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Algorithms for W o rst-Case 
To lerance Optim ization. 

HANS SCHJAER-JACOBSEN, MEMBER, IEEE, AND KAJ MADSEN 
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Absmct-New aigorithms are presented for the solution of opt imum 
tolerance assignment problems. The problems considered are dermed 
mathematicaiiy as a worst-case problem (WCP), a fiied tolerance problem 
(FTP), and a variable tolerance problem (VTP). The basic optimization 
problem without tolerances is denoted the zero tolerance problem (ZTP). 
For solution of the WCP we suggest application of interval arithmetic and 
also alternative methods. For solution of the FlT an aigorithm is sug- 
gested which is conceptually simiiar to algorithms previously developed by 
the authors for the ZTP. Finally, the VTP is solved by a double-iterative 
algorithm in which the inner iteration is performed by the FTP- algorithm. 
The appiication of the algorithm is demonstrated by means of relatively 
simple numericai examples. Basic properties, such as convergence proper- 
ties, are displayed based on the examples. 

I. INTRODUCTION 

I 

N this work we shall be concerned with methods for 
the solution of nonlinear minimax optimization prob- 

lems where the optimization parameters are subject to 
tolerances. Normally, the solution to classical minimax 
optimization problems (i.e., no tolerances) may be de- 
termined very effectively with an accuracy, which is only 
limited by the finite word length of the particular com- 
puter used for the calculations [l]. Now the situation may 
well arise, that the actual parameters may be realized only 
by a much lower accuracy, say, 0.1-10 percent in practi- 
cal engineering systems. If the optimal solution is sensitive 
to changes in the parameters, this may completely disturb 
the optimum and one must think of ways of including the 
tolerances in the optimization objective. 

Other authors have suggested methods for solution of 
optimum tolerance assignment problems. A popular ap- 
proach has been to apply general nonlinear programming 
techniques to minimize a cost function defined in terms of 
the weighted tolerances and simultaneously impose non- 
linear constraints on the worst case. Some examples of 
research along these lines may be found in [2]-[6]. Alter- 
native approaches have also been reported [7]-[9]. 

In this paper, like in some of the previous works, we let 
the n optimization parameters represent the center of an 
n-dimensional tolerance interval, on which the worst case 
is calculated. For the solution of this worst-case problem 
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(WCP) we suggest to use interval arithmetic, which 
guarantees that the true worst case is always found. Other- 
wise the true worst case may not be found unless certain 
assumptions-for instance one-dimensional convexity- 
are satisfied. 

Our approach. to minimizing the worst case is less 
general than, for example, the cost function formulation. 
However, the advantage of our approach is that the 
worst-case calculations and the minimization are linked 
together such that each worst-case calculation affects the 
minimization problem immediately. In the cost function 
formulation a normal nonlinear problem is set up and a’ 
full minimization is carried out before the information 
given by the worst-case calculations is used to adjust the 
approximating nonlinear problem. So it seems that when 
the problem to be solved belongs to the class described 
below our approach should be used. 

One possible formulation is to minimize the worst case 
by moving the center of the tolerance interval while 
keeping the tolerance fixed. For this socalled fixed toler- 
ance problem (FTP) we present an algorithm. Another 
formulation is to maximize the tolerance interval by 
means of a  scaling factor, subject to the constraint, that 
the minimized worst case does not exceed a given limit. 
For this variable tolerance problem (VTP) a double itera- 
tive algorithm is suggested, which makes use of the fixed 
tolerance algorithm in the inner iteration. In the next 
section we shall define the problems more precisely. 

II. MATHEMATICAL FORMULATION OF THE 
PROBLEMS 

A. The Zero Tolerance Problem 

We  consider a set of m  nonlinear differentiable func- 
tions of n  real variables 

&(x)=&(x1; * f ,x,), j- 1;. * ,m. (1) 
For easy notation, let us introduce the integer index sets 

JE{jlj= 1;. . ,m},I~{ili=l;~-,n}. (2) 
The zero tolerance problem (ZTP) is then defined as the 
classical nonlinear minimax problem of determining 

F*rF(x*)= XTi~m F(x) (3) 

where 

F(x) = q$fiw. (4) 

0098-4094/79/0900-0775$00.75 0 1979 IEEE 
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I x’ x* 
q 

X 

Fig. 1. One-dimensional worst-case objective function F,(x). Solution 
of FTP indicated by x;, q. 

B. The Worst-Case Problem 

Now, let there be given a vector of tolerances 

d=(B,,-. - ,6JT, &>OforiEZ (5) 

on the variables vector X. The tolerance interval is defined 
as 

and the worst-case objective function is defined as 

F,(x)= max fib> 
jEJ.yEQ,,, 

(7) 

where 

F(Y,,. . . YY,)=. (8) 

Note that n  may be interpreted as a scale factor of the 
tolerance interval (6). If, for example, n  = 1 the tolerance 
interval is defined solely in terms of the initially given 
tolerances (5). Note .also that ultimately a global optimiza- 
tion over the tolerance interval (5) is required in order to 
define a true worst-case objective function by (7). This 
problem we shall identify as the WCP. An example of the 
worst-case objective function is given in Fig. 1, for n  = 1 
and m=2.- 

C. The. Fixed Tolera’nce Problem 

We  now define the fixed tolerance problem (FTP) on 
the basis of the worst-case objective function (7), namely 
as that of determining 

for fixed 1. In other words, the location x of the center of 
the tolerance interval is determined in such a way, that the 
worst case objective function (7) is minimized. It should 
be noted, that for n  close to zero, we have that x,* is close 
to x* and consequently FT  is close to F*. The same is true 

c .’ 

I 
I 
I 

F” I 
I 
I 

9” 

Fig. 2. Illustration of VTP with solution q*. 

when all components of 6  are close to zero. The solution 
to the FTP is demonstrated in Fig. 1. 

D. The Variable Tolerance Problem 

We  finally define the VTP as that of determining 

7j* Smaxn 

subject to the constraint 

w 

F,*<c (11) 
where the given constant c has to be larger than F* for 
obvious reasons. Essentially, we have defined the VTP as 
a one-dimensional problem of maximizing a simple 
parameter, namely, n, subject to a nonlinear constraint. 
An example of the VTP is given in Fig. 2. 

III. DESCRIPTION OF NEW ALGORITHMS 

A. Solution of the WCP by Interval Arithmetic 

In this section we shall suggest the application of inter- 
val arithmetic in solution of the WCP. It is assumed that 
each functionJ(x) can be calculated explicitly on a com- 
puter. If, for mstance, differential equations have to be 
solved in order to find J(x), then the methods of this 
section are not applicable. 

It is pertinent to introduce some basic concepts from 
interval arithmetic [lo] together with a notation in the 
context of the problems treated in this report. 

An interval function 

~j(x)~~j(x,,* *. ,X,) (12) 

may be derived from& by substituting the real variables x 
by the intervals 

and by replacing the real arithmetic operations by the 
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corresponding interval arithmetic operations. By defini- 
tion, J. is called the real restriction of Qj. The interval 
function aj itself is an interval with sure, but often too 
pessimistic, upper and lower bounds. We  are therefore 
primarily interested in the socalled interval hull’ (pi de- 
fined in the following way 

QJj,,.(m={gx)lx--}. (14) 

It is obvious that 

qj(X) c @ j(X). (15) 
It is generally true, that if the variables appear only 

once in an interval function, then the interval hull (which 
gives the narrowest and true interval for the function) is 
identical to the interval function itself. If the variables 
appear more than .once, then the interval hull may be 
calculated by iterative methods [ 1  l]-[ 131. 

We  now return to the solution of the WCP. Consider 
(7), which may be written 

q4= 72; ,‘=y J(Y) (16) 
.5v 

where the outer maximization is done simply by inspec- 
tion of the m  maxima found by the inner maximization 
forj attaining integer values from 1 to m. 

If each variable xi appears only once’ in 4, the inner 
maximization is simply carried out by means of (12) since 
the tolerance interval is an interval vector, which is de- 
noted by Y, 

Y= 8, ?. (17) 

The maximum is then the right en-dpoint of the resulting 
interval, which we shall denote by Go. For later use the left 
endpoint is correspondingly denoted by $. Consequently 
we may write 

and (16) may be reformulated to 

4Jx) = y; ;p;.<x>. (19) 

Although not explicitly’ written, it is clear that 4(x) and 
Gj(x) are functions of n  since they are determined as 
extrema over the interval Y, which depends on 7, see (17) 
and Fig. 3. 

If some variables occur more than once then the 
method of Skelboe [12] can be used. However, this 
method is rather time consuming: Instead one could use 
(12), which still yields a true upper bound, but it might be 
too pessimistic, especially when the tolerances are large. 

It should be explicitly noted here, that by solving the 
WCP as described above, no information is gained about 
where in the tolerance interval the worst case is attained. 
As we shall later on make use of the partial derivatives ‘of 

‘In [IO] the term united extension is used. 
2Powers of xi, $, count as one occurrence of xi. 

I 

fj(Y)/ 

1 -Y- Y 

Fig. 3. Extrema of a one-dimensional function over the interval Y. 

the functions J, the problem arises where to calculate 
them, and here it turns out that the rate of convergence of 
the FTP algorithm is influenced positively if the deriva- 
tives are calculated in the point where the worst case is 
attained. We  estimate this point by other means, see the 
following sections. 

The functions 4 must necessarily be programmed in 
interval arithmetic. In order to facilitate this, a  Fortran 
subroutine library has been written, containing the four 
basic interval operations +, -, 0, and /. Further, the 
library contains the most commonly used functions, such 
as exp, sin, cos, log, etc., programmed in interval 
arithmetic [ 141. 

B. Solution of the WCP by other Methods 

Alternative methods for finding the maximum of the 
function& over the interval G2,,, have been considered for 
example in [4] and [6]. These methods rely on the assump- 
tion that the function J is one dimensionally convex. 

We  have used a method based on the same principles as 
those of [4] and [6]. The main idea is that if & is mono- 
tonic over L$, as a function of each variable xi, i E I, then 
the maximum is attained at a  vertex of Q, namely at the 
point 

Y=(YI,‘-‘,YY (20) 
where 

yi = xi + q6,. sign(aJ/axJ, i E I. (21) 
In the algorithm we suppose that we have estimates aji 

of aJ/axi(x). These may stem from an earlier evaluation 
of the derivatives at a  point near x. Now the function 
value and the derivatives are calculated at the point 

2=(1,-**&)T (22) 

for which 

& = xi + ?I$- sign( aji) . (23) 

If 

sign(aJ/ax,(e)) = sign(aJ iEZ (24) 
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then the Kuhn-Tucker conditions state that 4 is a local 
maximum over Q2,,,. If some of the signs are not identical, 
then we let a,=aJ/ax&) and find a new vertex using 
(23). If (24) holds we are finished, otherwise we go 
through a new cycle. This continues as long as the number 
of equalities in (24) increases. If (24) is not satisfied for all 
i E I when we ‘stop, the largest value of &) found during 
the cycle is used as the worst case. In one special situa- 
tion, however, we finish in another way. If the number of 
correct signs in (24) is (n - 1) in two consecutive vertices 
and the wrong sign is attained for identical values of i, 
then a point between the two vertices is found by linear 
interpolation, and the search is finished. 

Of course this search for the worst case could be further 
developed, but this is beyond the scope of the present 
paper. 

C. An Algorithm for the FTP 

We consider the problem of minimizing the worst-case 
objective function F,(x) defined by (7) and reformulated 
in (19). Accordingly, in this section, we write the worst- 
case objective function 

F,,W = ~~;6j(x) (25) 

where &. is explicitly written as a function of n, the center 
of the tolerance box. The resemblance of (25) with the 
classical zero tolerance minimax problem is obvious. It is 
therefore suggested to develop an algorithm for minimiza- 
tion of (25) which is similar to [ 151. A flow diagram is 
shown in Fig. 4. 

Suppose that an approximation xk to x,* is known at the 
kth step of the algorithm. Then a better approximation 
xktl is sought for and to this end we use the fact that 

~(x~+h)~~I:x~)+~~(x~)=.h, jEJ (26) 

for a sufficiently small value of /l/z]],. By 6; we denote the 
vector of partial derival.ives 

t- 

T 

$!.) = k&,.. .,!&.) ) 

- 1 

jEJ. (27) 
n 

Notice, that these derivatives may be calculated by the 
WCP algorithm since $/axi(x) = 8J/axi( y), y being 
estimated in the WCP algorithm. The approximation (26) 
suggests a linear minimax problem in h. Minimize 

subject to the constraint 

ll4, < 4 (29) 

where A, >O is a bound which is adjusted in each k step 
of the algorithm according to the quality of the approxi- 
mation (26). 

Let the solution to the linear subproblem be denoted by 
hk. The quantities Aa and Ap are defined as the actual 
decrease in F, and the decrease predicted by the linear 

Solve linear subproblem 
with bounds Ak, solution 

$in 
J&y 7. (%&,&) 

kg. 4. Simplified flow diagram of the FTP algorithm. 

approximation, respectively, 

A, = F&J - F,(x,c + ‘4 
and 

(30) 

$ = Fq(xk) - Fp(xk, hk). (31) 

In order to accept x, + , = x, + hk as the next iterate, it is 
tested if Aa exceeds a small multiple of $, 

A, > 10-3Ap. (32) 

Otherwise x, + i = x,. 
The strategy for adjusting the bounds A, is also based 

on comparison between the quantities A, and hp. If 

A‘, > O.SA, (33) 
the linear approximations seem to be very good, and 
consequently we allow for a larger step length 

A /c+1 =waYY (34) 
If, on the other hand, 

A,<O.lAp (35) 

then the linear predictions are too wide from the actual 
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Solve FTP to 

Z 

Solve FTP to 
get g2:=F;,n 

2  

I 

~2:=~1+(c-g1).(nl-~*)/(gl-g*) 

I 

no  l)*:=n 1  
F* "=n* :=q 

I 

Fig. 5. Simplified flow diagram of the VTP algorithm. 

decrease and the step length is shortened: 

In all other cases the step length is considered adequate, 

(37) 
The choice of constants in (32)-(36) is based on numerical 
experiments with the algorithm. 

The criterion used for convergence of the iterations is 

where E is a small positive number specified by the user. 
Also an upper bound for the number of iterations may be 
specified by the user. The iterations are also stopped when 
Ap < 0, indicating dominating rounding errors in the solu- 
tion of the linear problem. 

D. A Double-Iterative Algorithm for the VTP 

The algorithm presented in this section for the VTP is 
based on repeated application of the previously described 
algorithm for the FTP. The problem is to determine the 
intersection between the function F* and the constant c 
(see (lo), (1 l), and Fig. 2). This is done by a Regula-Falsi 

method where each iteration involves one solution of the 
FTP. In Fig. 5  is shown a simplified flow diagram of the 
algorithm. We  thus simultaneously determine the maxi- 
mum value of TJ called n*, and the center of the tolerance 
interval x = x,*- ?. under the condition that the constraint 
(11) is satisfied. 

It is of course essential that the inner iteration, namely 
solution of the FTP, is very fast. Therefore, the quadratic 
convergence of the FTP algorithm obtained in “normal” 
cases is of central importance. 

If the solution Fc of the zero tolerance problem is not 
known when the VTP iterations are started, it might 
happen that c in (11) is specified such that c <Fc, which 
means that the set of feasible points is empty. We  have 
built in a check in the algorithm to detect such a failure, 
usually resulting in a negative value of 9. 

IV. NUMERICAL EXAMPLES 

The following examples have all been calculated in 
double precision Fortran IV (approximately 16 decimal 
digits) on an IBM 370/165 computer. The computer pro- 
grams are described in [14]. 

A. Example 1 

In this example we consider a set of three functions in 
two variables 

fi(x,,x,)=exp(-x,+l)~((x,-1)2+1) 
fi(xi,x,)=exp (x,-2x,+ 1) 

f3(xi,x2)=x;+x;-1. (39 

A contour plot of the zero tolerance objective function 
F(x) is shown in Fig. 6. We  have that F* = 1 for x* = 
(1, UT. 

First the fixed tolerance problem with S= (0.1, O.l)r 
and n = 1 is solved using the starting values x0= (2, 2)T 
and A, = 0.1 and e = 10p4. The solution x: = 
(0.906473774251549, 1.00136277924813)T was found after 
8  iterations.3 The worst-case values for the three functions 
were identical within the computer accuracy: &(x,*)= 
&(x:) =$3(x:) = 1.22598942976934. This high accuracy 
obtained in very few iterations indicates a quadratic con- 
vergence rate of the FTP algorithm. 

Until now it has not been specified whether the above 
results were obtained by using interval arithmetic to solve 
the WCP or the alternative algorithm of Section III-B. 
Actually the two methods behave exactly identical for this 
problem, the reason being that the functions (39) are 
monotone over s1, ‘1 for x near x* and therefore the worst 
cases are all attained at the vertices of the tolerance 
interval and are equally well found by the two methods. 

We  next consider the variable tolerance problem de- 
fined by the above parameters and the value of c.= 1.5. 
Again the two alternative WCP methods find the same 

30ne iteration is defined as one cycle of the FTP algorithm. In other 
words, one iteration corresponds to solving the linearized subproblem 
once or to one solution of the WCP. 
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Fig. 6. Contour plot of zero tolerance objective function from 
Example 1. 

solution using equally many iterations. The solution found 
is x;-= (0.830691342600859, 1.00654359705450)T and 4, = 
4, = r$+ = 1.499955 10078898 which took 21 iterations. The 
tolerances have been improved from 76, = ~6, = 0.1 to 
n*6,=n*62=0.195943675447343. 

For practical purposes the high accuracy presented in 
this example would be more than sufficient, considering 
the nature of the problem. It is important, however, to 
study the performance of the algorithm in order to gain 
insight into the convergence properties. For example, the 
value of e = 10m4 actually used seems to produce values of 
the worst cases which are correct to 5 digits (they should 
have been 1.5). With E = lop6 we get 1.5OOOOOO5 using 26 
iterations and with e = lo-’ we get 1.499999999998 in 32 
iterations. 

B. Example 2 

This example is identical to the foregoing example, 
except that 

fi(xI~x2)=exd-xl+ 1)/((x2- I)‘+ 1) (40) 
resulting in a concave zero tolerance function F(x), see 
Fig. 7. Again F* = 1 for x* = (1, l)T. 

In this example we expect the interval arithmetic calcu- 
lation of the worst case. to be different from the alterna- 
tive method not using interval arithmetic. Consider first 
the FTP as defined in the preceding example. We get the 
solutions shown in Table I, where the worst case is shown 
with as many digits as were identical in the three individ- 
ual worst cases. 

The worst case obtained by using the interval arithmetic 
approach is “worse” than by using the alternative ap- 

Fig. 7. Contour plot of zero tolerance objective function from 
Example 2. 

TABLE I 
SOLUTION OF mp OF EXAMPLE 2, C = 1o-4 

Interval Arithmetic 

preach. However, the former is the true worst case. Since 
the number of iterations is the same as for Example 1, one 
might think that the speed of convergence is the same for 
the two examples. This is not so. The accuracy obtained in 
Example 1 in 8 iterations is much better (namely the full 
machine accuracy) than in Example 2. The reason for the 
poorer accuracy in Example 2, is that the partial deriva- 
tives of fi are not calculated exactly in the point where the 
worst case is attained, but rather in a point estimated by 
linear interpolation. In order to achieve the full machine, 
accuracy in the present example, 12 iterations were neces- 
sary. (A much smaller value of e has to be specified, 
namely e = lo- i2.) Th’ is is still a rather good speed of 
convergence. 

Now consider the variable tolerance problem corre- 
sponding to the one solved in Example 1, i.e., c = 1.5. The 
results of the double-iterative algorithm are shown in 
Table II, where the third column contains the optimized 
tolerance, i.e., the value n*6, = n*6,. Again, it is character- 
istic, that the interval method has detected the true worst 
case whereas the alternative method has only detected a 
less strict approximation to it. This may be seen from the 
larger tolerance obtained by the alternative method and 
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TABLE II 
SOLUTION OF VTP OF EXAMPLE 2, E = 10m4 

‘p-.- 

Interval Arithmetic 

Alternative Method 

Solution 
______ ..- _~_.... - 

0.80201121 1.0094752 

0.80179387 1 .oo94967 

the smaller value of the first component of the solution, 
compare with the concave part of the objective function in 
Fig. 7. 

C. Example 3 

The purpose of this example is twofold. First, it is 
‘intended to demonstrate the application of the algorithms 
where, instead of (7), the worst case objective function is 
defined by 

(41) 

The interval arithmetic is particularly well suited for this 
type of objective function, since by calculating the interval 
hull we get at the same time & as well as 3; see (18). Then 
(41) may be written as 

(42) 

and a linear subproblem corresponding to (28) and (29), 
but with twice as many functions, may be formulated. 

Secondly, the example demonstrates that the FTP algo- 
rithm may converge slowly, when it is applied to singular 
problems. This term is defined in analogy to a singularity 
in the zero tolerance case [16]. 

Consider the three functions in two variables 

fi(x,,x,)= 1.5--+1-x,) 

fi(xi,xz)=2.25-x,(1-.$) 

f3(x1,x2) =2.625 - x,( 1  -xi). 

The zero tolerance function 

(43) 

is shown in Fig. 8. The solution is E* = F((x*) = 0, x* = 
(3.0,0.5)? 

First the FTP is solved with S=(O.l, O.l)r, n= 1, x,,= 
x*, A,,=O.l, and varying l . Using interval arithmetic for 
the WCP the results in Table III are obtained, from which 
the following observations may be made. 

First, the FTP is singular because the solution is de: 
termined by only two of the worst cases (indicated under- 
lined in the table) namely 6, and -+i, respectively. The 
singularity causes a slow convergence;compare, for exam- 
ple, with Table I. 

Second, because the problem has been solved with four 
decreasing values of E. it mav be observed. ‘that when the 

2 

X2 

1 

0 

-1 

-7 

Fig. 8. Contour plot of zero tolerance objective function from Example 
3. Initial and opt imum tolerance intervals. 

TABLE III 
SOLUTION OPFTP OFEXAMPLE 3, USINGINTBRVALAR~THMETIC 

I No. of 

at Solution 
-.-----.--A-_--.---_ 

1 0.30890488 
2 0.37536026 

! 

! 2 0.32651829 / 

t 
-I.- : 3 0.21366665 

lo-6 / 2.895250 0.4738887 

,0-8 / 2.89525213 0.473889018 

I 

-! -I_ 

1 0.308912143604 52 
2 0.375360255898 
3 0.350077536636 
I o.375360255894 
2 0.326536395275 
3 o.2136g8122281 

I o.3oEgl2367631n56 74 
2 o.3753602558962728 
3 0.3580772057155057 
1 o.3753602593962128 
2 0.3265366604383558 
3 o.2136990925808919 

worst cases are identical to p digits, then the solution 
vector is only known with approximatelyp/2 digits. This 
phenomenon is characteristic for singular minimax prob- 
lems and has been experimentally verified in many other 
cases. 

The VTP with the same starting conditions as the FTP 
and c = 1.5 is subsequently solved. The results are shown 
in Table IV for the accuracv snecification E = 10M4. As 
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TABLE IV 
SOLV~ONOF VTP OFE~RLE 3, USING INTERVALARITHMETIC, 

e= 10-4 

expected the number of iterations is rather large due to 
the singularity of the FTP as previously described. It is 
seen that the worst case is determined by 6, and -+, and 
that the final optimized tolerances are q*S, =;I*&= 
0.44543. 

By solving the problems in this example using the 
alternative method instead of the interval method, one 
gets the same behavior of the algorithm because the 
functions are monotonic in the region of interest. 

D. Example 4 

Let it be desired to approximate the function ey in the 
interval - 1 < y f 1 by minimizing the objective function 

(45) 
where 

’ 

yj= - 1 +O.l(j- l), j= 1,. . . ,21. (46) 
The solution to this ZTP is known to be 

x* = (0.999879,0.253588, - 0.746608,0.245202, - 0.037490)’ 

F* =0.122* 10-3. (47) 
Now, let there be given a vector of tolerances, which are 

approximately 1 percent of the (absolute) value of the 
components in x* 

6=(10-2,2.5. 10-3,7.5- 10-3,2.5e 10-3,3.5. 10-4)T. 

(48) 
For different values of 9 we then solve the FTP allowing 
us to display F: as a function of 17 in Fig. 9. From this 
figure it becomes evident that for small tolerances on the 
parameters, 10-4-10-” percent, say, the quality of the 
approximation is rather unaffected. For larger tolerances, 
however, the approximation is rather sensitive and the 
value of F,* is rapidly increasing for increasing tolerances. 
For q= 1, corresponding to l-percent tolerances (not 
shown in the figure), the optimum is completely destroyed 
with the value of F,* = 6. 10e2. 

Typically, in this example, one solution of the. FTP 
required 10 iterations using x0 = (0, 0, O,O, 0.5)r, A, = 0.1, 
and c = 10e6. 

V. CONCLUSION 

Based on the algorithms and numerical results pre- 
sented the following main conclusions may be drawn. By 

10-h 10-3 10-2 '1 

Fig. 9. Solution of fixed tolerance problem of Example 4 as a function 
of.rl. 

breaking down the worst-case optimization problem into 
smaller, mathematically well defined subproblems, it has 
been possible to develop rather effective algorithms for 
.the solution of these subproblems, and to put the different 
algorithms together in such a way that the full problem 
may be solved. The advantages of using the interval 
arithmetic approach in the solution of the WCP are obvi- 
ous. The worst case is calculated exactly, even for noncon- 
vex functions. However, the method has to be further 
developed in order to be able to handle the worst case 
problem satisfactory in general. When the interval 
arithmetic approach is not feasible, the alternative worst 
case approach in Section III-B may be applied. In many 
cases of practical interest this method gives the correct 
answer. 

The fixed tolerance problem is solved by the proposed 
algorithm with a final rate of convergence which is conjec- 
tured normally to be quadratic. This algorithm may be 
further developed so that cases where one of the nonlinear 
functions determines more than one worst case may also 
be treated. The variable tolerance problem is solved by 
repeated application of the fixed tolerance algorithm. 

A relatively large number of numerical examples have 
been tried by the algorithms. We think that the results 
presented look rather promising and we suggest that some 
of the ideas be subject of further research. 
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