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Abstract. The problem of estimating reachable sets of nonlinear dynamical control
systems with quadratic nonlinearity and with uncertainty in initial states is studied.
We assume that the uncertainty is of a set-membership kind when we know only
the bounding set for unknown items and any additional statistical information on
their behavior is not available. We present approaches that allow finding ellipsoidal
estimates of reachable sets. The algorithms of constructing such ellipsoidal set-valued
estimates and numerical simulation results are given in two cases, for control systems
with classical controls and for measure driven (impulsive) control systems.
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1 Introduction

In this paper we study control systems with unknown but bounded uncer-
tainties related to the case of a set-membership description of uncertainty
(Bertsekas and Rhodes[1], Kurzhanski and Valyi[11], Schweppe[13], Walter and
Pronzato[15]). The motivation to consider the set-membership approach is that
in traditional formulations the characterization of parameter uncertainties re-
quires assumptions on mean, variances or probability density function of errors.
However in many applied areas ranged from engineering problems in physics
to economics as well as to biological and ecological modeling it occurs that a
stochastic nature of the error sequence is questionable. For instance, in case
of limited data or after some non-linear transformation of the data, the pre-
sumed stochastic characterization is not always valid. Hence, as an alternative
to a stochastic characterization a so-called bounded-error characterization, also
called set-membership approach, has been proposed and intensively developed
in the last decades.
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The solution of many control and estimation problems under uncertainty
involves constructing reachable sets and their analogs. For models with linear
dynamics under such set-membership uncertainty there are several constructive
approaches which allow finding effective estimates of reachable sets. We note
here two of the most developed approaches to research in this area. The first
one is based on ellipsoidal calculus (Chernousko[2], Kurzhanski and Valyi[11])
and the second one uses the interval analysis (Walter and Pronzato[15]).

Many applied problems are mostly nonlinear in their parameters and the
set of feasible system states is usually non-convex or even non-connected. The
key issue in nonlinear set-membership estimation is to find suitable techniques,
which produce related bounds for the set of unknown system states without
being too computationally demanding. Some approaches to the nonlinear set-
membership estimation problems and discrete approximation techniques for dif-
ferential inclusions through a set-valued analogy of well-known Euler’s method
were developed in Dontchev and Lempio[3], Veliov[14]. In this paper the mod-
ified state estimation approaches which use the special quadratic structure of
nonlinearity of studied control system and use also the advantages of ellipsoidal
calculus (Kurzhanski and Valyi[11], Chernousko[2]) are presented.

2 Preliminaries

In this section we introduce the following basic notations. Let Rn be the n–
dimensional Euclidean space and x′y be the usual inner product of x, y ∈ Rn

with prime as a transpose, ‖ x ‖ = (x′x)1/2. We denote as B(a, r) the ball in
Rn, B(a, r) = {x ∈ Rn : ‖ x− a ‖ ≤ r}, I is the identity n× n-matrix. Denote
by E(a,Q) the ellipsoid in Rn, E(a,Q) = {x ∈ Rn : (Q−1(x−a), (x−a)) ≤ 1}
with center a ∈ Rn and symmetric positive definite n× n–matrix Q.

Consider the following system

ẋ = Ax+ f (1)(x)d(1) + f (2)(x)d(2), x0 ∈ X0, t0 ≤ t ≤ T, (1)

where x ∈ Rn, ‖x‖ ≤ K (K > 0), d(1) and d(2) are n-vectors and f (1), f (2) are
scalar functions,

f (1)(x) = x′B(1)x, f (2)(x) = x′B(2)x,

with symmetric and positive definite matrices B(1), B(2). We assume also that

d
(1)
i = 0 for i = k + 1, . . . , n and d

(2)
j = 0 for j = 1, . . . , k where k (1 ≤ k ≤ n)

is fixed. This assumption means that the first k equations of the system (1)
contain only the nonlinear function f (1)(x) (with some constant coefficients

d
(1)
i ) while f (2)(x) is included only in the equations with numbers k+1, . . . , n.
We will assume further that X0 in (1) is an ellipsoid, X0 = E(a,Q), with a

symmetric and positive definite matrix Q and with a center a.
We will need some auxiliary results.

Lemma 1. The following inclusion is true

X0 ⊆ E(a, k21(B
(1))−1)

⋂

E(a, k22(B
(2))−1) (2)

where k2i is the maximal eigenvalue of the matrix (B(i))1/2Q(B(i))1/2 (i = 1, 2).
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Proof. The proof follows directly from the properties of quadratic forms and
from the inclusions

E(a,Q) ⊆ E(a, k21(B
(1))−1), E(a,Q) ⊆ E(a, k22(B

(2))−1),

which should be fulfilled with the smallest possible values of k1 ≥ 0 and k2 ≥ 0.

Lemma 2. The following equalities hold true

max
z′B(1)z≤k2

1

z′B(2)z = k21λ
2
12, max

z′B(2)z≤k2
2

z′B(1)z = k22λ
2
21, (3)

where λ2
12 and λ2

21 are maximal eigenvalues of matrices (B(1))−1/2B(2)(B(1))−1/2

and (B(2))−1/2B(1)(B(2))−1/2 respectively.

Proof. The formulas follow from direct computations of maximal values in (3).

Theorem 1. (Filippova[6]) For all σ > 0 and for X(t0+σ) = X(t0+σ, t0, X0)
we have the following upper estimate

X(t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ))
⋂

E(a(2)(σ), Q(2)(σ)) + o(σ)B(0, 1), (4)

where σ−1o(σ) → 0 when σ → +0 and

a(1)(σ) = a(σ) + σk21λ
2
12d

(2), a(2)(σ) = a(σ) + σk22λ
2
21d

(1), (5)

a(σ) = (I + σA)a+ σa′B(1)ad(1) + σa′B(2)ad(2), (6)

Q(1)(σ) = (p−1
1 +1)(I+σR)k21(B

(1))−1(I+σR)′+(p1+1)σ2||d(2)||2k41λ
4
12·I, (7)

Q(2)(σ) = (p−1
2 +1)(I+σR)k22(B

(2))−1(I+σR)′+(p2+1)σ2||d(1)||2k42λ
4
21·I, (8)

R = A+ 2d(1)a′B(1) + 2d(2)a′B(2) (9)

and p1, p2 are the unique positive solutions of related algebraic equations

n
∑

i=1

1

p1 + αi
=

n

p1(p1 + 1)
,

n
∑

i=1

1

p2 + βi
=

n

p2(p2 + 1)
(10)

with αi, βi ≥ 0 (i = 1, ..., n) being the roots of the following equations

det((I + σR)k21(B
(1))−1(I + σR)′ − ασ2||d(2)||2k41λ

4
12 · I) = 0, (11)

det((I + σR)k22(B
(2))−1(I + σR)′ − βσ2||d(1)||2k42λ

4
21 · I) = 0. (12)

We may formulate now the following scheme that gives the external estimate
of trajectory tube X(t) of the system (1) with given accuracy.

Algorithm 1. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a,Q), take σ = h and define ellipsoids E(a(1)(σ), Q(1)(σ))
and E(a(2)(σ), Q(2)(σ)) from Theorem 2.
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• Find the smallest (with respect to some criterion, Kurzhanski and Valyi[11],
Chernousko[2]) ellipsoid E(a1, Q1) which contains the intersection

E(a(1)(σ), Q(1)(σ))
⋂

E(a(2)(σ), Q(2)(σ)) ⊆ E(a1, Q1).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.

• Next steps continue iterations 1-3. At the end of the process we will get
the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m → ∞.

3 Main results

3.1 Control system under uncertainty

Consider the following control system in the form of differential inclusion (Kurzhan-
ski and Filippova[10])

ẋ ∈ Ax+ f (1)(x)d(1) + f (2)(x)d(2) + P, x0 ∈ X0 = E(a,Q), t0 ≤ t ≤ T, (13)

with all previous assumptions being valid. We assume also that P is an ellip-
soid, P = E(g,G), with a symmetric and positive definite matrix G and with
a center g.

In this case the estimate for X(t0+σ) (the analogy of the formula (4)) takes
the form.

Theorem 2. The following inclusion is true

X(t0 + σ) ⊆ E(a(1)(σ), Q(1)(σ)) ∩ E(a(2)(σ), Q(2)(σ))

+ σE(g,G) + o(σ)B(0, 1),
(14)

where σ−1o(σ) → 0 when σ → +0 and the parameters a(i), Q(i) (i = 1, 2) are
described in (5)–(9).

Proof. The inclusion follows from the Theorem 1 and from the properties of
the trajectory tubes of related differential inclusions (see also techniques in
Filippova[7]).

We should modify now the previous scheme (Algorithm 1) in order to for-
mulate a new procedure of external estimating of trajectory tube X(t) of the
system (13).

Algorithm 2. Subdivide the time segment [t0, T ] into subsegments [ti, ti+1]
where ti = t0 + ih (i = 1, . . . ,m), h = (T − t0)/m, tm = T .

• Given X0 = E(a,Q), take σ = h and define ellipsoids E(a(1)(σ), Q(1)(σ))
and E(a(2)(σ), Q(2)(σ)) from Theorem 2.

• Find the smallest (with respect to some criterion (Kurzhanski and Valyi[11],
Chernousko[2]) ellipsoid E(a∗, Q∗) which contains the intersection:

E(a(1)(σ), Q(1)(σ))
⋂

E(a(2)(σ), Q(2)(σ)) ⊆ E(a∗, Q∗).
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• Find the ellipsoid E(a1, Q1) which is the upper estimate of the sum (Kurzhan-
ski and Valyi[11], Chernousko[2]) of two ellipsoids, E(a∗, Q∗) and σE(g,G):

E(a∗, Q∗) + σE(g,G) ⊆ E(a1, Q1).

• Consider the system on the next subsegment [t1, t2] with E(a1, Q1) as the
initial ellipsoid at instant t1.

• Next steps continue iterations 1-3. At the end of the process we will get
the external estimate E(a(t), Q(t)) of the tube X(t) with accuracy tending
to zero when m → ∞.

3.2 Examples

Consider three examples illustrating the techniques of ellipsoidal estimating.
For simplicity we take here d(2) = 0 so only one quadratic form is present at
the right-hand side of the dynamic equations (13).

Example 1. Consider the following control system:

{

ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + x2

1 + x2
2 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (15)

Here we take t0 = 0, T = 0.35, X0 = B(0, 1) and put P (t) ≡ U = B(0, 0.5)
in the control constraint. The trajectory tube X(t) and its external ellipsoidal
estimate E(a(t), Q(t)) are given at Figure 1.
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Fig. 1. Trajectory tube X(t) and its ellipsoidal estimate E(a(t), Q(t)).

The following example illustrates the case where the reachable set may
lose convexity with increasing time t > t0. Nevertheless the related external
estimate is also true.
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Example 2. Consider the following control system:

{

ẋ1 = 2x1 + u1,
ẋ2 = 2x2 + 4x2

1 + x2
2 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (16)

Here we take t0 = 0, T = 0.25, X0 = B(0, 1) and P (t) ≡ U = B(0, 1).
The trajectory tube X(t) and its external ellipsoidal estimate E(a(t), Q(t)) are
given at Figure 2.
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Fig. 2. Nonconvex-valued trajectory tube X(t) and its external ellipsoidal estimate
E(a(t), Q(t)).

The following example illustrates the main procedure of the new Algo-
rithm 2 of Section 3.1.

Example 3. Consider the following control system with two quadratic forms
in its dynamical equations:

{

ẋ1 = 1.5x1 + x2
1 + 2x2

2 + u1,
ẋ2 = 1.5x2 + 2x2

1 + x2
2 + u2,

x0 ∈ X0, t ∈ [t0, T ]. (17)

Here we take t0 = 0, T = 0.3, X0 = B(0, 1) and U = B(0, 0.1). Steps of the
Algorithm 2 of constructing the external ellipsoidal estimate E(a(t), Q(t)) of
the reachable set X(t) are shown at Figure 3.

The resulting ellipsoidal estimate E(a(T ), Q(T )) is shown at Figure 4. A
parameter ρ indicated at Fig. 4 depends on a type of the optimality criterion
which we use in constructing the external ellipsoid E(a∗, Q∗) at the iterations
2-3 of the first step of Algorithm 2, see also Kurzhanski and Valyi[11] and
Chernousko[2]. Here we see that the reachable set X(T ) is nonconvex and is
contained in the ellipsoid E(a(T ), Q(T )) for any value of the parameter ρ as
shown at Fig. 4.
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Fig. 3. Reachable set X(t0 + σ) and its estimate E(a1(σ), Q1(σ)) at the first step of
Algorithm 2 (iterations 1-3).

Fig. 4. Reachable set X(T ) and its external ellipsoidal estimate E(a(T ), Q(T )).
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3.3 Impulsive systems under uncertainty

Consider the following control system

dx(t) = (Ax(t) + f̃(x)d+ u(t))dt+Bdv(t), x ∈ Rn, t0 ≤ t ≤ T, (18)

where f̃(x) = x′B̃x with positive definite and symmetric matrix B̃, parameters
d,B are n-vectors, d,B ∈ Rn. Here the function v : [t0, T ] → R is of bounded
variation on [t0, T ], monotonically increasing and right-continuous. We assume
that µ > 0 and

V art∈[t0,T ] v(t) = sup
{ti|t0≤t1≤...≤tk=T}

{

k
∑

i=1

|v(ti)− v(ti−1)|} ≤ µ.

We assume also

X0 = E(a, k2B̃−1) (k 6= 0), U = E(â, Q̂). (19)

Consider the following auxiliary equation:

d

dη

(

z
τ

)

∈ H(τ, z), (20)

z(t0) = x0 ∈ X0 = E(a, k2B̃−1), τ(t0) = t0, t0 ≤ η ≤ T + µ,

H(τ, z) =
⋃

0≤ν≤1

{

(1− ν)

(

Az + f̃(z)d+ E(â, Q̂)
1

)

+ ν

(

B
0

) }

. (21)

Denote the reachable set of the system (20)–(21) as W (t0 + σ) = W (t0 +
σ; t0, X0 × {t0}).

Theorem 3. (Filippova[4]) The following inclusion holds true for σ > 0:

W (t0 + σ) ⊆
⋃

0≤ν≤1

(

E(a+(σ, ν), Q+(σ, ν))
t0 + σ(1− ν)

)

+ o(σ)Bn+1(0, 1),

limσ→+0 σ
−1o(σ) = 0.

(22)

Here
a+(σ, ν) = a(σ, ν) + σ(1− ν)â+ σνB,

Q+(σ, ν) = (p−1 + 1)Q(σ, ν) + (p+ 1)σ2(1− ν)2Q̂,
(23)

where p = p(σ, ν) is the unique positive root of the equation

n
∑

i=1

1

p+ λi
=

n

p(p+ 1)
,

and λi = λi(σ, ν) ≥ 0 satisfy the equation |Q(σ, ν)− λσ2(1− ν)2Q̂| = 0,

a(σ, ν) = a+ σ(1− ν)(Aa+ (a′B̃a)d+ k2d),

Q(σ, ν) = k2(I + σR)B̃−1(I + σR)′, R = (1− ν)(A+ 2da′B̃).
(24)
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The following lemma explains the construction of the auxiliary differential in-
clusion (20).

Lemma 3. (Filippova[4]) The set X(T ) = X(T, t0, X0) is the projection of
W (T + µ) at the subspace of variables z:

X(T ) = πzW (T + µ).

Different variants of algorithms of ellipsoidal estimating for the system simi-
lar to (18) basing on the above results are given in Filippova and Matviychuk[9],
Matviychuk[12],

Theorem 3 can be generalized to the case of a more complicated form

dx(t) = (Ax(t) + f (1)(x)d(1) + f (2)(x)d(2) + u(t))dt+Bdv(t),
x ∈ Rn, t0 ≤ t ≤ T,

(25)

where B ∈ Rn, V art∈[t0,T ]v(t) ≤ µ, d(1), d(2) ∈ Rn and

f (1)(x) = x′B(1)x, f (2)(x) = x′B(2)x.

The above generalization is based on a combination of the techniques de-
scribed above and the results of Filippova[7].

4 Conclusions

The paper deals with the problems of state estimation for uncertain dynamical
control systems for which we assume that the initial system state is unknown
but bounded with given constraints.

The solution is studied through the techniques of trajectory tubes of related
differential inclusions with their cross-sections X(t) being the reachable sets at
instant t to control system.

Basing on the results of ellipsoidal calculus developed earlier for linear un-
certain systems we present the modified state estimation approaches which use
the special nonlinear structure of the control system and allow to construct the
external ellipsoidal estimates of reachable sets.
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