t to t1 1 as

Ri;t11 ¼ ð12 biÞrf 1 biR
I
t11 1 ei;t11 ð9:2Þ

under the assumptions that Covðei;t11;R
I
t11Þ ¼ 0 and Eðei;t11ej;t11Þ ¼ 0,

i ¼ 1;…; k, j ¼ 1;…; k, i – j. The disturbance variable43, ei;t11, has zero

mean and variance equal to ðseiÞ2.
We define the total return on stock i for the time interval t to t1 1 as price

returns

Ri;t11 ¼
ySt11 2 ySt

ySt
: ð9:3Þ

We use a market index as proxy to the market portfolio and define the return

on the market index for the time interval t to t1 1 as index returns

RI
t11 ¼

It11 2 It

It
: ð9:4Þ

For the time interval t to t1 1, the disturbance variable is given by

ei;t11: ð9:5Þ
Using (9.3)–(9.5), (9.2) becomes

ySi;t11 ¼ ySi;t ð12 biÞrf 1 bi

It11 2 It

It
1 ei;t11

� �
1 y

S
i;t; i ¼ 1;…; k ð9:6Þ

This is the price determination function used by minimax. (9.6) is derived

directly from the Market Model; we use the term CAPM minimax to indicate

that the basic motivation is from the CAPM.

9.2 The CAPM-based Minimax Problem Formulation

In CAPM minimax, the minimizing variable is xt and the maximizing variable

is yEt11 (9.10 below) which is a vector of uncertainties on the market index and

on the individual stocks. yEt11 is allowed to take any value within predefined
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bounds. Therefore, the problem is

min
xt

max
yE
t1 1

f ðxt; yEt11Þ ð9:7Þ

subject to

y
E;lower
t11 # y

E
t11 # y

E;upper
t11 ð9:8Þ

where f ðxt; yEt11Þ is the objective function, discussed in Section 9.3, and

y
E;lower
t11 # y

E
t11 # y

E;upper
t11 is the range that defines the worst case, discussed

in Section 9.4. There are no constraints on xt, the number of shares to hold at

time t: nonnegative xt implies a net holding of shares; negative xt implies a net

sale of shares.

9.3 The Objective Function

We define �U1 : R
k
£R

k11 ! R
1
, U2 : R

k ! R
k
, �U : R

k
£R

k11 ! R
k11

,

xt [ R
k, yEt11 [ R

k11 and �Q as a ðk1 1Þ £ ðk1 1Þ positive definite weighting
matrix. �U1 refers to the potential hedging error for the next period. �U2 refers to

transaction costs associatedwith buying or selling of stocks. �Ud : Rk
£R

k11 !
R

k11 is the vector of desired values for the potential hedging error for the two

periods and the transaction cost terms.We adopt a desired value of zero, that is,

it is desired that there are no hedging errors or transaction costs.

We consider the objective function

f ðxt; yEt11Þ ¼
1

2
�U 2 �Ud

; �Qð �U 2 �UdÞ
D E

ð9:9Þ

where

xt ¼

x1;t

..

.

xk;t

2
66664

3
77775 and yEt11 ¼

It11

ei;t11

..

.

ek;t11

2
66666664

3
77777775

ð9:10Þ

�Uðxt; yEt11Þ ¼
�U1ðxt; yEt11Þ
::::::::::::::

�U2ðxtÞ

2
664

3
775 and �Ud ¼

�Ud
1

:::::

�Ud
2

2
6664

3
7775 ¼

0

:::::

0

2
664

3
775 ð9:11Þ
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�U1ðxt; yEt11Þ ¼
Xk

i¼1

xi;t y
S
i;t11ðyEt11Þ2 y

S
i;t

� �
1

Xk

i¼1

Ni Bi;t 2 Bi;t11ðySi;t11ðyEt11ÞÞ
� �

1

Xk

i¼1

2ðxi;t 2 xi;t21ÞySi;t11 1 Ci;t21ð11 rDtÞ
� �

rDt

ð9:12Þ
where

Ci;t21 ¼ Ci;t22ð11 rDtÞ2 ðxi;t21 2 xi;t22ÞySi;t21 2 K̂ ðxi;t21 2 xi;t22ÞySi;t21

���
���

ð9:13Þ

�U2ðxtÞ ¼

�U1;2ðx1;tÞ
..
.

�Uk;2ðxk;tÞ

2
66664

3
77775 ð9:14Þ

where

�Ui;2ðxi;tÞ ¼ K̂ðxi;t 2 xi;t21ÞySi;t: ð9:15Þ
The variables and the treatment of transaction costs are as discussed in Section

4, suitably extended for the CAPM version of the minimax strategy. Ci;t21ð11
rDtÞ is the value of Ci;t21 with interest payments. At time t, Ci;t21 is a constant:

all the variables in (5.12b) have actual values. We note that Ci;t21 will

normally be a negative number.

Transaction costs do not come into the objective function directly as part of
�U1 because they introduce nondifferentiability into the equation. Instead, we

introduce �Ui;2 to represent a penalty for transaction costs for each option iat

time t.

In the weighting matrix �Q, we adopt diagonal weights �qi, i ¼ 1;…; k1 1,

specified by the hedger. They reflect her preferences: high �q1 represents an

emphasis on minimizing the potential hedging error. High �qi, i ¼ 2;…; k1 1,

represents an emphasis on minimizing the corresponding transaction cost

term.

For each option i ¼ 1;…; k, Bi;t11ðySi;t11ðyEt11ÞÞ is valued using the Black and
Scholes(1973) option pricing model and using Leland’s(1985) modified vola-

tility estimate. For each stock i ¼ 1;…; k, ySi;t11ðyEt11Þ is computed using the

price determination function, (9.6).
�U1 represents the potential hedging error between time t and time t1 1: it

comprises the potential shift in the stock position, the potential shift in the

option position and the potential interest payment. It is a function of the

variable y
E
t11 which is a vector of specific error variables and the market

risk. We wish to minimize the potential hedging error, including interest
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payments on borrowed money, using a worst-case scenario based on market

risk and specific risk.

9.4 The Worst-case Scenario

The source of uncertainty y
E
t11 is defined in (9.10) in terms of It11, the uncer-

tainty due to market movements, and k variables ei;t11, the uncertainty specific

to stock i ¼ 1;…; k. The uncertainty range, as defined by (9.8), can be refor-

mulated as

Il # It11 # Iu ð9:16Þ

eloweri;t11 # ei;t11 # e
upper
i;t11 ; i ¼ 1;…; k: ð9:17Þ

In CAPMminimax we consider two worst-case scenarios, given in the follow-

ing two sections.

9.4.1 Worst Case 1

Worst Case 1 relates to extreme movements in the market index and in specific

error variables consistent with the most likely values that they may have

within the 95% confidence interval. We define the range of yEt11, where we

evaluate the effect of the worst-case scenario, as the range whose upper and

lower bounds delimit the 95% confidence interval of all possible values of the

future market index and specific error variables, that is, two standard devia-

tions about the expected value at time t1 1. For It11, the 95% confidence

interval will be based on market risk. For the specific error variables ei;t11,

i ¼ 1;…; k, the 95% confidence interval will be based on the corresponding

specific risks. Worst Case 1 is hereafter referred to as the 95% Level.

9.4.2 Worst Case 2

Worst Case 2 relates to extreme movements in the market index that may

result in a switch in the state of the option from in-the-money , to out-of-the-

money, or vice versa. A switch in the state of the option may result in a higher

hedging error. We define the range of It11 as the upper and lower bounds of the

future market index within one and three standard deviations (sd) from the

expected value of the market index at time t1 1. We choose the side of the

distribution that may result in a stock price that is closer to the exercise price

X. This means that if ySt . X, the relevant range for It11 would be on the left

side of the distribution of future market index, with It11 having a lower bound

of 3 sd and an upper bound of 1 sd. If y
S
t # X, the relevant range for It11 would

be on the right side, with a lower bound of 1 sd and an upper bound of 3 sd.

For a portfolio of stocks, the range of It11 may be determined by several
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criteria such as the states of the options (whether in-the-money, at-the-money,

or out-of-the-money) and the relative distance of each stock price from the

exercise price weighted by the volatility. In this simulation we use the criter-

ion that if the majority of the options are in-the-money, then we use the left

side of the distribution of future market index. If the majority of the options are

out-of-the-money, then we use the right side. The specific error variables will

take their 95% level ranges as defined in Worst Case 1. Worst Case 2 is

hereafter referred to as the Abrupt Change44.

10 SIMULATION STUDY OF THE PERFORMANCE OF CAPM

MINIMAX

We ascertain the performance of a minimax variant relative to that of delta

hedging (DH). Two variants of CAPM minimax are considered. These are the

95% Level variant and the Abrupt Change variant. A variant is taken to

outperform DH if its performance is higher than that of DH. Additionally,

for any group of options, the difference for that group is significant at the 5%

level. We simulate the relative performance of the two variants of CAPM

minimax when they are used to hedge the risk of writing a European call

option. The generation of the options and their underlying stock price series

are described in Section 10.2. We select a set of options for this simulation on

the basis of the correlation of the returns on their underlying stock with the

returns on a market index. From this set we randomly select portfolios of 5

options. This simulation is intended to serve as a feasibility study on potential

extensions to Basic minimax. Towards this, the simulation is used to ascertain

whether CAPM minimax outperforms Basic minimax for individual options

and for portfolios of options.

10.1 Generation of Simulation Data

The method used for generating stock price and option price series is the same

as that discussed in Section 5. A market index series is generated with which

we compute the beta of the stocks; 150 portfolios of 5 options are then

constructed by randomly selecting from all options whose underlying stocks

have betas within 0.5 to 1.5. We refer to a simulation run on a portfolio as a

replication.

For this simulation, we use the same mechanics as in Section 5 with a few

changes in parameters. The strategies involve rebalancing the hedge at

uniform intervals of time. In the simulation, the interval is 1 week. Weekly

data include the price of the stock, the price of the option, the risk-free interest
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rate, the time to maturity and the volatility (sigma) of the returns on the stock,

given as one of five preset levels: 0.2, 0.3, 0.4, 0.5, and 0.6. The risk-free

interest rate is preset at 10%. Dividends are excluded from the analysis. In the

simulation, N, the number of contracted shares, is 100. In addition, for CAPM

minimax, the beta of the stocks varied between 0.5 and 1.5.

In the simulation we apply Basic minimax and CAPMminimax, to sets of 5

options. First, we apply the strategies to the options individually, and then to a

portfolio of the 5 options. We also apply delta hedging to the options indivi-

dually. Delta hedging is not considered for a portfolio of the options because

its performance when applied to a portfolio is the summation over its perfor-

mance when applied to individual options in the portfolio. Table 10.1

summarizes the stratification according to the treatment of options.

Within the minimax strategies, we use two variants that correspond to two

worst-case scenarios: the 95% Level and the Abrupt Change variants. For

Basic minimax, these are the same as, respectively, variants C and D in

Section 4. For CAPM minimax they are as described in Section 9.5.

10.2 Summary of Simulation Results

In Table 10.2a, we summarize the relative performance of the strategies

applied to different treatments of options when the worst-case scenario is

defined by the 95% Level and by Abrupt Change. In Table 10.2b, we summar-

ize the difference in performance between minimax strategies. The tables also

contain, in parentheses, the absolute value of the t-statistics, followed by ** if

the difference is significant at the 2% level, and * if it is significant at the 10%

level.45
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Table 10.1 Stratification of the strategies according to the treatment of options

Name Strategy Applied to Measure of overall

performance

DH Delta Hedging Individual options Sum of all the individual

performances

Basic(I) Basic Minimax Individual options Sum of all the individual

performances

CAPM(I) CAPM Minimax Individual options Sum of all the individual

performances

Basic(P) Basic Minimax Portfolio of options Performance for the portfolio

CAPM(P) CAPM Minimax Portfolio of options Performance for the portfolio

45 We use significance levels of 2% and 10% to express the results of a 2-tailed test; however, we

use a 1-tailed test for the sign of the difference at the 5% level.



From Table 10.2a, for the Abrupt Change scenario, the relative performance

of the strategies is much the same. Each strategy outperforms DH by about 2

percentage points, with CAPM(P) being joined by Basic(I) as the best perfor-

mers. For the 95% Level scenario, although all strategies outperform DH,

there is a greater variation in relative performance, with CAPM(P) being

the best performer, and with Basic(P) being the worst performer.

From Table 10.2b, the biggest differences in performance occurred under

the 95% Level scenario, with the biggest positive difference occurring for

CAPM(P) minus Basic (P), and the largest negative difference occurring for

Basic(P) minus Basic(I).

10.3 Rank Ordering

The simulation results suggest the following rank order of positive differences

in performance. Table 10.3a gives the rank order for an individual option, and

CHAPTER 8224

Table 10.2b Difference in performance between minimax strategies (t-values in

parentheses) (Units: percentage points of final cumulative value of cash inflow

minus cash outflow divided by the notional value of the contract)

Worst-case

scenario

Strategy

CAPM(P)

Minus

Basic(P)

CAPM(P)

minus

CAPM(I)

CAPM(P)

minus

Basic(I)

CAPM(I)

minus

Basic(I)

CAPM(I)

minus

Basic(P)

Basic(P)

minus

Basic(I)

95% Level 1.3

(16.9)**

0.4

(3.6)**

0.2

(1.8)*

20.2

(2.4)**

0.9

(10.4)**

21.1

(18.6)**

Abrupt Change 0.2

(2.0)*

0.3

(2.6)**

0.0

(0.4)

20.3

(2.3)**

20.1

(0.0)

20.2

(1.8)*

Table 10.2a Relative performance of strategies (t-values in parentheses) (Units:

percentage points of final cumulative value of cash inflow minus cash outflow divided

by the notional value of the contract)

Worst-case scenario Strategy

Basic(I) Basic(P) CAPM(I) CAPM(P)

95% Level 1.9 (23.0)** 0.8 (8.8)** 1.7 (15.9)** 2.1 (24.1)**

Abrupt Change 2.1 (23.6)** 1.9 (21.0)** 1.8 (18.8)** 2.1 (23.9**)



Table 10.3b gives the rank order for a portfolio. These tables are based on

Tables 10.2a and 10.2b.

For individual options and for portfolios, all minimax strategies for the two

worst-case scenarios outperform delta hedging. For individual options,

Basic(I) outperforms CAPM(I) as expected since there is nothing to be gained

by using CAPM(I) to isolate the risks for an individual stock. Indeed, impos-

ing CAPM(I) does introduce further modeling errors which deteriorate the

performance. In contrast, for portfolios, CAPM(P) outperforms Basic(I) for

the 95% Level scenario; however, the difference between them is not signifi-

cant at the 1% level. This difference suggests that CAPM(P) is sensitive to

market index levels and may be the most suitable strategy for portfolios.

Whereas CAPM(P) outperforms CAPM(I), Basic(I) outperforms Basic(P),

especially under the 95% level scenario. These results suggest that

CAPM(P) has succeeded in dealing with the problem of the compounding

of worst-case scenarios that occurs under Basic(P). However, our results are

not adequate to establish that CAPM(P) is a superior strategy to Basic(I).
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Table 10.3a Rank order of positive significant differences in performance for an

individual option

Strategy Worst-case scenario

95% Level Abrupt Change Average

Basic (Individual) 1 1 1

CAPM (Individual) 2 2 2

Delta Hedging 3 3 3

Table 10.3b Rank order of positive significant differences in performance for a

portfolio of options

Strategy Worst-case scenario

95% Level Abrupt Change Average

CAPM (Portfolio) 1 1.5 1.25

Basic (Individual) 2 1.5 1.75

CAPM (Individual) 3 3.5 3.25

Basic (Portfolio) 4 3.5 3.75

Delta Hedging 5 5 5.00



11 THE BETA OF THE HEDGE PORTFOLIO FOR CAPM MINIMAX

The beta of a stock is a coefficient that relates market returns and stock returns.

This relationship is given by (5.4). The true beta of a stock can be estimated

using regression analysis. The beta of an option46 is a coefficient that relates

market returns and option returns. Because the value of an option is dependent

on the value of the stock, the beta of the option is expressed in terms of the

stock price.

bB ¼ Qðd1ÞySbS

B
ð11:1Þ

where bB is the beta of the option and bS is the beta of the stock. This equation

shows that the returns on the option are affected by the returns on the market

via the stock and the stock beta. The beta of the hedge portfolio is the sum of

the betas of its components (stocks and options) weighted by the proportion of

the total value of the hedge portfolio contributed by the individual compo-

nents.

We illustrate the performance of CAPM minimax for a randomly selected

replication from the simulation. Figure 11 shows the variation with time of the

beta of the hedge portfolio. The graph also shows a horizontal line that is the

hedge portfolio’s beta-risk profile under delta hedging, and the market index

level. The figure also shows that, unlike delta hedging, CAPM minimax gives

a nonzero-beta hedge portfolio. This results in an increasing beta when the

market is falling and in a decreasing beta when the market is rising, with the

highest beta occurring at the time when the market is at its lowest (see arrow).

This pattern illustrates the performance of the strategy over time. In a falling

market, CAPM minimax gives a hedge recommendation in anticipation of a

rise in the market index, and in a rising market, in anticipation of a fall in the

market index.

12 HEDGING BOND OPTIONS

12.1 European Bond Options

The discussions in Sections 1–11 focus on the hedging of stock options. In this

section, we present a similar application of minimax as applied to the hedging

of bond options47. The discussion below gives an overview of how the formu-

lations for stock options are adapted for bond options.

In this section we apply minimax to the problem of hedging the risk of

writing a bond option. We illustrate using a call option on a discount bond but
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47 A bond option is a type of interest rate derivative. For a comprehensive discussion on interest
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the principle remains applicable to other interest rate derivatives. As in the

writing of stock options, for bond options, the writer receives a premium and

incurs a potential liability. We concentrate initially on European bond options,

present the formulation for this type of option, and later discuss the formula-

tion for American options.

We use the notation given in Section 1, replacing S, the stock, with G, to

represent a bond. Let yGt be the bond price at time t. There are, however, a few

alternative concepts used. The overall notation is given by

BG
t ¼ BG

t ðyGt Þ call price

y
G
t bond price at time t

yG;lowert the lower bound on y
G
t

y
G;upper
t the upper bound on y

G
t

X
G exercise price of the bond option

r risk-free interest rate

t current date

T expiration date

T 2 t time to maturity

s volatility
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Figure 11 Beta-risk profile using CAPM minimax.



QðdÞ the cumulative normal distribution function

Dt hedging interval

N the contracted number of bonds

x number of bonds to hold

The subscripts:

0 time 0, the initiation date of the contract

t time t, any time such that 0 , t , T

T time T, the expiration date

i refers to bond i or option i

At any time t, the value of the call option using Black’s (1976) Model is

BG ¼ e2rT ½FQðd1Þ2 XGQðd2Þ� ð12:1Þ
where

d1 ¼
lnðF=XGÞ1 s2

T=2

s
ffiffi
T

p

d2 ¼ d1 2 s
ffiffi
T

p

where F is the bond futures48 price at the maturity of the option. This is

calculated as F ¼ ðyGt 2 IrÞerT where yGt is the bond’s spot cash price49 and

I
r is the present value of the coupons up to the maturity of the option. The

exercise price XG is also in terms of the cash price of the bond. Because of the

assumptions underlying Black’s model, that is, mainly the assumptions that

the volatility of F is constant and that the bond price at time T has a lognormal

distribution, then the hedging of European bond options is similar to delta

hedging for stock options.

For a portfolio of one European bond option and a share of the bond held

long, the change in portfolio value, that is, the hedging error (HE) is

HE ¼ NðBG
t 2 B

G
t11Þ1 xtðyGt11 2 y

G
t Þ: ð12:2Þ

The minimax hedge ratio x solves

min
xt

max
yG
t1 1

f ðxt; yGt11Þ ð12:3Þ

subject to

CHAPTER 8228

48 A futures contract, normally exchange-traded, is an agreement to buy or sell an asset for a

specified price at a specified time in the future.

49 A bond’s cash price, also referred to as the dirty price, is the sum of the quoted, clean, price and

the accrued interest.



y
G;lower
t11 # y

G
t11 # y

G;upper
t11

Here, f ðxt; yGt11Þ is given by (4.3)–(4.9) where references to stock, S, are

replaced by bonds, G, and the option value is calculated using (12.1). The

upper and lower bounds are defined by the 95% Level or the Abrupt Change

worst-case scenario, given in Section 4.2.

12.2 American Bond Options

For American options, the option can be exercised at any time prior to the

maturity of the option. A tree structure, say a Binomial Tree or a Trinomial

Tree, can be used to help simulate yield curve scenarios, or the equivalent

scenarios of the term structure of interest rates, that vary through time. Any

node of a tree represents a future yield curve that can be used for pricing the

bond at that future point in time. The option, at the same node, can then be

categorized as in-the-money, out-of-the-money, or at-the-money.

In-the-money options are analyzed for their optimality of exercise. An

American option has two potential values at any node: its expected value

calculated as the probability-weighted sum of its future values, or the payoff

from exercise of the option calculated as the difference between the exercise

price and the spot price at that node. If the expected value is greater than the

payoff, then it is not optimal to exercise, and the option value at that node

equals the expected value, and vice versa.

The consistency of a tree is important in terms of creating a plausible

evolution of interest rates. The analysis of American-style interest rate deri-

vatives requires the use of an interest-rate model (or a yield curve model) that

specifies the evolutionary nature of interest rates. For discussion, we present a

model of the term structure of interest rates, the Hull and White (1990)

model50, that defines the behavior of the short rate r51. This incorporates

mean reversion to an average level at a rate a. In the Hull and White (1990)

model, the price Pðt;TÞ of a discount bond, maturing at T, at a future time t is

given by

Pðt;TÞ ¼ Aðt; TÞe2bðt;TÞrðtÞ ð12:4Þ
where

bðt; TÞ ¼ 12 e
2aðT2tÞ

a
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the overnight rate.



lnAðt;TÞ ¼ ln
Pð0;TÞ
Pð0; tÞ 2 bðt;TÞ 2lnPð0; tÞ

2t
2

1

4a3
s2ðe2aT

2 e2atÞ2ðe2at 2 1Þ:

The Hull and White (1990) model is used for generating a tree whose nodes

represent a future term structure of interest rates. We do not use (12.4) directly

in the formulation below but mention it as a basis for scenario generation. The

bond pricing given by (12.4) applies to discount bonds that are used as build-

ing blocks for propagating the instantaneous interest rate. For details on term

structure tree construction, see Hull (1997). Once the tree has been generated,

then the information on each node can be used for modeling American

options.

Figure 12.1 illustrates a trinomial tree where each node corresponds to

one of three possibilities at any point in time. At a node, a particular yield

curve characterizes the bond market, and corresponding bond and option

values. Similarly, at any node, the short rate r read off from the yield curve

is used for discounting future values of the option, from some future nodes,

back to that node. The whole yield curve is used to value the bond at that

node. If the bond is coupon-bearing, then it is valued based on the yield

curve at that node, with all coupon payments plus principal payments

considered. The figure illustrates a one-period trinomial tree; for the pricing

of options, the life span of the option is subdivided into several periods,

perhaps 30 periods, in order to refine the calculations that can be done

using a tree structure52.
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Figure 12.1 A one-period trinomial tree starting at time t.

52 A step-by-step procedure for using tree structures for the pricing of American options is

described in Hull (1997).



The price of a bond at any node is determined by the yield curve at that

node. The option is then exercised, or not, depending on whether the payoff on

exercise is higher than the expected value of the option. This means that, at

Node A in Figure 12.1, the value of the option is the higher of two calcula-

tions: (1) the expected value of the option based on the propagation of the tree

past Node A, and (2) the difference between the bond price and the exercise

price at Node A, that is, the payoff.

Creating a robust hedge using the minimax framework for an American-

style option involves a similar framework for (12.3) adjusted for computa-

tional efficiency. In (12.3), the future bond price is allowed to vary within

predefined bounds that represent a continuum of future bond prices. Each

point in this continuum represents a bond price that, in turn, implies an

underlying yield curve. One can associate with each point in this continuum

a Trinomial Tree with its first node sitting at time t1 1. Due to the

computational complexity implied by the continuous framework, the discre-

tization of the maximizing variable, that is, the future bond price, permits a

more feasible formulation. Consider therefore the discrete minimax

problem:

min
xt

max
j[½1;…;msce�

f ðxtÞj ð12:5Þ

where j is an element of the discrete set of msce scenarios characterizing the

possible yield curves that may occur at the horizon. This is a one-stage

discrete minimax strategy, where the bounds constraint on the future values

of y
G
t11 in the continuous minimax formulation have been replaced by a

finite number of scenarios. The objective function f ðxtÞj, parameterized by

the scenario j, is the potential hedging error if the yield curve were to move

from its current state to the yield curve defined under scenario j. The

scenarios in this formulation are clearly individual yield curve scenarios.

Within the context of the worst-case scenarios defined in Section 4.2, one

possible discretization of (12.3) would be scenarios corresponding to the

three nodes at time t1 1, as shown in Figure 12.1.

The objective function f ðxtÞj is similar to (4.3)–(4.9), where the future bond

price yGt11 is replaced by its discrete scenario counterpart ðyGt11Þj, and the future
option price BG

t11ðyGt11Þ is replaced by the scenario B
G
t11ððyGt11ÞjÞ.

We define U
j
1 : R

k
£R

k ! R
1, U

j
2 : R

k ! R
k, U

j : Rk
£R

k ! R
k11,

xt [ R
k, yGt11 [ R

k and Q is a ðk1 1Þ £ ðk1 1Þ positive definite weighting

matrix. Ud : Rk
£R

k ! R
k11 is the vector of desired values for the potential

hedging error and the transaction cost terms: we use a desired value of zero,

that is, the desired hedging error is zero53 and the desired transaction cost is

zero.
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The objective function is given by

f ðxtÞj ¼
1

2
U

j
2 U

d
;QðUj

2 U
dÞ

D E
ð12:6Þ

where

xt ¼

x1;t

..

.

xk;t

2
66664

3
77775 and ðyGt11Þj ¼

ðyG1;t11Þj

..

.

ðyGk;t11Þj

2
66664

3
77775 ð12:7Þ

U
jðxt; yGt11Þ ¼

U
j
1ðxt; ðyGt11ÞjÞ

:::::::::::::::::::::

U2ðxtÞ

2
6664

3
7775 and U

d ¼
U

d
1

:::::

U
d
2

2
6664

3
7775 ¼

0

:::::

0

2
664

3
775 ð12:8Þ

U
j
1 xt; ðyGt11Þj
� �

¼
Xk

i¼1

xi;tððyGi;t11Þj 2 y
G
i;tÞ1

Xk

i¼1

Ni B
G
i;t 2 B

G
i;t11ððyGi;t11ÞjÞ

� �

1

Xk

i¼1

2ðxi;t 2 xi;t21ÞyGi;t 1 Ci;t21ð11 rDtÞ
� �

rDt ð12:9Þ

where

Ci;t21 ¼ Ci;t22ð11 rDtÞ2 ðxi;t21 2 xi;t22ÞyGi;t21 2 K̂ ðxi;t21 2 xi;t22ÞyGi;t21

���
���:

ð12:10Þ

U2ðntÞ ¼

Ui;2ðx1;tÞ
..
.

Uk;2ðxk;tÞ

2
66664

3
77775 ð12:11Þ

where

Ui;2ðxi;tÞ ¼ K̂ðxi;t 2 xi;t21ÞyGi;t: ð12:12Þ
The interpretation of these equations is similar to that in Section 4. In (12.9),

B
G;j
i;t11ððyGi;t11ÞjÞ is the value of the option that corresponds to the bond price

ðyGi;t11Þj and to the yield curve scenario j. This calculation is associated with a

particular trinomial tree whose starting node holds the yield curve scenario j at

time t1 1. The tree is used for valuing an American option with a life span

that starts from t1 1 and ends at time T . Figure 12.2 is a representation of the

CHAPTER 8232



discrete minimax formulation, illustrating the relationship between the yield

curve scenarios and the trees that emanate from nodes at time t1 1.

The minimax formulation presented here applies to general types of interest

rate derivative whose value is determined by the level of interest rates from a

segment or from thewhole term structure of interest rates. The above formulation

is a single-period minimax optimization. Scenarios are defined at the end of the

period, and the expectations framework is used for the valuation of the options.

13 CONCLUDING REMARKS

We have developed a dynamic hedging strategy that minimizes the effect of

the worst-case scenario. It requires a range for the future stock price to be

specified. Minimax differs from delta hedging in that it allows the hedger to

incorporate information or her beliefs about the future level of prices. The

results of the simulation study suggest that minimax is robust in the sense that

it performs better than delta hedging for the set of options for which it is

explicitly designed, and in general, it does not perform worse than delta

hedging. The simulation results also suggest that three variants of minimax

are suitable for hedging the risk of writing an option when the price of the

underlying stock is both highly volatile and crosses over the exercise price

frequently (at-the-money options). This problem is of particular interest to

market makers, investors, as well as speculators. The results of the limited

empirical study are mainly consistent with the simulation study. The results

also show that the minimax strategy is robust and that the worst case is not
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Figure 12.2 A multiscenario diagram where each scenario is represented by a trino-

mial tree.



always characterized by the upper or lower bound of the stock price, as initial

intuition might suggest.

We have also presented two multiperiod extensions of the basic minimax

hedging strategy that the hedger can use under specific situations. Two-Period

minimax is designed for the hedger who wishes to consider the possibility that

she may fail to rebalance at the end of a preset, one-period, interval. Variable

minimax is designed for the hedger who wishes to actively avoid negative

hedging errors. The results of the simulation suggest the following rank order-

ing of the strategies: Variable minimax, Basic minimax, Two-Period mini-

max, delta hedging.

Variable minimax is a more aggressive strategy in the sense that the hedger

regularly monitors the development of the actual hedging error and rebalances

early in response to an undesirable event. The strength of Variable minimax is

that it gives the hedger a criterion that provides the opportunity to rebalance

early in order to limit accumulated hedging errors to some acceptable level.

However, to the extent that more frequent rebalancing increases transaction

costs, any benefits from early rebalancing may be offset by such an increase,

even though the Variable minimax constrains these costs.

Two-Period minimax is a more cautious strategy and, as such, it is less

suitable than Basic minimax when the hedger can rebalance at the end of the

first period. The strength of the Two-Period minimax is that it provides the

hedger with a buffer that can, to some extent, absorb the negative effects of an

undesirable event that may occur during the second period, if she fails to

rebalance at the end of the first period.

The two multiperiod extensions have been shown to perform well in the

circumstances for which they have been designed. The results of the simulation

are such that further advances would be expected through studies of Variable

minimax under different degrees ofmoneyness, and studies of Two-Period mini-

max under changing levels of volatility. However, we do not consider that Vari-

able minimax could usefully be extended to an n-period setting.

We have presented an extension of the basic minimax hedging strategy that

uses information about the movements in the market index in the calculation

of the potential hedging error; we have also simulated its performance. The

results of the simulation suggest that CAPM(P) is sensitive to movements in

the market index, and has succeeded in dealing with a major difficulty in the

Basic(P) strategy (described in Section 9), a difficulty that was most conspic-

uous under the 95% level worst-case scenario.

The variants of CAPM minimax have been shown to perform well in the

circumstances for which they have been designed. The results of the simula-

tion suggest that CAPM minimax may be suitable for other hedging problems

where the securities are highly sensitive to market movements.

Finally, we presented an outline of the application of minimax to bond

options, both European and American, and showed how a tree-based model
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for pricing American options can be used in the context of a scenario-based

minimax model.
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APPENDIX A: WEIGHTING HEDGE RECOMMENDATIONS,

VARIANT B*

Changes in stock price often contain an element of noise; the hedger may wish

to react only to the signal element in the change. The probability that the

hedger will consider that a given DySt has a large noise element is higher,

for high values of the standard deviation of ySt . Some crossovers leave ySt close

to X. Others leave ySt far from X. The probability of another crossover occur-

ring is higher when y
S
t is close to X. The recommendation on nt, the number of

shares to hold, has a higher probability of being reversed, when y
S
t is close to

X. The hedger is less likely to accept the transaction costs in realizing the

recommended xt when she considers that another crossover is likely to occur.

In this case, there may be a possibly large and countervailing change in

recommended xt with corresponding large transaction costs. We give below

an expression that the hedger can use to weight the number of shares recom-

mended by a strategy to reflect her perception of the amount of noise in DySt
and the potential reversibility of the crossover. The hedger can give any

weights to a and b to reflect the importance she attaches to the standard

deviation, denoted by sd, of ySt . The general expression is

k1 ¼
w1

��DySt
��

apsd
1 w2

��ySt 2 X
��

bpsd

" #

ðw11 w2Þ ðA1Þ

She may give a nonzero value to w2 when there is a crossover from t2 1 to t;

there are no restrictions on the value she gives to w2.

In Section 4.5, we apply the expression to minimax variant B, to give a

weighted version of that variant, B*.
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APPENDIX B: NUMERICAL EXAMPLES

We present illustrations of the performance of minimax from an algorithmic

point of view. The quasi-Newton algorithm and Kiwiel’s algorithm have

been implemented as discussed in Chapter 5. Because both algorithms

require a maximization problem to be solved in Step 1, they are both rela-

tively computationally more expensive compared to most nonlinear program-

ming algorithms. For the maximization subproblem, we used the

comprehensive NAG54 optimization routine E04VDF which can handle

both linear and nonlinear constraints of a nonlinear programming problem.

All the illustrations were solved by using both algorithms. Kiwiel’s algo-

rithm has been implemented as a check to the solutions found by the quasi-

Newton algorithm. In the implementation of Kiwiel’s algorithm, we set

the linear approximation parameter m to a constant for all examples:

m ¼ 2:0e
203

.

Output Variables

x0 initial value of x

y0 initial value of y

FðxpÞ objective function value at the solution

x
p

final value of x

y
p final value of y

kauak ¼ 1; ;k $ ka iteration number where the stepsize equals 1 for all

succeeding iterations

No. of iterations total number of iterations the algorithm took to solve

the problem

Time total computer time using a Sun SparcStation ELC

running at 7 million instructions per second

The Stopping Criterion

The stopping criterion for both algorithms is the condition that the approx-

imate directional derivative is sufficiently close to zero, that is,

If C $ 2e; then terminate: ðA2Þ
The values of the stopping parameter e used in the examples are within the

range ½1:0e26
; 1:0e214�. The values reported here are for the quasi-Newton

and Kiwiel’s algorithms, as in the chapter containing numerical results.
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In the illustrations, we use data from the empirical study in Section 4. The

rebalancing date is December 4, 1991. The expiration date for all options is

August 1992. Their exercise prices, as well as other parameters, are given in

the simulation sections. The first three illustrations show the performance of

Basic minimax. Illustration 1 shows the more likely situation when the mini-

max algorithm is applied to the hedging strategy. When the minimax hedging

error is negative, which is the more likely event, the solution is an extreme

point. Illustration 2 shows a case where the minimax hedging error is positive.

In this case, the solution is strictly within the upper and lower bounds (i.e., a

mid-range solution). Illustration 3 shows the performance of the algorithms

when applied to a portfolio of 5 options. The next two illustrations show the

performance of Two-Period minimax. Illustration 4 also shows a mid-range

solution. Illustration 5 shows the performance for a portfolio of three options.

Finally, Illustration 6 shows the performance for a portfolio of 5 options under

CAPM Minimax.

We give the data55 used for the examples in this chapter. All prices are in

pence.

Stock Stock

price

Option

price

Exercise

price

Option’s

maturity

British Telecom 347 39.5 330 August 1992

Prudential Corp 226 16.5 240 August 1992

Guinness 499 46.0 500 August 1992

Thames Water 336 31.5 330 August 1992

Tesco 237 33.0 220 August 1992

Cadbury Schweppes 457 63.0 420 August 1992

The Concavity of the Maximization Subproblem

If f ðz; yÞ is convex with respect to y, then the solution to minimax lies at the

upper or lower bound of y. There may be multiple maxima, all of which are at

the boundary. If, on the other hand, f ðz; yÞ is concave with respect to y, the

solution may lie anywhere within the feasible region for y.

The potential of finding a nonextreme point solution, that is, a solution not at

the boundary, to the minimax formulation is exemplified by Illustrations 2 and

5 below. In this case, the minimax hedging error is positive thereby contribut-

ing to the concavity of the maximization subproblem. To see this, consider the

second derivative of (4.6) when applied to a single-option minimax problem:
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The concavity of the problem is determined by the second term: because the

problem refers to the writing of a call option, the second derivative of the

option price is negative. When this is premultiplied by a positive hedging

error, the second term’s potential to dominate the first term may shift the

problem towards a concave maximization subproblem. Examples 2, 4 and 5

below are illustrations of this case.

Example 1 (Extreme Point Solution) Hedging the Risk of Writing an

Option on British Telecom Stock

Minimize f ðxt; ySt11Þ subject to
3:289920e102 # y

S
t11 # 3:686350e102

Initial point:

xt¼ ð6:185360e101Þ; ySt11¼ ð3:470000e102Þ

Quasi-Newton algorithm Kiwiel’s algorithm

Fðxpt Þ 1.508524e104 1.508910e104

xp 6.303667e101 6.299798e101

ySpt11 3.289920e102 3.289920e102

kauak ¼ 1; ;k . ka 1 1

No. of iterations (time) 5 (0.3 s) 1036 (39.8 s)

Minimax hedging error 2168 points 2168 points
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Example 2 (Mid-range Solution) Hedging the Risk of Writing an

Option on the Cadbury Stock

Minimize f ðxt; ySt11Þ subject to
4:354752e102 # y

S
t11 # 4:831153e102

Initial point:

xt¼ ð6:554278e101Þ; y
S
t11¼ ð4:570000e102Þ

Quasi-Newton algorithm Kiwiel’s algorithm

Fðxpt Þ 1.053631e105 1.057401e105

xp 6.763951e101 6.755767e101

ySpt11 4.602877e102 4.601593e102

kauak ¼ 1; ;k . ka 2 1

No. of iterations (time) 3 (0.1 s) 511 (72.1 s)

Minimax hedging error 459 points 459 points

Example 3 (Extreme Point Solution) Hedging the Risk of Writing Five

Options: Guinness, Prudential, British Telecom, Thames Water

and Tesco

Minimize f ðxt; ySt11Þ subject to
4:731038e102 # yS1;t11 # 5:301120e102

2:142715e102 # yS2;t11 # 2:400908e102

3:289920e102 # y
S
3;t11 # 3:686350e102

3:185629e102 # yS4;t11 # 3:569492e102

2:247006e102 # yS5;t11 # 2:517767e102

Initial point:

ðxtÞT ¼ ð4:8076e101; 7:4848e101; 6:1853e101; 7:3183e101; 8:2752e101Þ

ðySt11ÞT¼ ð4:9900e102; 2:2600e102; 3:4700e102; 3:3600e102; 2:3700e102Þ
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Quasi-Newton algorithm Kiwiel’s algorithm

Fðxpt Þ 4.747561e105 4.910554e105

x
p

4.723223e101 4.725500e101

7.593698e101 7.536454e101

6.266327e101 6.266036e101

7.369503e101 7.369543e101

7.657575e101 8.004109e101

ySpt11 5.301120e102 5.301120e102

2.142715e102 2.142715e102

3.289920e102 3.686350e102

3.569492e102 3.569492e102

2.517767e102 2.517767e102

kauak ¼ 1; ;k . ka a ¼ 1 not attained a ¼ 1 not attained

No. of iterations (time) 36 (4.3 s) 749 (115.6 s)

Minimax hedging error 2876 points 2818 points

Example 4 (Mid-range Solution) Hedging the Risk of Writing an

Pption on the Guinness Stock

Minimize f ðxt; ySt11Þ subject to
4:731038e102 # ySt11 # 5:301120e1 02

4:637506e102 # ySt12 # 5:447065e102

Initial point:

ðxtÞT¼ ð4:807649e101Þ; ðySt11; y
S
t12ÞT¼ ð4:990000e102; 4:990000e102Þ

Quasi-Newton algorithm Kiwiel’s algorithm

Fðxpt Þ 1.800928e105 1.800939e105

xp 4.723716e101 4.726027e101

ðySpt11; y
Sp
t12ÞT 4.971921e102 4.972337e102

5.447065e102 5.447065e102

kauak ¼ 1; ;k . ka 1 1

No. of iterations (time) 3 (0.2 s) 607 (43.4 s)

Minimax hedging error 2585 points 2585 points
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Example 5 (Mid-range Solution) Hedging the Risk of Three Options:

Guinness, Prudential and British Telecom

Minimize f ðxt; ySt11Þ subject to
4:731038e102 # y

S
1;t11 # 5:301120e102

2:142715e102 # yS2;t11 # 2:400908e102

3:289920e102 # y
S
3;t11 # 3:686350e102

4:637506e102 # yS1;t12 # 5:447065e102

2:100345e102 # y
S
2;t12 # 2:467007e102

3:224879e102 # yS3;t12 # 3:787839e102

Initial point:

ðxtÞT¼ ð4:807640e101; 7:484878e101; 6:185360e101Þ

ðySt11; y
S
t12ÞT¼ ð4:990000e102; 2:260000e102; 3:470000e102;

4:990000e102; 2:260000e102; 3:470000e102Þ

Quasi-Newton algorithm Kiwiel’s algorithm

Fðxpt Þ 5.280679e105 5.286092e105

xp 4.867006e101 4.842086e101

7.576715e101 7.576387e101

6.343740e101 6.343626e101

ðySpt11; y
Sp
t12ÞT 5.002876e102 4.997487e102

2.271383e102 2.271341e102

3.495103e102 3.495293e102

5.447065e102 5.447065e102

2.100354e102 2.100354e102

3.224879e102 3.224879e102

kauak ¼ 1; ;k . ka 8 a ¼ 1 not attained

No. of iterations (time) 9 (5.5 s) 112 (103.2 s)

Minimax hedging error 21031 points 21042 points
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Example 6 (Extreme Point Solution) Hedging the Risk of Writing Five

Options: Guinness, Prudential, British Telecom, Thames Water

and Tesco

Minimize f ðxt; yEt11Þ subject to
2:972739e103 # It11 # 3:087715e103

22:360554e202 # e1;t11 # 2:360554e202

24:770382e202 # e2;t11 # 4:770382e202

23:302775e202 # e3;t11 # 3:302775e202

23:302775e202 # e4;t11 # 3:302775e202

24:475385e202 # e5;t11 # 4:475385e202

Initial point:

ðxtÞT¼ ð3:8939e101; 6:7017e101; 3:7248e101; 3:0025e101; 3:5765e101Þ

ðyEt11ÞT¼ ð2:9150e103; 0:0; 0:0; 0:0; 0:0; 0:0Þ

Quasi-Newton Algorithm Kiwiel’s Algorithm

Fðxpt Þ 2.211716e106 2.211741z106

xp 5.433818e101 5.432885e101

7.048898e101 7.046786e101

4.677316e101 4.678775e101

4.887535e101 4.883134e101

4.885359e101 4.887019e101

yEpt11 3.036498e102 3.035329e102

22.360554e202 22.360554e202

21.189297e203 29.524208e204

21.854275e202 21.825807e202

3.302775e202 3.302775e202

3.462539e202 3.500561e202

kauak ¼ 1; ;k . ka 1 1

No. of iterations (time) 53 (32.6 s) 268 (122.4 s)

Minimax hedging error 1629 points 1626 points
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COMMENTS AND NOTES

CN 1: Brownian Motion

The term Brownian Motion has been used to describe the motion of a particle

that is subject to a large number of small molecular shocks. In financial

calculus, Brownian Motion is used interchangeably with the term Wiener

Process which is a particular type of Markov stochastic process. Markov

stochastic processes are processes where only the present value of a variable

is relevant for predicting the future. Models of stock price behavior are usually

expressed as a Wiener Process or Brownian Motion (see Hull, 1997).

CN 2: Ito’s Lemma

The price of a stock option is a function of the underlying stock’s price and

time. More generally, we can say that the price of any derivative is a function

of the stochastic variables underlying the derivative and time. Ito’s lemma

states that if a variable x follows an Ito Process, that is, that

dx ¼ aðx; tÞ dt1 bðx; tÞ dz
where dz is a Wiener Process and a and b are functions of x and t, then another

function G of x and t follows the process

dG ¼ 2G

2x
a1

2G

2t
1

1

2

22G

2x2
b
2

 !
dt1

2G

2x
b dz

where dz is the same Wiener Process. Thus, G also follows a Wiener Process.

CN 3: Cumulative Normal Distribution Function

To solve the Black and Scholes formula, one needs to calculate the cumulative

normal distribution function, Q. The function can be evaluated directly using

numerical procedures. Alternatively, a polynomial approximation can be used

that provides values for QðdÞ with a six-decimal-place accuracy. The follow-

ing have been extracted from Hull (1997):

QðdÞ ¼ 12Q 0ðdÞða1k1 a2k
2
1 a3k

3
1 a4k

4
1 a5k

5Þ when x $ 0

12Qð2dÞ when x , 0

8<
:

where

k ¼ 1

11 j d

j ¼ 0:2316419
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a1 ¼ 0:319381530

a2 ¼ 20:356563782

a3 ¼ 1:781477937

a4 ¼ 21:821255978

a5 ¼ 1:330274429

and

Q 0ðdÞ ¼ 1ffiffiffiffi
2p

p e
2d2=2

:
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Chapter 9

Minimax and asset allocation problems

In this chapter, we consider potential uses of minimax in the context of

portfolio asset allocation, with specific illustrations for bond portfolios. We

demonstrate that the issue of mis-forecasting can be appropriately addressed

within the minimax framework. An asset allocation based on minimax has

robustness properties that cushion the performance of the portfolio against the

occurrence of predefined worst-case scenarios. There is a guaranteed perfor-

mance which improves when the worst-case scenario fails to materialize. A

number of minimax asset allocation techniques are discussed, all applicable to

stocks, bonds or currencies. These are considered in the context of mean-

variance optimization and benchmark tracking. Additionally, a minimax

formulation for a multistage asset allocation problem is presented. Lastly,

the complementary use of both minimax and options for portfolio manage-

ment is explored.

1 INTRODUCTION

In this chapter, we address the issue of asset allocation and present allocation

strategies based on minimax that enable the investor to better assess the

potential performance of a chosen portfolio. We initially consider two stan-

dard investment tools: the mean-variance and the benchmark-tracking

approaches to portfolio selection. The extensions of these strategies to a mini-

max framework are explored with illustrations on how an investor can benefit

from these extensions. Minimax index tracking is considered, showing how

standard tracking techniques can be adapted to form robust trackers. A multi-

stage framework for minimax portfolio selection is presented for portfolio

rebalancing. Finally, the simultaneous use of minimax and options is studied

in a complementary manner that allows a fund manager to benefit from lower

insurance premia.

Starting with the work of Markowitz (1952) on portfolio selection, consid-

erable work has been devoted to the issue of asset allocation. Markowitz

proposed the idea that a sensible investing strategy does not look solely at

return-maximization, but also at the interplay between return-maximization

and risk-minimization, and the trade-off between these two. Hence, a balance



can be found between return-maximization and risk-minimization that may

be more consistent with the utility function of an investor. A follow-up work

by Levy and Markowitz (1979) looks at approximating an expected utility

function by a function of mean and variance. Sharpe (1994) discusses the use

of his reward-to-variability ratio, now called the Sharpe ratio, in guiding the

investment process. Thus, by looking at the expected return per unit of risk,

an investor has a more informed measure of the trade-off between risk and

return.

The introduction of constraints to the asset allocation process leads to some

interesting variations on the mean-variance theme. These works include

Leibowitz and Kogelman (1991b) where the focus is on the balance between

risky and risk-free assets. A simple model of quantifying risk tolerance is

proposed and then used to determine the maximum investment in the risky

assets. Downside risk (CN 2) is measured by the shortfall probability relative

to a minimum return threshold. By specifying both this threshold and a short-

fall probability, a shortfall constraint is established to determine the maximum

allocation to risky assets. Leibowitz and Kogelman (1991a) also consider the

issue of diversification and how the introduction of a foreign asset could

improve the risk performance of a portfolio, again, in the context of a shortfall

constraint. The application of constraints was also studied by Don Ezra

(1991), in the context of surplus optimization where provisions are made

for any liabilities that the portfolio might be supporting. By looking at the

surplus, or the net between the value of the portfolio’s assets and those of the

liabilities, the resulting asset allocation is argued to be more robust in terms of

meeting the portfolio’s liability obligations when compared to an allocation

done on an asset basis only.

Research into the use of scenarios in asset allocation, as compared to the

covariance matrix framework of Markowitz’s mean-variance analysis, have

been carried out by Dembo (1991), Clarke and Silva (1998), and Rustem et al.

(2000), where model mis-specification is raised as a critical issue. Similarly,

optimal dynamic portfolio decision in a continuous time framework in view of

parameter uncertainty, mainly in the area of model mis-specification, has been

explored by Maenhout (1999).

Benchmarking, or referencing relative to an index or another portfolio, has

been a common method of creating a portfolio. This is due to the apparent ease

of assessing the performance of the portfolio relative to the chosen bench-

mark. The assumption is that the performance of the benchmark is a suitable

reference point for policy decision making and that its performance is easy to

assess. Roll (1992) presents a formulation of benchmark-tracking in the mean-

variance context and discusses the performance of benchmark-tracking effi-

cient portfolios relative to their mean-variance efficient counterparts. Worzel

et al. (1994) explores the creation of fixed income portfolios that track their

chosen index. Optimization models are presented that penalize the downside
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deviations of the portfolio returns from the index. Lipman (1990) looks at the

issue of maximizing utility and the incorporation of benchmarks in the utility-

maximization process.

Both the absolute performance, in terms of returns and the volatility of

returns, and the relative performance, that is, relative to a benchmark, of a

portfolio are standard measures used by the investment community. To the

extent that more robust methods of asset allocation complement existing

decision tools, we explore the use of minimax as a computational strategy

for enhancing current methods. In Section 2 we present robust asset allocation

models based on minimax. In Section 3 we discuss the performance of a

minimax portfolio selection process. In Section 4 we consider an enhanced

version of benchmarking where we look at two benchmarks, that is, dual

benchmarking. In Section 5 we discuss the applicability of the minimax

approach to address other asset allocation objectives such as index tracking

and downside risk optimization. In Section 6 we present a multistage frame-

work for asset allocation that describes how the various minimax strategies,

previously discussed for a single stage problem, can be cast to address stochas-

tic multistage problems. In Section 7, we consider an integrated approach to

options and worst-case analysis.

2 MODELS FOR ASSET ALLOCATION BASED ON MINIMAX

Rustem et al. (2000) explore various models of discrete minimax for asset

allocation. The issue of inaccuracy in asset return forecasting and risk estima-

tion is addressed. Minimax formulations are proposed for robust solutions in

view of return and risk inaccuracies. Rival return forecasts as well as rival risk

estimates are considered and these are cast as input scenarios in the minimax

formulation. It is argued that, by using minimax to take account of all rival

scenarios, the models proposed ensure a basic guaranteed return, in view of

multiple scenarios. Consider the mean-variance framework for a given a [

½0; 1�
min
x

JaðxÞf jx [ Xg ð2:1Þ

where JaðxÞ is the quadratic objective function
JaðxÞ ¼ 2akEðrÞ; xl1 ð12 aÞkx2 �x;Cðx2 �xÞl ð2:2Þ

EðrÞ [ R
n
is the expected return vector of the set of assets being considered

with

r ¼ EðrÞ1 e ð2:3Þ
e is a random error from Nð0;CÞ, C [ R

n£n is the covariance matrix of

returns, x [ R
n is the vector of portfolio weights to be optimally determined,
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�x [ R
n denotes benchmark1 weights that x should follow closely, and X is the

convex feasible set of weights including the budget constraint and restrictions

specified by the investor. We note that the minimization of 2kEðrÞ; xl is

equivalent to the maximization of kEðrÞ; xl. The main weakness of (2.1) is

the inherent inaccuracy of the risk and return estimates.

2.1 Model 1: Rival Return Scenarios with Fixed Risk

Consider the case when, instead of a single return forecast, we are given a

number of rival forecasts which represent plausible scenarios of the future.

The ith scenario given by EðriÞ [ R
n and

J
i
aðxÞ ¼ 2akEðriÞ; xl1 ð12 aÞkx2 �x;Cðx2 �xÞl ð2:4Þ

with m
sce scenarios and

ri ¼ EðriÞ1 e; i ¼ 1;…;m
sce
: ð2:5Þ

In this model, the risk estimate is assumed to be common across all scenarios.

For (2.4), the minimax formulation is given by

min
x

max
i¼1;…;msce

2akEðriÞ; xl1 ð12 aÞkx2 �x;Cðx2 �xÞl j x [ X
n o

ð2:6Þ

which can be expressed as a quadratic programming problem

min
x;v[Rn1 1

2av1 ð12 aÞkx2 �x;Cðx2 �xÞlf jx [ X; kEðriÞ; xl $ v; ;ig ð2:7Þ

where v [ R
1.

2.2 Model 2: Rival Return with Risk Scenarios

The second minimax formulation takes into account rival return forecasts with

each having an associated risk. Consider, therefore, the objective

J
i
aðxÞ ¼ 2akEðriÞ; xl1 ð12 aÞkx2 �x;Ciðx2 �xÞl ð2:8Þ

and

r
i ¼ EðriÞ1 e i

; i ¼ 1;…;m
sce ð2:9Þ

where ei is a random error from Nð0;CiÞ, Ci
[ R

n£n.

For (2.8), the minimax formulation is

min
x

max
i

2akEðriÞ; xl1 ð12 aÞkx2 �x;Ciðx2 �xl j i ¼ 1;…;msce
; x [ X

n o

ð2:10Þ
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and its nonlinear programming equivalent is given by

min
x;v[Rn1 1

vf j2 akEðriÞ; xl1ð12 aÞkx2 �x;Ciðx2 �xÞl # v;

i ¼ 1;…;m
sce
; x [ Xg ð2:11Þ

where v [ R
1.

2.3 Model 3: Rival Return Scenarios with Independent Rival Risk

Scenarios

Consider a set of rival forecast scenarios specified independently from a set of

rival risk scenarios. The minimax strategy looks at the compounding effect of

risk and return scenarios and computes the worst-case solution.

The corresponding minimax formulation is

min
x

max
ir ;iC

�
2 akEðrir Þ; xl1 ð12 aÞkx2 �x;CiC ðx2 �xÞl j ir ¼ 1;…;m

scer
;

i
C ¼ 1;…;m

sce
C

; x [ X
 ð2:12Þ

where mscer is the number of return scenarios and m
sceC is the number of risk

scenarios.

The equivalent nonlinear programming formulation is given by

min
x;v;z[Rn1 2

�
2av1 ð12 aÞ z j kEðrir Þ; xl $ v;;i

r
;

kx2 �x;CiC ðx2 �xÞl # z; ;i
C
; x [ X

 ð2:13Þ
where z [ R

1 and v [ R
1.

2.4 Model 4: Fixed Return with Rival Benchmark Risk Scenarios

The final model concerns rival benchmark weights and rival risk scenarios.

The minimax problem is given by

min
x

max
iB;iC

�
2 akEðrÞ; xl1 ð12 aÞkx2 �xi

B

;Ci
C ðx2 �xi

B Þl j iC ¼ 1;…;msce
C

;

i
B ¼ 1;…;m

sceB
; x [ X

 ð2:14Þ
where �xi

B

is the (iB)th rival benchmark and CiC is the (iC)th rival variance. The

equivalent nonlinear programming formulation is given by
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min
x;z[Rn1 1

�
2akEðrÞ; xl1 ð12 aÞz j kx2 x

i
B

;C
i
C ðx2 x

iBÞl # z;

iB ¼ 1;…;m
sce

B

; i
C ¼ 1;…;m

sce
C

; x [ Xg: ð2:15Þ

2.5 Efficiency

Problem (2.1)–(2.2) represents the simultaneous maximization of portfolio

return and minimization of risk. Thus, the solution achieves the best return at

minimal risk. The emphasis on risk is represented by the parameter a. As a

increases from zero, the investment strategy becomes increasingly risk averse.

It is important to note here the role of convexity of the underlying problem

which ensures that all solutions are global optima (see Lemma 1.1.3). Problem

(2.1)–(2.2) always has the best global portfolio return with least risk. Hence, at

the given level of risk, a better return is not achievable and thus the solution is

efficient for every value of a. This concept of efficiency also applies to Models

1, 3, and 4 due to the convexity of the underlying problem. The only exception is

Model 2where the solution of (2.11) is not necessarily the best return atminimal

risk. It should be noted that (2.11) is also a convex problem with a global

optimum. The trade-off between risk and return, represented by a, is no longer

the determining factor for computing the best return versus risk unless the

worst-case is defined by a single scenario (i.e., the unique maximizer case).

A close examination ofModel 3 also reveals that Model 2 is a restricted version

with index equality i
r ¼ i

C and this further constraint complicates matters.

3 MINIMAX BOND PORTFOLIO SELECTION

In this section, we illustrate the use of minimax in managing a bond portfolio.

Bond portfolio managers involved in forecasting for asset allocation face the

issue of whether they need to come up with a commonly agreed set of fore-

casts. Creating consensus forecasts becomes problematic when individual

managers involved in forecasting have widely conflicting views with no

managerial framework for them to resolve the conflicting forecasts into one

consensus forecast. We present a framework partly based on Model 3 in

Section 2 and emphasize the worst-case risk for a given performance over

all return scenarios. We demonstrate that an optimal bond portfolio can be

created within this framework to generate a compromise at the asset allocation

level instead of the forecast level. We further demonstrate the sub-optimality

due to mis-forecasting by showing that an asset allocation decision based on

any individual forecast may result in a severely poor performance if another

forecast turns out to be a better estimator of the assets’ return distributions.

The proposed framework attempts to minimize the suboptimality across all
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forecasts and comes up with a compromise portfolio that may be easier for

managers to accept than one that has been created based on any individual

forecast. The most important characteristic of the minimax framework,

however, is robustness and the guaranteed performance level provided. The

robustness is due to the fact that the minimax strategy is chosen in view of the

worst case scenario and that if any other scenario is realized then performance

is guaranteed to improve (see Lemma 6.3.1).

The most common forecasting issue for asset allocation relates to the esti-

mation of the asset return distributions. We consider two common estimation

techniques2: the use of historical time series and the use of future scenarios. In

using the former, one normally makes the assumption that the historical

performance of an asset is a good estimator of its performance in the future.

We refer to this as Model H below. In future scenarios, forward-looking

fundamental and technical analysis is used to model the future performance

of assets. For example, the forward-looking analysis of an equity market may

involve dividend growth, capitalization, investment, as well as econometric

considerations. This will provide an alternative estimate of the performance of

the asset in the future. We refer to this as Model S below. We will use these

two methods of estimating the asset return distributions to illustrate the danger

of mis-forecasting and the benefits from using the proposed framework for

asset allocation.

We first present in Section 3.1 the formulation of the single model problem

and in Section 3.2 its application to two usd-based3 bond portfolio managers

who wish to generate mean-variance efficient portfolios, where one investor

uses a model based on historical time series and another investor uses future

scenarios. In Section 3.3, we give the minimax formulation for the compro-

mise between the two models at the asset allocation level, and show the

benefits of this formulation in an application in Sections 3.4 and 3.5.

3.1 The Single Model Problem

In the Markowitz4 framework, the returns covariance matrix is an essential set

of information that is required in order to optimally choose a portfolio. An

optimal portfolio is selected by minimizing the variance of returns of the
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3 US dollar-based.
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resulting portfolio for a given level of expected portfolio return. Consider a

universe of n assets for portfolio construction. As in Section 2, the portfolio is

defined by the weights x [ R
n and the expected returns EðrÞ [ R

n, with

corresponding elements xj and rj associated with each asset j. Let C [ R
n£n

be the (n £ n) covariance matrix of returns, generated from the asset return

distributions, which in turn has been generated using a particular model or

estimation method.

Given a required level of expected portfolio return �R, an optimal portfolio is

one that solves the following:

min
x[Rn

kx;Cxlf g ð3:1Þ
subject to

kx;EðrÞl $ �R

k1; xl ¼ 1

x $ 0

where 1 is the vector with unit elements. The covariance matrix is used to

estimate the volatility of the resulting portfolio. Having determined the port-

folio, we can then monitor its performance by estimating its volatility and its

actual return up to the end of the holding period.

Many implementations of the Markowitz framework use a historical covar-

iance matrix suitably based on an assumed horizon period to hold the portfo-

lio. For example, if a portfolio is to be determined today with a 1-month

holding period, the covariance matrix to use is the one that estimates the 1-

month volatility of returns of the risky assets.

A number of implementations are based on a different method of estimating

the covariance matrix. Whereas historical data are ordinarily used for estimat-

ing the covariance matrix, an alternative approach may utilize forward-look-

ing scenarios. We use historical data to generate a historical covariance

matrix. Alternatively, a sufficient number of forward-looking scenarios are

used for generating a scenario-based covariance matrix. We denote the histor-

ical covariance matrix by CH and the scenario covariance matrix by CS and

consider these matrices as the product of two not necessarily conflicting

models of asset returns in the application below.

3.2 Application: Two Asset Allocations Using Different Models

Consider two usd-based bond5 portfolio managers who wish to adopt different

models for their conjoint asset allocation decision. One uses historical time
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series while the other uses forward-looking scenarios. They wish to create a

portfolio of international bonds from the following countries: Germany,

Belgium, Spain, France, Italy, Japan, the Netherlands, Sweden, and the United

Kingdom. Although both managers wish to attain an expected return of say

10% (we assume this target performance for illustration purposes), they differ

in the model that they use for estimating returns. Any optimal asset allocation

decision based on one model would yield a suboptimal return based on the

other model. The manager who adopts the historical-time-series-based model

of asset returns (hereafter ModelH) wishes to create a portfolio that is optimal

under that model and at the same time would not severely underperform under

the scenario-based model (hereafter Model S). Similarly, the manager who

adopts Model S wishes to create a portfolio that is optimal under her model

and at the same time would not severely underperform under Model H.

The managers wish to know the risk/return trade-offs involved in using their

models separately. Accordingly, we generate two efficient frontiers: one fron-

tier, H, shown as an efficient frontier in Figure 3.1a, is generated using Model

H; the other frontier, S, shown as an efficient frontier in Figure 3.1b, is

generated using Model S. H and S trace the return and the risk in the context

of Model H and Model S, respectively.

To see the performance of the portfolios on S if Model H happens to be a

better representation of asset return distributions, we take the portfolios on S

and identify in Figure 3.1a the location of this set of portfolios that traces the

return and risk combinations in the context of ModelH. Similarly, we take the

portfolios onH and identify in Figure 3.1b the location of this set of portfolios
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that traces out their return and risk combinations in the context of Model S.

Figures 3.1a and 3.1b indicate that portfolios that are mean-variance efficient

under one model are suboptimal under another model. Because no portfolio is

simultaneously optimal under both models, the managers will seek a portfolio

between these two efficient frontiers.

As noted above, the required portfolio must deliver the expected perfor-

mance of 10% annual return. Accordingly we consider in Figure 3.1a a port-

folio h that yields the expected performance of 10% under Model H.

Similarly, we consider in Figure 3.1b a portfolio s that yields the expected

performance of 10% under Model S. Next, we consider in Figure 3.1a the

return and risk co-ordinates of h and s in the context of Model H. Relative to

Model H,h has an expected performance of 10%. However, when located on

Figure 3.1a, portfolio s is not on the efficient frontier under Model H. Because

of the wide gap between h and s, evaluated under either model, the manager

would want an optimal compromise that would minimize the suboptimality in

the two contexts. In the next section, we present a method for minimizing the

suboptimality across the two models.

3.3 Two-model Problem

The optimization of the two-model problem involves the selection of assets

that would attempt to minimize the suboptimality across the two models,

thereby creating the minimax-optimal bond portfolio. We can generate an

efficient frontier that plots the risk and return for any minimax-optimal port-

folio, where optimality is defined by the minimum risk, when optimized under

the two models, for a required expected return.
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We present the minimax formulation; we use the notation from Section 3.1,

and augment the notation for the model from that section to distinguish

between the two models used in the minimax formulation. As before, we

use H and S, respectively, to refer to the historical-time-series-based model

and the scenario-based model.

Consider a universe of n assets from which a portfolio could be constructed,

where the portfolio is defined by the weights x [ R
n associated with each

asset. The expected returns EðrHÞ [ R
n under modelH and EðrSÞ [ R

n under

model S are respectively the expected values for the return on each asset based

on historical time series and the expected value for the return on each asset

based on multiple forward-looking scenarios. Let CH
[ R

n£n and C
S
[ R

n£n

be the ðn £ nÞ covariance matrix of returns under model H and model S,

respectively. Given a required level of expected portfolio return �R, a mini-

max-optimal portfolio is one that solves the following:

min
x[Rn

max
H;S

kx;CH
xl; kx;CS

xl
n o

ð3:2Þ

subject to

kx;EðrHÞl $ �R

kx;EðrSÞl $ �R

k1; xl ¼ 1

x $ 0:

3.4 Application: Simultaneous Optimization across Two Models

To identify the optimal compromise when presented with two different models

of return, we generate a frontier in which all portfolios are the result of

simultaneously minimizing the suboptimality across two models, while main-

taining the required level of expected return of 10%. We call this frontier the

minimax frontier, M. While generating the efficient frontiers H and S is

routine, generating the minimax frontier, M, is not: it requires specialized

optimization software. We plot M in both Figures 3.2a and 3.2b which are

replicas of Figures 3.1a and 3.1b with M overlayed. Under Model H, any

portfolio on M will be inferior to any portfolio on H, and superior to any

portfolio on S. Similarly, under Model S, any portfolio onMwill be inferior to

any portfolio on S, and superior to any portfolio onH. However,M provides a

consistent level of performance under both models, and the managers know

that, for the same expected return, any portfolio on M will provide the more

acceptable risk than any portfolio on H and S. Minimax performance is the
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best worst-case performance, and hence the best lower bound given the

scenarios.

3.5 Backtesting the Performance of a Portfolio on the Minimax

Frontier

Investors may choose any portfolio on M; their choice will reflect their risk

and return preferences. To illustrate the performance enhancement via mini-
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max we arbitrarily select portfolio m, which we call the minimax-optimal

portfolio, and show how the suboptimality discussed in Section 3.2 has

been simultaneously minimized. Portfolio m simultaneously minimizes the

gap between itself and h, and the gap between itself and s. We show in Figure

3.3 the asset allocations for the three portfolios that have been determined with

a view to realizing a 10% return.

To illustrate the performance over time of the minimax-optimal portfolio

m, we calculate the cumulative daily returns ofm against h and s under Model

H, and the cumulative daily returns of m against h and s under Model S. In

Figures 3.4a and 3.4b, respectively, we plot the performance of m against h

and s under Model H, and that of m against h and s under Model S. The

cumulative returns are plotted on an in-sample and out-of-sample basis6; all

cumulative returns start at zero returns for both in-sample and out-of-sample.

The in-sample data for selecting a portfolio are specific to the model being

used, whether Model H or Model S, whereas the out-of-sample data are the

realized returns for all the assets considered in the analysis. In this illustration,

the realized returns have been correctly modeled by Model S. From Figure

3.4a, for the out-of-sample period, s outperformed h: this demonstrates the

effect of mis-forecasting. It is clear from the figures that m generally outper-

formed s under Model H, and also generally outperformed h under Model S,

for both the in-sample period and the out-of-sample period.
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analysis is an acid test of the power of a model.
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Figure 3.4a Cumulative returns in the context of Model H, and in the context of

realized actual returns.

Figure 3.4b Cumulative returns in the context of Model S, and in the context of

realized actual returns.



4 DUAL BENCHMARKING

Many portfolio managers may not consider any one benchmark appropriate

for their purpose. Given their multiple objectives of maximizing returns and

minimizing tracking error7 and downside risk, they may wish to track multiple

benchmarks simultaneously. We present a dual benchmarking method based

on minimax to compute an optimized solution to the problem of benchmarking

with multiple objectives. Managers may find it useful in developing a portfolio

strategy that appropriately balances return and risk.

The portfolio manager who is certain she has selected the most appropriate

benchmark to track and/or who is not particularly interested in avoiding down-

side risk may remain with single benchmarking. Other managers may consider

dual benchmarking, under which they simultaneously track any two bench-

marks. While any number of benchmarks can be tracked, most managers

would perhaps be most interested in tracking those that meet different objec-

tives. For example, one benchmark may be chosen because it performs well

and is not easy to beat; the other, although low-performing, being relatively

risk-free such as LIBOR8, may be chosen because it helps immunize against

downside risk. Accordingly, we illustrate dual benchmarking by describing

how it could help a usd-based portfolio manager ensure her portfolio delivers

both the minimum of LIBOR and the conditional maximum on excess returns

by simultaneously tracking a global bond benchmark and the USD LIBOR

benchmark. We then illustrate the benefits from such tracking.

We first present in Section 4.1 the formulation of the single benchmark

tracking problem and in Section 4.2 its application to a usd-based portfolio

manager looking at tracking a global benchmark and LIBOR separately. In

Section 4.3, we give the minimax formulation of the dual benchmarking

problem and show the benefits from using dual benchmarking in an applica-

tion in Sections 4.4 and 4.5.

4.1 Single Benchmark Tracking

The single benchmark tracking problem involves the selection of assets that

attempt to replicate the performance, in terms of tracking error and excess

return trade-offs, of a chosen benchmark. We can generate an efficient frontier

that plots the tracking risk and return for any optimal portfolio. Optimality is

defined by the minimum tracking error for a given tracking return (i.e., excess

return).

As in earlier sections, consider a universe of n assets from which a portfolio

may be created. The portfolio is defined by the weights xP [ R
n and the vector
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of expected returns for n assets EðrPÞ [ R
n, with corresponding elements xPj

and EðrPj Þ attached to each asset j. Further, consider a universe of m assets

from which a benchmark is defined. The benchmark is identified by the

weights x
B
[ R

m and the vector of expected returns for m assets

EðrBÞ [ R
m, with corresponding elements x

B
k and EðrBk Þ associated with

each asset k. The benchmark weights x
B are fixed for our purpose and are

determined by the particular asset class being analyzed; in the case of bonds,

the benchmark may be a composite of all outstanding investment-grade bonds.

In the case of bond portfolios, for example, we assume that the expected

return for each asset is derived based on an estimation procedure using yield

curve scenarios9 where a scenario defines the future value of an asset, and

therefore its return over the period10. Furthermore, we assume that each

scenario is associated with a weight that defines the importance, or perhaps

likelihood, of the scenario. Let u [ R
msce

be the vector of scenario weights for

m
sce scenarios where each element ui represents the weight for scenario i.

Associated with each of the n assets in the portfolio is a vector of scenario

returns whose element rP;ij defines the return for portfolio asset j under

scenario i. Similarly, we define rB;ij as the return for the benchmark asset j

under scenario i.

The portfolio asset expected returns vector EðrPÞ [ R
n is a vector of

expected returns where each element represents the expected return for each

asset in the portfolio. In turn, the expected return for each asset j, EðrPj Þ [ R
1,

represents the expectation over all scenarios for that particular asset. The

return vector rP;i [ R
nunder scenario i is a vector whose elements are the

asset returns for that particular scenario. Hence we have

EðrPÞ ¼
EðrP1 Þ
..
.

EðrPn Þ

2
66664

3
77775 ¼

Xmsce

i¼1

uirP;i1

..

.

Xmsce

i¼1

uirP;in

2
66666666664

3
77777777775

; rP;i ¼
r
P;i
1

..

.

rP;in

2
66664

3
77775:

Similarly, the expected returns of the assets in the benchmark, vector

EðrBÞ [ R
m, and the returns vector, rB;i [ R

m, for scenario i are given by
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estimating a return distribution for an asset. An alternative procedure using historical time series
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that would fit in the framework described in this section.

10 Although the discussion in this particular section refers to the use of scenarios for estimating

expected returns, this does not preclude the use of historical time series for estimating expected

returns. In the case of historical time series, each time stamp can be regarded as a scenario.



EðrBÞ ¼
EðrB1 Þ
..
.

EðrBmÞ

2
66664

3
77775 ¼

Xmsce

i¼1

uirB;i1

..

.

Xmsce

i¼1

uirB;im

2
66666666664

3
77777777775

; r
B;i ¼

rB;i1

..

.

rB;im

2
66664

3
77775:

The portfolio (or benchmark) return is the weighted sum of the expected

returns, for the assets in that portfolio (or benchmark). We can also identify

the portfolio (or benchmark) return per scenario as the weighted sum of the

return for a particular scenario, for the assets in that portfolio (or benchmark).

The expected portfolio return P and its return per scenario P
i are given by

P ¼ kðxPÞ;EðrPÞl

P
i ¼ kðxPÞ; rP;il:

The expected benchmark return B and its return per scenario B
i are given by

B ¼ kðxBÞ;EðrBÞl

Bi ¼ kðxBÞ; rB;il
where xB is the weight of the asset in the benchmark. It is assumed to be

constant at this stage and is specified in advance. Given a required level of

expected excess return �T over the benchmark, an optimal tracking portfolio is

one that solves the following:

min
xP[Rn

Xmsce

i¼1

ui ðPi
2 B

iÞ2 ðP2 BÞ
� �

2

( )
ð4:1Þ

subject to

kðxPÞ;EðrPÞl2 kðxBÞ;EðrBÞl $ �T

k1; xPl ¼ 1

x
P
$ 0:

The objective in (4.1) is to minimize the deviation of the excess return under

each scenario, given by ðPi
2 BiÞ, relative to the expected excess return, given

by ðP2 BÞ. The first constraint specifies that the expected excess return,

essentially ðP2 BÞ, is at least the same as some predefined level �T . Repeatedly

solving (4.1) with varying levels of expected excess return �T will generate a

frontier of minimal risk for a given level of return. The frontier is efficient in
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the sense that it characterizes the best risk versus return trade-off that can be

achieved and yields optimal tracking portfolios with minimal tracking error

for any level of expected excess return.

4.2 Application: Tracking a Global Benchmark against Tracking

LIBOR

A usd-based bond portfolio manager wishes to create a portfolio that tracks a

global benchmark and simultaneously delivers a performance that is noninfer-

ior to LIBOR. The manager considers LIBOR as the minimum-return bench-

mark: the return on LIBOR is a good indicator of the return on an equivalent

cash portfolio of relatively low risk. The manager has no incentive to create an

asset portfolio, of relatively high risk, that delivers less than LIBOR. The

manager will want to know the risk/return trade-offs involved in tracking a

market-capitalization-weighted11 global benchmark, shown in Figure 4.1, and

in tracking LIBOR separately. Accordingly, we generate two efficient fron-

tiers: one, G, shown in Figure 4.2a, which tracks the global benchmark; the

other, L, shown in Figure 4.2b, which tracks LIBOR. G and L trace the

tracking return and the tracking error with respect to the global benchmark

and LIBOR, respectively.
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markets in the countries that constitute the global benchmark.

Figure 4.1 The market-capitalization-weighted global benchmark used by the bond

portfolio manager.
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Tracking error may be unacceptably high towards the right region of the

frontier. Hence, the manager is likely to focus on the left region, where the

tracking error is low. To see the performance of the portfolios corresponding

to L in tracking the global benchmark G, we identify this performance of L in

Figure 4.2a by tracing their excess return and tracking error combinations

relative to the global benchmark G. Similarly, we evaluate the performance

of the portfolios based on G and identify in Figure 4.2b by tracing excess

return and tracking error combinations relative to LIBOR benchmarking L.

Figures 4.2a and 4.2b indicate that portfolios that efficiently track the global

benchmark are suboptimal in the LIBOR context, while portfolios that effi-

ciently track LIBOR are suboptimal in the global benchmarking context.

Because no portfolio is simultaneously optimal in both contexts, the manager

will seek a portfolio between these two efficient frontiers.

As noted above, the required portfolio delivers the minimum performance

target of LIBOR. Accordingly, we consider in Figure 4.2b the two portfolios g

and l that yield zero tracking returns over LIBOR. We next consider in Figure

4.2a the return and risk coordinates of g and l in the global benchmarking

context. When located on Figure 4.2a portfolio g is on the efficient frontier for

global benchmarking. Relative to global benchmarking it has an expected

outperformance of 5%. We refer to portfolio g as the 5% global-optimal

portfolio when we illustrate the relative performance of a dual12 portfolio.

Because of the wide gap between g and l, in either figure, the investor may

wish an optimal compromise that minimizes the suboptimality in the two

benchmarking contexts. The suboptimality arises when measuring the perfor-

mance of a portfolio, optimally tracking one benchmark, against a second

benchmark. In Section 4.3, we present a method for minimizing this subop-

timality.

4.3 Dual Benchmark Tracking

The dual benchmark tracking problem involves the selection of assets that

optimally track a benchmark and simultaneously minimize the suboptimality

in tracking another benchmark. We generate an efficient frontier that

computes the tracking error and excess return for any dual-optimal bond

portfolio. Optimality is defined by the minimum of the worst-case tracking

error, when tracking both benchmarks, for given excess returns.

We augment the notation for the benchmark in Section 4.1 to distinguish

between the two benchmarks used in the dual benchmark tracking formula-

tion. We use B1 and B2, respectively to refer to the first and the second

benchmark.

Given the required level of expected tracking returns �T1 and �T2, an optimal
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tracking portfolio is one that solves the following:

min
xP[Rn

max
k¼1;2

fk¼1 ¼
Xmsce

i¼1

ui ðPi
2 B1iÞ2 ðP2 B1Þ

� �2
 !

fk¼2 ¼
Xmsce

i¼1

ui ðPi
2 B2iÞ2 ðP2 B2Þ

� �
2

 !

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

subject to

kðxPÞ;EðrPÞl2 kðxB1Þ;EðrB1Þl $ �T1 ð4:2Þ

kðxPÞ;EðrPÞl2 kðxB2Þ;EðrB2Þl $ �T2

k1; xPl ¼ 1

x
P
$ 0:

The objective in (4.2) is to minimize the maximum, or worst-case, deviation

relative to the two benchmarks. Relative to each benchmark, the excess return

under each scenario, given by ðPi
2 B1iÞ and ðPi

2 B2iÞ, relative to their

corresponding expected excess return, given by ðP2 B1Þ and ðP2 B2Þ. The
first constraint specifies that the expected excess return relative to the first

benchmark, essentially ðP2 B1Þ, is at least the same as some predefined level
�T1. The second constraint specifies that the expected excess return relative to

the second benchmark, essentially ðP2 B2Þ, is similarly required to be at least

the same as some other predefined level �T2. These two constraints define the

minimum expected excess returns for the portfolio whichever benchmark is

relevant. We assume �T1 ¼ �T2. Repeatedly solving (4.2) with varying levels of

expected tracking returns �T1 (¼ �T2), we generate an efficient frontier of dual-

optimal tracking portfolios with minimal tracking errors, when tracking both

benchmarks, for any level of excess return.

4.4 Application: Simultaneously Tracking the Global Benchmark and

LIBOR

We illustrate the optimal compromise when tracking two benchmarks. A

frontier is generated in which all portfolios are the result of simultaneously

minimizing the worst-case tracking errors under both global benchmarking

and LIBOR benchmarking, while maximizing excess returns over both global

benchmark and LIBOR. We call this frontier the dual benchmark frontier, D.

While generating the efficient frontiers G and L (the global frontier and the

LIBOR frontier) is routine, generating the dual benchmarking frontier, D, is

not: it requires specialized optimization software. We illustrate D in both
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Figures 4.3a and 4.3b which are replicas of Figures 4.2a and 4.2b with D

overlayed. In Figure 4.3a, frontier G, generated from tracking a global bench-

mark, is more efficient than either D or L. Similarly, in Figure 4.3b, frontier L,
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Figure 4.3a Global benchmark tracking frontiers.

Figure 4.3b USD LIBOR benchmark tracking frontiers.



generated from tracking a LIBOR benchmark, is more efficient than either D

or G. However, D provides a guaranteed level of performance over both

benchmarks. For the same excess return, any portfolio on D will provide a

more acceptable downside risk than any portfolio on either frontier G or L.

4.5 Performance of a Portfolio on the Dual Frontier

Any portfolio onD is chosen to reflect risk and return preferences. To illustrate

the performance enhancement via dual benchmarking we arbitrarily select

portfolio d, which we call the dual portfolio, and show how the suboptimality

discussed in Section 4.2 has been simultaneously minimized. Portfolio d

simultaneously minimizes the gap between itself and g, as shown in Figure

4.3a, and the gap between itself and l, as shown in Figure 4.3b. We show in

Figure 4.4 the asset allocations for the 5% global-optimal portfolio (g) and for

the dual portfolio (d).

To illustrate the performance over time of the dual portfolio d, we compute

the cumulative daily returns of the dual portfolio (d) against the 5% global-

optimal portfolio (g). In Figures 4.5a and 4.5b, respectively, we plot the

tracking performance of the 5% global-optimal portfolio (g) against that of

the dual portfolio (d) on a cumulative return basis. The cumulative returns are

plotted in-sample and out-of-sample; all cumulative returns start at zero

returns for both in-sample and out-of-sample. LIBOR returns are based on
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Figure 4.5a Cumulative returns of the global benchmark, USD LIBOR and the 5%

global-optimal portfolio.

Figure 4.5b Cumulative returns of the global benchmark, USD LIBOR and the dual

portfolio.



the average USD LIBOR rate for the in-sample and out-of-sample periods,

with a simple linear cumulative return indicating the USD LIBOR perfor-

mance over the periods. Looking at the figures we see that the 5% global-

optimal portfolio (g) generally outperformed the global benchmark but under-

performed LIBOR during the last quarter of the in-sample period, and during

the first half of the out-of-sample period. The dual portfolio (d) also generally

outperformed the global benchmark throughout the in-sample and out-of-

sample periods, additionally, it also generally outperformed LIBOR.

5 OTHER MINIMAX STRATEGIES FOR ASSET ALLOCATION

Threshold returns (or minimum returns) are considered relevant to pension

fund management where the gap between assets and liabilities defines a

required minimum return. This leads to the broad area of asset management

where benchmark tracking strategies define the required minimum outperfor-

mance. Furthermore, we consider index tracking, downside risk and the use of

continuous minimax for range forecasts.

5.1 Threshold Returns and Downside Risk

The applications of Value-at-Risk models (Morgan Guaranty Trust Co. and

Reuters Ltd., 1996) for estimating the potential loss in terms of portfolio value

for adverse market movements have highlighted the need for downside risk

optimization models. In this section we explore a minimax extension of down-

side risk modeling; for a comprehensive review of downside risk modeling in

asset allocation (see CN 2 and Duarte, 1994).

We define the threshold return as the minimum acceptable or desired level

of return that would satisfy the objectives of a fund. For a pension fund, the

gap between the present value of assets and liabilities, as well as the gap

between their duration levels (see CN 10.1), determine the threshold level

of return that would maintain a high probability of meeting future liabilities

as they fall due. The threshold return should provide cover against any poten-

tial widening of the gap between assets and liabilities. It should also cover the

cost of maintaining the fund. For benchmark tracking strategies in asset

management, where the performance of assets is assessed relative to the

performance of a benchmark, the threshold return is the required outperfor-

mance net of management fees and transaction costs. For endowment funds,

where maintaining the purchasing power of the assets may be the main objec-

tive, the threshold return should cover operating costs as well as expected

inflation. In these types of funds where the investors’ objectives are defined

mainly in terms of a reference variable, for example, liabilities for pension

funds and inflation for endowment funds, the investor’s view of risk and return

may deviate from the common measures in the mean-variance context, where
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risk is defined by the standard deviation of returns. This measure of risk is

perhaps not the most appropriate for the illustrations given above, where the

investors are more concerned about the downside risk, or the risk that the

actual return on their portfolio is below their threshold level. We define down-

side risk13 as

downside risk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmsce

i¼1

ui minð0; kx; ril2 TRÞÞ2
� �

vuut

where x is the asset mix, TR is threshold return, ri is the asset return vector

under scenario i, and ui is the probability of occurrence of scenario i.

This definition of downside risk uses a number of scenarios over which the

shortfall below the threshold return is evaluated. This definition depends on

the existence of a sufficiently large set of scenarios in order to arrive at a

meaningful figure. Another approach to downside risk is given in Section

5.2.1.

Downside risk optimization can be formulated as

min
xP[Rn

Xmsce

i¼1

ui min 0; kx; ril2 TR
� �� �2

( )
ð5:1Þ

subject to

kx;EðrÞl $ R̂

k1; xl ¼ 1

x $ 0

where R̂ is a desired level of expected return, normally higher than the thresh-

old return, and EðrÞ is the expected return across all scenarios. An alternative

way to estimate downside risk is to use historical data where a historical time

series of returns for each asset is used in place of scenarios. In this case, the

subscript i can be changed into a subscript t and can be interpreted as the time

step over the time series, and m
sce

can be interpreted as the number of time

steps. When using historical data, (5.1) takes the following form:

min
xP[Rn

XT

t¼1

ut minð0; kx; rtl2 TRÞ� �2
( )

subject to

kx; �EðrÞl $ R̂
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tion is provided in CN 2. The definition used here is one of the simplest in order to focus the

discussion on the equivalent minimax formulation.



k1; xl ¼ 1

x $ 0

R̂ is a desired level of expected return, normally higher than the threshold

return, and �EðrÞ is the historical average return.
In (5.1), the we take the minimum between the performance relative to the

threshold and zero, that is, only the negative relative performance is taken into

account. This is now formulated into a minimax framework as

min
x[Rn

max
i

minð0; kx; ril2 TRÞ
� �2� �

ð5:2Þ

subject to

kx;EðrÞl $ R̂

k1; xl ¼ 1

x $ 0:

We note that with this formulation, the optimization of downside risk would

not ensure that the standard deviation of returns is equally optimal. The solu-

tion generated by this formulation may correspond to a high-return high-

volatility portfolio. Clearly, if these properties concern the investors then

they should further modify their formulations to more accurately reflect

their objectives. It is assumed that the investors interested in optimizing down-

side risk are more concerned by the performance of their portfolios relative to

their reference variables, for example, liabilities or inflation concerns. Another

downside risk formulation is presented in Section 5.2.1 for an application in

robust index tracking.

5.2 Further Minimax Index Tracking and Range Forecasts

The problem presented in this section requires a framework for the investment

manager to consider beating an index used as performance benchmark while

feeling, to some extent, secure about the return forecast used. In other words,

how erroneous can a forecast get (in terms of downside effects) while beating

the index and ensure that the corresponding performance is secure, provided

reality turns out to be within the downside bound used. If anything better than

this bound is realized, the performance should improve (see Theorem 1.3.1).

Consider the classical mean-variance framework for a given a [ ½0; 1�
min
x

JaðxÞf jx [ Xg ð5:3Þ

where JaðxÞ is the quadratic objective function
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JaðxÞ ¼ 2akEðrÞ; x2 �xl1 ð12 aÞkx2 �x;Cðx2 �xÞl: ð5:4Þ
EðrÞ [ R

n is the expected return vector of the set of assets being considered

with

r ¼ EðrÞ1 e; ð5:5Þ
e , Nð0;CÞ is the random error, C [ R

n£n is the covariance matrix of the

returns, x [ R
n is the portfolio weights to be optimally determined, and �x

denotes the benchmark weights for x to follow closely. X is the feasible set,

which includes the budget constraint and the restrictions imposed by the

investor. The vector e is either the error of historical returns from the historical

mean or the error between the historical actual return and corresponding

forecast.

Ordinarily, the presence of �x in the linear term in (5.4) does not influence the

solution, as it is a constant shift of the objective. However, this may make a

difference in a minimax strategy (Rustem et al., 2000).

5.2.1 Downside Risk Around the Lower Bound

An alternative approach is to consider a downside risk model (CN 2). A one-

sided risk framework is considered below based on historical performance and

where the one-sided risk is minimized while simultaneously maximizing the

worst-case return.

The formulation entails the observation of historical returns on n assets over

T periods. We thus have an observation matrix R [ R
T£n. With a given bench-

mark and portfolio weights, the portfolio relative return is defined as

6 ¼ Rðx2 �xÞ [ R
T
: ð5:6Þ

We define downside risk as negative values of 6. This represents underper-

formance of the portfolio in view of historical return observations. We wish to

minimize the mean square of such underperformance. Therefore, we consider

61 2 62 ¼ 6; 61; 62 $ 0; 6162 ¼ 0 ð5:7Þ
and minimize

k62; 62l

T 2 1
: ð5:8Þ

Hence, the objective of the classical portfolio problem becomes

JaðxÞ ¼ 2akEðrÞ; x2 �xl1 ð12 aÞ k6
2
; 62l

T 2 1
1 ck61; 62l ð5:9Þ

where 61 2 62 ¼ Rðx2 �xÞ and 61; 62 $ 0 are additional constraints. In (5.9),

c is chosen large enough to ensure that k61; 62l ¼ 0. We note that there are
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infinite 61; 62 $ 0 satisfying 61 2 62 ¼ Rðx2 �xÞ for any given x. However,

there is a unique solution that minimizes (5.9). Indeed if ðRðx2 �xÞÞi . 0, that

is, the ith term of the vector, then this can be achieved by ð62Þi ¼ 0, which

minimizes the quadratic. If ðRðx2 �xÞÞi , 0 then the smallest ð62Þi that mini-

mizes the quadratic is obtained by ð61Þi ¼ 0. The extension of this formula-

tion to minimax with rival return scenarios is straightforward.

5.2.2 Range Forecasts: Continuous Minimax with Upper and Lower

Bounds

The solution to the linear minimax robust portfolio problem

min
x

max
r

2kr; x2 �xl j x [ X; r
lower

# r # r
upper

n o
ð5:10Þ

can be solved by using

61 2 62 ¼ x2 �x; 61; 62 $ 0; k61; 62l ¼ 0

where 61; 62 $ 0 are buy and sell decisions, and solving the linear program-

ming problem

min
62;61

2krupper; 62l2 krlower; 61l j 61 2 62 1 �x [ X; 61; 62 $ 0
n o

: ð5:11Þ

We note that the equality k61; 62l ¼ 0 is ensured in the linear programming

formulation. This corresponds to the risk-seeking end of the efficient frontier.

It yields the optimal worst-case portfolio within this range. As always, the

solution does not provide any protection over the variation of r outside the

given ranges. For that, we need to introduce a certain degree of robustness to

ensure that the solution is less sensitive to changes in r.

The risk associated with r in (5.10) is either the covariance of each r, CðrÞ,
approximated with a single matrix C, corresponding to the central forecast

error, or downside risk as in (5.2.1), or the historical covariance of r. In the

former case, the risk term is consistent with the forecast but its inevitable

approximation with a single matrix is not a desirable feature. Furthermore,

the forecaster’s risk is represented by both the forecast range and the covar-

iance. The historical covariance is not consistent with the forecast but it seems

to fit better with the interpretation that while the forecast error is represented

by the forecast range, the historical return series does exhibit a certain varia-

tion, captured by the historical covariance. If the range is indeed such that any

value in the range is possible, the historical covariance would represent the

variation of any realization.

The down-sided risk approach penalizes appropriately the correct direction

only. Especially when the worst case solution is at the upper or lower bound
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return value, the downside risk seems more realistic than a symmetric risk

measure.

Let 6 be given by

6 ¼ x2 �x:

We reformulate the minimax problem (5.10) with the risk term as

min
6

max
r

2akr; 6l j rlower # r # r
upper

� �
1 ð12 aÞk6;C6l j 61 �x [ X

� �
:

ð5:12Þ
As the objective is to maximize return in view of the worst case scenario, we

may utilize the formulation in (5.11). In (5.12) the trade-off is between the

worst-case portfolio and the traditional risk-averse policy. This problem can

be solved by

min
z1;z2

2a krlower; z2l1 krupper; z1l
� �

1ð12 aÞk z1 2 z2 1 �x
� �

;C z1 2 z2 1 �x
� �

l

j z1 2 z2 1 �x [ X; z1; z2 $ 0

8>>><
>>>:

9>>>=
>>>;

ð5:13Þ

The quadratic term in (5.12) minimizes the sensitivity of2kr; 6l to changes in
r. This is desirable as the actual performance of rmay exhibit variation beyond

the bounds of r. In that case, some degree of increased robustness might be

traded off with a degree of deterioration in expected performance. Clearly, if

only2kr; 6l is important, then the risk-seeking solution of (5.12) is the desired

strategy. That provides the best worst-case performance within the bounds and

guarantees that actual performance will improve if any scenario, other than the

worst case, is realized. However, it does not provide protection if the actual r

transgresses the bounds.

The worst-case r for (5.12) is determined recognizing that the decision

maker cares about the quadratic portfolio variance. The worst-case r is chosen

to minimize the portfolio return; on the other hand, the portfolio investment

decision, x, is computed ahead of r. Let 6
p
be the solution of (5.12) and r be

determined to create the most adverse condition in view of the sensitivity term

and the linear term. After the event, the worst-case r is given by the linear

programming problem

max
r

2kr; 6
p
l j rlower # r # r

upper
n o

ð5:14Þ

which provides the lower bound performance of 6
p
, provided r remains in the

given bounds. Although a decision based on (5.10) would have better expected

performance than (5.12), and consequently (5.14), if the bounds were not

transgressed, (5.12) possesses the added robustness mentioned above. The
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lower bound given in (5.14) is calculated after 6
p
. Therefore it does not

influence 6
p
, since the latter is determined by (5.12).

6 MULTISTAGE MINIMAX PORTFOLIO SELECTION

In this section, we present a multistage framework to reformulate the single-

stage asset allocation problem as an adaptive multistage decision process. In

the single-stage decision process the investor decides on the asset allocation

based on expectations of returns at the horizon in the mean-variance sense,

based on some predefined scenarios at the horizon in the minimax sense. In the

multistage case, the investor decides based on expectations and/or scenarios

up to some intermediate times prior to the horizon. These intermediate times

may correspond to rebalancing or restructuring periods: we propose a system

of deciding on the asset allocation with predefined rebalancing or restructuring

times prior to the horizon. This assumption is not unreasonable in investment

management where the horizon could be as long as 5 years and the restructur-

ing may occur every year.

We present a two-stage process for simplicity. An asset allocation decision

is to be made now, a restructuring to be made in 1 year’s time and the

liquidation of the portfolio to be made at the horizon which is in 2 years’

time. We extend a single-period minimax model to a two-stage formulation.

For ease of exposition, we show below the formulation for a one-stage

problem as the starting point for our discussion. Other single-period minimax

models may be adapted in a similar fashion. The model applies to a situation

where there are rival return forecasts with fixed risk estimates, and with

scenarios denoted by i.

min
x

max
i

2akri; xl1 ð12 aÞkx2 �x;Cðx2 �xÞl
n o

: ð6:1Þ

In this formulation the value of ri is essentially the expected return for each

scenario i at the horizon of all the assets in the portfolio. In Figure 6.1, where a

one-stage problem is considered, the branches emanating from the original

node at time t ¼ 0 represent scenarios. In this figure, there are five scenarios.

At the tip of each branch is a terminal node whose return is ri.14

We now extend (6.1) to accommodate a two-stage problem. For ease of

exposition, we give in Figure 6.2 an extended version of the scenario tree of

Figure 6.1. In Figure 6.2, the first stage is the same as the single stage of Figure

6.1. The second stage gives an expansion of each of the five nodes of the first
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i
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there is no restriction imposed on how the expectation is generated. This implies that the return

associated with each scenario is some expected value, perhaps provided by an economist’s

subjective forecast or by a forecasting model.
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Figure 6.1 Tree structure showing a one-stage framework with 5 scenarios.

Figure 6.2 Tree structure showing a two-stage framework with 25 scenarios.



stage. This expansion shows that the return for each scenario of the first stage

has been generated by taking the expectation over the five scenarios of the

second stage that emanate from the relevant node. In the figure, sð0; 1Þ is the
first branch emanating from node 0, and its associated return is rð0; 1Þ. Simi-

larly, sð1; 2Þ is the second branch emanating from node 1, and its associated

return is rð1; 2Þ.
We note that the nodes at the end of the second stage have return values that

may also be based on expectation. In this case, the return associated with each

second-stage scenario is some expected value, perhaps provided by an econ-

omist’s subjective forecast or by a forecasting model. We shall not consider

the detail of the nature of returns at Stage 2.

The use of a two-stage optimization formulation is more consistent with the

nature of economic forecasting. The scenarios that forecasters may be able to

generate for a one-year time frame (i.e., the return at the terminal nodes in

Figure 6.1) may be more robust than those that the same forecasters may be

able to generate for a 2-year horizon (i.e., the return at the terminal nodes in

Figure 6.2). At the same time, forecasters are concerned about future events,

perhaps as far forward as 2 years. A two-stage minimax formulation caters for

this need for consistency.

We now explain the use of the scenario tree given in Figure 6.2. Let sða; bÞ
represent a branch of a scenario tree from state a to state b, for example, sð0; 1Þ
is the branch emanating from state 0 to state 1. From Figure 6.2, we consider 5

branches in Stage 1, each with a return at the restructuring time t ¼ 1. Each of

the return, for each branch at time t ¼ 1, is based on the 5 branches for Stage 2.

For example, rð0; 1Þ when is the return based on {sð1; 1Þ; sð1; 2Þ; sð1; 3Þ;
sð1; 4Þ; sð1; 5Þ}; each of these branches emanating from sð0; 1Þ has an asso-

ciated return at the end of Stage 2, that is, at the horizon. The branches

{sð1; 1Þ; sð1; 2Þ; sð1; 3Þ; sð1; 4Þ; sð1; 5Þ} are the only relevant branches if, after

Stage 1, state 1 is realized.

We define a scenario as a particular path through the tree, from state 0 to any

one of the horizon states. For example, scenario S1 is the path {sð0; 1Þ; sð1; 1Þ}.
Similarly, scenario S2 is the path {sð0; 1Þ; sð1; 2Þ}. The tree in Figure 6.1 has

25 scenarios. Therefore in the minimax formulation that we introduce below,

the term scenario refers to any one of the 25 paths in Figure 6.2.

We introduce the concept of an ancestor state (Nielsen, 1997). Let at21ðsÞ
represent the ancestor state, that is, the state from which the current state at

time t emanates. For scenario S1, the ancestor state of sð1; 1Þ is sð0; 1Þ. Simi-

larly, for scenario S2, the ancestor state of sð1; 2Þ is sð0; 1Þ. With both sð1; 1Þ
and sð1; 2Þ, as well as sð1; 3Þ, sð1; 4Þ and sð1; 5Þ, having a common ancestor

sð0; 1Þ, it is clear that any decision to be made at Stage 2 would have to

consider the conjoint effect of any previous asset allocation decision and the

ancestor state on the portfolio.
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At the end of Stage 1, the investor may wish to re-optimize to update her

allocations in view of the relevant branches that she faces at that point. We

note that by evaluating (6.1) up to time t ¼ 1, that is, the restructuring time,

the decision variable x may not be the overall optimal solution when the

analysis is carried through to the horizon. In other words, by solving up to

t ¼ 1, we are not certain about the performance of the portfolio past that time.

We now present a full multistage framework that determines a solution based

on an analysis of all stages up to the horizon.

The discretization using scenarios approximates future expectations. Yet,

each such approximation has an associated error which is the variability of the

scenario which needs to be considered in addition to the variability over all

scenarios. Let xt [ R
n be the asset allocation decision at time t, xit [ R

n be the

vector of portfolio weights to be determined for scenario i and time t, and

x
1

2 [ R
n and x22 [ R

n, respectively, be the buy and sell decisions for Stage 2.

Let rð0; iÞ be the return at the end of Stage 1 based on branch i; similarly, let

rði; jÞ be the expected return at the end of Stage 2 based on branch i in Stage 1

and branch j in Stage 2. Further, let mb represent the number of branches that

emanate from a node, whilemsce is the number of scenarios or paths in the tree.

In Figure 6.2, mb ¼ 5 and m
sce ¼ 25.

Recall that in the example above there are five branches emanating from a

node and that there are 25 scenarios in total. In this formulation, the bench-

mark is assumed to be unchanged from Stage 1 to Stage 2. A varying bench-

mark can be used but this is not explored here.

The mean value of a multistage portfolio at time 1 is given by

Xmb

i¼1

uirð0; iÞT ðxi1 2 �xÞ ð6:1Þ

where ui is the associated probability function. The variance is given by

Xmb

i¼1

uiðxi1 2 �xÞT C
i
1 rð0; iÞrð0; iÞT

� �
ðxi1 2 �xÞ

(see Gulpinar et al., 2000). The mean and variance at Stage 2 are expressed

similarly.

For one particular scenario s, the vectors rð0; iÞ and rði; jÞ are unique, with

parameters i and j both instantiated. When scenarios are used, the parameters i

and j are both dependent on the scenario or path taken through the tree; hence

the superscript s is used for identifying the return. Let rsð0; isÞ be the return at

the end of Stage 1 based on branch i dependent on scenario s; similarly, let

r
sðis; jsÞ be the return at the end of Stage 2 based on branch i in Stage 1 and

branch j in Stage 2, where both parameters are dependent on scenario s.

Suppose we consider only one scenario or path of the tree. We pick a unique
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Stage 1 node and a unique Stage 2 node to yield

min
xs
1
;xs
2
;xs;1
2

;xs;2
2

[Rn

2akrsð0; isÞ; xs1 2 �xl

1ð12 aÞkxs1 2 �x; ðC 1 r
sð0; isÞrsð0; isÞT Þðxs1 2 �xÞl

2akrsðis; jsÞ; xs2 2 �xl

1ð12 aÞkxs2 2 �x; ðC 1 r
sðis; jsÞrsðis; jsÞT Þðxs2 2 �xÞl

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

6:2Þ

subject to generalized bounds constraints

l1 # xs1 # u1

l2 # x
s
2 # u2

k1; xs1l ¼ 1

k1; xs2l ¼ 11 kðrsð0; isÞÞ; xs1l

x
s
1 $ 0

x
s
2 $ 0

x
s
2 ¼ x

s
1 1 x

s;1
2 2 x

s;2
2

x
s;1
2 $ 0

xs;22 $ 0

kxs;12 ; x
s;2
2 l ¼ 0; s ¼ 1:

The last constraint simply ensures either xs;12 . 0 or xs;22 . 0 but not both.

The constraint may be imposed as a penalty term in the objective. The rank-

one terms rsð0; isÞrsð0; isÞT and rsðis; jsÞrsðis; jsÞT in the objective are simply

intended to underline the influence of multiple scenarios discussed below.

Assuming that the particular scenario s is realized, then (6.2) is an adequate

formulation to find the optimal asset allocation. The presence of multiple

scenarios makes (6.2) unrealistic but it can be used as a basis for accommo-

dating other scenarios by weighting each scenario using its probability of

occurrence. Additionally, we have to ensure that at the second stage we

identify the path the scenario has taken in order to set a consistent system

of accounting for the stage-one decision x
s
1. Recall that at21ðsÞ denote the

ancestor state; we introduce a new constraint called the nonanticipativity

constraint. Let us be the probability of scenario s. We have
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min
xs
1
;xs
2
;xs;1
2

;xs;2
2

[Rn

Xmsce

s¼1

us

2akrsð0; isÞ; xs1 2 �xl

1ð12 aÞkxs1 2 �x; ðC 1 rsð0; isÞrsð0; isÞT Þðxs1 2 �xÞl
2akrsðis; jsÞ; xs2 2 �xl

1ð12 aÞkxs2 2 �x; ðC 1 r
sðis; jsÞrsðis; jsÞT Þðxs2 2 �xÞl

0
BBBBBB@

1
CCCCCCA

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð6:3Þ
subject to generalized bounds constraints

l1 # x
s
1 # u1

l2 # x
s
2 # u2

k1; xs1l ¼ 1

k1; xs2l ¼ 11 kðrsð0; isÞÞ; xs1l

x
s
1 $ 0

x
s
2 $ 0

x
s
2 ¼ x

s
1 1 x

s;1
2 2 x

s;2
2

x
s;1
2 $ 0

xs;22 $ 0

kxs;12 ; x
s;2
2 l ¼ 0

x
s
t ¼ x

s11
t for t ¼ 1; 2 and at21ðsÞ ¼ at21ðs1 1Þ; ;s:

The minimax equivalent of (6.3) is given by

min
x1;x2;x

1

2
;x2
2
[Rn

max
s

2akrsð0; isÞ; x1 2 �xl

1ð12 aÞkx1 2 �x; ðC 1 r
sð0; isÞrsð0; isÞT Þðx1 2 �xÞl

2akrsðis; jsÞ; x2l
1ð12 aÞkx2 2 �x; ðC 1 r

sðis; jsÞrsðis; jsÞT Þðx2 2 �xÞl

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð6:4Þ

subject to generalized bounds constraints

l1 # x1 # u1

l2 # x2 # u2
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k1; x1l ¼ 1

k1; x2l # 11 kðrsð0; isÞÞ; x1l; ;s

x1 $ 0

x2 $ 0

x2 ¼ x1 1 x
1

2 2 x
2

2

x
1

2 $ 0

x
2

2 $ 0

kx12 ; x
2

2 l ¼ 0:

Problem (6.4) can be reformulated as the nonlinear program given by

min
Z[R1;x1;x2;x

1

2
;x2
2
[Rn

Zf g ð6:5Þ

subject to

2akrsð0; isÞ; x1 2 �xl1 ð12 aÞkx1 2 �x; ðC 1 r
sð0; isÞrsð0; isÞT Þðx1 2 �xÞl # Z

2akrsðis; jsÞ; x2 2 �xl1 ð12 aÞkx2 2 �x; ðC 1 rsðis; jsÞrsðis; jsÞT Þðx2 2 �xl # Z

l1 # x1 # u1

l2 # x2 # u2

k1; x1l ¼ 1

k1; x2l # 11 kðrsð0; isÞÞ; x1l; ;s

x1 $ 0

x2 $ 0

x2 ¼ x1 1 x12 2 x22

x
1

2 $ 0

x
2

2 $ 0

kx12 ; x
2

2 l ¼ 0:
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Problem (6.5) is a flat minimax structure that looks at all possible scenarios

that span the two stages. Clearly, other formulations are also possible where

minimax and expected value optimization are combined. We discuss such

strategies further in Chapter 10.

7 PORTFOLIO MANAGEMENT USING MINIMAX AND OPTIONS

The widespread use of options can be attributed partly to their insurance

capability, where a portfolio’s value is preserved by buying an option to

sell a declining asset at a favorable price. There are many other perceived

benefits from dealing with options, but from the point of view of portfolio

management, the insurance capability remains to be perceived as the main

benefit.

The use of options has entered the mainstream investment strategies of fund

managers who operate in the alternative investments domain. These include

hedge funds, arbitrage funds and commodity trading advisors who devise

relatively more complex investment strategies compared to fund managers

of traditional portfolios. For fund managers offering alternative investments,

the use of options as a component part of their strategy provide the needed

insurance to guard against extreme volatility, particularly on the downside.

An example of a hedge fund strategy that employs options is that of simul-

taneously buying a basket of stocks and selling another basket of stocks such

that the net market exposure achieves a desired level and that both long and

short sides of the portfolio are expected to generate positive returns. Options

are then bought to protect the net portfolio performance and maintain the

performance within some bounds. The long positions are insured against an

unexpected fall in prices, and the short positions are also insured against an

unexpected rise in prices. In order to keep a tight control on the bounds on

performance, the fund manager may have to purchase expensive options

whose strike price is consistent with the manager’s desired cut-off point on

poor performance. As the fund manager goes down the spectrum of available

strike prices, the premium she pays goes down, depending on how far out-of-

the-money she is prepared to go. The further out-of-the-money the option is,

the weaker the insurance it provides. Because the decision to buy or sell an

option, and at what strike price, is an integral part of the manager’s investment

strategy, she has to be able to assess the trade-off between premium levels and

insurance benefit from the option.

An interesting question to raise in portfolio management is: How far out-

of-the-money can an option be and still remain attractive as an insurance

provider, if such use of an option is complemented by an active portfolio

management via minimax. In view of the property of minimax strategies to

provide a minimum guaranteed performance with respect to some predefined

scenarios, a fund manager can employ active management on the portfolio
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using a minimax-based strategy, and complement this with out-of-the-money

options. With this combination of minimax and options, the fund manager

would be able to achieve at least the guaranteed minimum performance via

minimax, complemented by the lower premium paid on an out-of-the-money

option.

We formulate the combined minimax and option strategy for a portfolio

with long positions in stocks. For the minimax strategy, we define upper and

lower bounds on the prices of the stocks that constitute the portfolio. Minimax

optimization would result in the simultaneous identification of the worst-case

scenario and the asset allocation that minimizes the impact of the worst-case

scenario on performance. The resulting asset allocation provides the minimum

guaranteed performance. Hence, if the worst-case scenario does not materi-

alize and if the future realization of stock prices falls within the predefined

bounds, then we can expect an improvement in performance relative to the

identified guaranteed minimum performance. In the formulation below, we

concentrate on a portfolio of long stock positions only and on put options to

provide insurance against a fall in stock prices. The analysis can easily be

extended to a portfolio of both long and short stock positions by adding the

appropriate options to provide insurance for the short stock positions.

Let x [ R
n represent the unknown asset allocation to n stocks, and C [

R
n£n be the covariance matrix of returns on the stocks. Let ySt [ R

n, ySt11 [

R
n represent the stock price vectors at times t and t1 1, with y

S;upper
t11 [ R

n and

y
S;lower
t11 [ R

n representing the upper and lower bounds on y
S
t11. Let a [ ½0; 1�

represent the trade-off between return-maximization and risk-minimization15.

The minimax formulation is given16 by

min
x[Rn

max
yS
t1 1

[Rn
2akx; rt11l1 ð12 aÞkx;Cxlf g ð7:1Þ

subject to

yS;lowert11 # y
S
t11 # y

S;upper
t11

k1; xl ¼ 1

x $ 0

ri;t11 ¼
y
S
i;t11

ySi;t
2 1; ;i ¼ 1;…; n:
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The solution to (7.1) is a vector xp, the optimal asset allocation, that minimizes

the worst-case performance where the worst-case is given by y
S
p

t11.

The worst-case, as given by y
S
p

t11, is a vector of future stock prices that

effectively define the lower bound on the price of each stock for which the

minimum guaranteed performance applies. We emphasize that if the future

realization of stock prices go even further below y
Sp

t11, then the minimax

strategy’s minimum guarantee will fail. The use of options may complement

the above minimax strategy to cover the situation where the future stock prices

do fall below y
Sp

t11. By buying put options whose strike prices coincide with

yS
p

t11, the fund manager is paying for out-of-the-money options, where option

premiums are relatively low, to provide the insurance cover for price falls

below y
S
p

t11. With a minimax strategy and with put options used in this manner

for insurance purposes, the manager has locked in the value of the guaranteed

minimum performance.

Three issues are worth mentioning with regard to the use of options to cover

the eventuality of prices going further below y
Sp

t11. The first concerns the

availability of options at the strike prices defined by yS
p

t11. If options cannot

be traded at the levels given by yS
p

t11, the fund manager may wish to consider

revising the upper and lower bounds used in the minimax optimization. If

options exist with strike prices very close to y
S
p

t11, then the manager may wish

to choose the options with the closest strike prices.

The second issue concerns type of options used and the number of options

to hold. As discussed extensively in Chapter 8, the manager may wish to fully

cover the portfolio, or to partially cover and dynamically hedge. We assume

the manager chooses the hedge ratio via some strategy, perhaps by using

strategies similar to those suggested in Chapter 8. We shall not consider

this aspect further in this section.

The third issue is the availability of options for all the stocks that constitute

the portfolio. If options are not available, the fund manager may choose to use

instruments in the futures market. In our example, where a stock portfolio is

being managed, the fund manager may wish to trade stock index futures

options in lieu of individual stock options. As the strike prices as suggested

by y
Sp

t11 are no longer relevant, the manager would necessarily be exposed to

basis17 risk. The choice of strike level for the relevant stock index future

requires further modeling to ascertain the strike level most consistent with

yS
p

t11 such that basis risk is minimal.

The discussion has so far concentrated on a combined minimax and option

strategy where the choice of options is decided after the optimization, that is,

after knowing the worst-case stock prices given by yS
p

t11. This strategy does not

take advantage of the potential benefit from an optimal identification of the
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option consistent with yS
p

t11 and xp. By including the option within the formu-

lation, the manager benefits from the refinement of yS
p

t11 such that the resulting

option, with strike prices given by y
S
p

t11, are simultaneously optimal with the

performance of the portfolio, plus the insurance provided by the option.

We use Black and Scholes’ option pricing formula18 to illustrate how a

formulation can incorporate the identification of the out-of-the-money options

that is simultaneously optimal with both the worst-case scenario, as given by

y
Sp

t11, and the resulting asset allocation, as given by x
p. As before, we assume a

fund manager has a stock portfolio with long positions only.

The Black and Scholes formula for a European put option is given below,

using the same notation as in Chapter 8. We use this formula to illustrate the

generic formulation that can be used without going into the detail of different

pricing formulas. While there is no exact analytic formula for the value of an

American put option, practitioners can use numerical procedures for its esti-

mation. The Black and Scholes formula for a put option for stock i is

Bi ¼ Xe
2rðT2tÞQð2d2Þ2 y

S
i;tQð2d1Þ ð7:2Þ

d1 ¼
lnðySi;t=XÞ1 ðr 1 ðs2

=2ÞÞðT 2 tÞ
s

ffiffiffiffiffiffiffi
T 2 t

p ð7:3Þ

d2 ¼
lnðySi;t=XÞ1 ðr 2 ðs=2ÞÞðT 2 tÞ

s
ffiffiffiffiffiffiffi
T 2 t

p ¼ d1 2 s
ffiffiffiffiffiffiffi
T 2 t

p
ð7:4Þ

where QðdÞ is the cumulative normal distribution function (see CN 8.3), that

is,

QðdÞ ¼
Zd

21

1ffiffiffiffi
2p

p e
2z2=2

dz: ð7:5Þ

The strike price X is a required parameter input into the above expressions.

From our previous discussion of yS
p

t11, recall that the worst-case, as given by

yS
p

t11, should be viewed as the strike price vector to consider when buying

relevant options. By using y
S
t11 instead of X in (7.2)–(7.5), the strike price

can be optimally determined. Let W be the total wealth in dollar value.

Consider the revised formulation given by

min
x[Rn

max
yS
t1 1

[Rn
2a kx; rt11l1

Xn

i¼1

xiW

ySi;t
Bi

 !
1 ð12 aÞkx;Cxl

( )
ð7:6Þ

subject to

yS;lowert11 # ySt11 # y
S;upper
t11
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k1; xl ¼ 1

x $ 0

ri;t11 ¼
y
S
i;t11

ySi;t
2 1

Bi ¼ ySi;t11e
2rðT2tÞQð2d2Þ2 ySi;tQð2d1Þ; ;i ¼ 1;…; n:

In this formulation, the upper and lower bounds on ySi;t11 are determined by the

availability of strike prices in the market, that is, the lower bound y
S;lower
i;t11 is

determined by the lowest quoted strike price in the market, and the upper

bound y
S;upper
i;t11 is determined by the highest quoted strike price. In the objective

function, the number of stock i, given by the proportion of wealth xi times the

total wealth W divided by the stock price y
S
i;t, is multiplied with the option

price Bi to get the option premium to be paid for the insurance.

By bounding the maximizing variable by the actual strike prices available in

the market, the solution to the above formulation is an allocation xp that is

simultaneously optimal with actual market options whose strike prices are

given by y
Sp

t11.

8 CONCLUDING REMARKS

In this chapter we have presented potential uses of minimax in portfolio

construction and have demonstrated the benefits from using minimax.

Portfolios benefit from minimax portfolio optimization when managers

with differing forecasts fail to find a consistently acceptable level of compro-

mise. By using minimax, the compromise is optimally determined at the

decision level and not at the forecast level where a compromise may not be

politically optimal. We have demonstrated the benefits in terms of the

decreased suboptimality across models by showing that when portfolios

were created under a specific model and then placed in an environment defined

by a different model, these portfolios underperformed markedly against

expectations based on the first model, but when portfolios are minimax-opti-

mal, their performance is consistent across models.

Portfolios benefit from dual benchmarking when the manager has flex-

ibility in the type of portfolio can be constructed. In general, the resistance

to deviate away from a benchmark in order to perform within the peer

group norm prevents the manager from exploiting the power of dual

benchmarking. In view of this resistance, the manager can still benefit

by tilting the portfolio towards the dual portfolio which is nicely balanced

between risk and return. We have tried to show that while one benchmark,

being simple and transparent, is good, two are better; but two are better
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only if managers combine them on the basis of an optimized solution to

the problem of meeting multiple objectives; in short, if they use dual

benchmarking.

In Section 5 we presented alternative minimax portfolio selection models

for investors interested in benchmark tracking, as well as downside risk-averse

investors. In Section 6 we considered a multistage framework that can address

the problem of finding portfolios that are robust across different scenarios and

across different time stages. This formulation would enable a decision maker

to form a robust asset allocation in view of a future or a number of future re-

allocations. Finally, in Section 7, we presented a formulation where the guar-

anteed minimum performance of a minimax portfolio is preserved by using

options to cover those eventualities outside the predefined minimax scenarios.

In the formulations given in this section, the complementary interaction

between minimax and the use of options is highlighted where the benefit to

the fund manager comes in terms of lower insurance premium.
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COMMENTS AND NOTES

CN 1: Benchmarks and Benchmarking

Benchmarks in portfolio management refer mainly to public indices or port-

folios used mainly for the purpose of performance attribution. Benchmarks are

broad-based portfolios or indices that reflect such broad-based portfolios. An

example of a widely used benchmark is the MCSI EAFE which represents a

capitalization-based allocation to countries in Europe, Asia and the Far East.

This is a relevant benchmark for US fund managers who have asset and

currency exposures to these regions. Another example is LIBOR, the London

Inter-Bank Offered Rate, which represents the most liquid sector of the money

market. As a fund manager’s portfolio is assessed relative to a benchmark, the

fund manager would tend to make decisions with a view to outperforming the

benchmark. This need for relative attribution leads to a portfolio management

technique called benchmark tracking, where deviations from a benchmark’s

allocation become the focus of decision-making.

CN 2: Downside Risk

Downside risk is a measure of a potential shortfall from a target or threshold

return. Several versions of downside risk can be used depending on the nature

of the problem to be solved. Below is a generalized formulation, from which

variations can be applied to fit the problem’s requirements.

D ¼
Zr¼t

r¼�1
ðT � rÞNPðrÞ2r


 � 1
N

where Tis the target return, P is the probability of occurrence of r, and N is a

parameter that reflects risk aversion. When N=2, the formulation takes the

form given in Price, et.al (1982).
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Chapter 10

Asset/liability management under uncertainty

In this chapter, we present robust methods for solving Asset/Liability Manage-

ment (ALM) problems. Whereas Chapter 9 concentrates on assets-only opti-

mization, this chapter explores the difficulty of simultaneously optimizing

both the asset and the liability sides of a portfolio. Alternative minimax

formulations with differing objective functions are presented, depending on

the targets or objectives of the ALM portfolios. We illustrate the robustness

property of the minimax formulation when the liability structure of an ALM

portfolio is sensitive to shifts in yield curves. It can be shown that the minimax

solution, as compared to standard immunization, provides the least deteriora-

tion in the value of the ALM portfolio.

We also present extended stochastic ALM models that deal with multiper-

iod objectives and varying performance horizons as well as varying invest-

ment, or benchmarking, horizons. The minimax formulations are based on

scenarios describing evolutionary paths for both assets and liabilities. These

stochastic ALM models are useful for making a comprehensive evaluation of

an ALM strategy, whether it is based on minimax, where portfolios are

designed to be robust, or on standard ALM techniques, where specific objec-

tives may have dominated the portfolio’s construction.

1 INTRODUCTION

In Chapter 9, we present applications of minimax to asset management while

in this chapter we consider an application to asset/liability management

(ALM). In both areas the objective of the decision maker is asset returns

enhancement. However, whereas in asset management the concern is with

the management of the volatility of returns, in ALM this is compounded by

the management of liabilities to ensure payments are met as they fall due. This

implies that the modeler providing a suite of tools to the decision maker has to

consider a more complex measure of risk and devise strategies for managing

this risk.

The problem of setting up an asset portfolio such that the cashflows from

this portfolio are used for managing liabilities is complicated by a number of

issues. These are asset return enhancement, volatility of asset returns, full or



partial cover of all future liabilities, surplus requirements, the existence of

contingent assets and contingent liabilities, and performance monitoring and

measurement. Some of these issues may be conflicting in nature. An example

is the maximization of asset returns and the minimization of the volatility of

those returns. Additionally, asset management objectives may be in conflict

with the objective of meeting liabilities as they fall due. The challenge for the

modeler is to strike a balance across varying objectives that an ALM decision

maker may wish to address.

Some ALM models concentrate on the management of liabilities as this is

relatively more difficult than the management of assets. A straightforward way

to achieve the objective of meeting all liabilities is to fully match assets and

liabilities. This method, referred to as cash-matching, or dedication, is a

passive management system that ties up some assets now in order to service

liabilities far out in the future. Other ALM models aim to match changes in

assets with changes in liabilities. The rationale for these models is that any loss

(gain) on the liabilities due to say, an interest rate move, is offset by the gain

(loss) on the assets. These models are referred to as immunization models;

they match interest rate sensitivities between the asset portfolio and the liabi-

lity portfolio.

An immunized portfolio is deemed constructed when three basic conditions

are satisfied. The first condition is that the present value (usually taken as the

market value) of the assets must match the present value of the liabilities. The

second is that the assets and liabilities also have the same average life when

weighted by the present value of their respective flows. This is the ‘‘duration’’

measure of average life. The third is that the assets are more ‘‘convex’’ than the

liabilities1. When these three conditions are met, the asset portfolio is said to

be dominant over the liability portfolio. Immunization aims to maintain the

dominance of the assets over the liabilities at minimum cost. Consequently,

the asset and liability flows must be matched at the outset in terms of both

initial present value and interest rate sensitivity.

Unlike cash-matching, immunization inherently requires portfolio changes

over time. Where cash matching fulfils liabilities through the originally

promised flows from coupons and principal payments, immunization gener-

ally depends upon offsetting changes in the value of the assets and that of the

liabilities. The requirement for continuing changes in immunized portfolios

arises from the need to preserve dominance. Such forced rebalancing demon-

strate the dynamic nature of the immunization process.

Within the framework of immunization, the portfolio structure can take on

many forms as long as the interest rate sensitivity meets the several conditions

required to achieve dominance. In particular, the schedule of cashflows from

the immunized portfolio need not correspond exactly to the period-by-period
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payouts of the liability stream. This provides a high level of flexibility in

choosing an immunized portfolio. It also means that the ultimate fulfillment

of the liabilities depends on a separate strategy that ensures the benefits from

immunization are translated into benefits in the context of liability servicing.

In this chapter we consider both immunization and cash-matching, and

present formulations of these two types of model in a minimax framework.

We first study immunization and its development as a short-term oriented

ALM model. We then study dedication and its development as a long-term

oriented ALM model. Whereas dedication is long-term oriented, immuniza-

tion is short term and it is deemed consistent with the short-term nature of

asset management where yearly performance reporting is generally required.

Because if this, immunization coupled with asset management has gained a lot

of attention from various modelers.

Redington’s (1952) initial proposal on immunization requires that interest

rates be restricted to a flat yield curve, where a unique interest rate applies to

all maturities, subject only to parallel movements. He defined duration in the

context of a firm’s net worth. However, it was Macaulay (1938) who gave the

first definition of duration in a financial context (see CN 1). Grove (1974)

extended Redington’s work by immunizing a nonzero initial net worth. Kauf-

man (1984) investigated the immunization of the net worth asset ratio. Stock

and Simonson (1988) looked at tax-adjusting the duration measure. Vander-

hoof (1972) adapted Redington’s approach and applied it to insurance compa-

nies. Common to all of the above is the assumption of a single interest rate for

all discountings of cash flows, that is, a flat yield curve. Shiu (1986) notes that

a flat yield curve would provide arbitrage opportunities. This defect has also

been pointed out by Boyle (1978).

Fisher and Weil (1971) first extend Redington’s model to reflect a nonflat

term structure and developed a duration measure that is different from the

Macaulay (1938) duration. They formalize the theory of immunization as

presented by Redington, within a framework involving parallel yield curve

shifts. They develop an immunization strategy based on duration that achieves

the desired immunization objectives if, for a single liability problem with a

known payout date, the duration of the asset portfolio is equal to the time to the

liability payout date. In the general context of immunization of long duration

liabilities, long duration assets should be used to achieve immunization. The

existence of a demand for single payment notes is then inferred. The conclusion

is that the market does not require single-payment notes with a variety of

maturities because the duration of a portfolio is a linear function of the durations

of its components. All that is needed is a single payment note whose duration is

at least as long as the longest liability. It is also noted that such an asset can be

combined with assets of short duration to achieve any duration in between.

Fisher and Weil’s conclusion may be viewed as a statement of a necessary

but not sufficient condition for immunization. In Bierwag et al. (1983a), the
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authors discuss stochastic process risk and conjecture that an immunization

strategy implemented at a high level with as much compression as possible

around each of the liability payout dates will tend to minimize stochastic

process risk. This implies that, compared to the Fisher and Weil’s conclusion,

single payment notes with a variety of maturity may be required by the market

in order to achieve the desired level of compression around liability payout

dates to provide proper immunization. In other words, bullet strategies2

around the liability payout dates are more effective than barbell strategies3.

Fong and Vasicek (1984)discuss the effect of a steepening of the yield curve

on barbell and bullet portfolios and show that barbell portfolios4 result in a

bigger decline in the value of the portfolio.

Fong and Vasicek discuss that an optimally immunized portfolio that has

minimum exposure to interest rate changes is obtained by minimizing a risk

measure which the authors refer to as M2, subject to the constraint that the

asset portfolio duration equals the liability portfolio duration, where M2 is the

weighted variance of time to payments around the horizon date. Shiu (1988)

considers the problem of immunizing multiple liabilities and shows that a

necessary and sufficient condition for the immunization of multiple liabilities

is the separate immunization of each liability.

Cox et al. (1979) propose a duration measure that is different from the one

proposed by Macaulay (1938). Their duration measure, which they refer to as

a measure of basis risk, is stochastic by construction that depends on the

parameters of a specified interest rate process and liquidity preferences of

individuals. Boyle (1978) also develops an immunization strategy using

stochastic term structure models. Hiller and Shapiro (1989) develop a stochas-

tic programming model for the ALM problem where the term structure is

superimposed on a deterministic ALM model to create the stochastic ALM

model. This stochastic ALM model is then reformulated back into a determi-

nistic scenario-based framework. We show, in Section 7, how their model can

be adapted into a minimax formulation. Consigli and Dempster (1998) also

develop a stochastic programming ALMmodel that uses a multistage recourse

framework. We present their formulation and the equivalent minimax formu-

lation in Section 8.

Hiller and Schaack (1990) propose a classification of structured bond port-

folio modeling techniques in terms of the asset/liability problem type (deter-

ministic or stochastic) and hedging methodology (dedication and duration
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matching). They note the differences between Macaulay duration, dollar dura-

tion and modified duration and point out that it is dollar duration that is an

expression of a change in the value of an asset for a unit change in interest rate,

that is, interest rate sensitivity (see CN 1). The unitless measure given by the

modified duration is equal to the dollar duration divided by the value of the

asset. Other definitions of duration corresponding to other yield curve

dynamics may be found in Bierwag (1987).

While modern techniques have enabled immunization to address a wider

range of yield curve behaviors, immunization still remains vulnerable to

certain market movements. Shiu (1986) shows that immunization against a

yield curve shift fails to provide protection against general yield curve shifts.

Chambers et al. (1988) utilize a duration vector approach where they defined a

vector in which the components reflect moments of adjusted times-to-receipt

of the underlying cashflows. A general nonparallel shift approach to duration

analysis is given by Reitano (1989, 1990a,b, 1991a,b, 1992), with applications

of the nonparallel yield curve approach to measuring potential yield curve

risk. Illustrations are provided on price behavior given nonparallel yield curve

shifts and how a duration vector is superior to a single duration measure in

describing interest rate sensitivity.

Sharpe and Tint (1990) present a different approach to managing assets and

liabilities based on the liability hedging credit which is a measure of the

degree to which a particular asset or asset class can provide utility for an

investor with a particular set of liabilities. The emphasis is not on immuniza-

tion but on asset allocation with a view to maximizing the investor’s utility,

taking into account the liabilities of the investor. Because of this approach, the

method is not designed for immunizing liabilities but for penalizing an

expected return criterion within an optimization framework. Several authors

have similarly investigated the issue of immunization, including Shiu (1988);

Bierwag et al. (1983b–d). An introduction to the topic is given in Fabozzi

(1991, 1993).

A method is offered in Reitano (1989, 1990a, 1991a) for describing a multi-

dimensional duration measure that represents interest rate sensitivity for a

specific yield curve movement. The duration measure overcomes the limita-

tion of earlier duration measures that deal with parallel shifts only. As with the

earlier duration measures, multivariate duration measures interest rate sensi-

tivity to one specific yield curve shift, either parallel or nonparallel.

In this chapter we consider the use of discrete and continuous minimax in

ALM. In Section 2 we present a multidimensional immunization framework

and extend it to a discrete minimax formulation. An illustration is given in

Section 3 to highlight the performance of bond portfolios constructed using

this framework under different yield curve scenarios. In Section 4, we define a

risk measure with emphasis on the liability component of an asset/liability

portfolio, and explore the role of this risk measure in identifying the point in
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the spectrum of immunization strategies. In Section 5, we give a brief intro-

duction to a continuous minimax formulation of the immunization framework

described in Section 2. In Section 6, we explore other immunization strategies

and present their minimax formulations. In Section 7, we depart from immu-

nization and move close to dedication where liability timings play a critical

role in the formulation of the ALM system. We explore the need to consider a

stochastic ALM system and show how this system can be formulated within a

minimax framework. Similarly, in Section 8 we present a multistage recourse

framework for the stochastic programming ALM model and its minimax

equivalent.

2 THE IMMUNIZATION FRAMEWORK

2.1 Interest Rates

The ALM problems that we discuss cover both cash inflows and cash outflows

whose present values are determined by the timing of the cashflows and the

relevant interest rates for discounting purposes. At time t, different interest

rates, also called spot rates, apply to different cashflows and the full spectrum

of spot rates is referred to as the term structure of interest rates (see CN 2). We

use the notation r0 to refer to the m-dimensional vector of interest rates with m

key maturities, that is, the term structure

r
0 ¼

r
0
1

..

.

r0m

2
66664

3
77775:

This notation is used in Sections 2–4 to represent a possible future term

structure of interest rates that would be used as a scenario. The superscript

0 is then replaced by i, and the notation r
i represents a scenario for the term

structure of interest rates.

2.2 The Formulation

Reitano (1990b, 1991b, 1992) demonstrates that classical duration and

convexity analysis (see CN 1) can be readily generalized to include yield

curve shifts that are nonparallel. A model is presented that explicitly recog-

nizes the multivariate nature of yield curve changes. A multivariate price

function PðrÞ is defined as the price of an asset as a function of interest

rates r, where r is given by a vector of interest rates called the yield curve

vector. Also, the price sensitivity to a change in interest rate is defined as

PjðrÞ ¼ 2P=2rj where j represents the jth element in the yield curve vector. The
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model estimates Pðr0 1 DrÞ directly, where r0 is the initial yield curve vector

and Dr ¼ ½Dr1;Dr2;…;Drm�T is a yield change vector. Both yield and yield

change refer to spot values, that is, the spot curve.

Consider the following m-dimensional first and second order expansion of

the Price function:

Pðr0 1 DrÞ < Pðr0Þ1
X
j

Pjðr0ÞDrj ð2:1Þ

Pðr0 1 DrÞ < Pðr0Þ1
X
j

Pjðr0ÞDrj 1
1

2

X
j

X
k

Pjkðr0ÞDrjDrk ð2:2Þ

where PjkðrÞ ¼ 22P=2rj2rk, with j and k representing the jth and kth element of

the yield curve vector. Given the multivariate price function PðrÞ, the jth

partial duration function, denoted DjðrÞ, is defined for PðrÞ – 0 as follows:

DjðrÞ ; 2
PjðrÞ
PðrÞ ð2:3Þ

Given the multivariate price function PðrÞ, the (jk)th partial convexity func-

tion, denoted CjkðrÞ, is defined for PðrÞ – 0 as follows:

CjkðrÞ ;
PjkðrÞ
PðrÞ : ð2:4Þ

Given the above definitions, the total duration vector, denoted DðrÞ, and the

total convexity matrix, denoted CðrÞ, are defined as follows:

DðrÞ ; ½D1ðrÞ;D2ðrÞ;…;DmðrÞ� ð2:5Þ

CðrÞ ;
C11ðrÞ … C1mðrÞ

..

.
] ..

.

Cm1ðrÞ … CmmðrÞ

2
6664

3
7775: ð2:6Þ

Using these definitions, (2.1) and (2.2) can be expressed as

Pðr0 1 DrÞ < Pðr0Þ 12 kDðr0Þ;Drl
� �

ð2:7Þ

Pðr0 1 DrÞ < Pðr0Þ 12 kDðr0Þ;Drl1 1

2
kDr;Cðr0ÞDrl


 �
: ð2:8Þ

We state below the conditions for multivariate immunization within an asset/

liability framework. In ALM, the surplus, that is, the assets in excess of the

liabilities, is a measure of the cushion that the total portfolio has in preventing

extreme drawdowns if future liabilities reach high levels. Let SðrÞ be the value
of the surplus given the spot curve r. Let Sðr0 1 DrÞ denote the value of

surplus if the spot curve moves from r
0 to r0 1 Dr. The equivalent formulation
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for (2.7) and (2.8) for the surplus function is, respectively,

Sðr0 1 DrÞ < Sðr0Þ 12 kDSðr0Þ;Drl
� �

ð2:9Þ

Sðr0 1 DrÞ < Sðr0Þ 12 kDSðr0Þ;Drl1
1

2
kDr;CSðr0ÞDrl


 �
ð2:10Þ

where DS is the duration of surplus and CS is its convexity.

From (2.9) and (2.10), in order to have Sðr0 1 DrÞ no smaller than Sðr0Þ, we
must have DS ¼ 0. Further, we require CS to be positive definite to ensure

immunization. To implement this surplus immunization, we require relation-

ships to hold between DS and CS for both assets and liabilities. For an asset

portfolio A, that is, a vector of assets, and a liability portfolio L, that is, a vector

of liabilities, these relationships are

kSDSðr0Þ;Drl ¼ kADAðr0Þ;Drl2 kLDLðr0Þ;Drl ð2:11Þ
kDr; SCSðr0ÞDrl ¼ kDr;ACAðr0ÞDrl2 kDr;LCLðr0ÞDrl: ð2:12Þ

Here, ADA and ACA are the asset portfolio’s duration vector and convexity

matrix. Similarly, LDL and LCL are the liability portfolio’s duration vector and

convexity matrix. These are specified in (2.19)–(2.22) below. From (2.11) and

(2.12), the conditions on duration and convexity of surplus can be met if

ADA 2 LDL ¼ 0 ð2:13Þ

kx; ðACA 2 LCLÞxl . 0 ð2:14Þ
for an arbitrary vector x.

In modeling, we can identify conditions under which complete immuniza-

tion is achieved. Unfortunately, in practice, the conditions on the durational

structures of assets and liabilities are very restrictive and potentially difficult

to implement. The same holds for the convexity structures. From (2.13), one

can attempt to minimize the norm of ðADA 2 LDLÞ. However, a nonzero norm
may result in

kADAðr0Þ;Drl2 kLDLðr0Þ;Drl – 0 ð2:15Þ
and therefore a failed immunization for unfavorable Dr. This limitation leads

to a directional immunization which assumes a specific spot curve shift.

Directional immunization requires that, for an assumed shift Dr, we have

kADAðr0Þ;Drl2 kLDLðr0Þ;Drl ¼ 0 ð2:16Þ

kDr;ACAðr0ÞDrl2 kDr;LCLðr0ÞDrl . 0: ð2:17Þ
Assuming a spot curve shift Dr1, we can construct an asset portfolio under

directional immunization such that Sðr0 1 Dr1Þ $ Sðr0Þ. Similarly, assuming
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another spot curve shift Dr2, we can construct another asset portfolio such that

Sðr0 1 Dr2Þ $ Sðr0Þ. Unfortunately, the asset portfolio that is intended to

immunize against Dr1 may fail to immunize against Dr2.

Consider, therefore, an immunization framework where we assume a

number of scenarios, each scenario being represented by a specific spot

curve shift Dr. We wish to find an asset portfolio that gives the best compro-

mise across all the predefined scenarios, that is, an asset portfolio such that the

worst case Sðr0Þ2 Sðr0 1 DrÞ drop in surplus is minimized. Within this

framework, a solution can be found using minimax optimization.

The minimax directional immunization is

min
x[Rn

max
i[I

Xn

j

xjPj 1 2kADAðr0; xÞ;Dril1 kLDLðr0Þ;Dril
� �

1

8<
:

9=
; ð2:18Þ

subject to

kDri;ACAðr0; xÞDril2 kDri; LCLðr0ÞDril $ e

for all i [ I and

x $ 0

k1; xl ¼ 1

where, as in earlier chapters, ðzÞ1 ¼ maxðz; 0Þ, 1 indicates the column vector

whose elements are all unity, I ¼ {1; 2;…;msce} is the finite set of spot curve

shifts, e . 0 is some predefined convexity restriction, x [ R
n is the unknown

vector of asset weights, P [ R
n
is the vector of asset prices,

ADAðr0; xÞ ¼

Xn

j

xjPjD
j
A;1ðr0Þ

..

.

Xn

j

xjPjD
j
A;mðr0Þ

2
66666666664

3
77777777775

ð2:19Þ

LDLðr0Þ ¼

Xliabilities

j

LjD
j
L;1ðr0Þ

..

.

Xliabilities

j

LjD
j
L;mðr0Þ

2
66666666664

3
77777777775

ð2:20Þ
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ACAðr0; xÞ ¼

Xn

j

xjPjC
j
A;11ðr0Þ …

Xn

j

xjPjC
j
A;1mðr0Þ

..

.
] ..

.

Xn

j

xjPjC
j
A;m1ðr0Þ …

Xn

j

xjPjC
j
A;mmðr0Þ

2
66666666664

3
77777777775

ð2:21Þ

LCLðr0Þ ¼

Xliabilities

j

LjC
j
L;11ðr0Þ …

Xliabilities

j

LjC
j
L;1mðr0Þ

..

.
]

..

.

Xliabilities

j

LjC
j
L;m1ðr0Þ …

Xliabilities

j

LjC
j
L;mmðr0Þ

2
66666666664

3
77777777775

: ð2:22Þ

We note that previous references to ADðr0Þ and ACðr0Þ in (2.11) to (2.17) are

now parameterized by the decision variable x. Also, from the definitions

above, the asset portfolio is impacted by the decision variable x, where

A ¼ Pn
j xjPj, whereas the liability portfolio, L ¼ Pliabilities

j Lj, is not.

Note that when the set I is a singleton, we are immunizing against one

specific spot curve shift Dr and the minimax formulation reduces to the

Reitano (1989, 1990a,b, 1991a,b, 1992) framework. Additionally, when Dr

is a parallel shift, then the minimax formulation reduces further to the classical

immunization framework.

3 ILLUSTRATION

In this section, we illustrate the benefits from using the minimax formulation

by addressing the problem of a German institution with a stream of bond

liabilities denominated in the local currency. The institution wishes to set

up an asset portfolio that would immunize against changes in the value of

its bond liabilities, presented in Table 3.1. All liabilities and assets are

hypothetical. A set of bond assets can be used for immunization; these assets

are given in Table 3.2. Portfolios optimized against different yield curve shifts,

and a portfolio optimized using minimax are presented in Table 3.3. Finally,

Table 3.4 shows the performance of these portfolios if a particular yield curve

scenario is realized in the future.

The pricing of all assets and liabilities are based on a hypothetical spot

curve given in Figure 3.1 (thick central yield curve). The figure also includes

the spot curve scenarios that the institution wishes to consider in the immu-

nization.
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Table 3.1 Bond liabilities

Bond Price Yearly

coupon (%)

Years to

maturity

Amount

(million DM)

L1 103.8 5.5 3.82 100

L2 110.2 6.75 5.86 100

L3 117.8 7.75 7.86 100

L4 102.5 5.5 9.86 100

L5 114.2 6.5 13.36 100

Table 3.2 Bond assets

Bond Price Yearly

coupon (%)

Years to

maturity

Amount

(million DM)

A1 106.9 7 2.82 x1

A2 115.3 8.5 4.94 x2

A3 109.8 6.75 6.86 x3

A4 108.8 6.5 8.86 x4

A5 125.4 8.5 10.36 x5

A6 136.6 8.5 15.04 x6

Table 3.3 Optimal allocations (individually optimized against the 8 SC scenarios,

first 8 columns; column 9 for optimization of the expected value; column 10 for

minimax)

Asset SC

Scen

1

SC

Scen

2

SC

Scen

3

SC

Scen

4

SC

Scen

5

SC

Scen

6

SC

Scen

7

SC

Scen

8

All

SC

Scens

Minimax

A1 120 122 101 139 149 43 125 98 0 86

A2 9 9 24 11 11 3 18 29 131 12

A3 64 65 135 74 77 131 97 131 96 119

A4 73 74 107 84 89 166 99 112 0 136

A5 50 51 42 58 63 102 51 40 213 73

A6 137 133 63 97 77 27 78 61 11 46
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From Table 3.4, it is clear that a portfolio that has been immunized against a

specific spot curve shift has zero change if that anticipated shift is realized.

Row 1 shows the performance of a portfolio that has been immunized against

SC scenario 1; if SC scenario 1 is realized (Column 1), then this portfolio has

zero value change but it has a nonzero value change if other SC scenarios are

realized. This portfolio performs well, with a positive value change (1764), if

SC scenario 8 is realized, but performs badly, with a negative value change

(2643), if SC scenario 7 is realized.

Table 3.4 shows that the minimax portfolio (bottom row) has a less volatile

performance across the 8 SC scenarios. Clearly, it does not achieve a high

performance compared to the other portfolios, but its worst-case performance

has been maintained at zero, under SC scenarios 2 and 3. The portfolio that has

been optimized across all SC scenarios (penultimate row) performs relatively

poorly compared to the minimax portfolio.

4 THE ASSET/LIABILITY (A/L) RISK IN IMMUNIZATION

From the point of view of ALM, the major objective is to meet liabilities as

they fall due. Clearly, only exact cash matching can satisfy such an objective.

If immunization rather than cash matching is employed, liabilities may not be

met with certainty because the objective has shifted from meeting liabilities to

minimizing interest rate sensitivities. Fong and Vasicek (1984) suggest that by

minimizing the weighted variance around the horizon date for a single liability
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problem, one obtains an optimally immunized portfolio. This method implies

that if the weighted variance is minimized to zero, then one achieves exact

cash matching.

In defining the risk measure, we use the definitions presented in Section 2.

In that section, the asset portfolio is impacted by the decision variable x, where

A ¼ Pn
j xjPj, whereas the liability portfolio, L ¼ Pliabilities

j Lj, is not. For the

aggregate asset portfolio, we calculate its value by aggregating the present

value of all cashflows:

A ¼
X
j

xj
Xcashflows

t

A
0
j;t

ð11 r0t Þ
ð4:1Þ

where A0
j;t is any cash inflow into the asset portfolio from asset j at time t where

the present valuation is based on the current yield curve r0. We now define a

variable A0
tc
that represents a cashflow that has been weighted by the exposure

xj to that asset. Similarly, the present valuation is based on the current yield

curve r
0:

A0
tc
; A0

tc
ðxjÞ ¼ xjðA0

j;tÞ: ð4:2Þ
Cash outflows for liabilities are similarly defined as in (4.1) and (4.2).

In any time period between t2 1 and t, there would be times, as indexed by

tc, where cashflows come into the asset portfolio. In general, we would like

these asset cashflows to match, or at least not fall too far below, the liability

that occurs at the end of the period, that is, at time t. In (4.3) below, the asset

cashflow is suitably weighted by the exposure to the asset, where the weight-

ing is given by xj. In the interest of clarity, we will use A
0
tc
to mean this

weighted cashflow.

We define the current A/L risk as

A=L risk ¼
XTH
t¼1

Xcashflows

tc
t21,tc#t

A
0
tc

ð11 r0tc Þ
½tc�2

L
0
t

ð11 r0t Þ
½t�

 !2

0
BBB@

1
CCCA:

It represents the variance of asset timings relative to the timings of the liabil-

ities that those assets are meant to service. In (4.3), TH is the horizon date. An

alternative would be the downside risk:

A=L downside risk ¼
XTH
t¼1

Xcashflows

tc
t21,tc#t

A
0
tc

ð11 r0tc Þ
½tc�2

L
0
t

ð11 r0t Þ
½t�

 !
2

 !2

0
BBB@

1
CCCA

ð4:3Þ
where (·)2 ¼ min (·,0). The A/L risk in (4.3) is calculated in the context of the
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current environment. For any given scenario i, the A/L risk can be suitably

calculated as follows. Here, a superscript is introduced to indicate that asset

cashflows, a liability outflow and interest rates are dependent on the nature of

the current yield curve.

We define the scenario A/L risk (for scenario i) as

A=L riskscenario i ¼
XTH
t¼1

Xcashflows

tc
t21,tc#t

A
i
tc

ð11 ritc Þ
½tc�2

L
i
t

ð11 ritÞ
½t�

 !2

0
BBB@

1
CCCA

for all scenarios i [ I. Here, the same superscript is introduced to indicate that

asset cashflows, a liability outflow and interest rates are dependent on the

nature of a scenario i.

The A/L risk measure is always nonnegative. It attains its lowest possible

value of zero if and only if the assets are pure discount bonds, each having a

maturity equal to that of the liability it is meant to service. This implies exact

cash matching, where no interest rate change affects the value of the portfolio.

Any other portfolio is to some extent vulnerable to an adverse interest rate

movement. The A/L risk in effect measures how much a given portfolio differs

from an exact cash-matched portfolio.

Let us investigate the potential of the current A/L risk and the scenario A/L

risks in modifying the overall structure of the resultant portfolio. Suppose we

consider the component of the current A/L risk relevant to the first liability.

Current A=L risk for L1 ¼
Xcashflows

tc
0,tc#t1

A0
tc

ð11 r0tc Þ
½tc�2

L0t1
ð11 r0t1Þ

½t1�
 !2

0
BBB@

1
CCCA

ð4:4Þ
and the component of all the scenario A/L risks relevant to the first liability

Scenario i A=L risk for L1 ¼
Xcashflows

tc
0,tc#t1

A
i
tc

ð11 ritc Þ
½tc�2

L
i
t1

ð11 rit1 Þ
½t1�

 !2

0
BBB@

1
CCCA

for all scenarios i [ I.

Incorporating all these components into the minimax framework, we

increase the likelihood of meeting the first liability. The minimax formulation

is
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min
x[Rn

max
i[I

Xn

j

xjPj 1 2kADAðr0; xÞ;Dril1 kLDLðr0Þ;Dril
� �

1

1

Xcashflows

tc
0,tc#t1

A0
tc

ð11 r0tc Þ
½tc�2

L0t1
ð11 r0t1 Þ

½t1�
 !2

0
BBB@

1
CCCA

1

Xcashflows

tc
0,tc#t1

A
i
tc

ð11 ritc Þ
½tc�2

L
i
t1

ð11 rit1 Þ
½t1�

 !2

0
BBB@

1
CCCA

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

subject to

kDri;ACAðr0; xÞDril2 kDri;LCLðr0ÞDril $ e ð4:5Þ
for all scenarios i [ I and

x $ 0

k1; xl ¼ 1

where ADAðr0; xÞ, LDLðr0Þ, ACAðr0; xÞ and LCLðr0Þ are defined in (2.19)–

(2.22).

In the above formulation, e . 0 is some predefined convexity requirements

on the combined asset-liability portfolio. A portfolio defined by the solution of

the minimax formulation would be more likely able to meet the first liability

compared to the portfolio defined by the solution of the original formulation.

Suppose we consider the component of the current A/L risk relevant to the first

two liabilities.

Current A=L risk for L1 and L2

¼

Xcashflows

tc
0,tc#t1

A
0
tc

ð11 r0tc Þ
½tc�2

L
0
t1

ð11 r0t1 Þ
½t1�

 !2

0
BBB@

1
CCCA

1

Xcashflows

tc
t1,tc#t2

A
0
tc

ð11 r0tc Þ
½tc�2

L
0
t2

ð11 r0t2Þ
½t2�

 !2

0
BB@

1
CCA

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

and the components of all the scenario A/L risks relevant to the first two

liabilities
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Scenario i A=L risk for L1 and L2

¼

Xcashflows

tc
0,tc#t1

Ai
tc

ð11 ritc Þ
½tc�2

Lit1
ð11 rit1Þ

½t1�
 !2

0
BBB@

1
CCCA

1

Xcashflows

tc
t1,tc#t2

Ai
tc

ð11 ritc Þ
½tc�2

Lit2
ð11 rit2 Þ

½t2�
 !2

0
BB@

1
CCA

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

for all scenarios i [ I.

By incorporating all these components into the minimax formulation frame-

work, we increase the likelihood of meeting the first two liabilities. Consider

therefore the family of minimax immunization formulations parameterized by

the liability timing TH ¼ Horizon and for a given e . 0:

min
x[Rn

max
i[I

Xn

j

xjPj 1 2kADAðr0; xÞ;Dril1 kLDLðr0Þ;Dril
� �

1

1

XTH
t¼1

Xcashflows

tc
t21,tc#t

A
0
tc

ð11 r0tc Þ
½tc�2

L
0
t

ð11 r0t Þ
½t�

 !2

0
BBB@

1
CCCA

1

XTH
t¼1

Xcashflows

tc
t21,tc#t

A
i
tc

ð11 ritc Þ
½tc�2

L
i
t

ð11 ritÞ
½t�

 !2

0
BBB@

1
CCCA

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

subject to

kDri;ACAðr0; xÞDril2 kDri; LCLðr0ÞDril $ e ð4:6Þ
for all scenarios i [ I and

x $ 0

k1; xl ¼ 1:

The parameterization by the liability timing TH ¼ Horizon can be interpreted

as the referred ‘‘horizon’’ under a horizon matching framework. TH can be

viewed as the time before which we are aiming to satisfy cash matching to

increase the likelihood of meeting all liabilities prior to this horizon. It can also

be viewed as the time after which duration matching is satisfied in order to

immunize our portfolio across interest rate scenarios.
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5 THE CONTINUOUS MINIMAX DIRECTIONAL IMMUNIZATION

In this section, the vector of spot rates, r0, is replaced by i0 in order to

distinguish between the discrete variable r
0 and the continuous variable i

0.

Whereas in the discrete formulations in Sections 2–4, scenario vectors ri are

used, in this section a continuous variable i
TH is used whose elements vary

within uncertainty bounds.

Let iTH [ R
m be a vector of future interest rates at a horizon date TH , where

m represents the number of key maturity rates along the spot curve. In a

continuous minimax immunization, we let each element of iTH vary between

upper and lower bounds. For e . 0, we present the continuous version of the

discrete minimax immunization:

min
x[Rn

max
iTH[Rm

Xn

j

xjPj 1 ADAði0; xÞ; ði0 2 i
TH Þ

D E
2 LDLði0Þ; ði0 2 i

TH Þ
D E� �

2

8<
:

9=
;

ð5:1Þ
subject to

ði0 2 i
TH Þ; ACAði0; xÞ

� �
ði0 2 i

TH Þ
D E

2 ði0 2 i
TH Þ; LCLði0Þ

� �
ði0 2 i

TH Þ
D E

$ e

x $ 0

k1; xl ¼ 1

i
TH ;lower # i

TH # i
TH ;upper

and with ADAði0; xÞ, LDLði0Þ, ACAði0; xÞ, and LCLði0Þ as described by (2.19) to

(2.22) for i0 ¼ r
0 while we consider variations from i

0.

We need to consider the expected spot curve at the horizon and to consider

smoothness constraints. To generate the expected spot curve at the horizon, we

can use the current spot curve and its corresponding forward curve. We derive

the expected spot curve at any future time based on the current forward curve.

A smoothing function (e.g., a spline) may be used in order to define the

whole default spot curve at the horizon. In defining the uncertainty scenarios

(in the continuous case) on the maximizing variable, we allow i
TH to vary

within its bounds

i
TH ;lower
k # i

TH
k # i

TH ;upper
k ; k ¼ 1;…;m:

The constraints on the variation in iTH depend on its corresponding forward

curve. Each element of iTH has a corresponding forward curve point with the

same key maturity. Let
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f
TH ¼

f
TH
1

f
TH
2

..

.

f THm

2
66666664

3
77777775
:

By ensuring that all the elements of f TH are within reasonable bounds, we can

control the choice of values for the maximizing variable i
TH . Essentially, we

are limiting the derivative of the expected spot curve within reasonable bound-

aries. The expected forward curve at the horizon may be constrained as

f
TH ;lower
k # f

TH
k # f

TH ;upper
k ; k ¼ 1;…;m:

6 OTHER IMMUNIZATION STRATEGIES

We explore other immunization strategies and show how these can be adapted

to a minimax framework. In the classical duration and convexity analyses,

interest rate sensitivity analysis is done with respect to parallel yield curve

moves only. Yield curves provide alternative representations of the term

structure of interest rates (see CN 2). As sensitivity analyses to yield curves

are widely used as immunization strategies, we consider these and their mini-

max formulations.

6.1 Univariate Duration Model

Let r̂ be the yield and Dr̂ be its change corresponding to a parallel shift of the

yield curve. We refer to a duration model that is dependent on a scalar r only

as a univariate duration model. Given the univariate price function Pðr̂Þ, the
duration function, denoted D̂ðr̂Þ, is defined for Pðr̂Þ – 0 as follows:

D̂ðr̂Þ ; 2
dPðr̂Þ
Pðr̂Þdr̂ : ð6:1Þ

Given the univariate price function Pðr̂Þ, the convexity function, denoted Ĉðr̂Þ,
is defined for Pðr̂Þ – 0 as follows:

Ĉðr̂Þ ; d
2
Pðr̂Þ

Pðr̂Þdr̂2 : ð6:2Þ

Given the above definitions, the dollar duration, denoted D
dðr̂Þ, or the dollar

sensitivity of the asset to a unit change in r̂, is given by dPðr̂Þ=dr̂, and the dollar
convexity, denoted Cdðr̂Þ, is given by d2Pðr̂Þ=dr̂2. For bonds, where the price is
defined by the present value of its cashflows, denoted c, discounted using r̂,

that is,
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Pðr̂Þ ¼
X
t

ctð11 r̂Þ2t ð6:3Þ

the dollar duration and dollar convexity are, respectively,

D
dðr̂Þ ¼ 2

X
t

tctð11 r̂Þ2ðt11Þ ð6:4Þ

C
dðr̂Þ ¼

X
t

tðt1 1Þctð11 r̂Þ2ðt12Þ
: ð6:5Þ

Classical durational immunization requires that the present value of the asset

portfolio A is equal to that of the liability portfolio L. Additionally, it requires

that their dollar durations are also equal; this condition is similar to (2.13). If

these two conditions are met, then the value of the portfolio is hedged against

small movements in r̂; it therefore makes sense to construct a portfolio that

maximizes its yield subject to meeting these two conditions. Whereas in

Section 2 yield refers to a rate on the spot curve, in this section, yield refers

to the internal rate of return or the yield to maturity. A first-order approxima-

tion to the portfolio yield is the dollar duration weighted average yield of the

individual securities in the portfolio (Dahl et al., 1993), that is,

r̂P <

Xn

j

Dd
j ðr̂Þ

� �
r̂jxj

Xn

j

Dd
j ðr̂Þ

� �
xj

: ð6:6Þ

As the portfolio is constrained to have equal asset and liability dollar duration,

then the denominator of (6.6) is equal to a fixed value given by the liability

dollar duration. The formulation for an immunization strategy with a yield

maximization objective is

max
x[Rn

Xn

j

D
d
j ðr̂Þ

� �
r̂xj

Xn

j

Dd
j ðr̂Þ

� �
xj

ð6:7Þ

subject to

Xn

j

Pjðr̂Þxj ¼ L

Xn

j

Dd
j ðr̂Þxj ¼ Dd

Lðr̂Þ
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x $ 0

k1; xl ¼ 1:

In (6.7) the first constraint requires the value of the asset portfolio to be equal

to that of the liability portfolio. The second constraint imposes the equivalence

of durations. Maximizing the yield of a portfolio is analogous to minimizing

its cost. Whereas in Section 2 we concentrate on the cost of the portfolio, in

this section we concentrate on its yield. Although the cost-based formulation

makes intuitive sense, the yield-based formulation is common practice (e.g.,

within the insurance industry). It is useful to explore this formulation further.

As a drop in the yield of an asset portfolio implies an increase in its value, it

makes sense to construct the portfolio such that its future yield is minimized.

Thus we have the problem

min
x[Rn

Xn

j

D
d
j ðr̂ 1 Dr̂Þ

� �
ðr̂ 1 Dr̂Þxj

Xn

j

D
d
j ðr̂ 1 Dr̂Þ

� �
xj

ð6:8Þ

subject to Xn

j

Pjðr̂Þxj ¼ L

Xn

j

Dd
j ðr̂Þxj ¼ Dd

Lðr̂Þ

x $ 0

k1; xl ¼ 1:

For an assumed shift in the yield curve, defined by Dr̂ for all securities under

consideration, one can construct a portfolio of minimum future yield, that is,

maximum future value. However, similar to the argument in Section 2 with

regards to differing assumptions on the spot curve, differing assumptions on

the yield curve shift would produce different solutions to (6.8) and one parti-

cular solution may not be effective in view of an erroneous assumption of yield

curve shift.

Further constraints have to be imposed on (6.8) with regards to allowable

yield curve shifts. Because a yield curve has an underlying spot curve, any

assumption on the yield curve shift must take into account the future yield

curve’s consistency with its underlying spot curve. Therefore the choice of Dr̂

for all securities under consideration is constrained to be consistent with a

unique spot curve shift assumption.
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For the current yield curve, the following relationship must hold true for all

securities under consideration:

Pðr̂Þ ¼
X
t

ctð11 r̂Þ2t ¼
X
t

ctð11 rtÞ2t ð6:9Þ

where r̂ is the yield to maturity and rt is the spot rate that corresponds to

cashflow ct. This relationship must also hold true at a future time, that is, when

r̂ shifts to ðr̂ 1 Dr̂Þ for each security then

Pðr̂ 1 Dr̂Þ ¼
X
t

ctð11 r̂ 1 Dr̂Þ2t ¼
X
t

ctð11 rt 1 DrtÞ2t ð6:10Þ

must hold true for all securities, subject to a unique spot curve that defines all

rt, that is, across all maturities t.

We extend the above formulation to a minimax framework. We introduce

scenarios under which the future yield of each security determines the future

yield on the asset portfolio. Consider the problem

min
x[Rn

max
i[I

Xn

j

Dd
j ðr̂ 1 Dr̂iÞ

� �
ðr̂ 1 Dr̂iÞxj

Xn

j

Dd
j ðr̂ 1 Dr̂iÞ

� �
xj

8>>>><
>>>>:

9>>>>=
>>>>;

ð6:11Þ

subject to

Xn

j

Pjðr̂Þxj ¼ L

Xn

j

Dd
j ðr̂Þxj ¼ Dd

Lðr̂Þ

for all i [ I and

x $ 0

k1; xl ¼ 1

where I ¼ {1; 2;…;m
sce} is the finite set of yield curve shifts. Formulation

(6.11) is also constrained to satisfy (6.10). This ensures that, subject to the

assumed yield curve shifts, the future yield of the portfolio is minimized while

maintaining an immunized state at the current time.

6.2 Univariate Convexity Model

Similar to dollar duration, dollar convexity, given by (6.5), is useful to opti-

mize because it affects the value of a bond, convexity being the second order
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derivative of price with respect to yield. An immunization strategy that mini-

mizes dollar convexity while satisfying the conditions for duration immuniza-

tion effectively minimizes the change in duration for a specific yield curve

shift. As with dollar duration, dollar convexity is additive and the convexity of

a portfolio is given by

C
d
Pðr̂Þ ¼

X
C
d
j ðr̂Þxj: ð6:12Þ

Thus, the optimization model becomes

min
x[Rn

Xn

j

C
d
j ðr̂Þxj ð6:13Þ

subject to

Xn

j

Pjðr̂Þxj ¼ L

Xn

j

D
d
j ðr̂Þxj ¼ D

d
Lðr̂Þ

Xn

j

C
d
j ðr̂Þxj $ C

d
Lðr̂Þ

x $ 0

k1; xl ¼ 1

where the constraint on convexity ensures that assets continue to dominate

liabilities for small yield curve shifts.

The convexity model can be extended to cover the minimization of the

future convexity of the portfolio. However, such an extension only makes

sense when the future duration of the assets do not deviate substantially

from the future duration of the liabilities. In as much as duration in both assets

and liabilities cannot be held unchanged, one can attempt to model the abso-

lute difference or the squared difference between their durations. Consider the

extended convexity model below:

min
x[Rn

Xn

j

C
d
j ðr̂Þxj 1

Xn

j

D
d
j ðr̂ 1 Dr̂Þxj

0
@

1
A2 Dd

Lðr̂ 1 Dr̂Þ
� �0

@
1
A

2

1

Xn

j

C
d
j ðr̂ 1 Dr̂Þxj

ð6:14Þ
subject to
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Xn

j

Pjðr̂Þxj ¼ L

Xn

j

D
d
j ðr̂Þxj ¼ D

d
Lðr̂Þ

Xn

j

C
d
j ðr̂Þxj $ C

d
Lðr̂Þ

Xn

j

C
d
j ðr̂ 1 Dr̂Þxj $ C

d
Lðr̂ 1 Dr̂Þ

x $ 0

k1; xl ¼ 1:

Similar to the constraint that current asset convexity be greater or equal to

current liability convexity, the future asset convexity should also be greater or

equal to the future liability convexity.

We present the above formulation within a minimax framework. Consider

the following formulation:

min
x[Rn

max
i[I

(Xn

j

C
d
j ðr̂Þxj 1

  Xn

j

D
d
j ðr̂ 1 Dr̂iÞxj

!

2 Dd
Lðr̂ 1 Dr̂iÞ

� �!2

1

Xn

j

Cd
j ðr̂ 1 Dr̂iÞxj

)
ð6:15Þ

subject to
Xn

j

Pjðr̂Þxj ¼ L

Xn

j

D
d
j ðr̂Þxj ¼ D

d
Lðr̂Þ

Xn

j

C
d
j ðr̂Þxj $ C

d
Lðr̂Þ

Xn

j

C
d
j ðr̂ 1 Dr̂iÞxj $ C

d
Lðr̂ 1 Dr̂iÞ

for all i [ I and
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x $ 0

k1; xl ¼ 1

where I ¼ {1; 2;…;m
sce} is the finite set of yield curve shifts. Formulation

(6.15) is also constrained to satisfy (6.10).

7 THE STOCHASTIC ALM MODEL 1

Previous sections of this chapter focus on immunization models. In this

section, we present a long-term oriented stochastic dedication-based model.

In the stochastic ALM model, a term structure (TS) model (see CN 2) is

required to define the stochastic nature of the system. In principle, any TS

model would be consistent with the framework developed below. However,

we initially restrict the discussion to a TS model utilizing a binomial tree. This

simplification does not impair the exposition on the ALM model. It keeps the

discussion clear of generalized tree structures (see CN 3). We describe a TS

model that is fully determined by the short rate, described as a stochastic

process, and by the current term structure of interest rates. The short rate is

modeled by

rt11 ¼ rte
ðmt1sÞ ð7:1Þ

where rt is the level of short term interest rate at time t, rt11 is the level of short

term interest rate at time t1 1, mt is the drift parameter, and s is the volatility

parameter.

In the binomial model of the term structure tree, we refer to any point on the

tree as either a state or a node, interchangeably. A state or node defines a

particular term structure of interest rates, that is, a particular set of interest

rates of varying maturity. The term node refers to a previous state, or the state

from which the current states have emanated from. The term state refers to one

of a number of possible realizations of the system at a particular time. A state

evolves from a node which is itself a state. The realization of states over time

is given in Figure 7.1. In the setting below of the binomial tree, at each point in

time, the set of possible states has a cardinality of 2t. At time 0, the current

time, there is only one state which is nothing more than the current term

structure. At time 1, two states emanate from the previous (unique) node.

Arrival at these two states is based on a predefined probability of an ‘‘up

state’’ and the probability of a ‘‘down state’’. At time 2, four states emanate

from the two previous nodes; these four states are again generated based on the

‘‘up state’’ and ‘‘down state’’ for the first node and the ‘‘up state’’ and ‘‘down

state’’ for the second node. For each time t, the number of states is twice the

number of nodes at time t2 1. We note that, for general trees, the number of

states that emanate from a node is arbitrary but finite.
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Each state or node defines the short-term interest rate as it has evolved, plus

the corresponding term structure of future interest rates. The stochastic process

that defines the evolution of the short rate requires a drift parameter as well as

a volatility parameter. The drift may be defined for every period such that the

expected level of short rates is consistent with market derived forward rates.

Short-term volatility may be derived using the market price of interest rate

options.

In the development of the ALM, we need to establish time frames and

reference points that would describe the temporal structure of the ALM

problem. The terminal date is defined as the date at which all assets and

liabilities are measured in a common way for accounting purposes; we assume

that both assets and liabilities are turned into cash at the terminal date. For a

corporate wishing to structure its balance sheet, the terminal date may be one

year from time 0. For a pension fund, the terminal date may be 30 years from

time 0. The payout date is defined as the date at which a liability needs to be

serviced. For a single liability problem, the payout date corresponds to the

terminal date. For a multiple liability problem, the payout dates may be scat-

tered unevenly between time 0 and the terminal date. The horizon date is

defined as the time at which we wish to terminate a particular calculation,

either for performance measurement purposes or for a more specific manage-

ment purpose.

In the context of the binomial tree that has been described above, we need to

reconcile the time frame in the binomial tree and that required by the ALM

system. We use the following assumptions:
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† The terminal or horizon date TH of the ALM system coincides with the

terminal date of the binomial tree.

† The payout dates t of the liabilities coincide with node times in the bino-

mial tree.

† The date of strategy shift Tcm coincides with a node time in the binomial

tree, where the strategy shift refers to the cross-over from stochastic cash-

matching to stochastic immunization, to be discussed in detail below.

The above assumptions map the binomial temporal framework onto the ALM

temporal framework; this results in a consistent way of reckoning times and

time-related calculations. These assumptions also help overcome the problem

of having a liability payout date that falls within two node times where it is not

possible to value a liability. In practice, known liability payout dates may not

be uniformly spaced; in this case, the choice of node times have to be deter-

mined heuristically to best fit the timings of the known payout dates. For

unknown liability payout dates, for example, liabilities that are contingent

on interest rate levels, we use the predefined node times to represent potential

liability payout dates, depending on the states of the world at that node time.

Based on the terminal date and the number of node times, we are able to

calculate the cardinality of the set of potential states of the world at the

terminal date. Each state at the terminal date, hereafter terminal state, is

arrived at via a series of states starting from state 0, at node 0. The evolution

of the term structure from time 0 to the terminal date is given by a particular

series of states. This evolution defines a particular scenario in the ALM frame-

work: a scenario is a path on the term structure tree that fully describes

directly the evolution of the term structure and indirectly the valuation of

the assets and liabilities in time. In Table 7.1, we give all the paths of evolu-

tion, and therefore the scenarios, based on the binomial tree given in Figure
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Table 7.1 The scenarios generated from the

binomial model

Scenario Composition

Scenario 1 TS1, TS2, TS4, TS8

Scenario 2 TS1, TS2, TS4, TS9

Scenario 3 TS1, TS2, TS5, TS10

Scenario 4 TS1, TS2, TS5, TS11

Scenario 5 TS1, TS3, TS6, TS12

Scenario 6 TS1, TS3, TS6, TS13

Scenario 7 TS1, TS3, TS7, TS14

Scenario 8 TS1, TS3, TS7, TS15



7.1. We observe that a scenario is a series of states that starts from state 0 to

any one of the terminal states. From Table 7.1, scenario 1 is given by the state

series {TS1, TS2, TS4, TS8}. We define the set I as the discrete set of

scenarios i. Each scenario i is defined5 by a unique series of states on the

binomial tree that fully describe a unique evolution of the term structure of

interest rates.

The smallest time interval in the ALM system is the minimum of the

interval between two known liability payout dates and the interval between

two node times. The design of the ALM includes a decision on the granularity

of the temporal framework. As the time interval becomes smaller, the level of

detail of the valuation process becomes better. Additionally, as the time inter-

val becomes smaller, the scenarios increase since the number of scenarios is

equivalent to the cardinality of the set of terminal states.

Consider the ALM problem for an institution that wishes to restructure its

balance sheet. The latter is a statement of the assets held, the cash at hand, the

known liabilities with known timings, and the contingent assets and liabilities

valued at the current time. The contingent nature of the contingent assets is

based on some underlying asset that may have embedded optionality that is

interest rate dependent. The contingent nature of the contingent liabilities may

be viewed similarly. The difference between a contingent asset and a contin-

gent liability is that the contingent asset is a potential inflow to the balance

sheet that may improve the health of the balance sheet whereas the contingent

liability is a potential outflow that may cause a deterioration of the health of

the balance sheet.

The assumption that the institution has a stream of known liabilities with

known timings is not unreasonable. A reserve bank may have a well-defined

liability stream that represents its country’s import payments. A pension fund

may have a well-defined liability stream that has been determined using

actuarial calculations. An insurance company may have a well-defined liabi-

lity stream given by the average liability amounts and timings that have been

estimated over a long period of historical data.

The uncertainty caused by the presence of contingent assets and contingent

liabilities is handled by a term structure (TS) model which in this section is a

binomial tree6. The valuation of a contingent asset or liability depends on the

term structure of interest rates at a specific node on the tree. The potential

payout of a contingent liability is evaluated at a node. As liabilities are valued

at the nodes, we can ascertain whether a liability matures, and therefore
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requires payment, at a specific state under a specific node. The potential cash

inflow of a contingent asset is similarly evaluated.

The types of ALM problems considered in this section only include liabil-

ities with known payout dates that can be formulated within the above

temporal framework. The same applies to contingent assets and liabilities.

In general, contingent assets and liabilities that are not highly correlated

with the term structure of interest rates would not fall in the category of assets

and liabilities that the proposed system can handle with high precision. An

example of such an asset would be a mortgage-backed security (MBS) whose

prepayment model fails to show a high correlation with the term structure

compared to other securities due to the irrational component of the optionality

in the MBS. Because a prepayment model associated with MBS may attempt

to capture both the rational part and the irrational part of the option embedded

in the MBS, there may be a vague definition of the relationship between the

valuation of the MBS and the prevailing term structure of interest rates at any

given node in the binomial tree. As the prepayment model becomes better in

defining this relationship, the degree of precision improves.

The institution has a pool of assets and cash reserves that it can manipulate

to restructure its balance sheet. It also has access to a bigger universe of assets

available in the markets that it can choose to buy by drawing on its cash

reserves. If it can finance the purchase of new assets from the sale of current

assets, then it does not have to draw on the cash reserves and it is therefore

self-financing. However, self-financing is rarely easily achieved. In general, a

restructuring may result in either a better short-term position at the expense of

the long-term position, or vice versa.

We use the following notation:

n universe of all assets at time 0

m number of scenarios

a the number of assets in the current portfolio

x̂ vector of previous allocations to all assets

x̂j previous nominal amount of asset j that exists in the current

portfolio, j [ ½1; a�
xj decision variable nominal amount of asset j that exists in the

current portfolio, j [ ½1; a�
xk decision variable nominal amount of asset k that does not

exist in the current portfolio, k [ ½a1 1; n�
x vector of current allocations to all assets, that is, the decision

variable with elements xj and xk

Pj value of asset j, j [ ½1; a�

ASSET/LIABILITY MANAGEMENT UNDER UNCERTAINTY 319



Pk value of asset k, k [ ½a1 1; n�
W

i
TH

terminal wealth under scenario i

WD desired terminal wealth, based on an exogenously deter-

mined benchmark return

W
i
t wealth at time t under scenario i

Fðf ; ta; tbÞ future valuing factor from time ta to tb given cashflow f7

L
i
t liability at time t under scenario i

cid;e the eth cashflow from asset d under scenario i

td;e the payment time of cashflow c
i
d;e

I set of scenarios i ¼ 1;…;m.

The ALM problem we address involves the rebalancing of a balance sheet of a

corporate where holdings in existing assets may have to be changed, with the

possibility of completely dropping some assets and introducing new assets.

The universe of assets will cover both assets in the current portfolio prior to

restructuring and assets not in the current portfolio. Some assets and liabilities

may be contingent on the term structure of interest rates in the future. The

main objective of the corporate is to be able to meet its liabilities as they fall

due and at the same time ensure that there is a positive return at the terminal

date.

The formulation, given below, minimizes the worst-cash position possible

based on the identified scenarios. This objective is constrained mainly by a

cash balance equation. Essentially, any cash balance at the start of a period,

that is, the first term in the constraint below, plus any cashflow during the

period, that is, the second term in the constraint below, has to account for the

cash balance at the end of the period.

The minimax formulation is

min
x[Rn

max
i[I

Xa

j¼1

Pjðxj 2 x̂jÞ1
Xn

k¼a1 1

Pkxk 1 WD 2W
i
TH

� �
1

8<
:

9=
; ð7:2Þ

subject to liability constraints at each node on the term structure

W
i
t21FðW i

t21; t2 1; tÞ1
Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxd;0ðcid;eÞ; td;e; tÞ2 L
i
t ¼ W

i
t

for all t [ ½1;…;TH�,
x $ 0
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k1; xl ¼ 1

W
i
0 $ 0

for all scenarios i where a scenario is defined by a path on the term structure

tree.

The first constraint is a set of linear equations W
i
1;…;W

i
t ;…;W

i
TH

for each

scenario i that forms the constraints of the optimization. AsW i
1;…;W i

t ;…;W i
TH

represent the surpluses or deficits at dates 1;…; t;…;TH after liabilities

L
i
1;…; L

i
t;…;L

i
TH

have been paid, then in order to meet the liabilities on

their payment date, without borrowing, we require W
i
1;…;W

i
t ;…;W

i
TH

to be

nonnegative for all scenarios. The first term in this constraint refers to the

future-valued wealth generated at time t2 1, while the second term refers to

the future-valued cashflows that occur in between times t2 1 and t, as indi-

cated by the index e that has been constrained to identify these cashflows.

The problem with ensuring nonnegativity is that all the constraint sets for all

scenarios restrict the solution space severely because the formulation is essen-

tially a stochastic cashmatching framework. If we relax the constraints such

that only W
i
TH

$ 0, then the stream of liabilities Li1;…;L
i
t;…;L

i
TH

will be met

by the portfolio, but only by the terminal date TH . This relaxation of

constraints implies that at dates t [ ½1;…;TH 2 1�, the liabilities Lit are not

paid with certainty, but that the sum of all liabilities Lit, t [ ½1;…;TH� is met in

full at date TH . BecauseW
i
t , t [ ½1;…; TH 2 1�, are allowed to be negative, the

cashflows between dates TH 2 1 and TH are used to cover these shortfalls. The

constraintW i
TH

$ 0 ensures that the portfolio will meet all the liabilities by the

time the last liability LiTH needs to be paid.

The variable Fðf ; ta; tbÞ, represents the factor that computes the value of the

cashflows in the future based on current interest rates. The cashflow is either

an asset cashflow or a W
i
t . The interest rate to be used within Fðf ; ta; tbÞ

depends on whether the cashflow is a surplus or a deficit. In the case of the

future-valuing factor FðW i
t21; t2 1; tÞ, if W i

t21 is a surplus (W
i
t21 $ 0), then

the interest rate to use is the lending rate. If it is a deficit (W i
t21 , 0), then the

interest rate to use is the borrowing rate. In the latter case, the institution

essentially borrows to service a liability that falls due. This distinction is

important as lending rates are generally much lower than borrowing rates,

and the discrepancy between these rates could have a large impact on the cash

balance at the end of a period.

The formulation above ensures that the terminal wealth of the corporate is

well considered in the decision-making process. However, the servicing of

liabilities is no longer certain when W
i
t are unconstrained and only W

i
TH

is

required to be greater than zero.

Adding the following constraint ensures that the first liability is paid:
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W i
0FðW i

0; 0; 1Þ1
Xn

d¼1

X
e such that
0#td;e#1

xdðcid;eÞFðxdðcid;eÞ; td;e; 1Þ2 Li1 ¼ W i
1

W
i
1 $ 0 for all scenarios i [ I. The constraint ensures a surplus at the first

payout date. Thus, the solution will meet the first liability. In addition, by

adding the following constraint, we ensure further that the first and second

liabilities are paid out.

W
i
1FðW i

1; 1; 2Þ1
Xn

d¼1

X
e such that
1#td;e#2

xdðcid;eÞFðxdðcid;eÞ; td;e; 2Þ2 Li2 ¼ W i
2:

W i
2 $ 0 for all scenarios i [ I.

We have therefore created flexibility for addressing liability servicing. As

more and more W
i
t are required to be nonnegative, the system becomes

increasingly closer to full stochastic cashmatching.

A formulation where only W i
1 $ 0 andW i

TH
$ 0 ensures a surplus at time 1

and TH . Because liabilities L
i
t, t [ ½2;…;TH 2 1�, may not be paid with

certainty, we wish to provide immunization for these liabilities. To achieve

this, we consider the asset/liability risk (A/L risk) defined for scenario i as

A=L riski ¼
XTH
t¼1

Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞðt2 td;eÞ

0
BB@

1
CCA

2

:

The family of minimax ALM formulations given below is parameterized by

Tcm, the date of strategy shift, where the system prior to Tcm is stochastic

cashmatching and the system after Tcm is stochastic immunization.

min
x[Rn

max
i[I

Xa

j¼1

Pjðxj 2 x̂jÞ1
Xn

k¼a1 1

Pkxk 1 WD 2W
i
TH

� �
1

1

XTH
t¼1

Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞðt2 td;eÞ

0
BB@

1
CCA

20
BB@

1
CCA

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð7:3Þ
subject to liability constraints at each node on the term structure:

W
i
t21FðW i

t21; t2 1; tÞ1
Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞ2 L
i
t ¼ W

i
t

ð7:5Þ
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for all t [ ½1;…;TH�,
W i

1;…;W i
Tcm

$ 0; stochastic cashmatching up to time Tcm

W i
TH

$ 0; terminal wealth constraint

x $ 0

k1; xl ¼ 1

W i
0 $ 0

for all scenarios where a scenario is defined by a path on the term structure

tree.

The formulation emphasizes the minimization of the effect of the worst-

case scenario. This effect is expressed in terms of trading volume, downside

deviation from the target terminal wealth and cumulative deviations of assets

from liabilities. Minimization of the worst trading volume is effectively a

minimization of the worst transaction costs. Minimization of the worst down-

side deviation from the target terminal wealth is effectively a minimization of

the worst terminal wealth. Minimization of the cumulative deviations of assets

from liabilities is effectively a minimization of the worst duration mismatch.

We note that the objective function in (7.5) does not contain any term that

represents portfolio return. Thus, it does not admit any trade-off specification

between risk and return. This is considered in (7.7) below. The minimax return

framework is given by

min
x[Rn

max
i[I

2W
i
TH

n o
ð7:6Þ

subject to liability constraints at each node on the term structure

W
i
t21FðW i

t21; t2 1; tÞ1
Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞ2 L
i
t ¼ W

i
t

for all t [ ½1;…;TH�,
W

i
1;…;W

i
Tcm

$ 0; stochastic cashmatching up to time Tcm

W
i
TH

$ 0; terminal wealth constraint

x $ 0

k1; xl ¼ 1

W i
0 $ 0
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for all scenarios where a scenario is defined by a path on the term structure

tree.

In (7.6) Tcm defines the demarcation between stochastic cashmatching and

stochastic immunization. We can thus have a uniform framework for dealing

with risk and return. This is the minimax formulation below parameterized by

a where a [ ½0; 1� represents the trade-off between the minimization of the

worst case risk and the maximization of the worst case return. The worst-case

scenario associated with the worst case risk may not be the same as the worst-

case scenario associated with the worst case return. Hence, consider the

problem

min
x[Rn

max
i[I

8>>>>><
>>>>>:

ð2aW i
TH
Þ1 ð12 aÞ

£

8>>>>><
>>>>>:

Xa

j¼1

Pjðxj 2 x̂jÞ1
Xn

k¼a1 1

Pkxk 1
�
WD 2W i

TH

�
1

1

 XTH
t¼1

 Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞðt2 td;eÞ
!2!

9>>>>>=
>>>>>;

9>>>>>=
>>>>>;

subject to liability constraints at each node on the term structure

W
i
t21FðW i

t21; t2 1; tÞ1
Xn

d¼1

X
e such that
t21#td;e#t

xdðcid;eÞFðxdðcid;eÞ; td;e; tÞ2 L
i
t ¼ W

i
t

ð7:7Þ
for all t [ ½1;…;TH�,

W
i
1; ::;W

i
Tcm

$ 0; stochastic cashmatching up to time Tcm

W
i
TH

$ 0; terminal wealth constraint

x $ 0

k1; xl ¼ 1

W i
0 $ 0

for all scenarios where a scenario is defined by a path on the term structure

tree. We also require that 0 # a # 1.
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When a ¼ 1, then the formulation reduces to the maximization of the worst

case return and when a ¼ 0, the formulation reduces to the minimization of

the worst case risk. Varying a between 0 and 1 will result in a set of solutions

that defines an efficient frontier. The horizontal axis indicates the risk in terms

of (7.5) and the vertical axis gives the return in terms of (7.6).

The risk in (7.5) and (7.7) is a combination of three components: transaction

cost-related risks, downside risk given by a possible deficit terminal wealth,

and duration-mismatch risk given by the deviations of assets from liabilities. It

is important to note that any of these risks can be used on their own in the

minimax formulation. These three risk measures, whether used individually or

in combination, would result in different efficient frontiers. The formulation

above is in a general form and the associated efficient frontier is unique for a

given value of Tcm.

8 THE STOCHASTIC ALM MODEL 2

In Section 7 we present a stochastic ALM model where the source of uncer-

tainty is represented by a finite number of scenarios. The decision variables are

solved by formulating the stochastic problem into its deterministic equivalent.

Thus, the expectations operator in the stochastic framework is replaced by a

finite number of scenarios weighted by their probability. In Section 7 we also

present the minimax formulation where the effect of the worst-case scenario is

minimized. One can infer that the minimax solution may be conservative as it

provides a buffer against the worst case evaluated across all scenarios. As the

decision horizon gets longer, the worst case may become increasingly pessi-

mistic. The formulations in Section 7 do not allow for any dynamic revision of

the decision variables in response to new information. In this section we

present a dynamic multistage recourse stochastic ALM model together with

its multiperiod minimax representation. Finally, we present a one-period mini-

max formulation where the worst case is evaluated only over the next period

with expectations used to evaluate the remaining period until TH .

8.1 A Dynamic Multistage Recourse Stochastic ALM Model

Consigli and Dempster (1998) consider two ways of representing the terminal

wealth in the objective function: first, in terms of maximizing the terminal

wealth, and second, in terms of minimizing its deviation from a target terminal

wealth. In the first case, the optimization becomes

max
xA

E WTH

� �

where EðzÞ is the expectations operator and WTH
is the terminal wealth, to be

defined below. In the second case, the optimization is given by
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min
xA

E WTH
2Wd

� �
2

where W
d is the desired terminal wealth, that is, its target value.

We adopt the following notation8 in this section:

TH horizon

t1; t2 ¼ 1;…; TH 1 1 time periods

i ¼ 1;…; I asset type

j ¼ 1;…; J liability type

k ¼ 1;…;K riskless instrument type

x1A;it amount purchased of asset i in period t

xA;it1t2 amount held of asset i in period t2 which was

purchased in period t1 # t2

x
2

A;it1t2
amount sold of asset i in period t2 which was

purchased in period t1 , t2

y
1

L;jt amount incurred of liability j in period t

yL;jt1t2 amount held of liability j in period t2 which was

incurred in period t1 # t2

y
2

L;jt1t2
amount discharged of liability j in period t2 which

was incurred in period t1 , t2

z
1

kt amount held of riskless asset k in period t

z
2

kt amount owed of riskless asset k in period t

dx1
A;it

binary action of buying asset i in period t

dx2
A;it1 t2

binary action of selling asset i in period t2 (t1 , t2)

dy1
L;jt

binary action of incurring liability j in period t

dy2
L;jt1 t2

binary action of discharging liability j in period t2
(t1 , t2)

The following additional parameters are conditioned by their histories:

rA;it1t cash return in period t on asset i purchased in period t1 , t

rL;jt1t cash return in period t on liability j incurred in period t1 , t

r1kt return in period t on riskless asset k held in period t2 1

r
2

kt unit cost of borrowing riskless asset k in period t2 1

eit lump sum transaction cost of purchasing asset i in period t

ejt lump sum transaction cost of incurring liability j in period t
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fit unit cash outflow upon purchasing asset i in period t

fjt unit cash inflow upon incurring liability j in period t

gA;it1t unit cash inflow upon selling in period t asset i purchased in

period t1 , t

gL;jt1t unit cash outflow upon discharging in period t liability j

incurred in period t1 , t

hA;it1t lump sum transaction cost of selling in period t asset i

purchased in period t1 , t

hL;jt1t lump sum transaction cost of discharging in period t liability

j incurred in period t1 , t

rit exchange rate appropriate to asset i in period t

rjt exchange rate appropriate to liability j in period t

rkt exchange rate appropriate to riskless asset k in period t

PA;it1
market value at the horizon of asset i purchased in period

t1 # TH

PL;jt1
market value at the horizon of liability j incurred in period

t1 # TH

The terminal wealth function is given by

WTH
¼
XTH
t1¼1

XI

i¼1

PA;it1
xA;it1TH 2

XJ

j¼1

PL;jt1
xL;jt1TH

2
4

3
5

1

XK

k¼1

ð11 r
1

kðTH11ÞÞz1kTH 2 ð11 r
2

kðTH11ÞÞz2kTH
h i

: ð8:1Þ

The constraints on the variables are

Cash balance constraints, for t ¼ 1;…; TH 1 1:

XI

i¼1

rit 2eitdx1
A;it

2 fitx
1

A;it 1

Xt2 1

t1¼1

rA;it1txA;it1ðt21Þ 1 gA;it1tx
2

A;it1t
2 hA;it1tdx2A;it1 t

� �2
4

3
5

2

XJ

j¼1

rjt 2ejtdx1
L;jt

2 fjtx
1

L;jt 1

Xt2 1

t1¼1

rL;jt1txL;jt1ðt21Þ 1 gL;jt1tx
2

L;jt1t
2 hL;jt1tdx2L;jt1 t

� �2
4

3
5

1

XK

k¼1

rkt ð11 r
1

kt Þz1kðt21Þ 2 ð11 r
2

kt Þz2kðt21Þ 2 z
1

kt 1 z
2

kt

� 	 ¼ 0

Asset purchase inventory balance, i ¼ 1;…; I and t ¼ 1;…;TH:

ASSET/LIABILITY MANAGEMENT UNDER UNCERTAINTY 327



xA;itt 2 x
1

A;it ¼ 0

Liability discharge inventory balance, j ¼ 1;…; J and t ¼ 1;…;TH:

xL;jtt 2 x
1

L;jt ¼ 0

Asset sale inventory balance, i ¼ 1;…; I, t1 ¼ 1;…; t2 1 and

t ¼ 1;…; TH 1 1:

xA;it1t 2 xA;it1ðt21Þ 1 x
2

A;it1t
¼ 0

Liability discharge inventory balance, j ¼ 1;…; J, t1 ¼ 1;…; t2 1 and

t ¼ 1;…; TH 1 1:

xL;jt1t 2 xL;jt1ðt21Þ 1 x
2

L;jt1t
¼ 0

No decisions past the horizon, i ¼ 1;…; I, j ¼ 1;…; J and t1 ¼ 1;…;TH:

x
1

A;iðTH11Þ ¼ 0

x2A;it1ðTH11Þ ¼ 0

y
1

L;jðTH11Þ ¼ 0

y
2

L;jt1ðTH11Þ ¼ 0

Investment limits by type, i ¼ 1;…; I and t1 ¼ 1;…;TH :

X
L
A;itdx1

A;it
# x

1

A;it # X
U
A;itdx1

A;it

Liability limits by type, j ¼ 1;…; J and t1 ¼ 1;…; TH :

XL
L;jtdx1

L;jt
# x1L;jt # XU

L;jtdx1
L;jt

Short position limit by type, k ¼ 1;…;K and t1 ¼ 1;…;TH

0 # z1kt

0 # z
2

kt # Z
2;U
kt

Maximum new investments, t1 ¼ 1;…;TH:

XI

i¼1

x
1

A;it # X
1;U
A;t

Maximum new liabilities, t1 ¼ 1;…;TH :

XJ

j¼1

y
1

L;jt # Y
1;U
L;t
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Maximum liability per period, t1 ¼ 1;…;TH:

XJ

j¼1

XTH
t1¼1

yL;jt1t # YU
L;t

Consigli and Dempster (1998) suggest the following stochastic programming

multistage recourse framework for solving the ALM formulation given above.

In (8.2), EvTH
uvTH21

ðzÞ is the conditional expectation based on previous infor-

mation at TH 2 1.

min
x1[Rn1

f1ðx1Þ1 Ev2
min

x2[Rn2
f2ðx2Þ1…1 EvTH

uvTH21
min

xTH[R
nTH

fTH ðxTH Þ
n o" #( )" #( )

ð8:2Þ
such that

A1x1 ¼ b1

B2x1 1 A2x2 ¼ b2; a:s:9

B3x2 1 A3x3 ¼ b3; a:s:

BTH
xTH21 1 ATH

xTH ¼ bTH ; a:s:

l1 # x1 # u1

lt # xt # ut; a:s: t ¼ 2;…; TH

Problem (8.2) states that the first period is deterministic and the remaining

periods are stochastic. We shall adhere to this formulation in the minimax

framework in the next section.

In this section, all formulations, both the original Consigli and Dempster

(1998) and the minimax formulation below, cover a period up to the horizon

TH . We note that formulations from (8.2) onwards use the same variables as

(8.1), and the optimization in all formulations end at time TH . We also note

that (8.1), as in the original Consigli and Dempster (1998), uses the riskfree

interest rate variables r1kt , the return in period t on riskless asset k held in period

t2 1, and r2kt , the unit cost of borrowing riskless asset k in period t2 1. Due to

the definitions of the riskless interest rates, the applicable rates at TH are r1kTH11

and r
2

kTH11. The use of the time TH 1 1 is simply for consistency with these

definitions and does not alter the time frame of the formulations.
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8.2 The Minimax Formulation of the Stochastic ALM Model 2

The formulation above shows that the decision variable xt is solved depending

on the path taken through the scenario tree. The solution to

EvTH
uvTH21

min
xTH[R

nTH

fTH ðxTH Þ
n o" #

ð8:3Þ

is dependent on the state vTH21, that is, the path on the particular scenario. If

we take the current state vTH
as one of the terminal states from Table 7.1, say

TS8, then the solution is dependent on the previous state given by TS4. For a

different terminal state vTH
, say TS15, the solution is dependent on another

previous state, TS7.

Nielsen (1997) suggests a method of solving the above stochastic formula-

tion by transforming it into a deterministic problem, referred to as the split-

variable formulation. In order to explain this formulation, we need to discuss

scenarios and states in a scenario tree and how they provide the pattern for the

transformation from a stochastic to a deterministic framework. From Figure

7.1 and Table 7.1, a scenario, say S1, is a series of states10 given by TS1, TS2,

TS4 and TS8. Similarly, scenario S8 is represented by the series of states TS1,

TS3, TS7 and TS15.

We note that the first period in (8.2) is deterministic and wholly dependent

on the outcome of known parameters. To illustrate, if the source of uncertainty

is the movement of the yield curve, the Stage 1 is wholly dependent on the

current yield curve. In contrast, the uncertainty formulated in Figure 7.1

affects the initial and all subsequent stages.

In the split-variable formulation, a set of decision variables xsa;t [ R
nt are

used at each time t, for a particular scenario s; these decision variables repre-

sent the deterministic equivalent of the original stochastic variables xt [ R
nt .

For each scenario s, let the formulation below represent the deterministic

scenario subproblem:

min
x1[Rn1 ;xsa;t[Rnt ;t¼2;…;TH

f1ðx1Þ1 f
s
2 ðxsa;2Þ1…1 f

s
TH
ðxsa;TH Þ

n o
ð8:4Þ

such that

A1x1 ¼ b1

B
s
a;2x

s
a;1 1 A

s
a;2x

s
a;2 ¼ b

s
a;2

B
s
a;3x

s
a;2 1 A

s
a;3x

s
a;3 ¼ b

s
a;3

B
s
a;TH

x
s
a;TH21 1 A

s
a;TH

x
s
a;TH

¼ b
s
a;TH
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l1 # x1 # u1

lt # xsa;t # ut; t ¼ 2;…; TH

where the superscript s on As
a;t, B

s
a;t, b

s
a;t and f

s
t ðxsa;tÞ denotes the unique realiza-

tion of vt associated with scenario s. Additionally, the subscript a on these

variables denotes the ancestor state of that scenario. Let at21ðsÞ represent the
ancestor state, that is, the state from which the current state at time t emanates.

For scenario S8, the ancestor state of TS15 is TS7. The ancestor state at21ðsÞ is
used below to define nonanticipativity constraints, that is, constraints that

define the association between future states that have been conditioned by

the same ancestor state. These nonanticipativity constraints ensure that any

decision taken at a previous state is passed on to future states conditioned by

that previous state. Further, let Nat21ðsÞ represent the number of states from the

root state to the ancestor state. If the current state is TS15, Nat21ðsÞ ¼ 3. We use

this number in the minimax formulation below.

The nonanticipativity constraints are written as

x
s
a;t ¼ x

s11
a;t ; for t ¼ 2;…;TH and at21ðsÞ ¼ at21ðs1 1Þ: ð8:5Þ

In the stochastic formulation above, the expectation is implemented over a

finite set of scenarios with a probability of occurrence, us associated with each

scenario. Using the deterministic scenario formulation together with nonanti-

cipativity constraints, the complete split-variable formulation of the stochastic

problem becomes

min
x1[Rn1 ;xsa;t[Rnt ;t¼2;…;TH

f1ðx1Þ1
Xmsce

s¼1

us f
s
2 ðxsa;2Þ1…1 f

s
TH
ðxsa;TH Þ

� �( )
ð8:6Þ

subject to

A1x1 ¼ b1

Bs
a;2x

s
a;1 1 As

a;2x
s
a;2 ¼ bsa;2

B
s
a;3x

s
a;2 1 A

s
a;3x

s
a;3 ¼ b

s
a;3

B
s
a;TH

x
s
a;TH21 1 A

s
a;TH

x
s
a;TH

¼ b
s
a;TH

l1 # x1 # u1

lt # x
s
a;t # ut; t ¼ 2;…; TH

and

x
s
a;t ¼ x

s11
a;t ; for t ¼ 2;…;TH and at21ðsÞ ¼ at21ðs1 1Þ:
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The multistage recourse framework is now re-cast into a single-stage minimax

framework, transforming the treatment of uncertainties from the use of expec-

tations to the use of worst-case scenarios.

min
x1[Rn1 ;xsa;t[Rnt ;t¼2;…;TH

max
s[V

f1ðx1Þ1 f
s
2 ðxsa;2Þ1…1 f

s
TH
ðxsTH Þ

� �n o
ð8:7Þ

subject to

A1x1 ¼ b1

B
s
a;2x

s
a;1 1 A

s
a;2x

s
a;2 ¼ b

s
a;2

B
s
a;3x

s
a;2 1 A

s
a;3x

s
a;3 ¼ b

s
a;3

B
s
a;TH

x
s
a;TH21 1 A

s
a;TH

x
s
a;TH

¼ b
s
a;TH

l1 # x1 # u1

lt # x
s
a;t # ut; t ¼ 2;…;TH

and

xsa;t ¼ x
s11
a;t ; t ¼ 2;…;TH and at21ðsÞ ¼ at21ðs1 1Þ:

Problem (8.7) can be represented by the following nonlinear programming

formulation:

min
F[R1;x1[Rn1 ;xsa;t[Rnt ;t¼2;…;TH

Ff g ð8:8Þ

subject to

f1ðx1Þ1 f
s
2 ðxsa;2Þ1…1 f

s
a;TH

ðxsa;TH Þ
� �

# F; s [ V

A1x1 ¼ b1

B
s
a;2x

s
a;1 1 A

s
a;2x

s
a;2 ¼ b

s
a;2

B
s
a;3x

s
a;2 1 A

s
a;3x

s
a;3 ¼ b

s
a;3

B
s
a;TH

x
s
a;TH21 1 A

s
a;TH

x
s
a;TH

¼ b
s
a;TH

l1 # x1 # u1

lt # xsa;t # ut; t ¼ 2;…;TH

and
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x
s
a;t ¼ x

s11
a;t ; for t ¼ 2;…;TH and at21ðsÞ ¼ at21ðs1 1Þ:

The above strategy guards against the worst-case scenario across all scenarios

identified at the starting time. Clearly, this represents a very pessimistic view

of the worst case, and perhaps may be useful only for short horizon problems.

8.3 A Practical Single-stage Minimax Formulation

The formulation in Section 8.2 looks at long-term solutions to the ALM

problem. Although ALM managers may have long-term horizons, it is gener-

ally acknowledged that taking long-term views rarely provide a practical

insight into the construction of an ALM portfolio. A major reason for this is

the lack of forecasting power to project and estimate a portfolio’s performance

in the far future. In practice, economists who provide supportive research for

ALM construction have forecasting horizons from a few months to 1 or 2

years. Any forecast over a 1 year horizon is regarded as speculative and

therefore not reliable for decision making. However, they are useful for form-

ing a general view of global markets and how these markets may affect ALM

portfolios in broad terms.

A short-term framework for optimization would be consistent with the

limitation on the length of the forecasting horizon. Such a short-term frame-

work is not necessarily inferior to the long-term framework. It is the close

overlap between short-term optimization and short-term forecasting that

provides a good argument for analyzing ALM portfolios with 1 or 2 year

horizons. In this section, we present a single-stage minimax formulation

where the worst case is identified over the first stage only. The scenarios

are defined by the uncertainties until TH . These are expectations of uncertain-

ties evaluated from the beginning of the second stage onwards. Consider this

scenario tree given in Figure 8.1.

In Figure 8.1, four scenarios have been identified as important at Stage 1. This

number of scenarios may reflect four outcomes of the economic environment

that forecasters are interested in. For example, Scenario 1 may refer to a rise in

interest rates that would result in an upward shift in the yield curve. Scenario 2

may also refer to a rise in interest rates, but forecasts a flattening of the yield

curve due to a projected upward shift at the short-end of the curve. Scenario 3

may refer to a hold in interest rates that would result in an upward shift at the

long-end of the yield curve. Lastly, Scenario 4may also refer to a hold in interest

rates that would result in no significant shift in the shape of the yield curve. Each

of these scenarios reflects a projection of the yield curve in the future, and can be

used to provide expectations on the value of unknown variables.

Let Esð·Þ be the expectation evaluated for scenario s. Consider the minimax

formulation below:
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min
x1[Rn1

max
s[Rmsce

f1ðx1Þ1 Es f
i2
2 ðx2Þ1…1 f

iTH
TH

ðxTH Þ
n oh in o

ð8:9Þ

such that

A1x1 ¼ b1

B
s
2x1 1 A

s
2x

s
2 ¼ b

s
2; for all scenario s

B
s
3x

s
2 1 A

s
3x

s
3 ¼ b

s
3; for all scenario s

B
s
TH
x
s
TH21 1 A

s
TH
x
s
TH

¼ b
s
TH
; for all scenario s

l1 # x1 # u1

lt # x
s
t # ut; for all scenario s; t ¼ 2;…; TH

The above formulation is subject to the deterministic constraints in the first

stage, keeping in parallel with Consigli and Dempster (1998), as well as with

the stochastic constraints from the second stage onwards. The number of

scenarios is given by m
sce ¼ 4, as defined by Figure 8.1.

Problem (8.9) can be implemented, and is practical and conforms to the

well-developed format of economic forecasting. By using a scenario-based

optimization as given by (8.9), decision makers are then able to implement

their economic forecasts; they also have a better feel for the solution being

offered by the optimizer. The formulation acknowledges the importance of

worst-case analysis in the short run but admits the use of scenarios based on

expectations in the medium term.
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9 CONCLUDING REMARKS

In this chapter we have presented potential uses of minimax in asset liability

management systems and have demonstrated the benefits from using minimax.

Asset allocations that attempt simultaneously to maximize terminal wealth

and minimize default or the probability of default on liabilities as they fall due,

generally operate within the expectations framework. This may lead a decision

maker to make asset allocation decisions resulting in the nonservicing of

liabilities. This becomes critical in certain areas of finance, in particular the

pensions industry, where the servicing of long-term liabilities is an integral

part of the pensions’ objectives and of the allocation decision. ALM systems

benefit from minimax optimization when different environmental scenarios

imply different liability scenarios. The realization of any one particular liabi-

lity scenario is critical compared to the realization of some average or

expected value liability. ALM decisions with differing liability forecasts

require that the asset allocation decision is robust in view of multiple liability

scenarios. Such decisions, if based on minimax, would result in the least

negative impact in terms of liability servicing. This is clearly an important

property of minimax that makes it useful in analyzing and optimizing ALM

systems.

In this chapter we have also presented alternative minimax ALM systems

that would suit a variety of ALM users. An ALM formulation that would be

useful for a particular user may not be useful for others. The choice depends on

the nature of the ALM problem and the constraints imposed on the manage-

ment of their assets and liabilities. Whatever the particular formulation, it is

possible to adapt this to a minimax framework and construct robust solutions

that address the issue of worst-case environmental, and therefore liability,

scenarios.
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COMMENTS AND NOTES

CN 1: Duration and Convexity

A measure of the speed of payment on a bond is the average maturity of the

stream of cashflows. This is referred to as Macaulay Duration. Dollar Duration

is the interest rate sensitivity of a bond, that is, the change in value of the bond

for a unit change in yield. Modified Duration represents the percentage change

in the value of the bond for a small change in yield. Using the following

notation:

P the full price of a bond

C annual coupon payment

R redemption payment

tm maturity of the bond in years

rðtiÞ spot rate, in decimal, applicable to payment i

due at time ti

y yield to maturity or redemption yield, in deci-

mal

f frequency of coupon payments

dðtiÞ ¼
1

11 ðrðtiÞ=f Þ
� �fti discount factor applicable to payment i due at

time ti

The full price of a bond, using spot rates, is given by

P ¼ C

f

Xm

i¼1

dðtiÞ1 RdðtmÞ:

The full price of a bond, using yield, is given by
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P ¼ C

f

Xm

i¼1

1

11 ðy=f Þ� �fti 1 R
1

11 ðy=f Þ� �ftmi :

The Macaulay Duration, using discount rates, is given by

Macaulay Duration ¼

Xm

i¼1

tidðtiÞðCi=f Þ1 tmdðtmÞR
Xm

i¼1

dðtiÞðCi=f Þ1 dðtmÞR
:

The Modified Duration is given by

Modified Duration ¼ 1

P

2P

2y
¼ 2

Macaulay Duration

11 ðy=f Þ
Modified Duration is the measure most commonly used by market practi-

tioners.

Convexity is the second derivative of the price function with respect to

yield, that is,

Convexity ¼ 1

ð11 ðy=f ÞÞ2f 2

Xm

i¼1

titi11dðtiÞðCi=f Þ1 tmtm11dðtmÞR
Xm

i¼1

dðtiÞðCi=f Þ1 dðtmÞR
:

CN 2: Term Structure of Interest Rates

The term structure of interest rates refers to the set of interest rates for lending

or borrowing with different maturities. In the case of government borrowings,

normally the most liquid of fixed income instruments, the term structure refers

to the set of interest rates that investors demand for holding government debt.

The term structure of interest rates is not directly observable. What can be

observed is the yield or the internal rate of return on a bond that represents

some form of average return over the life of the bond. For all bonds issued by

the government, there is a corresponding set of yields called the yield curve.

The term structure is implied in the yield curve. A technique called boot-

strapping can be used to extract the term structure of interest rates from the

yield curve.

CN 3: Generalized Tree Structures

The structure of generalized trees uses nodes and branches of an unspecified

number. Trees are generally used as decision tools that aid in the itemization
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of possibilities that face a decision maker. In other words, trees are explicit

versions of permutations of events. A node is any part of a tree where an

intermediate decision can be taken with regards to which branch to take. A

node normally connotes a state or an environment that has been reached while

traversing the tree. A branch is the transition from one node to another.

Generalized trees may have varying numbers of branches emanating from a

node representing varying sets of possibilities for the decision maker.

At the tips of the tree are leaves that represent the terminal state or envir-

onment. The path that a decision maker takes from the first node to a leaf is

referred to as a scenario. Therefore, the number of leaves is the same as the

number of scenarios.
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Chapter 11

Robust currency management

In this chapter we discuss currency management. We consider the strategic

point of view where a currency benchmark is identified. We also consider the

tactical point of view where the frequent re-balancing of a portfolio’s currency

hedge is managed in order for the portfolio to benefit from short- and medium-

term currency fluctuations. Currency benchmark identification is important in

finding the long-term optimal hedge ratio that a portfolio should adopt in order

to minimize the negative impact of any currency depreciation in the medium

and long term. We discuss benchmark identification, first, for a pure currency

portfolio as this simplifies and clarifies the role of strategic currency manage-

ment, and second, for an international asset portfolio as this clarifies the use of

currency hedging as a tool for managing the currency exposure of such a

portfolio. The tactical management of a currency portfolio involves currency

trades that cause fluctuations about the strategic benchmark. These trades

represent short- to medium-term adjustments to the optimal hedge ratio in

order to maximize returns and accumulate short-term gains. We consider both

the strategic and tactical formulations.

1 INTRODUCTION

The financial modeling of the behavior of currencies has gained attention as

portfolios become increasingly international. Currency modeling has been a

major focus of research as more and more market participants realize the

impact of currencies on the value of their portfolios. By investing in the equity

market of a foreign country, a portfolio manager not only receives local

market returns but also the currency return associated with a foreign

currency-denominated equity market. The manager needs to appraise the

local equity market to judge whether the investment is worth the risk. Addi-

tionally, she needs to appraise the potential performance of the foreign

currency to judge whether the exposure to that foreign currency would yield

a desirable return. A positive appraisal of the currency may motivate her to

maintain the exposure to that foreign currency whereas a negative appraisal

may cause her to hedge the currency risk (see CN 1). Local market forecasting

and currency forecasting become essential in this appraisal process. The



manager may find it increasingly difficult to achieve a suitable conjoint model-

ing of local markets and currencies as more and more foreign markets are

included in the manager’s portfolio. Because the skill for appraising equity

markets in general is different from the skill required to appraise currencies,

the portfolio manager, perhaps originally hired for her expertise in stock

picking, may not be able to function as expertly in the currency domain.

There is thus a very strong argument for employing a specialist currency

manager whose role is to develop a currency overlay that would manage the

currency risks for the portfolio manager.

Currency forecasting is also important for borrowers who can issue foreign

currency-denominated debt. Apart from the skill required to appraise the

potential demand for a foreign-denominated debt, the borrower would also

need to have the skill to appraise a potential currency depreciation. Being able

to forecast the depreciation of a currency may cause the borrower to issue debt

in that currency because the depreciation would result in less (debt) repayment

than would have been the case if the currency is stable or if it appreciates.

While a potential currency appreciation is desirable for an investing portfolio

manager, a potential currency depreciation is desirable for a borrower.

Market participants involved in international trade also find that currency

forecasting is an essential part of their planning. Foreign and domestic compa-

nies competing for market share know that their competitiveness is a direct

function of exchange rate behavior. Similarly, policy makers may find that the

currency markets influence their decision on the optimal mix of monetary and

fiscal policies.

The increasing proportion of foreign assets that enter asset portfolios gives

increasing importance to currency management. Several authors have inves-

tigated the impact of currency hedging decisions on the performance of diver-

sified international portfolios. Perold and Schulman (1988) argue that it is

better to formulate long-run investment policy in terms of hedged portfolios

than unhedged portfolios. The key argument is that, from the point of view of

long-run policy, investors should think of currency hedging as having zero

expected return, and that on average, currency hedging gives substantial risk

reduction at no loss of expected return. Thus, hedging should be the policy,

and lifting the hedge an active investment decision.

Perold and Schulman (1988) also argue that there are good grounds for

believing that, over relatively short periods, the expected return from

currency hedging (equivalently, currency exposure) will be nonzero. Further,

there is no indication that these premia will be consistently positive or

consistently negative, or that pursuit of such returns (by being longer or

shorter currency at the margin) will be worth the added risk. The marginal

decisions with respect to currency exposure should therefore be made by

managers who are in close touch with the changing nature of risk and return

in the currency markets.

CHAPTER 11342



One can argue, however, that the long-run view where currency hedging

produces a zero expected return is not consistent with real-world portfolio

management with relatively shorter time frames. Fund managers are assessed

on regular intervals, mainly on a yearly basis. We are therefore forced to look

at more realistic investment policy horizons that would not satisfy the zero-

expected-return assumption on currency. This horizon constraint also forces

us to look at currency risks and returns in conjunction with local risks and

returns of assets. With this horizon constraint, we deviate from the Perold and

Schulman’s (1988) prescription of full hedging as the default investment

strategy and of selectively lifting the hedge as an active investment decision.

Jorion (1989) considers the relative merits of hedging and of not hedging for

portfolios of foreign stocks and bonds, from the point of view of a usd-based1

investor. Studying 11 years of data, subdivided into periods of dollar weakness

and strength, Jorion (1989) observed: the first 3-year period, characterized by

dollar weakness; then the next 4-year period, characterized by dollar strength;

and then the last 4-year period, characterized by dollar weakness. It is shown

that hedging only makes sense during the period of dollar strength. This study

illustrates the point that the long-run investment horizon consistent with zero

expected currency return addressed in Perold and Schulman (1988) could be

longer than 4 years.

Levy (1981) presents a multicurrency portfolio optimization framework as

an extension to a single currency mean-variance system. The extension comes

in the form of calculating returns as total returns, that is, the returns on a

foreign asset calculated as the proportionate change in base currency denomi-

nated price of the asset. Total return calculations are used on a monthly

interval for 9 years as input for covariance calculations. Both calculations

are then used as input to a mean-variance optimizer. The suggested framework

is not sufficient to capture the full range of possibilities for risk and return

because it does not allow investors to hedge their currency exposure. The

underlying assumption is that investors using the system would invest on an

unhedged basis only. An exact framework for incorporating currency risk and

return into local assets risk and return as a combined input for a mean-variance

optimization system is given by Rustem (1995). This is based on the exact

evaluation of the multiplicative currency and local risk expressions.

Eun and Resnick (1985) report on the benefits from international diversifi-

cation and on the optimal international portfolios from 15 currency perspec-

tives. Similar to Levy (1981), this paper does not capture the full range of

diversification benefits and the full range of risk and return possibilities avail-

able to international investors because currency hedging is ignored. In parti-

cular, the benefits from diversification as a result of asset selection can only be

ascertained on a full currency hedging basis. Eun and Resnick (1988) study
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risk and return profiles of particular portfolios under no currency hedging and

full currency hedging, in order to consider the benefits from international

diversification. The framework is an improvement from that used in Eun

and Resnick (1985), but it still does not capture the full range of risk and

return possibilities, as can be provided with selective hedging.

Hauser and Levy (1991) evaluate three currency hedging strategies for fixed

income portfolios: no hedging, full hedging and partial hedging. This study

shows that returns on foreign bonds are positively correlated with currency

returns, and that long-term foreign bonds are significantly less correlated with

exchange rates than short-term bonds. The gains from hedging are higher, the

shorter the maturity of the bonds in the portfolio. For low-risk portfolios, a

fully hedged (or in some cases over-hedged) strategy is optimal. An investor

should refrain from hedging only when the expected return on exchange rates

is higher than the forward premium. Given that the expected return on foreign

exchange is higher than the forward premium, the optimally hedged efficient

set converges to the nonhedged efficient set as the expected return is increased.

Hauser and Levy (1991) discuss the results for these three currency hedging

strategies, but do not consider in detail how partial hedging is determined.

Investors are allowed to simultaneously determine the investment proportion

in each asset and the optimal amount of forward hedging. However, the frame-

work that allows this capability is not discussed. The expansion of the analysis

to include partial hedging, including cross hedging (see CN 2), may provide a

richer set of risk and return possibilities.

Eaker and Grant (1990) discuss the benefits from international diversifica-

tion using three hedging strategies: no hedging, full hedging and selective

hedging. The selective hedging framework is based on a constant partial

hedge that does not change during the determination of the efficient frontier.

The result of this restriction is that selective hedging is not flexible to cover full

hedging as a possibility for the minimum-risk portfolio and it does not cover

no hedging as a possibility for the maximum-return portfolio.

In addressing the issue of currency hedging, currency managers need to

strike a balance between the optimal long-term currency hedge in view of the

long-term direction of particular currencies and the optimal short-term

currency hedge in view of short-term fluctuations in these currencies. This

balance is generally seen as a trade-off between a strategic currency hedge and

a tactical currency hedge. The long-term currency hedge can be identified

within a strategic currency management system, where the long-term direction

of particular currencies are modeled on fundamental economic factors. On a

short-term basis, a tactical currency hedge essentially augments the strategic

hedge in order to benefit from short-term fluctuations in the value of the

currencies.

In Section 2, we consider a strategic currency management system that is

useful in determining optimal currency benchmarks for long-term planning.
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The identification of the strategic currency portfolio is dependent on a long-

term model of currency movement.

In Section 3, we distinguish between a strategic pure currency portfolio and a

strategic currency benchmark designed for the purpose of hedging currency

exposures of international portfolios. While Section 2 concentrates on the rela-

tively simpler problem of finding the optimal currency benchmark for a pure

currency portfolio, Section 3 focuses on finding the optimal currency benchmark

that hedges the risk of different currency exposures. We do not consider pure

currency portfolios but study general asset portfolios whose risk and return

profiles demand the solution to the currency benchmark identification problem.

In Section 4, we discuss a generic currency model generating signals whose

value and direction determine the tactical currency bet that the currency

manager would implement. We assume there exists such a framework that

enables the currency manager to read signals indicating whether she should be

long or short a particular currency (see CN 3).

In Section 5, we generalize the framework developed in Section 4 to address

the issues of mis-forecasting. We study this in terms of the downside risk due

to mis-forecasting and also in terms of the ability of the modeling framework

to provide cushions against worst-case events, such as following the wrong

forecasting model, that could potentially harm an investor.

In Section 6, we discuss the interplay between the strategic currency bench-

mark for an international portfolio and the tactical currency management for

such a portfolio. This section integrates for the reader the concept of currency

overlay by explaining the dominance of the strategic currency benchmark and

the constraints it imposes on the tactical system.

In Section 7, we briefly discuss the use of currency options in the manage-

ment of currency exposures. While options in general provide insurance at a

price, they also serve as return enhancers within a tactical currency system.

The use of options as very short-term tools for generating excess returns in

currency overlay systems is discussed.

An appendix is provided to consider how fundamental and technical

approaches to currency forecasting can be integrated into a single forecasting

framework. It is noted that a reliance on fundamental or technical analysis

alone can lead to currency management problems and that these can be

avoided by adopting an integrated approach to currency forecasting.

2 STRATEGIC CURRENCY MANAGEMENT 1: PURE CURRENCY

PORTFOLIOS

We illustrate the importance of a strategic currency benchmark by looking at a

time series for yen/usd2. Figure 2.1 shows the yen/usd exchange rate from
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1970 to 1998. The figure shows that over 30 years, the yen has been appreciat-

ing against the US dollar. For a usd-based currency manager with a 30-year

horizon, it would have made sense to keep yen exposure unhedged, thereby

benefiting from yen appreciation. However, for a yen-based manager with the

same horizon, it would have made sense to hedge all US dollar exposure,

thereby avoiding the loss from US dollar depreciation.

Under usual circumstances, the horizon of an international portfolio being

managed by a currency manager may span several years, although less than

the 30-year period in our illustration. This raises the question as to whether, for

a usd-based investor, keeping the yen exposure unhedged is a sensible strat-

egy. Figure 2.2 shows the exchange rate between 1991 and 1994, showing a

period of yen appreciation relative to the US dollar, while Figure 2.3 shows the

rate between 1995 and 1998, showing a period of yen depreciation. For a usd-

based currency manager with a 4-year horizon, the strategic currency hedge at

the start of 1991 would have been an unhedged yen exposure. For the same
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currency manager with a 4-year horizon, the strategic currency hedge at the

start of 1995 would have been a fully hedged yen exposure.

A strategic currency benchmark uses a long-term currency model to project

a particular currency into the horizon of the portfolio. In the above illustration,

this period is 4 years. At this stage, we assume that a long-term currency

model exists, enabling the projection of particular currencies to the end of a

holding period of at least 1 year.

From Figures 2.2 and 2.3, although the exchange rate follows a well-defined

direction, that is, yen appreciation in Figure 2.2 and yen depreciation in Figure

2.3, there are subperiods wherein the currency follows a short-term trending

that opposes the long-term directional move. For example, from Figure 2.3,

one can discern a period of short-term yen appreciation in mid-1997, as well as

in late 1998. These subperiods provide opportunities for achieving excess

returns via tactical currency bets. In this section, we concentrate on the

long-term strategic benchmark problem. In Section 4, we discuss a generic

currency model that addresses the issue of tactical management.

Pure currency portfolios take advantage of the dual role of money: as an

asset class that is capable of earning a return during its holding period, and as a

means of exchange that is capable of generating returns from currency move-

ments. Currency portfolios have been prominent in the form of currency over-

lays in investment management as well as in the form of currency speculative

attacks on weak currencies, particularly of emerging markets. We present a

strategic pure currency portfolio that benefits from scenario optimization, both

in the nonlinear programming and in the minimax framework. The strategic

portfolio that we describe does not have the properties of currency overlay in

terms of hedge ratios because we do not include noncurrency assets. Also, it

does not have the properties of currency speculation in terms of short-term

short positions aimed at potential devaluations. Instead, the strategic portfolio

is a currency asset allocation that aims to identify the medium- to long-term
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optimal currency exposures. We choose a basket of currencies in view of

multiple scenarios and show how an investor in currencies can benefit from

optimization and, in particular, from minimax. In this section, we explore

continuous minimax as a tool for foreign exchange optimization.

For a pure currency portfolio composed of mcur currencies, we wish to find

the portfolio mix that maximizes the expected return3 and minimizes the risk

from the point of view of a specific base currency:

min
x[Rmcur

2akx; rl1 12 að Þkx;Cxlf g ð2:1Þ

k1; xl ¼ 1

x $ 0

where

ri ¼ ð11 r
c
i Þð11 r

e
i Þ2 1; ;i [ ½1;…;m

cur�
1 is the unit vector, with unit elements, and C [ R

mcur
£mcur

is the covariance

matrix of returns ri. The formulation uses a trade-off variable a [ ½0; 1�
chosen to reflect the importance of return versus risk. By varying a between

zero and one, we can find a set of portfolios that define the efficient frontier.

Here, r [ R
mcur

whose element ri is the expected return from investing in

currency i, composed of the expected cash return rci and the expected currency

appreciation r
e
i . Empirical evidence suggests that the second component, the

return from currency appreciation, is of a higher order compared to cash

returns. Although both components can be generally regarded as uncertain,

cash return is relatively less risky. Regarding cash return, an investor can lock

into a foreign time deposit and get the contracted return or invest in money

market instruments or treasury bills. Being at the short end of the yield curve,

these instruments have almost certain outcomes at the end of the investment

period. Regarding currency return, the investor is facing a riskier investment:

the volatility in the foreign exchange markets is the major source of concern

for currency portfolio investors. It is of course the volatility of currencies that

enables the investor to reap sizeable gains in the foreign exchange markets,

provided she is in or out of a currency at the right time. It is the timing issue

that only very few investors might manage to get right consistently. The highly

uncertain nature of currencies and the highly attractive potential rewards make

investors search for decision tools that might enable them to make decisions in

the right direction.

In the following discussion we concentrate on the modeling of scenarios for

currencies. We present a framework using long-term generic currency models

that have been employed in various forms. First, we need to look at how
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foreign exchange returns are calculated:

r
e
i ¼

ei;TH
ei;0

2 1 ð2:2Þ

where ei;t is the spot exchange rate at time t in terms of units of the base

currency4 per unit of foreign currency i, with t ¼ TH representing the horizon

date. When the allocation decision is to be made at time t ¼ 0, the spot

exchange rate ei;0 is known but the spot exchange rate at the horizon, ei;TH ,

is unknown. Various models of exchange rate determination attempt to point-

forecast ei;TH but with limited success. The lack of success of point-forecasting

ei;TH does not necessarily render these models useless. Perhaps what is

required is a completely different approach: moving away from point-fore-

casting towards range-forecasting may provide a wider perspective in estimat-

ing ei;TH . A long-term generic model might be

ei;TH ¼ giðFiÞ1 yi ð2:3Þ
where the horizon’s spot exchange rates are modeled by a function of a vector

of factors Fi, plus an estimation error yi. The function may be suitable for

estimation by regression. It may be constructed using economic variables such

as price indices, growth and trade figures, money supply, interest rates, etc.,

that apply to both the foreign country and the base country. We shall not

discuss the details of Fi. The emphasis is in the relaxation of a generic

point-forecast framework using range forecast within the minimax approach.

Let the estimation error yi vary between some investor-defined upper and

lower bounds as

y
lower
i # yi # y

upper
i :

The bounds on yi allow us to find the corresponding values of ei;TH . Conse-

quently, the return on currency i is bounded, where the bounds are determined

by the extreme values of yi through the following relationship:

rei ¼
giðFiÞ1 yi

ei;0
2 1:

The minimax framework yields the optimal allocation between currencies that

cushions against the worst-case outcome for each currency return. We adopt

m
cur currencies, including the base currency. We use x [ R

m
cur

as the mini-

mizing variable and we define the maximizing variable as y [ R
m

cur

.

min
x[Rmcur

max
y[Rmcur

2a
Xmcur

i¼1

xi ð11 r
c
i Þ

giðFiÞ1 yi

ei;0

 !
2 1

 !
1 ð12 aÞkx;Cxl

( )

ð2:4Þ
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subject to

yloweri # yi # y
upper
i ; i ¼ 1;…;mcur

k1; xl ¼ 1

x $ 0:

These ranges need to be refined further to ensure consistency, that is, preser-

ving the triangulation property of currencies in order to avoid any trivial

possibility of cross-currency inconsistency. This means that all exchange

rates moving between lower bounds (and similarly, all upper bounds) should

satisfy triangulation. To illustrate for three currencies,

usd

euro


 �
yen

usd


 �
euro

yen


 �
¼ 1: ð2:5Þ

This triangulation requirement is satisfied by

ei;t
1

ej;t

 !
ðeij;tÞ ¼ 1

for any time t, and where eij;t is the cross exchange rate between currencies i

and j. From a usd-based perspective, ei;t is quoted as units of US dollar per unit

of foreign currency i, while eij;t is quoted as units of currency i per unit

currency j. Consequently, when forecasting for the horizon’s exchange

rates, not only do we need a long-term relation as in (2.3) but also a long-

term model for forecasting the cross rate. Let

eij;TH ¼ gijðFijÞ1 yij ð2:6Þ
be a model of the cross exchange rate between currencies i and j. It is modeled

by a function of a vector of factors Fij, plus an estimation error yij. As in the

modeling of straightforward exchange rates, Fij may be constructed using

economic variables such as price indices, growth and trade figures, money

supply, interest rates, etc., that apply to both foreign countries, but this time

without any reference to the base country.

Let the estimation error yij vary between some investor-defined upper and

lower bounds as ylowerij # yij # y
upper
ij . The minimax formulation that incorpo-

rates the triangulation requirement is given by

min
x[Rmcur

max
y[Rmcur

2a
Xmcur

i¼1

xi ð11 r
c
i Þ

giðFiÞ1 yi

ei;0

 !
2 1

 !
1 ð12 aÞkx;Cxl

( )

ð2:7Þ
subject to
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y
lower
i # yi # y

upper
i ; i ¼ 1;…;m

cur

y
lower
ij # yij # y

upper
ij ; i ¼ 1;…;m

cur
2 1; j ¼ 1;…;m

cur
2 1; i – j

giðFiÞ1 yi
� � 1

gjðFjÞ1 yj

 !
gijðFijÞ1 yij

� �
¼ 1; i – j

k1; xl ¼ 1

x $ 0:

We note that for the second type of constraint, the number of unique cross-

currency constraints is given by the number of combinations from ðmcur
2 1Þ

taken two at a time (see CN 4).

3 STRATEGIC CURRENCY MANAGEMENT 2: CURRENCY

OVERLAY

The term currency overlay is used in fund management to mean the applica-

tion of a tactical currency trading system to supplement and/or complement

the performance of a strategic currency benchmark. The overlay covers two

distinct systems: the long-term management of currency exposures using stra-

tegic benchmarks, and the short- and medium-term management using tactical

trading systems. This section deals with strategic benchmarking for overlay

purposes. Sections 4 and 5 deal with tactical trading systems and Section 6

discusses the interplay between the strategic benchmark and the tactical trad-

ing system to provide a fuller picture of currency overlay.

While Section 2 concentrates on finding the strategic currency benchmark

for a pure currency portfolio, this section is focused on finding the strategic

benchmark for currency overlay purposes. We consider general asset portfo-

lios, mainly the international component, and the problem we address is that of

hedging the currency exposure by virtue of holding those international assets.

To describe currency overlay, we need to present it in the context of an

international portfolio and a manager’s base currency. The manager would

have to consider separate hedges corresponding to the foreign currency expo-

sures where the exposures come from the original allocations to either equity,

fixed income or both. The important inputs to the analysis of optimal hedges

are equity, fixed income and currency models. It is the interplay between the

total return and the total risk of the equity and fixed income, from the point of

view of the base currency, that determines the optimal hedges. We first show

how the optimal hedges are analyzed in the expected value framework and

then show how these are analyzed in the minimax framework.
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For an asset portfolio with n assets, the portfolio mix x [ R
n that maxi-

mizes the expected return and minimizes the risk from the point of view of a

specific base currency is given by

min
x[Rn

2akx; rl1 ð12 aÞkx;Cxlf g ð3:1Þ

subject to

k1; xl ¼ 1

x $ 0

where

ri ¼ ð11 r
a
i Þð11 r

e
i Þ2 1; ;i [ ½1;…; n�:

Here, r [ R
n whose element ri is the expected return from investing in foreign

asset i, composed of the expected local asset return rai and the expected

currency appreciation rei . It is useful to recall at this stage that the covariance

matrix C is based on ri, and not on either rai or rei . By comparing (3.1) with

(2.1), it can be observed that the cash return for a pure currency portfolio has

been replaced by the local asset return for an asset portfolio. The investment in

the foreign asset introduces an extra level of uncertainty, that is, the uncer-

tainty of returns on the local asset. Not only do we need a long-term model for

the currency, but we also need a long-term model for the foreign asset. In

general, the modeling of equity requires a different skill from the modeling of

fixed income. This means that the analysis of optimal hedge ratios require

three different skills: on long-term equity modeling, on long-term fixed

income modeling and on long-term currency modeling. With regard to the

required equity model, one need only account for the equity market and not for

individual stocks as it is the long-term path of the market that needs to be

estimated and not the specific paths of individual stocks. Similarly for fixed

income, we need a model that reflects significant yield curve shifts and are not

concerned about relative values of individual fixed income assets.

Let rai below represent the local return on asset ai, be it fixed income or

equity:

rai ¼
ai;TH
ai;0

2 1:

A long-term model for the local return of the foreign asset may be given by

ai;TH ¼ g
a
i ðFa

i Þ1 y
a
i ð3:2Þ

where the value of the asset at the horizon is modeled by a function of a vector

of factors F
a
i , with an estimation error y

a
i . In this model, as in (2.3), the

function may be suitable for estimation by regression techniques. It may be

constructed using economic variables such as interest rates, credit and liquid-
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ity indices, money supply, growth and trade figures, and capital flows in the

case of fixed income. As for equity, the function may include submodels of

dividend flow, capitalization growth and investment flow. We do not discuss

the details of Fa
i . The emphasis is on the analysis of optimal hedge ratios.

The local asset return becomes

rai ¼
gai ðFa

i Þ1 yai

ai0
2 1

and (3.1) can be expressed as

min
x[Rn

2a
Xn

i¼1

xi
g
a
i ðFa

i Þ1 y
a
i

ai;0

 !
giðFiÞ1 yi

ei;0

 !
2 1

 ! !
1 ð12 aÞkx;Cxl

( )

ð3:3Þ
subject to

k1; xl ¼ 1

x $ 0:

Again, a distinction needs to be made between fixed income and equity for the

modeling of the local return of the foreign asset. By solving (3.3), we arrive at

an optimal mix of foreign assets without any hedging strategy, that is, the

assets are unhedged. However, in identifying a strategic currency exposure,

the formulation should address the issue of optimal hedge ratios.

Neither (3.1) nor (3.3) are valid models for finding the optimal hedge ratio.

While these formulations yield optimal allocations of foreign assets on an

unhedged basis, they do not address the problem of finding the hedge ratio.

The purpose of currency hedge ratio analysis is to study an existing interna-

tional portfolio and find hedges against the different currency exposures so

that the returns of the local assets are preserved or insulated against various

currency depreciations. This means that for an existing international portfolio,

the allocation of foreign assets is already known. It is just the allocation to the

currency exposure, that is, the currency hedge ratio, that needs to be solved.

Recall that the total return on a foreign asset, from the point of view of the

base currency, is

ri ¼ ð11 r
a
i Þð11 r

e
i Þ2 1: ð3:4Þ

This applies to an unhedged asset, that is, the currency return contributes to the

asset’s total return. If, for the same asset, its currency risk is hedged away, then

its total return becomes

ri ¼ r
a
i ð11 r

e
i Þ1 r

f
i ð3:5Þ

where r
f
i is the return on the forward exchange rate. This normally translates to
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a cost, that is, the premium paid for removing currency risk. For the analysis of

currency hedge ratios one may simplify the problem by assuming that r
f
i is

equal to the interest rate differential:

r
f
i ¼ r

c;base
i 2 r

c;foreign
i : ð3:6Þ

Here, we adhere to the notation from (2.1) where we use r
c
i to represent the

expected cash return, and use the superscripts foreign and base.

From the point of view of the base currency, there are two synthetic assets

for each original foreign asset characterized by different risk and return prop-

erties. The first synthetic asset is the unhedged version whose return is given

by (3.4) and its corresponding risk is the volatility of those unhedged returns.

The second synthetic asset is the hedged version whose return is given by

(3.5), and its corresponding risk is the volatility of those hedged returns.

Let X̂u
[ R

n be the unknown allocation to the n synthetic unhedged assets,

and X̂h
[ R

n be the unknown allocation to the n synthetic hedged assets. Also,

let Ĉ [ R
2n x 2n be the covariance matrix for the 2n synthetic unhedged and

hedged assets. Ĉ may be estimated by synthesizing the historical time series of

both the synthetic unhedged and hedged assets and then calculating the covar-

iance in the standard manner. We assume that the original allocation to the

foreign assets is given byW [ R
n which is a known allocation. The values of

the elements ofW are not changed by currency hedging. The maximization of

the expected total return on the international portfolio and the minimization of

its risk is given by

min
X̂u[Rn

max
y[Rn

2a

Xn

i¼1

x̂
u
i

g
a
i ðFa

i Þ1 y
a
i

ai;0

 !
giðFiÞ1 yi

ei;0

 !
2 1

 !

1

Xn

j¼1

x̂hj
g
a
j ðFa

j Þ1 y
a
j

aj;0
2 1

 !
gjðFjÞ1 yj

ej;0

 !
1 rc;basej 2 r

c;foreign
j

� � !

0
BBBBBB@

1
CCCCCCA

1ð12 aÞ X̂
u
; X̂

h
h i

; Ĉ X̂
u
; X̂

h
h i* +

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:7Þ
subject to

k1; X̂ul1 k1; X̂hl ¼ 1

x̂
u
i 1 x̂

h
i ¼ wi; for all foreign assets i

X̂
u
$ 0

X̂
h
$ 0

X̂u ¼
x
u
1

..

.

x
u
n

2
6664

3
7775; X̂

h ¼
xh1

..

.

xhn

2
66664

3
77775; W ¼

w1

..

.

wn

2
6664

3
7775:
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Additionally, gi and yi are chosen to ensure the following condition is satis-

fied:

giðFiÞ1 yi
� � 1

gjðFjÞ1 yj

 !
gijðFijÞ1 yij

� �
¼ 1; i – j

The last condition is again the triangulation requirement for currencies, simi-

lar to the constraint found in Section 2. The solutions to (3.7) are the optimal

allocations to unhedged and hedged assets. The foreign currency exposure is

given by the summation of all original allocations W that refer to the same

foreign country. The optimal hedge ratio for a particular currency then

becomes the ratio of the sum of all hedged allocations to the sum of all original

allocations that refer to the same foreign country. The currency hedge ratio is

given by

h ¼
P

x̂
h
jP
wk

ð3:8Þ

where j is a counter that refers to synthetic hedged assets of one particular

currency and k refers to the actual foreign asset of the same currency. For each

currency, (3.8) can be calculated to find the optimal currency hedge ratios.

Thus, for each point on the efficient frontier, a set of optimal hedge ratios can

be determined. The choice of which point on the efficient frontier, and conse-

quently which set of hedge ratios are relevant, depends on the portfolio

manager. Formulation (3.7) is the mean-variance solution to the hedge ratio

problem.

We present the robust formulation of the currency hedge ratio problem.

Recall that the modeling of asset returns and currency returns involve the

estimation of an equilibrium value based on a vector of factors with some

specific estimation error. By providing ranges for the estimation error, one

finds a more robust solution to the hedge ratio problem. In the minimax

formulation below, we depart from expected value optimization to the mini-

mization of the worst case. The worst case is a scenario (or a set of scenarios

corresponding to multiple maximizers) that lies within some range of the

estimation error. The minimax equivalent of (3.7) is given by

min
X̂u[Rn

X̂h[Rn

max
y[Rn

ya[Rn

2a

Xn

i¼1

x̂i
g
a
i ðFa

i Þ1 y
a
i

ai;0

 !
giðFiÞ1 yi

ei;0

 !
2 1

 !

1

Xn

j¼1

x̂j
g
a
j ðFa

j Þ1 y
a
j

aj;0
2 1

 !
gjðFjÞ1 yj

ej;0

 !
1 r

c;base
j 2 r

c;foreign
j

� � !

0
BBBBBB@

1
CCCCCCA

1ð12 aÞ X̂
u
; X̂

h
h i

; Ĉ X̂
u
; X̂

h
h i* +

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:9Þ
subject to
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y
lower
i # yi # y

upper
i ; i ¼ 1;…; n

y
a;lower
j # y

a
j # y

a;upper
j ; j ¼ 1;…; n

where n is the number of foreign assets,

k1; X̂ul1 k1; X̂hl ¼ 1

x̂
u
i 1 x̂

h
i ¼ wi; for all foreign assets i

X̂u
$ 0

X̂h
$ 0

X̂u ¼
x
u
1

..

.

xun

2
6664

3
7775; X̂

h ¼
x
h
1

..

.

xhn

2
66664

3
77775; W ¼

w1

..

.

wn

2
6664

3
7775:

The currency forecast error yi associated with each asset i clearly comes from

the mcur currency models only. This means that the first constraint of (3.9) on

each yi is the result of the constraints imposed by the mcur currency models,

that is,

ylowerk # yk # y
upper
k ; k ¼ 1;…;mcur

Additionally, the following condition on the cross currencies of the original

mcur currency models must be satisfied:

ylowerkl # ykl # y
upper
kl ; k ¼ 1;…;mcur

2 1; l ¼ 1;…;mcur
2 1; k – l

k ¼ 1;…;m
cur

2 1

l ¼ 1;…;m
cur

2 1

(see CN 4), and

gkðFkÞ1 yk
� � 1

glðFlÞ1 yl


 �
gklðFklÞ1 ykl
� � ¼ 1; k – l:

The currency hedge ratio is again given by (3.8) which is used to compute, for

each currency, the optimal hedge ratios. For each point on the efficient fron-

tier, a set of optimal hedge ratios can be determined. Similar to the mean-

variance version, the choice of which point on the efficient frontier, and

consequently which set of hedge ratios are relevant, depends on the portfolio

manager.
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Formulations (3.7) and (3.9) are respectively the mean-variance and the

minimax versions that yield the optimal hedge ratio per currency represented

in the international portfolio. Either formulation gives the strategic currency

benchmark, that is, the currency hedge ratios, that provide a guide to the long-

term hedging requirements of the international portfolio. The hedge ratio

varies across currencies. For a usd-based investor, a period of dollar strength

may result in high hedge ratios, while a period of dollar weakness may result

in low hedge ratios. Once the hedge ratios have been established, these repre-

sent the strategic hedges that need to be put in place to guard against long-term

currency risk.

We present the tactical management of currency that deals with short-term

currency risk. Sections 4 and 5 consider the tactical re-balancing of the

currency exposure with a view to enhancing further the total returns from

the international portfolio by seeking to gain short-term returns on the

currency components.

4 A GENERIC CURRENCY MODEL FOR TACTICAL

MANAGEMENT

The management of short-term fluctuations in currencies can add extra

currency returns on top of the returns from a long term currency benchmark.

In Sections 2 and 3, we construct strategic currency benchmarks that address

the long-term issue of currency management and currency hedging. In the

present section, we consider a tactical system that addresses short-term fluc-

tuations in currencies. We discuss a generic currency model that produces a

tactical signal indicating whether a portfolio should be long or short in a

particular currency. Deviating from the usual definition, we adopt a currency

model that generates a projection (i.e., a forecast) of an exchange rate in the

future. Here, a model not only generates a forecast but also translates this into

an implied return and then into an appropriate portfolio re-balancing recom-

mendation. Hereafter, we refer to a currency model as a signal-generating

model whose positive signal in a currency means holding a long position in

that currency, with the size of the position equal to the size of the signal, and

negative signal means holding a short position.

The horizon of the model may vary between 3 and 6 months, depending on

the dominance of factors within the model. As can be seen in Figure 4.1,

switches in the direction of the recommendation happen within this time

frame. This suggests that the model attempts to capture the trending nature

of the currency.

In reality, currency models do not possess a strong enough predictive power

to claim consistent out-performance in the foreign exchange markets. In the

figure, we see a more typical currency model, superimposed on the
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nonsmoothed yen/usd. From the figure, we see that the model does not consis-

tently lead the currency. The model’s signal can vary in magnitude from 0% to

over 100%, depending on the particular application, but if used in the context

of benchmark-tracking, magnitudes in the order of 10% are more typical.

Moreover, the signals of the model change over time, perhaps a reflection

of the shift in dominance of factors within the model. Such a model may be

used in the currency markets if its overall performance yields a sufficiently

high return per unit of risk taken.

The generic currency model used in this section requires some clarification.

LetMi be a currency model for currency i, producing a signal si;t at time t. The

signal may be a complex average of signals from different factors that make up

Mi. The particular use of this generic currency model is for capturing short-

term movements in a currency. Let M [ R
m

cur

be a multicurrency model

comprising mcur currencies, producing a vector of signals St [ R
m

cur

, at

time t. The interaction between the m
cur currencies would become apparent

later when we show that any two pairs within this multicurrency framework

may produce signals of opposite signs: this implies a simultaneous buying and

selling of US dollars as a cross hedge (see CN 2).

A signal si;t produced by a currency model would change over time. Let

di;t ¼ si;t 2 si;t21 be the change in signal value from time t2 1 to t. di;t repre-

sents a trade recommendation that should be implemented to shift the currency

holding from si;t21 to si;t. Let Dt [ R
m

cur

be the vector of trades at time t. We

adopt the US dollar as the base currency, and assume that a currency model

will produce signals from the perspective of that currency. In other words, a

trade recommendation di;t of, say, 1% for a particular currency means buying

1% of that currency and selling 1% of US dollars.

The time series of signals si;t produced by currency model Mi are accom-

panied by a time series of trades di;t. Depending on the way factors in the

model shift their individual signals, di;t can vary in direction several times

within the modeling horizon. Recall that di;t is the trade recommendation that
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needs to be implemented at time t in order to shift the holding from si;t21 to si;t.

We note that di;t is generally smaller in magnitude than si;t21. During times

when si;t21 implies holding a long position in a particular currency, a di;t of

similar sign to si;t21 suggests an increase in the long position, whereas a di;t of

opposite sign to si;t21 suggests a decrease in the long position. In the generic

currency model, si;t21 is the main source of profit (loss), while di;t augments or

mitigates the profit (loss), depending on its direction relative to si;t21.

The generic currency modelMi, through its time series of signals si;t, gener-

ates currency returns for the currency manager. Positive returns accumulate

during periods when the model is forecasting correctly. Similarly, negative

returns accumulate when the model mis-forecasts. It is during periods when

mis-forecasts dominate that we would wish to intervene to adapt the manage-

ment of currency portfolios that attempts to minimize the accumulation of

losses to these portfolios. We present the minimax framework for this purpose

in Section 5.

5 THE MINIMAX FRAMEWORK

5.1 Single Currency Framework

We assume that the generic currency model presented in Section 4 results in a

reasonable overall positive return for the currency manager. He/she continues

to trade on the basis of the recommendations from the model, but recognizes

the risk of incurring negative returns in following it. The return ri;tfrom hold-

ing a long position (see CN 3) in a particular currency i at time t, expressed as

a function of rei;t, from a usd-based perspective, is given by5

ri;tðrei;tÞ ¼ si;t21r
e
i;t

r
e
i;t ¼

ei;t

ei;t21

2 1

 !

where rei;t is the raw currency return due to a shift in the spot exchange rate, and

ei;t is the exchange rate for currency i against the US dollar, quoted as units of

US dollar per unit of currency i, at time t. For a model that produces daily

signals, ri;t represents the daily currency return for holding the particular

position si;t21 in currency i from the previous day.

On a forward-looking basis, the potential return, ri;t11, based on both the

previous day’s signal si;t21 and the current day’s trade recommendation di;t, is

given by
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ri;t11ðrei;t11Þ ¼ ðsi;t21 1 di;tÞrei;t11

r
e
i;t11 ¼

Eðei;t11Þ
ei;t

2 1

 !

where the source of uncertainty is ei;t11 and EðzÞ denotes the expectations

operator. In the multicurrency context, the return from all the currency expo-

sures in the portfolio, r
P
t [ R

1
, at time t is given by

r
P
t ¼

X
i

ri;tðrei;tÞ

and the cumulative return rP for a period of time is given by

r
P ¼

X
t

r
P
t :

This is the accumulated portfolio return over time which is important in

assessing the overall health of a currency portfolio. Similarly, on a forward-

looking basis, the potential portfolio return, ri;t11, at time t based on both the

previous day’s signal si;t21 and the current day’s trade recommendation di;t,

for all currency i is given by

r
P
t11 ¼

X
i

ri;t11ðrei;t11Þ:

The potential cumulative return is therefore the sum of rP and rPt11.

A manager can attempt to improve overall performance by concentrating on

the component currencies that contribute to the overall return. We concentrate

initially on single currencies and later on multicurrencies. For a particular

currency i, the risk of a negative return on any day is generally compensated

by the overall positive return over a number of days that the currency manager

can get by following the model’s recommendations. In the context of the

generic currency model described in Section 4, we assume that the horizon

of the model is between 3 and 6 months. This means that for the currency

manager, an overall positive return is expected in any 3–6 month period, but

the risk of high negative returns within the period remains. The manager

would attempt to minimize the occurrence of negative returns by considering

the current performance of that currency component in the portfolio and the

sign of the trade recommendation di;t relative to the signal si;t21. The time

series of si;t determines the performance over a period of the currency compo-

nent within the portfolio. It is thus important to assess the accumulation of

returns, whether positive or negative, in order to judge whether di;t, with a

particular sign or direction relative to si;t21, is a favorable trade, or not. Both

si;t21 and di;t are component outputs of the generic currency model. Thus, it is

assumed that the manager is not able to ignore di;t, mainly because it is a
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necessary variable for shifting the signal from si;t21 to si;t. However, the

manager can implement an overriding trade that would mitigate any potential

increase in cumulative loss as a consequence of either si;t21 or di;t, or both. Let

zi;t represent such an overriding trade, referred to as an overlay trade recom-

mendation, that aims to minimize any potential cumulative loss. Consider the

problem

min
zi;t[R1

Xt

j¼t0

ri;j

0
@

1
A1 ri;t11ðrei;t11Þ

0
@

1
A

2

1 zi;tr
e
i;t11

� �
0
@

1
A

2
8<
:

9=
; ð5:1Þ

subject to

zloweri;t # zi;t # z
upper
i;t :

In (5.1), ðzÞ2 ¼ minðz; 0Þ, t0 is some predefined starting time for the calculation

of cumulative P&L (profit and loss). The constraint represents size restrictions

on zi;t. This formulation attempts to minimize the potential cumulative loss in

view of both si;t21 and di;t, as well as the expected move in the currency spot

exchange rate Eðei;t11Þ. In (5.1), the first term is the cumulative P&L with

negative values only, that is, the running loss. If the cumulative P&L is positive,

that is, the portfolio is accumulating profits, then the solution is zi;t ¼ 0. Hence

the overlay trade does not interfere with the current performance of the generic

currency model. However, if the cumulative P&L is negative, that is, the port-

folio is accumulating losses, then the solution is a zi;t – 0, which would be

positive if the expected return on the currency is positive andwould be negative

is the expected return on the currency is negative.

The formulation does not require a budget constraint because this is not

applicable in currency overlay. The upper and lower bound constraints on zi;t
are chosen such that the buying or selling of a currency is within any guide-

lines on hedging imposed by the investor or self-imposed by the fund

manager. The allocation to different currencies does not necessarily add up

to some predefined budget, as such a budget is not relevant.

The formulation given in (5.1) has a trivial solution for a single currency

problem. If the first term is nonzero, then the optimizer will seek the upper

limit or the lower limit on zi;t, depending on the expected currency return. This

basic formulation is presented to illustrate the purpose of the overlay trade. In

later formulations, we extend (5.1) to cover the multicurrency problem.

It is important to note that the model trade recommendation di;t implies a

currency spot exchange rate �Eðei;t11Þ, where �EðzÞ denotes the implied expected

value. A discrepancy between Eðei;t11Þ and �Eðei;t11Þmay not necessarily result

in a nonzero value for the overlay trade zi;t. If there is such a discrepancy, and

if such discrepancy means opposite currency expectations, then the overlay

trade would only be activated if the contribution of �Eðei;t11Þwithin ri;t11ðrei;t11Þ
is such that the running cumulative P&L results in a negative value. So long as
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the running cumulative P&L is positive, then the formulation will not intrude

in the default currency management as indicated by si;t21 and di;t.

A key criterion for the success of the above formulation would be the

estimation of Eðei;t11Þ. In order for this formulation to recognize an increasing

accumulation of loss due to the series si;t, the historic cumulative return,
P

t ri;t,

has to be part of the minimization process, and the overall sign of si;t during the

period has to be analyzed in terms of its implied currency return. It may be

prudent for the manager to set Eðei;t11Þ equal to the implied currency return

from si;t when si;t is producing positive returns, and similarly, to set it opposite

the implied currency return from si;t when si;t is producing negative returns.

The limitation of the above formulation is on the dependency of the solution

on the estimation of Eðei;t11Þ which may be driven by technical movements in

the currency rather than being a reflection of a basic mis-forecasting by the

model. This limitation can be addressed by the minimax formulation below,

where we move away from an estimation of Eðei;t11Þ to an estimation of a

feasible range for ei;t11.

In the minimax framework, we wish to minimize the maximum potential

cumulative loss due to the model recommendations. Consider the following

problem related to currency i:

min
zi;t[R1

max
ei;t1 1[R1

8<
:

0
@
0
@
0
@X

t

j¼t0

ri;j

1
A1 ðsi;t21 1 di;tÞ

0
@ ei;t11 2 ei;t

ei;t

1
A
1
A

2

1

0
@zi;t

0
@ ei;t11 2 ei;t

ei;t

1
A
1
A
1
A

2
9=
; ð5:2Þ

subject to

eloweri;t11 # ei;t11 # e
upper
i;t11

zloweri;t # zi;t # z
upper
i;t

that is, upper and lower bounds on ei;t11 and zi;t. The estimation of the upper

and lower bounds on ei;t11, as in the estimation of Eðei;t11Þ, depends on the

implied currency returns from series si;t. However, whereas Eðei;t11Þ is a point
estimate, the upper and lower bounds produce a range estimate. The possibi-

lity of refining the estimation of this range provides a flexible formulation.

5.2 Single Currency Framework with Transaction Costs

We present the equivalent formulations of (5.1) and (5.2) in view of transac-

tion costs. These formulations, although simple in the single currency frame-

work, lead to complications in the multicurrency framework.
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Problem (5.1) with transaction costs is given by (see CN 5)

min
zi;t[R1

Xt

j¼t0

ri;j

0
@

1
A1 ri;t11ðrei;t11Þ

0
@

1
A

2

1 zi;tr
e
i;t11

� �
2

Xt

j¼t0

ki di;j 1 zi;j

���
���

0
@

1
A

2
8<
:

9=
;

ð5:3Þ
subject to

zloweri;t # zi;t # z
upper
i;t

where ki . 0, that is, the cost6 of transacting in currency i. The last term refers

to the cumulative transaction cost from t0 to t. This term has a negative sign to

indicate that it is a cost. While the costs due to di;z do not affect the objective

function, its inclusion provides a more complete picture of the accumulation

of costs that may impact the cumulative P&L. Thus, the term di;j 1 zi;j

���
��� is

constant in (5.3) up to j ¼ t2 1 and is only optimized for j ¼ t.

Problem (5.2) with transaction costs is given by (see CN 5)

min
zi;t[R1

max
ei;t1 1[R1

8<
:

0
@
0
@
0
@X

t

j¼t0

ri;j

1
A1 ðsi;t21 1 di;tÞ

0
@ ei;t11 2 ei;t

ei;t

1
A
1
A

2

1

0
@zi;t

0
@ ei;t11 2 ei;t

ei;t

1
A
1
A2

Xt

j¼t0

ki

����di;j 1 zi;j

����

1
A

2
9=
; ð5:4Þ

subject to

e
lower
i;t11 # ei;t11 # e

upper
i;t11

zloweri;t # zi;t # z
upper
i;t :

5.3 Multicurrency Framework

We present the multicurrency equivalent of (5.1), and show that certain

complications arise when considering multiple currencies. Let Zt [ R
mcur

be

a vector whose elements zi;t represent a manager’s overlay trade recommen-

dations in m
cur currencies at time t.

The multicurrency equivalent of (5.1) is given by

min
Zt[Rmcur

X
i

Xt

j¼t0

ri;j

0
@

1
A1 ri;t11ðrei;t11Þ

0
@

1
A

0
@

1
A

2

1

X
i

zi;tr
e
i;t11

� �
0
@

1
A

2
8<
:

9=
; ð5:5Þ
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subject to

zloweri;t # zi;t # z
upper
i;t ; i ¼ 1;…;mcur

and where

Zt ¼

z1;t

..

.

zmcur ;t

2
66664

3
77775:

By expanding the components of the objective function, we have

min
Zt[Rmcur

8<
:

0
@
0
@X

i

0
@
0
@X

t

j¼t0

ri;j

1
A1 ðsi;t21 1 di;tÞ

0
@ Eðei;t11Þ2 ei;t

ei;t

1
A
1
A
1
A

2

1

X
i

0
@zi;t

0
@ Eðei;t11Þ2 ei;t

ei;t

1
A
1
A
1
A

2
9=
; ð5:6Þ

subject to

zloweri;t # zi;t # z
upper
i;t ; i ¼ 1;…;m

cur

and where

Zt ¼

z1;t

..

.

zmcur ;t

2
66664

3
77775:

Similarly, the multicurrency formulation of (5.2) is given by

min
Zt[Rmcur

max
êt1 1[Rmcur

8<
:

0
@
0
@X

i

0
@
0
@X

t

j¼t0

ri;j

1
A1

0
@si;t21 1 di;t

1
A
0
@ ei;t11 2 ei;t

ei;t

1
A
1
A
1
A

2

1

X
i

0
@zi;t

0
@ ei;t11 2 ei;t

ei;t

1
A
1
A
1
A

2
9=
; ð5:7Þ

subject to

êlowert11 # êt11 # ê
upper
t11

e
lower
ij;t11 # eij;t11 # e

upper
ij;t11; i ¼ 1;…;m

cur
2 1
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j ¼ 1;…;mcur
2 1; i – j ðsee CN 4Þ

ei;t11

1

ej;t11

 !
eij;t11

� �
¼ 1; i – j

êt11 ¼

e1;t11

..

.

emcur ;t11

2
66664

3
77775; êlowert11 ¼

e
lower
1;t11

..

.

elowermcur ;t11

2
66664

3
77775; ê

upper
t11 ¼

e
upper
1;t11

..

.

e
upper
mcur ;t11

2
66664

3
77775

zloweri;t # zi;t # z
upper
i;t ; i ¼ 1;…;m

cur

where

Zt ¼

z1;t

..

.

zmcur ;t

2
66664

3
77775:

The second and third constraints refer to the triangulation requirement within a

multicurrency framework. It is important to note that for the tactical currency

minimax formulations, we do not use any currency model to define the upper

and lower bounds on the currencies. Neither do we use a long-term currency

model to define a cross exchange rate to satisfy triangulation requirements of

currencies. In the tactical management of currencies using minimax, all we

need are predefined upper and lower bounds on the currency, and an explicit

triangulation requirement in terms of future exchange rates. The second and

third constraints limit the choice of the maximizing variable to within reason-

able values.

Formulations (5.6) and (5.7) are the simple multicurrency expansions of

(5.1) and (5.2). However, these may result in massive transaction costs

because they do not account for cross hedging between currencies that do

not involve transactions via the base currency. It is therefore important to

include transaction costs in the formulation.

5.4 Multicurrency Framework with Transaction Costs

Consider the equivalent of (5.6) when transaction costs are included (see CN

5):
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subject to the same constraints as (5.6) and with K [ R
mcur

denoting the vector

of transaction costs, that is,

K ¼
k1

..

.

kmcur

2
6664

3
7775:

Similarly, consider the equivalent of (5.7) when transaction costs are included

(see CN 5):
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ð5:9Þ
subject to the same constraints as (5.7) and with the transaction cost vector

K [ R
m

cur

defined as in (5.8).

As transaction costs are summed for all currencies without any considera-

tion for cross hedging capabilities, the currency manager could potentially buy

and sell US dollars, and incur transaction costs, when there is no need for such

transactions. He/she can reduce the number of transactions by taking advan-

tage of any existing cross hedging opportunities.

To illustrate the benefit from cross hedging, consider two foreign currencies

A and B, for which the currency model recommends a buy trade of currency A

accompanied by a sell trade of the US dollar, as well as a sell trade of currency

B accompanied by a buy trade of the US dollar. By following the model’s

trade recommendations, the currency manager incurs transaction costs on two

US dollar trades, when one transaction involving a buy trade of currency A

accompanied by a sell trade of currency B would yield the same result but with

less cost.
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5.5 Worst-case Scenario

The minimax formulation given in (5.9) is subject to constraints on the values

that the future exchange rates may take. These constraints define the worst-

case scenario within which the currencies in the portfolio take on future values

that would result in the worst cumulative loss for the portfolio.

In the context of the generic currency model described in Section 4, the

signals and trade recommendations for each currency imply a distribution of

future currency returns accompanied by an implied distribution of future

values of the currency. The expected currency return and the dispersion

about this expected value drives the model to generate a signal of a particular

direction and magnitude. By extracting the distribution of future values of the

currencies from the currency models, one can define the upper and lower

bounds for the constraints in (5.9). To illustrate these constraints, let us assume

that the currency model for yen generates a signal to hold a positive yen

position, and a trade recommendation to buy more yen. Because the signal

and the trade recommendation have the same direction, the currency model is

effectively proposing an increase in the yen holding. This further implies that

the yen is expected to appreciate within the horizon of the model. Depending

on the success rate of the model in forecasting the movement of the yen, the

distribution about the expected yen appreciation may vary. If the model results

in low forecast errors, then the dispersion about the expected value may be

tight; similarly, if the model results in high forecast errors, then the dispersion

may be wide. The estimated mean myen;t11 and standard deviation syen;t11of

the future values of the yen can be used to define the upper bound and lower

bounds on the yen, both defined by two standard deviations from the mean:

e
lower
yen;t11 # eyen;t11 # e

upper
yen;t11

where

e
lower
yen;t11 ¼ myen;t11 2 2syen;t11 ð5:10Þ

e
upper
yen;t11 ¼ myen;t11 1 2syen;t11:

By repeating this process for all currencies in the model, one is able to define

the ranges of future values for each currency. As in Section 2, the triangulation

property of currencies has to be preserved; all lower and upper bounds should

satisfy triangulation. This is ensured by the second and third constraints in

(5.7).

The definition of the worst case can be refined further by considering the

implied distributions of returns, and implied distributions of future values of

exchange rates, for each factor in the model. In the generic currency model,

the ultimate signal generated may be a result of an aggregation of signals from

different factors that make up the model. To the extent that each of the factors
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within the model have varying forecasting capabilities throughout the model’s

history, one can utilize the information contained within each factor to define

the upper and lower bounds on the future values of the currencies.

Assume that the currency model for our yen illustration generates a signal to

hold a positive yen position which is dominated by two conflicting factors. A

positive factor generates a signal to hold a positive yen position. A negative

factor generates a signal in the opposite direction. The aggregation of the

signals produced by each factor results in the overall model signal of holding

a positive yen position. The constraints on the future values of the currencies,

to be used in the minimax formulation, can be defined by considering any two

dominant conflicting factors in the currency model. The estimated mean of the

positive factor 1myen;t11 of the future values of the yen can be used to define

the upper bound on the yen, while the estimated mean of negative factor
2myen;t11 can be used to define the lower bound.

Consider the following bounding:

e
lower
yen;t11 # eyen;t11 # e

upper
yen;t11

where

e
lower
yen;t11 ¼ 2myen;t11 ð5:11Þ

e
upper
yen;t11 ¼ 1myen;t11:

Alternatively, one can extend the definition of the bounds by using the stan-

dard deviation of the positive factor, 1syen;t11, and the standard deviation of

the negative factor, 2syen;t11, as

e
lower
yen;t11 # eyen;t11 # e

upper
yen;t11

where

eloweryen;t11 ¼ ð2myen;t11Þ2 ð2syen;t11Þ ð5:12Þ

e
upper
yen;t11 ¼ ð1myen;t11Þ1 ð1syen;t11Þ:

By defining the bounds as in (5.11) or (5.12), one recognizes that the conflict-

ing factors within the model provide a clue as to the worst case. The positive

factor that dominates the model signal would have a higher implied expected

future value for the yen compared to that of the total signal and the negative

factor that dominates the opposite direction. But as the negative factor is

overwhelmed by the positive factor, it would have a lower implied future

value compared to that of the total signal. It is the existence of a dominant

opposing factor, in this illustration given by the negative factor, that may be

backed by low forecasting errors that should be seriously considered when

defining the worst case. Consider a situation where the negative factor in fact
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yields lower forecasting errors in the short term compared to the positive

factor. If the overall model signal recommends a positive yen holding,

while the negative factor within that model recommends a short holding of

the yen, we would expect an accumulation of losses to the currency portfolio.

By defining the lower bound based on the expected yen depreciation, as

signaled by the negative factor, one is accounting for the conflicting nature

of factors within the model. Repeating this process for all currencies in the

model leads to the definition of the ranges of future values for each currency.

As before, these ranges have to be refined further to ensure consistency in the

sense that the triangulation property of currencies has to be preserved.

5.6 A Momentum-based Minimax Strategy

The minimax formulation (5.9) can be further enhanced by considering the

range of values of zi;t that would promote a more acceptable potential loss

from the currency portfolio. In that formulation, the constraints on the future

values of the currencies determine the worst case combination of exchange

rates. By incorporating new constraints on the minimax overlay trade recom-

mendations, one is promoting the search for the best case zi;t that would

cushion the portfolio against the worst-case scenario.

The growth or the accumulation of loss to the portfolio provides informa-

tion about the suitability of the model’s trade recommendation di;t. A negative

growth implies an increasing loss and an increasingly unfavorable forecast

error, while a positive growth implies an increasingly healthy balance sheet

and an increasingly favorable forecast error. The momentum of cumulative

loss thus provides some information as to whether the model’s trade recom-

mendation di;t should be implemented, or increasingly overlayed with an

opposing zi;t.

Consider the momentum-based minimax strategy given by (see CN 4):

min
Zt[Rmcur

max
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28>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5:13Þ
subject to

ê
lower
t11 # êt11 # ê

upper
t11

e
lower
ij;t11 # eij;t11 # e

upper
ij;t11; i ¼ 1;…;m

cur
2 1
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j ¼ 1;…;mcur
2 1; i – j ðsee CN 4Þ

ei;t11

1

ej;t11

 !
ðeij;t11Þ ¼ 1; i – j

êt11 ¼

e1;t11

..

.

emcur ;t11

2
66664

3
77775; êlowert11 ¼

e
lower
1;t11

..

.

elowermcur ;t11

2
66664

3
77775; ê

upper
t11 ¼

e
upper
1;t11

..

.

e
upper
mcur ;t11

2
66664

3
77775

zloweri;t # zi;t # z
upper
i;t ; i ¼ 1;…;m

cur

where

Zt ¼

z1;t

..

.

zmcur ;t

2
66664

3
77775

and transaction cost vector K [ R
m

cur

is as defined in (5.8).

Additionally, we have

z
upper
i;t ¼ f t1i ; t

2
i ; {ri;t}

� �

zloweri;t ¼ 2z
upper
i;t :

The variables t1i and t
2
i are predefined time periods for estimating the momen-

tum of cumulative loss and {ri;t}is the time series of currency returns. These t

variables can be modeled separately from the currency model. The above

formulation is also subject to triangulation constraints on the currencies.

We now describe the function that defines the upper and lower bounds on

zi;t. Between si;t21 and di;t, it is si;t21 that substantially contributes to the profit

or loss of a portfolio. The cumulative profit or loss, likewise, is driven by {si;t},

that is, the time series of signals. A positive growth, or an accumulation of

profit, suggests that, in the short term, {si;t} reflects a return distribution with a

positive expected currency return, and perhaps accompanied by a small

dispersion.

Assuming that the short-term history of performance is an accumulation of

profit, then an increasing accumulation, or the momentum of positive growth

could itself be treated as a synthetic factor, separate from the factors that make

up the generic currency model. In the case of an accumulation of loss, the

momentum of negative growth could similarly be treated. Let t1i be a long

time period, say 65 days, and let t2i be a short time period, say 5 days. One can
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approximate an increasing accumulation by taking the average return over

these time periods and comparing the short-period average against the long-

period average. Let A1 and A2 be defined as

A1 ¼

X0

t¼2 t1
i

ri;t

t1i
and A2 ¼

X0

t¼2 t2
i

ri;t

t2i
:

Here, A1 represents the average return for the long time period, while A2 is for

the short time period. Then

z
upper
i;t ¼

wðA2 2 A1Þ if A2 $ A1

wðA1 2 A2Þ if A1 . A2

(
ð5:14Þ

zloweri;t ¼ 2z
upper
i;t

where w is a weight that determines the size or magnitude of the signal based

on some predefined rule. The modeling of the t variables to find the most

appropriate time periods, as well as the modeling of the weight w, can be

structured to be consistent with the generation of signals by the synthetic

factor. The long-term performance of the synthetic factor should be compar-

able to the long-term performance of the other factors that make up the generic

currency model.

The importance of bounding zi;t as in (5.13) is that the aggressiveness7 of

such a decision variable is in line with the aggressiveness of the generic

currency model. This makes for a tractable and systematic management of

currency bets.

5.7 A Risk-controlled Minimax Strategy

The minimax formulation in Section 5.6 attempts to control the risk of

extreme deviations from the portfolio’s chosen benchmark by bounding the

size of the overall trade recommendations. Formulation (5.9) can alternatively

be risk-controlled by actively minimizing the tracking error that may result in

following any trade recommendation. In (5.9), the constraints on the future

values of the currencies determine the worst case combination of exchange

rates. By incorporating a risk component into the formulation, one is promot-

ing the search for the best case zi;t that would cushion the portfolio against the

worst-case scenario, subject to an acceptable level of tracking error (TE).

Consider the risk-controlled minimax strategy given by (see CN 4):
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zloweri;t # zi;t # z
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i;t ; i ¼ 1;…;mcur

where

Zt ¼

z1;t

..

.

zmcur ;t

2
66664

3
77775

and transaction cost vector K [ R
mcur

is as defined in (5.8).

Additionally, a constraint on risk exposure is included:

kðSt 1 Dt 1 ZtÞ; �CðSt 1 Dt 1 ZtÞl # ðTEÞ2

where TE [ R
1 is an acceptable level of tracking error defined by the

manager, �C [ R
mcurx mcur

is the covariance matrix of currency returns, and

St 1 Dt 1 Zt is defined as
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ðSt 1 Dt 1 ZtÞ ¼

s1;t 1 d1;t 1 z1;t

..

.

smcur ;t 1 dmcur ;t 1 zmcur ;t

2
66664

3
77775:

With the above formulation, the possibility of having a reasonable benchmark

tracking performance is increased. If the realized future values of the

exchange rates move outside their predefined limits used during optimization,

then the constraint on tracking error would serve the purpose of controlling the

volatility of the portfolio.

6 THE INTERPLAY BETWEEN THE STRATEGIC BENCHMARK

AND TACTICAL MANAGEMENT

Earlier sections of this chapter indicate the need for a tactical system in order

for the portfolio to benefit from short- to medium-term fluctuations in curren-

cies. In this section, we discuss the interplay between the strategic currency

benchmark and the tactical currency trades. We consider the dominance of the

strategic benchmark and the constraints it imposes on the tactical management

of currencies.

As in earlier sections, the term currency overlay is used in fund manage-

ment to mean the application of the tactical currency trades to supplement and/

or complement the performance of the strategic currency benchmark. Because

the strategic currency benchmark is designed to cover the risk of long-term

depreciation in a currency, the corresponding currency hedge ratios drive the

long-term performance of the benchmark. The strategic benchmark perfor-

mance over the long term dominates the overall absolute performance of the

portfolio currency exposure. In contrast, the excess performance provided by

the tactical system is relatively small in proportion to the absolute perfor-

mance of the strategic benchmark. Not only does the strategic benchmark

impact the overall absolute performance, it also constrains the potential

performance of the tactical system. The constraints imposed by the strategic

benchmark limits the implementation of tactical trades.

We illustrate the above constraint using a hypothetical yen exposure.

Suppose that after the analysis of the strategic currency benchmark, the result-

ing hedge ratio for the yen exposure in an international portfolio is a 100%

hedging recommendation. After the implementation of this hedge, the inter-

national portfolio essentially is devoid of any yen exposure. This total elim-

ination of the yen exposure puts a constraint on the tactical system. This means

that the tactical recommendation, either coming from di;t, orzi;t, or both, is

restricted in terms of moving the yen exposure. If the tactical recommendation

is a sell trade for the yen, then the tactical trade cannot be implemented
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because there is no longer any yen exposure to sell. Only buy trades can be

accommodated by the tactical system for this fully hedged yen example.

As another illustration, suppose that after the analysis of the strategic

currency benchmark, the resulting hedge ratio for the yen exposure is a

50% hedging recommendation. After the implementation of this hedge, the

international portfolio has essentially halved its yen exposure. Again, if the

tactical recommendation is a sell trade for the yen, then the tactical trade can

be implemented up to the remaining yen exposure, and not more. The

constraint imposed by the strategic benchmark limits the potential perfor-

mance of the tactical system, but does not fully eliminate it.

In the implementation of currency overlay, currency managers have sought

to regain some of the potential performance from their tactical systems by

advocating some loosening of these constraints imposed by the strategic

currency benchmark. In the illustration of the 100% hedging of the yen expo-

sure, a loosening of the constraint may take the form of allowing net short

positions in yen. In the illustration for the yen exposure, if the tactical recom-

mendation is a sell trade for the yen, then the tactical trade can be implemented

up to the allowable short yen exposure. The portfolio could then potentially

benefit from the performance of this trade which would otherwise have been

foregone if the constraint has not been loosened.

7 CURRENCY MANAGEMENT USING MINIMAX AND OPTIONS

As with the use of options for managing asset portfolios from Chapter 9, the

use of currency options for currency management is also attributed partly to

their insurance capability. Currency managers in the import-export field are

active users of currency options in view of the suitability of these for hedging

expected cashflows from trade transactions. The periods within which these

cashflows are expected to happen are short to medium term, and the use of

options are deemed appropriate for providing the needed insurance policy for

the term. However, the use of currency options by managers managing an

international portfolio’s currency exposure takes a different form to that used

by managers in the import-export field. In this case, options are held in the

short and medium term up to the maturity of the option. Options are used as

insurance providers, as well as being held for very short-term periods when

they are used as return enhancers complementing tactical currency systems.

Currency managers who provide overlay services for managing the

currency exposure of international portfolios complement their overlay

products by taking long or short positions in various currency options. The

market provides a wide range of options: plain vanilla, asian, barrier, capped

call, floored put, collar, lookback and quanto, to name a few. Additionally,

combinations of options provide pay-out profiles that can be used for return
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enhancement. The reader is referred to Hull (1997) for a comprehensive

discussion on these options.

The generic currency model discussed in Section 4 and the tactical currency

systems discussed in Section 5 do not preclude the use of options. However, a

tactical formulation that includes options may not provide a practical solution

for subscribers to currency overlay. This is due to the following three reasons.

Firstly, a large majority of overlay subscribers would not allow the use of

options. Those who would allow options tend to restrict their use to very

specific conditions on the currency pairs, or on the type of options, or that

positions should be long only, or that a very small currency exposure can be

managed using options. Secondly, currency overlay managers attempt to

diversify their product range by offering option-based currency management

distinct from tactical currency systems. This prevents an active promotion of

options within existing tactical systems. Lastly, data availability restrict the

simulations that currency managers can do in searching for option-based

strategies that may complement their existing tactical systems. This is an

important restriction in trading systems development as well-defined excess

return and tracking error profiles are essential in the world of benchmark-

based currency management.

In Chapter 9, a minimax formulation that incorporates the use of options is

presented as an enhanced portfolio management tool where insurance is

provided by an optimal choice of out-of-the-money options. Such a frame-

work cannot be adapted for tactical currency systems in Section 5 due to the

very short-term nature of these systems. However, option-based currency

overlay systems would have the ability to tailor options of varying horizons

and they may be more amenable to minimax formulations.

8 CONCLUDING REMARKS

In this chapter we discussed the need for currency management, mainly from

the point of view of international portfolios where currency hedging is a

critical issue in preserving the returns from the foreign assets that comprise

the portfolio. We then subdivided the work of managing the currency exposure

of an international portfolio in two ways: through a strategic currency manage-

ment system that deals with the long-term direction of currencies, and through

a tactical currency management system that deals with short-term fluctuations

in particular currencies.

The strategic currency management system identifies a long-term currency

benchmark that provides the overall direction or bias of the currency hedge

that needs to be implemented. The tactical currency management system

identifies a short-term currency bet that improves on the already-implemented

long-term currency benchmark. This short-term currency bet, as provided by a

currency model signal, ensures that short-term currency fluctuations are
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utilized to the benefit of the portfolio. The excess returns that can be generated

via a tactical currency management system supplement the returns that can be

achieved from the strategic currency hedge.

We presented minimax formulations for both the strategic and the tactical

systems, and ways of identifying and evaluating worst-case scenarios. As

currencies are constrained to move in relation to other currencies, the defini-

tion of worst-case scenarios are similarly constrained by the triangulation

properties of exchange rates.
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APPENDIX: CURRENCY FORECASTING

Currency forecasting can be categorized into two major classes: fundamental-

based modeling and technical analysis. This appendix gives a brief overview

of these models, following the comprehensive discussion in Rosenberg

(1996). For further details on these models, the reader is encouraged to

refer to Rosenberg (1996) and references therein.

Forecasting models fall into two general categories: fundamental models

and technical models. Associated with these are forecasting horizons that

generally fall into three general categories: long-term forecasting where the

emphasis is on structural and macro-economic forces that determine the equi-

librium level of exchange rates, medium-term forecasting where an analysis of
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economic or business cycles may provide an insight into the cyclical position

of exchange rates relative to the long-term equilibrium level, and short-term

forecasting where the emphasis is on the analysis of speculative forces. While

fundamental-based models appear to have a relative advantage in the medium-

and long-term forecasting domains, technical models appear to have their

relative advantage in the short-term domain. We give below a brief description

of common fundamental models as well as technical models.

Most fundamental models attempt to estimate the long-run equilibrium

exchange rate level or path that the exchange rate will gravitate towards in

the long run, and perhaps oscillate about in the medium run. In models based

on purchasing power parity, it is assumed that nominal exchange rates would

converge to a fair value that reflects differences in national inflation rates. In

external balance-based models, it is assumed that nominal exchange rates

would converge to a fair value that is consistent with the attainment of a

balanced current account.

Fundamental models that concentrate on the medium term fall in the

general categories of asset-market models, monetary models, currency-substi-

tution models and portfolio-balance models. In asset-market models of

exchange rate determination, the supply of and demand for financial assets

determine the medium-term trend that exchange rates take. In a monetary

model, the supply of and demand for money determine the equilibrium

exchange rate. In currency-substitution models, the anxiety of a nation in

the local currency value erosion amplifies the volatility of the exchange rate

and contributes to a perceived potential devaluation or depreciation in the

currency. In the portfolio-balance models, the supply of and demand for

money, as well as for bonds or government debt, determine exchange rate

movements over medium-term periods. Fundamental models also consider the

effect of economic variables such as interest rate differentials, fiscal policy

changes and central bank intervention.

Technical analysis has gained popularity due to its relative success in fore-

casting in the short term. However, it has been criticized as a long-term model.

Despite this apparent shortcoming of technical analysis, market participants,

particularly traders, use various models of technical analysis. These fall into

two general categories: trend-following, where the model ascertains whether a

trend is developing, and contrarian, where the model ascertains whether a

trend is due for correction. Whether trend-following or contrarian, technical

analysis can be subcategorized in terms of the technique used: charting, use of

neural networks, signal processing and statistical or mathematical processes.

Furthermore, within the domain of charting, a deeper categorization is possi-

ble in terms of the indicators produced by the charting analysis. These indi-

cators generally fall under any of the following: moving average indicators,

pattern recognition, oscillator indicators, divergence indicators, or trend indi-

cators.

ROBUST CURRENCY MANAGEMENT 377



The increasing trend in the use of technical analysis has been reinforced by

the relative failure of fundamental models in generating short-term returns.

However, market participants, particularly investors, realize that total reliance

on a technical approach to currency forecasting can be very risky when false

technical signals resulting from weak trending markets give rise to huge

losses. Investors tend to avoid a strong reliance on technical signals especially

when fundamental signals do not support or reinforce those signals. Addition-

ally, investors tend to look not only at the short term, where technical models

are relatively more useful, but at the medium and long term as well, where

fundamental models are relatively more useful. There is a need to address the

balance between the use of technical and fundamental models in order for

market participants to minimize the risk of incurring currency losses due to

mis-forecasting. Indeed, there has been a tendency to base a long-term

currency view on fundamental models and a tendency to base a short-term

currency view on technical models, and a tendency to weight any aggregation

of signals are on the basis of the relative importance of making a long-term

view as opposed to a short-term view.

COMMENTS AND NOTES

CN 1: Hedging of Currency Risk

Hedging is the technical term in finance to refer to the implementation of a

strategy to mitigate any potential unfavorable outcome from holding a posi-

tion. In the context of holding a currency portfolio or an international portfolio

with currency exposures, hedging refers to the strategy of eliminating all or

part of the potential negative return if a currency moves against the investor.

The concept of base currency is very important in ascertaining the appropriate

hedge. For a usd-based investor who invests in a foreign country’s equity

market, the currency risk comes from having to translate the gains (or losses)

from the equity market into equivalent gains (or losses) in US dollar terms. If

the foreign currency depreciates relative to the base currency, then the equiva-

lent gain (or losses) in US dollar terms gets eroded. Generally, the hedging of

currency risk involves the use of a forward currency contract that stipulates the

exchange rate to apply to a particular nominal amount of the foreign currency

for exchange back to the base currency at a future time. In complex hedging

strategies, forward, swap, option, and spot transactions may be employed.

CN 2: Cross Hedging

A cross hedge refers to the implementation of a currency hedge when the

currencies involved do not include the base currency. Any potential deprecia-

tion of the first currency relative to the second currency is mitigated by selling
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the first currency and buying the second currency. A cross hedge does not

necessarily mean an improvement in the overall risk exposure of a portfolio

from the point of view of the base currency. The reason for this lack of

certainty is that a cross hedge has to depend on the movement of the bought

currency, in this case the second currency, relative to the base currency.

CN 3: Long Position versus Short Position in a Currency

The terms ‘‘long’’ and ‘‘short’’ a currency refer to the holding of a foreign

currency. A long position means that the investor owns the currency; this

currency may physically reside in a deposit account or it may be invested in

an asset denominated in that currency. A short position means that the investor

does not own the currency but has sold the currency. This is possible in a

situation where the investor enters into a forward contract to sell the currency

even if she does not physically have notes and coins, or assets to back the

currency.

CN 4: Cross-currency Constraints

The number of cross-currency constraints is given by the combination of

ðmcur
2 1Þ currencies taken two at a time, that is,

ðmcur
21ÞC2 ¼ ðmcur

2 1Þ!
ððmcur 2 1Þ2 2Þ!2! :

CN 5: Implementing the Transaction Cost Term

The overall transaction cost depends on the magnitude of di;t 1 zi;t
�� ��. This term

can be incorporated within the setting of the quadratic programming formula-

tion using a simple reformulation. We note that in the formulations where a

transaction cost term appear, only the variable part, zi;t, is considered.

Let

di;t 1 zi;t ¼ x
1

i;t 2 x
2

i;t; with x
1

i;t; x
2

i;t $ 0

di;t 1 zi;t
�� �� ¼ x1i;t 1 x2i;t; and x1i;t ¼ 0 if x2i;t . 0

and x2i;t ¼ 0 if x1i;t . 0:

Thus, the transaction cost component
X
t

2 ki di;t 1 zi;t
�� ��

is replaced in the objective by
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X
t

2 ki x
1

i;t 1 x
2

i;t

� �
1 cx

1

i;tx
2

i;t

with added constraints

di;t 1 zi;t ¼ x1i;t 2 x2i;t and x1i;t; x
2

i;t $ 0:

We assume that c . 0 is chosen to be sufficiently large to ensure x1i;t £ x
2

i;t ¼ 0.
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Dennis-Moré characterization 56–8,

83–4

descent

dk property of 75–6, 149

evaluation 97–8

motivation 34–5

quasi-Newton algorithm 90–1

differentiable functions 19, 36

direction 69–71, 90–2, 97–8

directional derivatives 7

directional immunization 298–303,

308–9

discount bonds 229

discount rates 205

discrete minimax 2

American bond options 231

Asset/Liability Management 295

augmented Lagrangians 132–7

convergence 152–6

convexity 132–7

equality constraints 139–78

global convergence 152–6

guaranteed performance 126–8

inequality constraints 139–78

linear constraints 172–6

noninferiority 126–8

quadratic programming 143–4,

162–72

robustness 121–38

superlinear convergence 162–72

unit stepsize strategy 144–5,

156–62

dividends 198

dollar

bond portfolios 253–6, 261,

264–71

convexity 309–15

duration 309–15

exchange rates 345–51, 358

investments 343

London Inter-Bank Offered Rate

261, 264–71

yen rates 345–51, 358

downside risk 248, 271–3, 290, 323

dual benchmark tracking 261–71

dual-optimal bond portfolios 266–71

duration 309–15, 337–8

dynamic hedging strategy 182

dynamic multistage stochastic Asset/

Liability Management 325–9

economic forecasting 279

efficiency 252

endowment funds 271

epigraphs 7

equality constraints 139–78

equilibria of saddle points 37–40

equity 341, 352–7

equivalence of direction 69–71

error variables 221

Euclidian norm 19

European bond options 226–9

European call options 181–2, 204–6,

214

European put options 287–8

exact Jacobians 54–5

exchange rates 345–51, 361, 367–9

exchange traded options 189

exercise price 181, 189, 197–201

extreme point solution 239, 240–1,

243

finiteness 150–2

Finsler’s Lemma 133–5

first order Taylor expansions 19–20

fixed returns 251

fixed risks 250

fluctuation management 357–9

forecasting

asset allocation 249–60, 273–7,

279

currency management 342, 376–8

discrete minimax 173–4

rival decision models 121–3

foreign assets 342

foreign-denominated debts 342

INDEX 383



frontiers in asset allocation 255–60,

266–71

full hedging 344

generic currency management model

357–9

global benchmark tracking 264–6,

267–71

global convergence 50–8, 81–6,

152–6

global minima 22

gradient-based algorithms 42–3

guaranteed performance 11, 126–8

Guinness 240–2, 243

Haar condition 11, 13–15

hedge ratios 352–7

hedging

American bond options 229–33

asset allocation 284–8

bond options 226–33

continuous minimax 179–245

credit 295

currency risk 341–80

errors 192–5, 211–13, 228–9

European bond options 226–9

synthetic assets 354–7

two-period minimax 207–15

variable minimax 207, 211–15

Hessian 65, 72–5, 89–90

high performing variants 202–4

horizons 307, 316–17, 343, 346

hyperplanes 21

immunization 292–315

implementation issues

Kiwiel’s algorithm 96–7

quasi-Newton algorithm 87–90,

96–7

implied volatility 205

‘‘in-the-money’’ 188, 229

index tracking see benchmarking

inequality constraints 139–78

inner product evaluation 18–19, 68

interest rates 205, 229, 295–6, 338

interior point algorithm 45–9

international bonds 255–6

international currency management

341–80

Ito’s Lemma 244

j-step Q-superlinear rate 61

Jacobians 41, 49–50, 54–8

Karush-Kuhn-Tucker conditions

35–6

kinks 65

Kiwiel’s algorithm 24–5, 31–3

accuracy 112–18

implementation 96–7

max-function 94–7

stopping criterion 97

superlinear convergence 111–12

termination criterion 112–18

terminology 96–7

Lagrangians 132–7, 142, 148–9

level variants 222, 223

liability see Asset/Liability

Management

LIBOR see London Inter-Bank

Offered Rate

linear constraints 172–6

linear independence 5–7, 20

Lipschitz continuity 21

local asset returns 353

local convergence 81–6

local minima 22

local Q-superlinear convergence rate

83–4

local superlinear convergence rate

56–8

London Inter-Bank Offered Rate

(LIBOR) 261, 264–71

long positions 379

lower bounds, downside risk 274–7

INDEX384



Macaulay Duration 337–8

management

asset/liabilities 291–340

bonds 252–61

currency 341–80

market index movements 221, 222

Market Model 218

market-capitalization-weighted

global benchmark 264–6

Markowitz frameworks 253–4

matrices 18–19

max-function

Hessian 65

introduction 2–5

Kiwiel’s algorithm 94–7

monotonic decrease 76–81

maximizers 10, 71–3, 89–90, 238–44

mean value theorem 59

mean-variance

asset allocation 273–7

currency management 343

optimization 173, 247–8, 253–4

mid-range solutions 240, 241–3

minima 22

minimax

asset allocation 247–90

bond portfolios 252–61, 277–84

combination currency manage-

ment 374–5

combination portfolio manage-

ment 284–8

currency management 359–75

high performing variants 202–4

introduction 1–22

multicurrency management 363–6

naive 125–6, 132, 174

robustness 11–15, 195

saddle points 44–5

single currency management

359–63

stochastic Asset/Liability

Management 330–5

tactical currency management 365

minimax hedging 179–245

beta of the hedge 226

Capital Asset Pricing Model

215–22

errors 183, 189–90, 192–3

European call options 204–6

multiperiods 207–13

simulations 196–204

variants 194

minimum-norm subgradient 111

models

asset allocation 271–3

Asset/Liability Management

315–34

Black and Scholes 183–7

Capital Asset Pricing 215–22

currency management 357–9

forecasting 121–3, 376–8

Value-at-Risk 271–3

Modified Duration 337–8

momentum-based minimax currency

management 369–71

moneyness 201

monotonic decrease 51–3, 76–81

mortgages 319

multicurrency management 343–80

multidimensional immunization

295–303

multiperiod minimax 207–15, 234

multiple maximizers 89–90, 93

multistage Asset/Liability

Management 325–33

multistage minimax bond portfolios

277–84

multivariate immunization 295–303

naive minimax 125–6, 132, 174

nce: necessary condition for an

extremum see optimality

conditions

Newton algorithms

direction 35

global convergence 50–3, 81–2

INDEX 385



see also quasi-Newton algorithms

no hedging 344

nodes 230, 278–9, 315–17

nonconvex-nonconcave continuous

minimax 98

nonextreme point solutions 238–9

noninferiority 126–8

nonlinear quasi-Newton algorithm

49–50

nonnegativity 321

nonsatiation 185

nonsmooth optimization 23–5

normal cones 7

numerical examples, options hedging

237–43

numerical experiments, continuous

minimax 93–120

objective functions

American bond options 231–2

Capital Asset Pricing Model

219–21

discrete minimax 128–30

minimax hedging 190–2

two-period minimax 208–9

one-period trinomial trees 230–1

open ball 20, 60

open sets 20–1

optimal hedge ratios 352–7

optimality conditions 11–15, 35–6,

166

optimization 23–5

mean-variance 173, 247–8, 253–4

options 221

American bonds 229–33

American call 182

bonds 226–33

call 181–2, 204–6, 214

combination currency manage-

ment 374–5

combination portfolio manage-

ment 284–8

contracts 181

European bonds 226–9

European call 181–2, 204–6, 214

European put 287–8

exchange traded 189

hedging 179–245

pricing 183–7

put 181, 287–8

order of o(x), O(x) 21

orthogonality 18–19

‘‘out-of-the-money’’ 189, 284–8

overlay trade recommendation 361

Panin’s algorithm 24, 30–1

partial hedging 344

‘‘payoff matrix’’ 121, 131

payout dates 316–17

penalty formulation 46

penalty parameters 142, 145–8, 150–2

pension fund management 271

Pironneau-Polak method of centres

26–7

pooling minimax formulation 123–5

pooling weights 122–3

portfolios

asset allocation 247–90

bonds 252–61, 264–71, 277–84

combination management strate-

gies 284–8

currency management 345–51

hedging 226

performance backtesting 258–60

pure currency 345–51

spot exchange rates 349

strategic currency management

345–51

positive definiteness 63

positive semi-definite matrices 19

potential hedging errors 190–2,

212–13, 231

preference independence 186

present allocation strategies 247–90

price determination functions 217–18

Prudential 240–1, 242, 243

INDEX386



pure currency portfolios 345–51

put options 181, 287–8

Q-linear rate 61

Q-superlinear convergence rate 56–8,

61, 83–4, 170–2

quadratic approximation 44–5

quadratic programming 143–4,

162–72

quasi-Newton algorithms

accuracy 112–18

concepts 66–70

continuous minimax 63–92

convergence 76–86, 111–12

definitions 66–70

implementation 87–90, 96–7

introduction 23–5

maximizers 91–2

nonlinear systems 49–50

numerical experiments 95–7

Q-superlinear convergence 56–8,

83–4

saddle points 49–50

stepsizes 82–3

stopping criterion 97

superlinear convergence 111–12

termination criterion 112–18

terminology 96–7

unconstrained saddle points 49–50

range forecasts 273–7

rank ordering 214–15, 224–5

rebalancing minimax hedging

strategy 190

return trade-offs 255–60

risk controlled minimax strategy

371–3

risk free interest rates 205

risk in immunization 303–7

risk tolerance 248

risk trade-offs 255–60

rival forecasting 121–3, 173–4,

249–52

rival risk asset allocation 249–52

robust currency management 341–80

robust hedging strategies 179, 231

robustness of discrete minimax

121–38

robustness of minimax 11–15

saddle points

algorithms 37–61

computation 37–61

conditions 15–16

equilibria 37–40

introduction 15–16

quasi-Newton algorithm 49–50

solving the system of equations

40–3

second order Taylor expansions

19–20

semi-definite matrices 19

sequence convergence 20–1, 61

setting up hedges 198, 204–5

short positions 379

short-term currency fluctuations

357–9

simplified quasi-Newton algorithm

95–7

simulation studies 196–204, 213–15,

222–5

single currency management

359–63

single-stage Asset/Liability

Management 333–5

solving the system of equations 40–3

split-variable formulation 330–1

spot curves 303, 308

spot exchange rates 349, 361

standard deviations in hedging 189

states 315–17

static hedging strategy 182

stepsizes

convergence 50–8

discrete minimax 144–5, 156–62

quasi-Newton algorithm 82–3

INDEX 387



stochastic Asset/Liability

Management 315–34

stock prices 184, 197–8

stopping criterion 97, 112–18, 237–8

strategic currency management

345–57

strict global minima 22

strict local minima 22

subdifferentials 7–9

subgradient convex functions 7–9

subgradient nonsmooth optimization

23–5

superlinear convergence 54–8,

111–12, 162–72

synthetic assets 354–7

tactical currency management 357–9,

365, 373–4

tangent cones 7

Taylor expansions 19–20

term structures 315–17, 338

terminal dates 316–17

terminal wealth 327

termination criterion 97, 112–18,

237–8

Tesco 240–1, 243

test functions 28–9

tests

constrained discrete minimax

108–10

convex-concave continuous mini-

max 98–103

convex-convex continuous mini-

max 103–8

unconstrained continuous mini-

max 108–10

Thames Water 240–1, 243

threshold returns 271–3

tracking errors 261, 268

transaction costs

American bond options 231

Black and Scholes option pricing

186

Capital Asset Pricing Model

220

currency management 379–80

minimax hedging 192, 193–4,

201, 203

multicurrency management 365–6

single currency management

362–3

two-period minimax 210

Treasury Bill value 205

tree structures

American bond options 229–33

Asset/Liability Management

315–17, 338–9

binomial 229–33, 315–17

multistage minimax bonds

278–84

trinomial 229–33

triangulation 350–1, 355

trinomial tree 229–33

two asset allocation strategies 254–6

two-period minimax 207–15, 234

uncertainty

Asset/Liability Management

291–340

Capital Asset Pricing Model 221

unconstrained continuous minimax

99, 108–10

unconstrained saddle points 38, 42–3,

49–50

underlying stock 181

unique maximizers 89–90, 91–2

uniqueness condition 39–40

unit stepsizes

convergence 50–8

discrete minimax 144–5,

156–62

quasi-Newton algorithm 82–3

univariate convexity 312–15

univariate duration 309–12

upper bounds, downside risk 275–7

US dollar see dollar

INDEX388



Value-at-Risk models 271–3

variable minimax 207, 211–15, 234

vectors 18–20

volatility 196, 202–4, 216

weighted minimax variants 199–204,

236

weighting matrices 192, 210, 220

winding down hedges 198, 204–5

yen/dollar rates 345–51, 358, 368

yield curves

American bond options 229–33

Asset/Liability Management

311–12, 318–19

pure currency 348

INDEX 389


	0691091544
	Table of Contents
	Preface

	Chapter 1. Introduction to minimax
	1 Background and Notation
	1.1 Linear Independence
	1.2 Tangent Cone, Normal Cone and Epigraph
	1.3 Subgradiemts and Subdifferentials of Convex Functions

	2 Continuous Minimax
	3 Optimality Conditions and Robustness of Minimax
	3.1 The Haar Condition

	4 Saddle Points and Saddle Point Conditions
	References
	Comments and Notes

	Chapter 2. A survey of continuous minimax algorithms
	1 Introduction
	2 The Algorithm of Chaney
	3 The Algorithm of Panin
	4 The Algorithm of Kiwiel
	References
	Comments and Notes

	Chapter 3. Algorithms for computing saddle points
	1 Computation of Saddle Points
	1.1 Saddle Point Equilibria
	1.2 Solution of Systems of Equations

	2 The Algorithms
	2.1 A Gradient-based Algorithm for Unconstrained Saddle Points
	2.2 Quadratic Approximation Algorithm for Constrained Minimax Saddle Points
	2.3 Interior Point Saddle Point Algorithm for Constrained Problems
	2.4 Quasi-Newton Algorithm for Nonlinear Systems

	3 Global Convergence of Newton-type Algorithms
	4 Achievement of Unit Stepsizes and Superlinear Convergence
	5 Concluding Remarks
	References
	Comments and Notes

	Chapter 4. A quasi-Newton algorithm for continuous minimax
	1 Introduction
	2 Basic Concepts and Definitions
	3 The quasi-Newton Algorithm
	4 Basic Convergence Results
	5 Global Convergence and Local Convergence Rates
	References
	Appendix A: Implementation Issues
	Appendix B: Motivation for the Search Direction d
	Comments and Notes

	Chapter 5. Numerical experiments with continuous minimax algorithms
	1 Introduction
	2 The Algorithms
	2.1 Kiwiel’s Algorithm
	2.2 Quasi-Newton Methods

	3 Implementation
	3.1 Terminology
	3.2 The Stopping Criterion
	3.3 Evaluation of the Direction of Descent

	4 Test Problems
	5 Summary of the Results
	5.1 Iterations when &#x3008;&#x25BF;[subx]f(x[subk], y), d&#x3009; &#x2265; –  &#x03BE; is Satisfied
	5.2 Calculation of Minimum-norm Subgradient
	5.3 Superlinear Convergence
	5.4 Termination Criterion and Accuracy of the Solution

	References

	Chapter 6. Minimax as a robust strategy for discrete rival scenarios
	1 Introduction to Rival Models and Forecast Scenarios
	2 The Discrete Minimax Problem
	3 The Robust Character of the Discrete Minimax Strategy
	3.1 Naive Minimax
	3.2 Robustness of the Minimax Strategy
	3.3 An Example

	4 Augmented Lagrangians and Convexification of Discrete Minimax
	References

	Chapter 7. Discrete minimax algorithm for nonlinear equality and inequality constrained models
	1 Introduction
	2 Basic Concepts
	3 The Discrete Minimax Algorithm
	3.1 Inequality Constraints
	3.2 Quadratic Programming Subproblem
	3.3 Stepsize Strategy
	3.4 The Algorithm
	3.5 Basic Properties

	4 Convergence of the Algorithm
	5 Achievement of Unit Stepsizes
	6 Superlinear Convergence Rates of the Algorithm
	7 The Algorithm for Only Linear Constraints
	References

	Chapter 8. A continuous minimax strategy for options hedging
	1 Introduction
	2 Options and the Hedging Problem
	3 The Black and Scholes Option Pricing Model and Delta Hedging
	4 Minimax Hedging Strategy
	4.1 Minimax Problem Formulation
	4.2 The Worst-case Scenario
	4.3 The Hedging Error
	4.4 The Objective Function
	4.5 The Minimax Hedging Error
	4.6 Transaction Costs
	4.7 The Variants of the Minimax Hedging Strategy
	4.8 The Minimax Solution

	5 Simulation
	5.1 Generation of Simulation Data
	5.2 Setting Up and Winding Down the Hedge
	5.3 Summary of Simulation Results

	6 Illustrative Hedging Problem: A Limited Empirical Study
	6.1 From Set-up to Wind-down
	6.2 The Hedging Strategies Applied to 30 Options: Summary of Results

	7 Multiperiod Minimax Hedging Strategies
	7.1 Two-period Minimax Strategy
	7.2 Variable Minimax Strategy

	8 Simulation Study of the Performance of Different Multiperiod Strategies
	8.1 The Simulation Structure
	8.2 Results of the Simulation Study
	8.3 Rank Ordering

	9 CAPM-based Minimax Hedging Strategy
	9.1 The Capital Asset Pricing Model
	9.2 The CAPM-based Minimax Problem Formulation
	9.3 The Objective Function
	9.4 The Worst-case Scenario

	10 Simulation Study of the Performance of CAPM Minimax
	10.1 Generation of Simulation Data
	10.2 Summary of Simulation Results
	10.3 Rank Ordering

	11 The Beta of the Hedge Portfolio for CAPM Minimax
	12 Hedging Bond Options
	12.1 European Bond Options
	12.2 American Bond Options

	13 Concluding Remarks
	References
	Appendix A: Weighting Hedge Recommendations, Variant B*
	Appendix B: Numerical Examples
	Comments and Notes

	Chapter 9. Minimax and asset allocation problems
	1 Introduction
	2 Models for Asset Allocation Based on Minimax
	2.1 Model 1: Rival Return Scenarios with Fixed Risk
	2.2 Model 2: Rival Return with Risk Scenarios
	2.3 Model 3: Rival Return Scenarios with Independent Rival Risk Scenarios
	2.4 Model 4: Fixed Return with Rival Benchmark Risk Scenarios
	2.5 Efficiency

	3 Minimax Bond Portfolio Selection
	3.1 The Single Model Problem
	3.2 Application: Two Asset Allocations Using Different Models
	3.3 Two-model Problem
	3.4 Application: Simultaneous Optimization across Two Models
	3.5 Backtesting the Performance of a Portfolio on the Minimax Frontier

	4 Dual Benchmarking
	4.1 Single Benchmark Tracking
	4.2 Application: Tracking a Global Benchmark against Tracking LIBOR
	4.3 Dual Benchmark Tracking
	4.4 Application: Simultaneously Tracking the Global Benchmark and LIBOR
	4.5 Performance of a Portfolio on the Dual Frontier

	5 Other Minimax Strategies for Asset Allocation
	5.1 Threshold Returns and Downside Risk
	5.2 Further Minimax Index Tracking and Range Forecasts

	6 Multistage Minimax Portfolio Selection
	7 Portfolio Management Using Minimax and Options
	8 Concluding Remarks
	References
	Comments and Notes

	Chapter 10. Asset/liability management under uncertainty
	1 Introduction
	2 The Immunization Framework
	2.1 Interest Rates
	2.2 The Formulation

	3 Illustration
	4 The Asset/Liability (A/L) Risk in Immunization
	5 The Continuous Minimax Directional Immunization
	6 Other Immunization Strategies
	6.1 Univariate Duration Model
	6.2 Univariate Convexity Model

	7 The Stochastic ALM Model 1
	8 The Stochastic ALM Model 2
	8.1 A Dynamic Multistage Recourse Stochastic ALM Model
	8.2 The Minimax Formulation of the Stochastic ALM Model 2
	8.3 A Practical Single-stage Minimax Formulation

	9 Concluding Remarks
	References
	Comments and Notes

	Chapter 11. Robust currency management
	1 Introduction
	2 Strategic Currency Management 1: Pure Currency Portfolios
	3 Strategic Currency Management 2: Currency Overlay
	4 A Generic Currency Model for Tactical Management
	5 The Minimax Framework
	5.1 Single Currency Framework
	5.2 Single Currency Framework with Transaction Costs
	5.3 Multicurrency Framework
	5.4 Multicurrency Framework with Transaction Costs
	5.5 Worst-case Scenario
	5.6 A Momentum-based Minimax Strategy
	5.7 A Risk-controlled Minimax Strategy

	6 The Interplay between the Strategic Benchmark and Tactical Management
	7 Currency Management Using Minimax and Options
	8 Concluding Remarks
	References
	Appendix: Currency Forecasting
	Comments and Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y


