Discrete Comput Geom (2013) 50:374—408
DOI 10.1007/s00454-013-9525-x

Algorithms on Minimizing the Maximum Sensor
Movement for Barrier Coverage of a Linear Domain

Danny Z. Chen - Yan Gu - Jian Li - Haitao Wang

Received: 10 August 2012 / Revised: 16 May 2013 / Accepted: 4 June 2013 /
Published online: 3 July 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we study the problem of moving n sensors on a line to form
a barrier coverage of a specified segment of the line such that the maximum moving
distance of the sensors is minimized. Previously, it was an open question whether this
problem on sensors with arbitrary sensing ranges is solvable in polynomial time. We
settle this open question positively by giving an O (n? logn) time algorithm. For the
special case when all sensors have the same-size sensing range, the previously best
solution takes O(nz) time. We present an O (n logn) time algorithm for this case;
further, if all sensors are initially located on the coverage segment, our algorithm
takes O (n) time. Also, we extend our techniques to the cycle version of the problem
where the barrier coverage is for a simple cycle and the sensors are allowed to move
only along the cycle. For sensors with the same-size sensing range, we solve the cycle
version in O (n) time, improving the previously best O (n?) time solution.

This work was partially done while Haitao Wang was visiting IIIS at Tsinghua University.

D. Z. Chen

Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN46556, USA

e-mail: dchen@nd.edu

Y. Gu
Department of Computer Science and Technology, Tsinghua University, Beijing100084, China
e-mail: henryy321@gmail.com

J. Li
Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing100084, China
e-mail: lijian83 @mail.tsinghua.edu.cn

H. Wang (X))

Department of Computer Science, Utah State University, Logan, UT84322, USA
e-mail: haitao.wang @usu.edu

@ Springer

Discrete Comput Geom (2013) 50:374—408 375

Keywords Barrier coverage - Min-max sensor movement - Linear barrier -
Algorithms - Optimization

1 Introduction

A wireless sensor network (WSN) uses a large number of sensors to monitor some
surrounding environmental phenomena [1]. Each sensor is equipped with a sensing
device with limited battery-supplied energy. The sensors process data obtained and
forward the data to a base station. Intrusion detection and border surveillance constitute
a major application category for WSNs. A main goal of these applications is to detect
intruders as they cross the boundary of a region or domain. For example, research
efforts were made to extend the scalability of WSNs to the monitoring of international
borders [10,11]. Unlike the traditional full coverage [12,18,19] which requires an
entire target region to be covered by the sensors, the barrier coverage [2,3,8,9,11]
only seeks to cover the perimeter of the region to ensure that any intruders are detected
as they cross the region border. Since barrier coverage requires fewer sensors, it is often
preferable to full coverage. Because sensors have limited battery-supplied energy, it
is desired to minimize their movements. In this paper, we study a one-dimensional
barrier coverage problem where the barrier is for a (finite) line segment and the sensors
are initially located on the line containing the barrier segment and allowed to move on
the line. As discussed in the previous works [8,9,16] and shown in this paper, barrier
coverage even for 1D domains poses some challenging algorithmic issues. Also, our
1D solutions may be used in solving more general problems. For example, if the barrier
is sought for a simple polygon, then we may consider each of its edges separately and
apply our algorithms to each edge.

In our problem, each sensor has a sensing range (or range for short) and we want
to move the sensors to form a coverage for the barrier such that the maximum sensor
movement is minimized. We present efficient algorithms for this problem, improving
the previous work and settling an open question. Also, we extend our techniques to
the cycle version where the barrier is for a simple cycle and the sensors are allowed
to move only along the cycle.

1.1 Problem Definitions, Previous Work, and Our Results

Denote by B = [0, L] the barrier that is a line segment fromx =0tox = L > 0 on
the x-axis. A set S = {s1, 52, ..., s,} of n mobile sensors is initially located on the
x-axis. Each sensor s; € S has a range ; > 0 and is located at the coordinate x; of
the x-axis. We assume x; < xp < --- < x,. If a sensor s; is at the position x’, then
we say s; covers the interval [x" — r;, x’ + r;], called the covering interval of s;. Our
problem is to find a set of destinations on the x-axis, {y1, y2, ..., yn}, for the sensors
(i.e., for each s; € S, move s; from x; to y;) such that each point on the barrier B
is covered by at least one sensor and the maximum moving distance of the sensors
(i.e., maxi<i<pf{|x; — yi|}) is minimized. We call this problem the barrier coverage
on a line segment, denoted by BCLS. We assume 2 - >" r; > L (otherwise,
a barrier coverage for B is not possible).

@ Springer

376 Discrete Comput Geom (2013) 50:374-408

The decision version of BCLS is defined as follows. Given a value A > 0, determine
whether there is a feasible solution in which each point of B is covered by at least
one sensor and the moving distance of each sensor is at most A. The decision version
characterizes a problem model in which the sensors have a limited energy and we want
to know whether their energy is sufficient to move and form a barrier coverage.

If the ranges of all sensors are the same (i.e., the r;’s are all equal), then we call
it the uniform case of BCLS. When the sensors have arbitrary ranges, we call it the
general case.

The BCLS problem has been studied before. The uniform case has been solved in
0(n2) time [8]. An O(n) time algorithm is also given in [8] for the decision version
of the uniform case. However, it has been open whether the general case is solvable
in polynomial time [8].

In this paper, we settle the open problem on the general BCLS, presenting an
O (n?logn) time algorithm for it. We also solve the decision version of the general
BCLS in O(nlogn) time. Since this is a basic problem on sensors and intervals and
our algorithm is the first-known polynomial time solution for it, we expect our results
and techniques to be useful for other related problems. Further, for the uniform case,
we derive an O (nlog n) time algorithm, improving the previous O (n?) time solution
[8]; if all sensors are initially on B, our algorithm runs in O (n) time.

In addition, we consider the simple cycle barrier coverage where the barrier is
represented as a simple cycle and the n sensors are initially on the cycle and are
allowed to move only along the cycle. The goal is to move the sensors to form a
barrier coverage and minimize the maximum sensor movement. If all sensors have the
same range, Mehrandish [15] gave an O (n?) time algorithm, and we present an O (n)
time solution in this paper.

1.2 Related Work

Besides the results mentioned above, an O(n) time 2-approximation algorithm for
the uniform BCLS was also given in [8] and a variation of the decision version of
the general BCLS, where one sensor is required to be in a given position in the final
solution, is shown to be NP-hard [8]; however, it is not known whether the general
BCLS is NP-hard. Further, in the special case where the order preserving property
holds, i.e., y; < y2--+ < y, holds in an optimal solution, polynomial time algorithms
exist for the general BCLS [8]. Additional results were also given in [8] for the case
2>, ri < L (although in this case B cannot be entirely covered).

Mehrandish et al. [15,16] also considered the line segment barrier, but unlike the
BCLS problem, they intended to use the minimum number of sensors to form a barrier
coverage, which they proved to be NP-hard. But, if all sensors have the same range,
polynomial time algorithms were possible [15,16]. Another study of the line segment
barrier [9] aimed to minimize the sum of the moving distances of all sensors; this prob-
lem is NP-hard [9], but is solvable in polynomial time when all sensors have the same
range [9]. In addition, Li et al. [13] considers the linear coverage problem which aims to
set an energy for each sensor to form a coverage such that the cost of all sensors is min-
imized. There [13], the sensors are not allowed to move, and the more energy a sensor
has, the larger the covering range of the sensor and the larger the cost of the sensor.

@ Springer

Discrete Comput Geom (2013) 50:374—408 377

Bhattacharya et al. [2] studied a 2D barrier coverage problem in which the bar-
rier is a circle and the sensors, initially located inside the circle, are moved to the
circle to form a coverage such that the maximum sensor movement is minimized;
the ranges of the sensors are not explicitly specified but the destinations of the sen-
sors are required to form a regular n-gon on the circle. Subsequent improvements
of the results in [2] have been made [5,17]. In addition, Bhattacharya et al. [2] pre-
sented some results on the corresponding min-sum problem version (minimizing the
sum of the moving distances of all sensors); further improvement was also given in
[5,17].

Some other barrier coverage problems have been studied. For example, Kumar et
al. [11] proposed algorithms for determining whether a region is barrier covered after
the sensors are deployed. They considered both the deterministic version (the sensors
are deployed deterministically) and the randomized version (the sensors are deployed
randomly), and aimed to determine a barrier coverage with high probability. Chen al.
[3] introduced a local barrier coverage problem in which individual sensors determine
the barrier coverage locally.

1.3 An Overview of Our Approaches

For any problem we consider, let A* denote the maximum sensor movement in an
optimal solution.

For the uniform BCLS, as shown in [8], a useful property is that there always
exists an order preserving optimal solution, i.e., the order of the sensors in the optimal
solution is the same as that in the input. Based on this property, the previous O (n%)
time algorithm [8] covers B from left to right; in each step, it picks the next sensor
and re-balances the current maximum sensor movement. In this paper, we take a
very different approach. With the order preserving property, we determine a set A of
candidate values for A* with A* € A. Consequently, by using the decision algorithm,
we can find A* in A. But, this approach may be inefficient since |A| = O (n?). To
reduce the running time, our strategy is not to compute the set A explicitly. Instead,
we compute an element in A whenever we need it. A possible attempt would be to
first find a sorted order for the elements of A or (implicitly) sort the elements of A,
and then obtain A* by binary search. However, it seems not easy to (implicitly) sort the
elements of A. Instead, based on several new observations, we manage to find a way
to partition the elements of A into n sorted lists, each list containing O (n) elements.
Next, by using a technique called binary search on sorted arrays [4], we are able to
find A* in A in O(nlogn) time. For the special case when all sensors are initially
located on B, a key observation we make is that A* is precisely the maximum value
of the candidate set A. Although A = (H)(nz), based on new observations, we show
that its maximum value can be computed in O (n) time.

For the general BCLS, as indicated in [8], the order preserving property no longer
holds. Consequently, our approach for the uniform case does not work. The main
difficulty of this case is that we do not know the order of the sensors appeared in
an optimal solution. Due to this difficulty, no polynomial time algorithm was known
before for the general BCLS. To solve this problem, we first develop a greedy algorithm

@ Springer

378 Discrete Comput Geom (2013) 50:374-408

for the decision version of the general BCLS. After O(nlogn) time preprocessing,
our decision algorithm takes O(n) time for any value A. If A > A*, implying that
there exists a feasible solution, then our decision algorithm can determine the order
of sensors in a feasible solution for covering B. For the general BCLS, we seek to
simulate the behavior of the decision algorithm on A = A*. Although we do not
know the value A*, our algorithm determines the same sensor order as it would be
obtained by the decision algorithm on the value A = A*. To this end, each step of the
algorithm uses our decision algorithm as a decision procedure. The idea is somewhat
similar to parametric search [6, 14], and here we “parameterize” our decision algorithm.
However, we should point out a few differences. First, unlike the typical parametric
search [6,14], our approach does not involve any parallel scheme and is practical.
Second, normally, if a problem can be solved by parametric search, then there also
exist other (simpler) polynomial time algorithms for the problem although they might
be less efficient than the parametric search solution (e.g., the slope selection problem
[7D). In contrast, for our general BCLS problem, so far we have not found any other
(even straightforward) polynomial time algorithm.

In addition, our O(n) time algorithm for the simple cycle barrier coverage is a
generalization of our approach for the special case of the uniform BCLS when all
sensors are initially located on B.

For ease of exposition, we assume that initially no two sensors are located at the same
position (i.e., x; # x; for any i # j), and the covering intervals of any two different
sensors do not share a common endpoint. Our algorithms can be easily generalized to
the general situation.

The rest of the paper is organized as follows. In Sect. 2, we describe our algorithms
for the general BCLS. In Sect. 3, we present our algorithms for the uniform BCLS.
Our results for the simple cycle barrier coverage are discussed in Sect. 4. Section 5
finally concludes the paper.

2 The General Case of BCLS

In this section, we present our algorithms for the general BCLS problem. Previously,
it was an open problem whether the general BCLS can be solved in polynomial time.
The main difficulty is that we do not know the order of the sensors in an optimal
solution. Our main effort is for resolving this difficulty, and we derive an O (n? log n)
time algorithm for the general BCLS.

We first give our algorithm for the decision version (in Sect. 2.1), which is crucial
for solving the general BCLS (in Sect. 2.2) that we refer to as the optimization version
of the problem.

For each sensor s; € §, we call the right (resp., left) endpoint of the covering
interval of s; the right (resp., left) extension of s;. Each of the right and left extensions
of s; is an extension of s;. Denote by p(x’) the point on the x-axis whose coordinate is
x', and denote by p*(x’) (resp., p~(x")) a point to the right (resp., left) of p(x’) and
infinitely close to p(x’). The concept of p*(x’) and p~(x’) is only used to explain
the algorithms, and we never need to find such a point explicitly in the algorithm.
Let A* denote the maximum sensor moving distance in an optimal solution for the

@ Springer

Discrete Comput Geom (2013) 50:374—408 379

optimization version of the general BCLS problem. Note that we can easily determine
whether A* = 0, say, in O (nlogn) time. Henceforth, we assume A* > 0.

2.1 The Decision Version of the General BCLS

Given any value A, the decision version is to determine whether there is a feasible
solution in which the maximum sensor movement is at most A. Clearly, there is a fea-
sible solution if and only if A > A*. We show that after O (n log n) time preprocessing,
for any A, we can determine whether A > 1* in O (n) time. We explore some proper-
ties of a feasible solution in Sect. 2.1.1, describe our decision algorithm in Sect. 2.1.2,
argue its correctness in Sect. 2.1.3, and discuss its implementation in Sect. 2.1.4. In
Sect. 2.1.5, we show that by extending the algorithm, we can also determine whether
A > A™in the same time bound,; this is particularly useful to our optimization algorithm
in Sect. 2.2.

2.1.1 Preliminaries

By a sensor configuration, we refer to a specification of where each sensor s; € S
is located. By this definition, the input is a configuration in which each sensor s; is
located at x;. The displacement of a sensor in a configuration C is the distance between
the position of the sensor in C and its original position in the input. A configuration
C is a feasible solution for the distance A if the sensors in C form a barrier coverage
of B (i.e., the union of the covering intervals of the sensors in C contains B) and the
displacement of each sensor is at most A. In a feasible solution, a subset S’ C S is
called a solution set if the sensors in S’ form a barrier coverage; of course, § itself is
also a solution set. A feasible solution may have multiple solution sets. A sensor s; in
a solution set S’ is said to be critical with respect to §” if s; covers a point on B that is
not covered by any other sensor in S’. If every sensor in S’ is critical, then S’ is called
a critical set.

Given any value A, if A > A*, our decision algorithm will find a critical set and deter-
mine the order in which the sensors of the critical set will appear in a feasible solution
for A. For the purpose of giving some intuition and later showing the correctness of
our algorithm, we first explore some properties of a critical set.

Consider a critical set S¢. For each sensor s € S, we call the set of points on B
that are covered by s but not covered by any other sensor in S¢ the exclusive coverage
of s.

Observation 1 The exclusive coverage of each sensor in a critical set S€ is a contin-
uous portion of the barrier B.

Proof Assume to the contrary the exclusive coverage of a sensor s € S is not a
continuous portion of B. Then there must be at least one sensor s’ € S¢ whose covering
interval is between two consecutive continuous portions of the exclusive coverage of
s. But that would mean s’ is not critical since the covering interval of s’ is contained
in that of s. Hence, the observation holds. O

@ Springer

380 Discrete Comput Geom (2013) 50:374-408

For a critical set S¢ in a feasible solution SOL, we define the cover order of the
sensors in S¢ as the order of these sensors in SOL such that their exclusive coverages
are from left to right.

Observation 2 The cover order of the sensors of a critical set S€ in a feasible solution
SOL is consistent with the left-to-right order of the positions of these sensors in SOL.
Further, the cover order is also consistent with the order of the right (resp., left)
extensions of these sensors in SOL.

Proof Consider any two sensors s; and s; in S¢ with ranges r; and r;, respectively.
Without loss of generality, assume s; is to the left of s; in the cover order, i.e., the
exclusive coverage of s; is to the left of that of s; in SOL. Let y; and y; be the positions
of s; and s; in SOL, respectively. To prove the observation, it suffices to show y; < y;,
yitri < yj—i—rj,andyi —r <yj—rj.

Let p be a point in the exclusive coverage of s;. We also use p to denote its
coordinate on the x-axis. Then p is not covered by s;, implying either p > y; 4 r; or
p < yi — r;. But, the latter case cannot hold (otherwise, the exclusive coverage of s;
would be to the right of that of s;). Since p is covered by s;, we have p < y; +r;.
Therefore, y; +r; < p < y; +r;. By using a symmetric argument, we can also prove
yi —ri <yj—rj(weomit the details). Clearly, the two inequalities y; +r; < y; +r;
and y; —r; < y; —rjimply y; < y;. The observation thus holds. O

Aninterval I of B is called a left-aligned interval if the left endpoint of / is at O (i.e.,
I is of the form [0, x'] or [0, x)). A set of sensors is said to be in attached positions
if the union of their covering intervals is a continuous interval of the x-axis whose
length is equal to the sum of the lengths of these covering intervals. Two intervals of
the x-axis overlap if they intersect each other (even at only one point).

2.1.2 The Algorithm Description

Initially, we move all sensors of S to the right by the distance A, i.e.,foreach 1 <i <n,
we move s; to the position x = x; 4+ A. Let Cy denote the resulting configuration.
Clearly, there is a feasible solution for A if and only if we can move the sensors in Cy
to the left by at most 2\ to form a coverage of B. Thus, henceforth we only need to
consider moving the sensors to the left. Recall that we have assumed that the extensions
of any two distinct sensors are different; hence in Cy, the extensions of all sensors are
also different.

Our algorithm takes a greedy approach. It seeks to find sensors to cover B from
left to right, in at most n steps. If A > A*, the algorithm will end up with a critical
set S¢ of sensors along with the destinations for all these sensors. In theory, the other
sensors in S \ S¢ can be anywhere such that their displacements are at most A; but in
the solution found by our algorithm, they are at the same positions as in Cy. If a sensor
is at the same position as in Co, we say it stands still.

In step i (initially, i = 1), using the configuration C;_; produced in step i — 1
and based on certain criteria, we find a sensor s,(;) and determine its destination y,;),

where g (i) is the index of the sensorin S and yz(;) € [xé(i) —2A, xé(i)]. We then move

the sensor s,(j) t0 yg(;) to obtain a new configuration C; from C; | (if yg() = x;,(l.),

@ Springer

Discrete Comput Geom (2013) 50:374—408 381

then we need not move s,(;y, and C; is the same as C;_1). Let R; = yg) + 74y (€.,
the right extension of s4(;) in C;). Assume Ry = 0. Let §; = S; 1 U {s4(:)} (So = ¥
initially). We will show that the sensors in S; together cover the left-aligned interval
[0, R;]. If R; > L, we have found a feasible solution with a critical set S¢ = §;, and
terminate the algorithm. Otherwise, we proceed to step i + 1. Further, it is possible that
a desired sensor s (;) cannot be found, in which case we terminate the algorithm and
report A < A*. Below we give the details, and in particular, discuss how to determine
the sensor s, (;) in each step.

Before discussing the first step, we provide some intuition. Let S; consist of the
sensors whose right extensions are at most 0 in Cp. We claim that since L > 0, no
sensor in S; can be in a critical set of a feasible solution if A* < A. Indeed, because all
sensors have been moved to their rightmost possible positions in Cy, if no sensor in S;
has a right extension at 0 in Co, then the claim trivially holds; otherwise, suppose s;
is such a sensor. Assume to the contrary that s, is in a critical set S°. Then p(0) is the
only point on B that can be covered by s;. Since L > 0, there must be another sensor
in S¢ that also covers p(0) (otherwise, no sensor in S would cover the point p*(0)).
Hence, s; is not critical with respect to S¢, a contradiction. The claim thus follows.
Therefore, we need not consider the sensors in S; since they do not help in forming a
feasible solution.

In step 1, we determine the sensor s4(1), as follows. Define Sy; = {s; | x} —rj <
0 < x} + r;} (Fig. 1), i.e., S11 consists of all sensors covering the point p(0) in Co
except any sensor whose right extension is O (but if the left extension of a sensor is 0,
the sensor is included in S11). In other words, S;; consists of all sensors covering the
point pT(0) in Cy. If 11 # ¥, then we choose the sensor in S1; whose right extension
is the largest as sg(1) (e.g., s; in Fig. 1), and let y,(1) = X;(n- Note that since the
extensions of all sensors in Cy are different, the sensor sg(y) is unique. If Sy = 4,
then define S, as the set of sensors whose left extensions are larger than O and at
most 24 (e.g., Fig. 2). If S12 =), then we terminate the algorithm and report A < A*.
Otherwise, we choose the sensor in S12 whose right extension is the smallest as s (1)
(e.g., s; in Fig. 2), and let y4(1) = rg(1) (i.€., the left extension of s,(1) is at O after it
is moved to the destination y(1)).

Fig. 1 The set S1; consists of
the three sensors whose covering i S;
intervals are shown, and Sg(1)
18 §;

X
0 L
Fig. 2 The set S1» consists of . s .
the three sensors whose covering w L w
intervals are shown, and Sg(1) | ;
iss; if S =0 1 —_—
i i >x
0 2A L

@ Springer

382 Discrete Comput Geom (2013) 50:374-408

If the algorithm is not terminated, then we move Sg(1) tO yg(1), yielding a new
configuration C;. Let S = {sg(1)}, and R; be the right extension of s¢(1) in Cy. If
R; > L, we have found a feasible solution C; with the critical set S}, and terminate
the algorithm. Otherwise, we proceed to step 2.

The general step is very similar to step 1. Consider step i for i > 1. We determine
the sensor sg(;), as follows. Let §;1 be the set of sensors covering the point pH(Ri_1)
in the configuration C;_1.If S;; # @, we choose the sensor in S;| with the largest right
extension as sg(;) and let yg(;) = x;’,(i). Otherwise, let S;; be the set of sensors whose
left extensions are larger than R;_; and at most R;_; +2A.If S;» = @, we terminate the
algorithm and report A < A*. Otherwise, we choose the sensor in S;> with the smallest
right extension as Sg(;) and let yg(;) = R;_1 +7g(;). If the algorithm is not terminated,
We MOVE Sg(j) 10 Yg(;) and obtain a new configuration C;. Let S; = §; 1 U {s4(;)}. Let
R; be the right extension of sg(;) in C;. If R; > L, we have found a feasible solution
C; with the critical set S; and terminate the algorithm. Otherwise, we proceed to step
i + 1. If the sensor sg(;) is from S;1 (resp., S;2), then we call it the Type I (resp., Type
II) sensor.

Since there are n sensors in S, the algorithm is terminated in at most n steps. This
finishes the description of our algorithm.

2.1.3 The Correctness of the Algorithm

Based on the description of our algorithm, we have the following lemma.

Lemma 1 At the end of step i, suppose the algorithm produces the set S; and the
configuration C;; then S; and C; have the following properties.

(a) S; consists of sensors that are Type I or Type II.

(b) For each sensor sg(jy € S with 1 < j < i, if s¢(;) is of Type I, then it stands still
(i.e., its position in C; is the same as that in Cy),; otherwise, its left extension is
at Rj_1, and sq(jy and sq(j—1) are in attached positions if j > 1.

(c) The interval on B covered by the sensors in S; is [0, R;].

(d) Foreach 1 < j <1, the right extension of sq(jy is larger than that of s¢(j—1).

(e) Foreachl < j <, sg(j) is the only sensor in S; that covers the point p+(Rj_1)
(with Ry = 0).

Proof The first three properties are trivially true according to the algorithm description.

For property (d), note that the right extension of s¢(; (resp., sg(j—1y) is R; (resp.,
R;_1). According to our algorithm, the sensor s j) covers the point p*(R;_;), imply-
ing that R; > R;_. Hence, property (d) holds.

For property (e), note that the sensor sg(;y (which is determined in step j) always
covers pt(R j—1). Consider any other sensor sg;) € §;. If 1 < j, then the right
extension of sg(;) is at most R; 1, and thus s,(,) cannot cover p+(Rj_1). Iftr > j,
then depending on whether s, (1) € ;1 or sg(r) € Sr2, there are two cases. If s¢(;) € Sp2,
then the left extension of s, (;) is R;_1, which is larger than R;_1, and thus s¢(;) cannot
cover p+(Rj,1) in C;. Otherwise (i.e., Sg(1) € Si1), Sg() stands still. Assume to the
contrary that sg(;) covers p+(Rj,1) in C;. Then sg(;) must have been in S;1 in step
J within the configuration C; ;. This implies S;1 # @, s¢(j) € S;j1, and s, stands

@ Springer

Discrete Comput Geom (2013) 50:374—408 383

still. Since R; is the right extension of s,(;) and R; is the right extension of sg(;), by
property (d), for z > j, we have R, > R;. Since R; > R; (i.e., the right extension of
Sg(j) 1s smaller than that of Sg(1))» the algorithm cannot choose s) from S j1instep j,
which is a contradiction. Therefore, s, cannot cover the point p*(R;_1). Property
(e) thus holds. O

At its termination, our algorithm either reports & > A* or A < A*. To argue the
correctness of the algorithm, below we will show that if the algorithm reports A > 1%,
then indeed there is a feasible solution for A and our algorithm finds one; otherwise,
there is no feasible solution for X.

Suppose in step i, our algorithm reports A > 1*. Then according to the algorithm, it
must be R; > L. By Lemma 1(c) and 1(e), C; is a feasible solution and S; is a critical
set. Further, by Lemma 1(d) and Observation 2, the cover order of the sensors in S; is
Sg(1)> Sg(2)s - -+ Sg(D)-

Next, we show that if the algorithm reports A < A*, then certainly there is no
feasible solution for A. This is almost an immediate consequence of the following
lemma.

Lemma 2 Suppose S; is the set of sensors in the configuration C; whose right exten-
sions are at most R;. Then the interval [0, R;] is the largest possible left-aligned
interval that can be covered by the sensors of S] such that the displacement of each
sensor in S| is at most \.

Proof In this proof, when we say an interval is covered by the sensors of S/, we mean
(without explicitly stating) that the displacement of each sensor in S; is at most A.

We first prove a key claim: If C is a configuration for the sensors of S/ such that a
left-aligned interval [0, x'] is covered by the sensors of S/, then there always exists a
configuration C* for S’ in which the interval [0, x'] is still covered by the sensors of
Slf and for each 1 < j < i, the position of the sensor sg(;) in C* is y,(jy, Where g(j)
and y, ;) are the values computed by our algorithm.

As similar to our discussion in Sect. 2.1.1, the configuration C for S/ always has a
critical set for covering the interval [0, x']. Let S¢ be such a critical set of C.

We prove the claim by induction. We first show the base case: Suppose there is a
configuration C for the sensors of S’ in which a left-aligned interval [0, x'] is covered
by the sensors of S7; then there is a configuration C for the sensors of S in which the
interval [0, x] is still covered by the sensors of S; and the position of the sensor s (1)
in Ci is Yg(1)-

Let t = g(1). If the position of s; in C is y;, then we are done (with C; = C).
Otherwise, let y; be the position of s, in C, with y; # y;. Depending on s; € Si; or
sy € S12, there are two cases.

e If s, € Sy1, then y, = x/. Since y; is the rightmost position to which the sensor s,

is allowed to move and y; # y;, we have y, < y;. Depending on whether s, is in
the critical set Sc, there further are two subcases.
If s, & Sc, then by the definition of a critical set, the sensors in S¢ form a coverage
of [0, x'] regardless of where s, is. If we move s; to y; (and other sensors keep the
same positions as in C) to obtain a new configuration C{, then the sensors of S
still form a coverage of [0, x'].

@ Springer

384 Discrete Comput Geom (2013) 50:374-408

If sy € Sc, then because y; > y;, if we move s; from y; to y;, s; is moved to the
right. Since s; € S11, when s; is at y;, s; still covers the point p(0). Thus, moving
s; from y; to y,; does not cause s, to cover a smaller sub-interval of [0, x].
Hence, by moving s; to y;, we obtain a new configuration C| in which the sensors
of §! still form a coverage of [0, x'].

e If s; € Sy, then according to our algorithm, S;; = @ in this case, and s; is the
sensor in S1o with the smallest right extension in Cy. If s; ¢ Sc, then by the same
argument as above, we can obtain a configuration C { in which the interval [0, x']
is still covered by the sensors of S and the position of the sensor s; in C is y;.
Below, we discuss the case when s; € Sc.

In S¢, some sensors must cover the point p(0) in C. Let S’ be the set of sensors
in Sc¢ that cover p(0) in C. If s, € §’, then it is easy to see that y; < y; since
y; is the rightmost position for s; to cover p(0). In this case, again, by the same
argument as above, we can always move s; to the right from y; to y, to obtain
a configuration C| in which the interval [0, x'] is still covered by the sensors of
S!. Otherwise (i.e., s; ¢ S’), we show below that we can always move s; to y; by
switching the relative positions of s; and some other sensors in Sc.

An easy observation is that each sensor in §” must be in S;,. Consider an arbitrary
sensor s, € . Since s, is the sensor in Sy with the smallest right extension in
Cy, the right extension of s, is larger than that of 5, in C. Depending on whether
the covering intervals of s, and s;, overlap in C, there are two subcases.

If the covering intervals of s; and s;, overlap in C, then let [0, x”] be the left-
aligned interval that is covered by s; and s, in C (Fig. 3). If we switch their relative
positions by moving s; to y; and moving yy to x” — ry, (i.e., the left extension of
sy 18 at 0 and the right extension of sy, is at x”), then these two sensors still cover
[0, x”] (Fig. 3), and thus the sensors in S; still form a coverage of [0, x”]. Further,
after the above switch operation, the displacements of these two sensors are no
bigger than X. To see this, clearly, the displacement of s, is at most . For the sensor
sp, it is easy to see that the switch operation moves sy, to the right. Since s; covers
p(x’) in C, x” is no larger than the right extension of s; in C¢, which is smaller
than that of s, in Co. Thus, x” is smaller than x,, +ry, implying that the position of
sy after the switch operation is still to the left of its position in C. Hence, after the
switch operation, the displacement of s, is no bigger than A. In summary, after the
switch operation, we obtain a new configuration C| in which the interval [0, x'] is
still covered by the sensors of S/ and the position of the sensor s; in C| is y;.

If the covering intervals of s, and s do not overlap in C, then suppose the sensors
in the critical set Sc¢ between s;, and s; are sp, Sf(1), S£(2)s - -+ S f(m)» St in the

Sp ' i Sh

>

v

’s

0 e X 0 x X

Fig. 3 Illustrating the switch operation on s; and sy, the left figure is before the switch and the right one
is after the switch

@ Springer

Discrete Comput Geom (2013) 50:374—408 385

S S
1Sy M : L Sh : fm).
Sf St
0 X7 xyx 0 X7 x5 x

Fig. 4 Illustrating the switch between s; and s £,

cover order. Clearly, the covering intervals of any two consecutive sensors in this
list overlap in C. Below we show that we can switch the relative positions of s;
and s 7 () such that we still form a coverage of [0, x'], and then we continue this
switch procedure until s, is switched with sj,. Note that since S;; = (, the right
extension of s ¢(j) for any 1 < j < m is larger than that of s, in C.

Let x| be the maximum of 0 and the left extension of s, in C, and xJ be the
minimum of x” and the right extension of s; in C (Fig. 4). Clearly, x{ < xJ. Thus,
the sub-interval of [0, x"] covered by s; and s 7 () in C is [x{, x7]. We perform a
switch operation on s; and s 7 () by moving s, to the left and moving s 7 () to the
right such that the left extension of s; is at x|’ and the right extension of s 7 is at
x (Fig. 4). It is easy to see that after this switch operation, the sensors in Sc still
form a coverage of [0, x’]. Since the right extension of S f(m) 1s larger than that of
s; in Cp, by a similar argument as above, we can also prove that after this switch,
the displacements of both s; and s 7(;,) are no bigger than A. Then, we continue
this switch process on s; and s ¢ —1), S fu—2), - - -, until s; is switched with s,
after which s; is at y;, and we obtain a new configuration C i in which the interval
[0, x'] is still covered by the sensors in S¢ C Sl.’ and the position of the sensor s;
in C} is y;.

This completes the proof of the base case, i.e., there is always a configuration C} in
which the interval [0, x'] is covered by the sensors of Slf and the position of the sensor
Sg(1) in C1 S yg(1)-

We assume inductively that the claim holds for each k — 1 with 2 < k < i, i.e,,
there is a configuration C1/<—1 in which the interval [0, x'] is covered by the sensors of
S} and the position of the sensor s4(;) foreach I < j < k — 1in C}_, is yg(;). In
the following, we show that the claim holds for £, i.e., there is a configuration C; in
which the interval [0, x'] is still covered by the sensors of Slf and the position of the
sensor sg(j) foreach 1 < j < k in C} is y,(;). The proof is quite similar to that for
the base case and we only discuss it briefly below.

Lett = g(k).If the position of s; in C; _, is y;, then we are done (with C; = C; _,).
Otherwise, let y; be the position of s, in C;_,, with y; # y;. Depending on s; € Sk
or s; € Syo, there are two cases.

o If s, € Sk1, then y, = x/. Since y; is the rightmost position to which s; is allowed
to move and y; # y;, we have y, < y,. Depending on whether s; is in the critical
set S¢, there further are two subcases.

If s, ¢ Sc, then the sensors in S¢ always form a coverage of [0, x'] regardless
of where s, is. Thus, if we move s; to y;, we obtain a new configuration C ,’(from

@ Springer

386 Discrete Comput Geom (2013) 50:374-408

C}._, in which the sensors of S/ still form a coverage of [0, x"] and the position of
the sensor sg(j) foreach 1 < j < kin Cy is yg ().

If s; € Sc, then since y, > y/, if we move s, from y/ to y;, s; is moved
to the right. By Lemma 1(c), the interval [0, Rx—1] is covered by the sen-
sors of Sg—1 = {Sg(1)> Sg(2) - -+ Sgk—1)} 1IN C,’(_1 (since they are in positions
Ye(1)s» Yg(2)s - - - » Yg(k—1)> Tespectively). When s; is at y;, s, still covers the point
pT(Rx_1). Thus, after moving s; to y,, we obtain a new configuration C ,’{ from
C ,’67] in which the sensors of Slf still form a coverage of [0, x'].

o If s, € Sip, then S;; = ¢ in this case, and s; is the sensor in Sy, with the smallest

right extension. If s, € Sc, then by the same argument as above, we can obtain
a configuration C; from C;_, in which the interval [0, x'] is still covered by the
sensors of S’ and the position of the sensor s¢(jy foreach 1 < j < kin Cy is yg(j).
Below, we discuss the case when s; € Sc.
In S¢, some sensors must cover the point p* (R, _) in C. Let S’ be the set of sensors
in S¢ that cover p*(Rx—1) in C. If s, € §', then y] < y; since y; is the rightmost
position for s; to cover p*(Ri_1). In this case, again, by the same argument as
above, we can move s, to the right from y; to y; to obtain a configuration C; from
C //c—l in which the interval [0, x'] is still covered by the sensors of Slf . Otherwise
(ie., s; € §), consider a sensor s;, in S’. Let the sensors in Sc between s;, and
sy in the cover order be sy, (1), Sf(2), - - -» S f(m)» 5¢ (this sequence may contain
only s, and s;). Note that for each 1 < j < k — 1, the sensor s,y is not in this
sequence. Then by using a similar sequence of switch operations as for the base
case, we can obtain a new configuration C; from C;_, such that the sensors of
S; still form a coverage of [0, x']. Again, the position of the sensor sy for each
1 < j <kinCyis yg(j).

This proves that the claim holds for k. Therefore, the claim is true. The lemma can
then be easily proved by using this claim, as follows.

Suppose the largest left-aligned interval that can be covered by the sensors of S/
is [0, x]. Then by the above claim, there always exists a configuration C* for S/ in
which the interval [0, x"] is also covered by the sensors of S and foreach 1 < j <1,
the position of the sensor sg(;) in C* is y,(j). Recall that S; = {s¢(1), Sg2), - - -+ Sg(i) }-
Then for each sensor s; € S\ S;, the rightmost point that can be covered by s; is
xt’ + r;. Recall that in the configuration C;, for each 1 < j < i, the position of the
Sensor Sg(j) 18 Yg(j)» and for each sensor s; € Slf \ S;, the position of s; is x;. Further,
by the definition of S/, the right extensions of all sensors in S are at most R; in C;.
Therefore, the right extensions of all sensors in S are also at most R; in C*, implying
that x’ < R;. On the other hand, by Lemma 1(c), the sensors of S; form a coverage of
[0, R;]1in C*. Thus, [0, x'] = [0, R;], and the lemma follows. m|

Finally, we prove the correctness of our algorithm based on Lemma 2. Suppose
our algorithm reports A < A* in step i. Then according to the algorithm, R;_; < L
and both S;; and S;, are #. Let Stf_ | be the set of sensors whose right extensions are
at most R;_p in C;_1. Since both S;; and Sj; are @J, no sensor in S \ S;_l can cover
any point to the left of the point p*(R;_1) (and including p™(R;_1)). By Lemma 2,
[0, R;_1] is the largest left-aligned interval that can be covered by the sensors of S/ _,.
Hence, the sensors in S cannot cover the interval [0, pT(R;—1)]. Dueto R;_1 < L, we

@ Springer

Discrete Comput Geom (2013) 50:374—408 387

have [0, pT(R;_1)] € [0, L]; thus the sensors of S cannot cover B = [0, L]. In other
words, there is no feasible solution for the distance A. This establishes the correctness
of our algorithm.

2.1.4 The Algorithm Implementation

For the implementation of the algorithm, we first discuss a straightforward approach
that runs in O (nlogn) time. Later, we give another approach which, after O (nlogn)
time preprocessing, can determine whether A* < X in O(n) time for any given A.
Although the second approach does not change the overall running time of our decision
algorithm, it does help our optimization algorithm in Sect. 2.2 to run faster.

In the beginning, we sort the 2n extensions of all sensors by the x-coordinate, and
move each sensor 5; € S to x] to produce the initial configuration Cy. During the
algorithm, for each step i, we maintain two sets of sensors, S;; and S;2, as defined
earlier. To this end, we sweep along the x-axis and maintain S;; and S;2, using two
sweeping points p1 and p», respectively. Specifically, the point p; follows the positions
Ro (=0), Ry, Ry, ..., and p, follows the positions Ry + 21, Ry + 2A, Ry + 24,
Thus, p; is kept always by a distance of 2X to the right of p;. To maintain the set
Si1, when the sweeping point p; encounters the left extension of a sensor, we insert
the sensor into S;1; when p; encounters the right extension of a sensor, we delete the
sensor from S;1. In this way, when the sweeping point pj is at R;_, we have the set
Si1 ready. To maintain S;j;, the situation is slightly more subtle. First, whenever the
sweeping point p, encounters the left extension of a sensor, we insert the sensor into
Si2. The subtle part is at the deletion operation. By the definition of S;7, if the left
extension of any sensor is less than or equal to R;_1, then it should not be in ;5. Since
eventually the first sweeping point pj is at R;_j in step i, whenever a sensor is inserted
into the first set S;1, we need to delete that sensor from S;,. Thus, a deletion on S;»
happens only when the same sensor is inserted into ;1. In addition, we need a search
operation on S;; for finding the sensor in S;; with the largest right extension, and a
search operation on S;, for finding the sensor in S;> with the smallest right extension.

It is easy to see that there are O (n) insertions and deletions in the entire algorithm.
Further, the search operations on both S;1 and S;, are dependent on the right extensions
of the senors. By using a balanced binary search tree to represent each of these two
sets in which the right extensions of the sensors are used as keys, the algorithm runs
in O (nlogn) time.

In the sequel, we give the second approach which, after O (n log n) time preprocess-
ing, can determine whether A* < X in O (n) time for any given A.

In the preprocessing, we compute two sorted lists S7 and Sg, where S contains
all sensors sorted by the increasing values of their left extensions and Sk contains all
sensors sorted by the increasing values of their right extensions. Consider any value
A. Later in the algorithm, for each step i, our algorithm will determine the sensor sg ;)
by scanning the two lists. We will show that when the algorithm finishes, each sensor
in Sy, is scanned at most once and each sensor in Sk is scanned at most three times,
and therefore, the algorithm runs in O (n) time.

Initially, we move each sensor s; € S to x; to produce the initial configuration
Cp. During the algorithm, we sweep along the x-axis, using a sweeping point pi.

@ Springer

388 Discrete Comput Geom (2013) 50:374-408

Specifically, the point p; follows the positions Ry (= 0), Ry, Ra,.... With a little
abuse of notation, we also let p; be the coordinate of the current position of pj.
Initially, p1 = 0.

Consider a general step i and we need to determine the sensor sg ;). In the beginning
of this step, pj is at the position R;_1. We scan the list S from the beginning until the
left extension of the next sensor is strictly to the right of p;. For each scanned sensor
sj, if its right extension is strictly to the right of py, then itis in §;; by the definition
of S;1. Thus, the above scanning procedure can determine S;, after which we can
easily find the sensor sg(;) in S;q if ;1 # @. In fact, we can compute s ;) directly in
the above scanning procedure. In addition, for any sensor in Sy, that is scanned, we
remove it from Sy, (and thus it will never be scanned later in the algorithm any more).
If S;1 # @, then s4(;) is determined and we move the sweeping point p; to the right
extension of sg(;) (i.e., p1 = R;). If py > L, we terminate the algorithm and report
A* < A; otherwise, we continue on to step i 4 1. Below, we discuss the case S;; = .

If S;1 = @, then sg(;) is the sensor in §;> with the smallest right extension if
Si2 # 0. Specifically, among the sensors (if any) whose left extensions are larger than
p1 (= R;—1) and at most p1 + 2, s¢(;) is the sensor with the smallest right extension.
To find s4(;), we scan the list Sg from the beginning until we find the first sensor s
whose left extension is larger than p; and at most p; + 2A (Fig. 5). If such a sensor
s does not exist, then S;; = @, and we terminate the algorithm and report 1* > A.
Below, we assume we have found such a sensor s. Since the sensors in Sg are sorted
by their right extensions, s ;) is exactly the sensor s. Further, unlike the scanning on
S, where each scanned sensor is removed immediately, for each scanned sensor in Sg,
we remove it only if its right extension is to the left of p; (Fig. 5). Specifically, when
we are searching the above sensor s during scanning Sg, we remove from Sg those
sensors whose right extensions are to the left of p;. It is easy to see that the removed
sensors (if any) are consecutive from the beginning of Sg. Let Sk be the list after all
removals. If s¢(;) (= s) is not the first sensor in Sg, then for any sensor s; in Sg before
Sg(i)» the left extension of s; must be larger than p; + 2A; we call the sensors in Sg
before s, ;) the redundant sensors for the step i (Fig. 5). Later we will show that these
sensors will be not redundant any more in the later algorithm. In summary, for each
sensor scanned in the original Sy in this step, it is removed, or a redundant sensor, or
Sg¢(i)- Finally, we move s ;) to the left such that its left extension is at p1, and then we
move pp to the right extension of s¢(;) (i.e., p1 = R;). If p1 > L, we terminate the
algorithm and report A* < A; otherwise, we continue on the next step i + 1.

To analyze the algorithm, it is easy to see each sensor in this list S7 is scanned at
most once. For the list Sg, this may not be the case as the redundant sensors may be
scanned again in the later algorithm. However, the following lemma shows that this
would not be an issue.

Fig. 5 Illustrating the search for
the sensor s: the sensors before
p1 are removed from Sg; the
two sensors below s are _

redundant sensors for this step > X

P P2\

@ Springer

Discrete Comput Geom (2013) 50:374—408 389

Lemma 3 If a sensor s; is a redundant sensor for the step i, then it will be not a
redundant sensor again in the later algorithm.

Proof Consider the moment right after the step i. The sweeping point p; is at the
right extension of s,(;). To prove the lemma, since p; always moves to the right, by
the definition of the redundant sensors, it is sufficient to show that the left extension
of s; is at most p1 + 24, as follows.

Consider the moment in the beginning of the step i (the sensor s¢(;) has not been
moved to the left). Since s; is a redundant sensor for the step i, the sensor s ;) is from
Si2 and the left extension of sg(;y is at most R; 1 + 2A. Thus, the right extension of
Sg(iy 1s at most R; 1 + 2rg(;) + 2A. Recall that the right extension of s; is less than that
of s¢(;) (since s; is before s¢(;) in Sg). Therefore, the right extension of s; is at most
Ri—1 + 2rg(;) + 2A. Now consider the moment right after the step i. The sweeping
point py is at the position R;_1 + 2rg(;). Hence, the right extension of s; is at most
p1 + 2X, which implies that the left extension of s; is at most p + 2. The lemma
thus follows. O

The preceding lemma implies that any sensor can be a redundant sensor in at most
one step. Therefore, for the list Sg, each sensor has been scanned at most twice when
it is removed, once as a redundant sensor, and once when it is found as s, ;). Thus,
each sensor in Sy is scanned at most three times. Hence, after the two lists S and Sg
are obtained, the running time of the algorithm is O (n).

Theorem 1 After O (nlogn) time preprocessing, for any A, we can determine whether
A* < Min O(n) time; further, if * < A, we can compute a feasible solution in O (n)
time.

2.1.5 Another Decision Version

Our optimization algorithm in Sect. 2.2 also needs to determine whether A* is strictly
less than A (i.e., A* < 1) for any A. By modifying our algorithm for Theorem 1, we
have the following result.

Theorem 2 After O (nlogn) time preprocessing, for any value A, we can determine
whether * < A in O(n) time.

Proof We first apply the algorithm for Theorem 1 on the value A. If the algorithm
reports A* > A, then we know A* < A is false. Otherwise, we have A* < A. In the
following, we modify the algorithm for Theorem 1 to determine whether A* < A, i.e.,
A* is strictly smaller than A. Note that this is equivalent to deciding whether A* < A —¢
for any arbitrarily small constant ¢ > 0. Of course, we cannot enumerate all such small
values ¢. Instead, we add a new mechanism to the algorithm for Theorem 1 such that
the resulting displacement of each sensor is strictly smaller than A.

At the start of the algorithm, we move all sensors to the right by a distance X to
obtain the configuration Cy. But, the displacement of each sensor should be strictly
less than A. To ensure this, later in the algorithm, if the destination of a sensor s; is set
as y; = x/, then we adjust this destination of s; by moving it to the left slightly such
that s;’s displacement is strictly less than A.

@ Springer

390 Discrete Comput Geom (2013) 50:374-408

Consider a general step i of the algorithm. We define the set S;1 in the same way as
before, i.e., it consists of all sensors covering the point p™(R;_1) in C;_1. If S;; # 0,
then the algorithm is the same as before. In this case, the sensor s, (;) chosen in this step
has a displacement of exactly X, which is actually “illegal” since the displacement of
each sensor should be strictly less than A. We will address this issue later. However, if
Si1 = ¥, then the set S;» is defined slightly different from before. Here, since S;1 = 0,
we have to use a sensor to the right of R; 1 in C;_ to cover p™(R;_1). Since the
displacement of each sensor should be strictly less than A, we do not allow any sensor
to move to the left by exactly the distance 2X. To reflect this difference, we define S;2
as the set of sensors in C;_1 each of which has its left extension larger than R;_; and
strictly smaller than R;_1 + 2A (previously, it was “at most”). In this way, if we move
a sensor in S;; to the left to cover p™(R;_1), then the displacement of that sensor is
strictly less than A. The rest of the algorithm is the same as before. We define the Type
I and Type II sensors in the same way as before.

If the algorithm terminates without finding a feasible solution, then it must be
A* > X; otherwise, the algorithm finds a “feasible” solution SOL with a critical set
S¢ = {Sg(1), S¢(2), - - - » Sg(m)}- But, this does not necessarily mean A* < A since in
SOL, the displacements of some sensors in S¢ may be exactly A. Specifically, all Type
I'sensors in S¢ are in the same positions as they are in Cp and thus their displacements
are exactly A. In contrast, during the algorithm, the Type II sensors in S¢ have been
moved strictly to the left with respect to their positions in Cy; further, due to our
new definition of the set S;», the displacements of all Type II sensors are strictly less
than A. Therefore, if there is no Type I sensor in S¢, then the displacement of each
sensor in S is strictly less than A and thus we have A* < . Below we assume S¢
contains at least one Type I sensor. To make sure that A* < A holds, we need to
find a real feasible solution in which the displacement of each sensor in S is strictly
less than A. On the other hand, to make sure that A* > A holds, we must show
that there is no real feasible solution. For this, we apply the following algorithmic
procedure.

We seek to adjust the solution SOL to produce a real feasible solution. According
to our algorithm, for each sensor s; € S¢, if itis a Type I sensor, then y; = xlf and thus
its displacement is exactly A; otherwise, its displacement is less than A. The purpose
of our adjustment of SOL is to move all Type I sensors slightly to the left so that (1)
their displacements are strictly less than A, and (2) we can still form a coverage of B.
In certain cases, we may need to use some sensors in S \ S¢ as well. Also, we may
end up with the conclusion that no real feasible solution exists.

According to our algorithm, after finding the last sensor sg(,) in S¢, we have
R, > L.If R,, > L, then we can always adjust SOL to obtain a real feasible solution
by shifting each sensor in S¢ to the left by a very small value ¢ such that (1) the
resulting displacement of each sensor in S¢ is less than A, and (2) the sensors of S¢
still form a coverage of B. Note that there always exists such a small value ¢ such that
the above adjustment is possible. Therefore, if R, > L, then we have A* < A.

If R,, = L, however, then the above strategy does not work. There are two cases.
If there is a sensor s; € S \ S¢ such that x;, € (L — X —ry, L + A + r;), then we can
also obtain a real feasible solution by shifting the sensors of S¢ slightly to the left as
above and using the sensor s; to cover the remaining part of B around L that is no

@ Springer

Discrete Comput Geom (2013) 50:374—408 391

longer covered by the shifted sensors of S¢; thus we also have 1* < A. Otherwise, we
claim that it must be A* > . Below we prove this claim.

Consider the rightmost Type I sensor s; in S€. Suppose s; = 5¢(;), i.€., 5; is deter-
mined in step j. Thus, s; is at x; in SOL. Let & > 0 be an arbitrarily small value
(we will determine below how small it should be). Since we have assumed that the
extensions of all sensors are different, the value ¢ can be made small enough such that
by moving s; to x; — & in Co, the relative order of the extensions of all sensors remains
the same as before. Further, according to our algorithm above, the value ¢ can also
be small enough such that the behavior of the algorithm is the same as before, i.e.,
the algorithm finds the same critical set S¢ with the same cover order as before. It is
easy to see that such a small value ¢ always exists. Note that our task here is to prove
our claim A* > A is true, and knowing that such a value ¢ exists is sufficient for our
purpose and we need not actually find such a value ¢ in our algorithm.

Now, in step j, the new value R;, which is the right extension of s;, is & smaller
than its value before since s; was at x; in Co. Because s; is the rightmost Type I sensor
in S¢, after step j, all sensors in S¢ determined after s; (if any) are of Type II and thus
are moved to the left such that they are all in attached positions along with s;, which
implies that the right extension of the last sensor s¢(,,) in S is also & smaller than its
previous value (which was L). Hence, after step m, the sensors in S, covers [0, L —¢€].
As discussed above, if ¢ is made small enough, the behavior of the algorithm is the
same as before. By a similar analysis, we can also establish a result similar to Lemma
2. Namely, [0, L — ¢] is the largest left-aligned interval that can be covered by the
Sensors in S;n in this setting (here, S;n is the set of sensors whose right extensions are
at most L — ¢ in the configuration after step m). We omit the detailed analysis for this,
which is very similar to that for Lemma 2. Note that S¢ = S,,,. Since there is no sensor
s; € S\ S¢suchthat x; € (L — X —ry, L + A 4+ 1), the interval (L — ¢, L] cannot
be fully covered by the sensors in S. The above discussion implies that if we do not
allow the displacement of s; to be larger than A — &, then there would be no feasible
solution even if we allow the displacements of some other sensors (i.e., those Type I
sensors in S¢ before s;, if any) to be larger than A — & (but at most A). Thus, A* < A —¢
cannot be true. That is, A* > A — ¢ holds. Further, it is easy to see that, by a similar
argument, for any fixed value ¢’ > 0 with ¢’ < &, we also have A* > A — ¢’. Hence,
we obtain A* > A.

This finishes the discussion on how to determine whether A* < A. It is easy to see
that the above algorithm can also be implemented in O (n) time for each value A, after
O (nlogn) time preprocessing. The theorem thus follows. O

Theorems 1 and 2 together lead to the following corollary.

Corollary 1 After O (nlogn) time preprocessing, for any value A, we can determine
whether A* = A in O (n) time.

2.2 The Optimization Version of the General BCLS

In this section, we discuss the optimization version of the general BCLS problem. We
show that it is solvable in O (n* log n) time, thus settling the open problem in [8].

@ Springer

392 Discrete Comput Geom (2013) 50:374-408

It should be pointed out that if we can determine a set A of candidate values such
that 1* € A, then we would use our decision algorithms given in Sect. 2.1 to find A*
in A. We will use this approach in Sect. 3 for the uniform case. However, so far it is
not clear to us how to determine such a set A. Below, we use a different approach.

One main difficulty for solving the problem is that we do not know the order of the
sensors in the optimal solution. Our strategy is to determine a critical set of sensors
and their cover order in a feasible solution for the (unknown) optimal value A*. The
idea is somewhat similar to parametric search [6,14] and here we “parameterize” our
algorithm for Theorem 1. But, unlike the typical parametric search [6, 14], our approach
does not involve any parallel scheme and is practical. We first give an overview of this
algorithm. In the following discussion, the “decision algorithm” refers to our algorithm
for Theorem 1 unless otherwise stated.

Recall that given any value A, step i of our decision algorithm determines the sensor
s¢(i) and obtains the set S; = {sg(1), S¢(2)» - - - » Sg(i) }, in this order, which we also call
the cover order of the sensors in S;. In our optimization algorithm, we often use A as
a variable. Thus, S;(X) (resp., R; (1), s¢(;)(A), and C;(A)) refers to the corresponding
S; (resp., R;, S¢(i), and C;) obtained by running our decision algorithm on the specific
value A. Denote by C; the configuration of the input.

Our optimization algorithm takes at most n steps. Initially, let So(A*) = @,
Ro(A*) = 0, A(]) = 0, and)\(2) = +o00. For each i > 1, step i receives an interval

(k}_l,)»1.2_ 1) and a sensor set S; _1 (A*), with the following algorithm invariants:

o M e (W Al).
e For any value A € ()Ll.lfl,)Lizfl), Si—1(A) = S;_1(*) and their cover orders are

the same.

Step i either finds the value A* or determines a sensor s,(;)(A*). The interval
()\ilfl ,)Ll.zfl) will shrink to a new interval ()\il, kl.z) C ()»ilfl ,)\.1»271) and we also obtain
the set S; (A*) = S;_1 (A*) U {s,(;)(A*)}. All these can be done in O (nlog 1) time. The
details of the algorithm are given below.

Consider a general step i fori > 1 and we have the interval (k}_ s Al.z_l) and the set
S;—1(1*). While discussing the algorithm, we will also prove inductively the following

lemma about the function R;(A) with variable A € (A}, A%).

Lemma 4 For any step i withi > 0, if the algorithm does not stop after the step, then
the following hold:

(a) The function R;(A) for) € ()»l], Al.z) is a line segment of slope 1 or 0.
(b) We can compute the function R;()\) for A € ()Lil, A%) explicitly in O (n) time.
(¢) Ri(A) < L forany A € ()Lil,)\.1-2).

In the base case fori = 0, the statement of Lemma 4 obviously holds. We assume the
lemma statement holds fori — 1, in particular, the function R; _1 (A) for A € (A}_l,)”1‘2—1)
is already known. We will show that after step i the lemma statement holds for i, and
thus the lemma will be proved.

Again, in step i, we need to determine the sensor sg(;(A*) and let S;(A*) =
Si1(A*) U {sg;)(A™)}. We will also obtain an interval ()»il, k?) such that A* €

@ Springer

Discrete Comput Geom (2013) 50:374—408 393

Fig. 6 The vertical dashed line | is x = R;_1(X). The set S;1 (1) consists of the sensors whose covering
intervals intersect /, shown in bold. As A increases, the relative position of / in C;_1 (1) moves to the left,
and S;1 (1) changes whenever [hits a sensor extension, shown with the dotted vertical lines

(.1 A2 € (A, 27) and for any A € (A}, 1), Si(0) = S;(A*) holds (with the
same cover order).

To find the sensor s,(;)(1*), we first determine the set S;1(1*). Recall that S;1 (A%)
consists of all sensors covering the point p™ (R;_1(1*)) in the configuration C;_ (A*).
Foreach sensorin S\ S;_1(1*), its position in the configuration C; _ (1) with respect to
A€ (k}_l ,)‘1'2—1) isafunction of slope 1. As X increases in (A}_l ,)‘1'2—1), by our assump-
tion that Lemma 4(a) holds for i — 1, the function R;_;(}) is a line segment of slope 1
or 0. If R;_1()) is of slope 1, then the relative position of R; 1 () in C;_1(A) does not
change and thus the set S;1(A) does not change; if the function R;_ (1) is of slope 0,
then the relative position of R;_1(A) in C;_1(X) is monotonically moving to the left.
Hence, there are O (n) values for A in ()\1'171 ,)»1.27]) that can incur some changes to the
set S;1 (1) and each such value corresponds to a sensor extension (e.g., Fig. 6); further,
these values can be easily determined in O (n log n) time by a simple sweeping process
(we omit the discussion of it). Let A; be the set of all these A values. Let A;{ also
contain both)Ll.l_ | and Al.z_ 1> and thus, A 1.1_1 and)Ll.z_l are the smallest and largest values
in A;q, respectively. We sort the values in A;;. For any two consecutive values A < A3
in the sorted A;q, the set Sj;(1) for any A € (A1, A2) is the same. By using binary
search on the sorted A;; and our decision algorithm in Theorem 1, we determine (in
O (nlog n) time) the two consecutive values A1 and Ay in A;q such that &1 < A* < X».
Further, by Corollary 1, we determine whether A* = i,. If A* = X, then we termi-
nate the algorithm. Otherwise, based on our discussion above, S;1(A*) = S;1() for
any A € (A1, A2). Thus, to compute S;;(A*), we can pick an arbitrary A in (A1, A2)
and find S; (%) in the same way as in our decision algorithm. Hence, S;1(A*) can be
easily found in O (n log n) time. Note that A* € (A, Ap) C (Al.l_l,)”,'2—1)' Depending
on whether S;;(A*) # @, there are two cases.

o If S;1 (A*) # 0, then s4(;)(1*) is the sensor in S;1 (™) with the largest right exten-
sion. An obvious observation is that for any A € (11, A), the sensor in S;1 (A) with
the largest right extension is the same, which can be easily found. We let A} =X
and)»iz = Ao. Let S; (M%) = S;_1(A") U {s4(;)(A™)}. The algorithm invariants hold.
Further, as A increases in ()»1.1, Al.z), the right extension of s,(;y(A), which is R; (%),
increases by the same amount. That is, the function R;(}) on (Ail, Al.z) is a line
segment of slope 1. Therefore, we can compute R;(A) on (A},)L%) explicitly in
constant time. This also shows Lemma 4(a) and (b) hold for i.

@ Springer

394 Discrete Comput Geom (2013) 50:374-408

—p

‘l’ [

Fig.7 The two vertical dashed lines [is x = R;_1(A) +2x and !" is x = R;_1(A). The set S;» () consists
of sensors whose left extensions are between [and /’, shown in bold. As A increases, the relative position of
[in C;_1 (1) moves to the right, and the relative position of I’ in C;_; (1) either does not change or moves
to the left. The set S; (A) changes whenever [or [’ hits the left extension of a sensor, shown with the dotted
vertical lines

o If S;1(A*) = @, then we need to compute S;>(1*). For any A € (A{, A2), the set
Si2 (1) consists of all sensors whose left extensions are larger than R; () and at
most R;_1(X) + 2X in the configuration C;_1(1). Recall that the function R;_1(X)
on ()‘1'171’)‘1'271) is linear with slope 1 or 0. Due to (A1, 2) C ()\1,171,)\1.27]), the
linear function R;_1(X) 4+ 2A on (A1, A7) is of slope 3 or 2. Again, as A increases,
the position of each sensor in S \ S;_1(A*) in C;_1(A) is a linear function of
slope 1. Hence, as A increases, the relative position of R;_1(A) 4+ 24 in C;_1 (&)
moves to the right, and the relative position of R;_1(A) in C;_1(A) either does not
change or moves to the left. Therefore, there are O (n) A values in (A1, A2) each
of which incurs some change to the set S;2(A) and each such A value corresponds
to the left extension of a sensor (e.g., Fig. 7). Further, these values can be easily
determined in O (nlogn) time by a sweeping process (we omit the discussion
for this). (Actually, as A increases, the size of the set S;2(A) is monotonically
increasing.) Let A;> denote the set of these A values, and let A;, contain both A
and X». Again, | Aj2| = O(n). We sort the values in A;;. Using binary search on the
sorted A;> and our decision algorithm in Theorem 1, we determine (in O (n logn)
time) the two consecutive values A} and 1}, in A;2 such that 1| < A* < A’. Further,
by Corollary 1, we determine whether A* = 1). If A* = 1), then we are done.
Otherwise, Si2(A*) = Sj2() for any A € (A}, 1}), which can be easily found.
Note that A* € (A}, 1}) C (A1, 12).

The above obtains the set S;2(A*). We claim that S;2(A*) # . Indeed, due to
our assumption that Lemma 4 holds for i — 1, we have R;_j(A) < L for A €
(A}_l, Xl.z_l). Suppose to the contrary that S;»(1*) = . Then, the sensor s¢(;)(1*)
does not exist, which implies that S;_1(1*) is the critical set for covering the
barrier B in an optimal solution. By our algorithm invariants, A* € (Ailf],)»1271)
and S;_1(A*) is the same as S;_ (A) forany A € (A}_l, kl.z_l). DuetoR;_1(A) < L
for A € ()Ll.lf1 ,)\1,271), the sensors in S;_(A™) cannot cover the entire barrier B,
which contradicts with that S;_;(A*) is the critical set in the optimal solution.
Hence, Sj2(A*) # 0.

Since S;2(A*) # 0, s4(;)(A*) is the sensor in S;5(1*) with the smallest right exten-
sion. As before, the sensor in S;> (1) with the smallest right extension is the same
for any A € (A}, 1}). Thus, s4¢;)(A*) can be easily determined. We let)»l.l =X

@ Springer

Discrete Comput Geom (2013) 50:374—408 395

and kl-z =2, Let S; (M) = S;—1(A*) U {5¢(;)(A™)}. The algorithm invariants hold.
Further, we examine the function R; (), i.e., the right extension of s,(;)(2) in the
configuration C;(1), as A increases in ()»il,)»1.2). Since sg(;—1)(A*) and sg4¢) (L)
are always in attached positions in this case, for any A € ()Lil,)Li2), we have
Ri(A) = Ri—1(A) + 2rg(). Thus, the function R; (1) is a vertical shift of R; _1(4)
by the distance 2r, ;). Because we already know explicitly the function R; {(})
for A € (k} , Al.z), which is a line segment of slope 1 or 0, the function R;(}) can
be computed in constant time, which is also a line segment of slope 1 or 0. Note
that this shows that Lemma 4(a) and (b) hold for i.

If the algorithm does not stop, the above determines an interval ()\l.l, Al.z) such that
the algorithm invariants and Lemma 4(a) and (b) hold on the interval. Below, we do
further processing such that Lemma 4(c) also holds.

Because the function R; (1) on (A}, Al.z) is a line segment of slope 1 or 0, there are
three cases depending on the values R; (%) and L: (1) R;(A) < L forany A € (Ail, Al.z),
(2) Ri(A) > L for any A € (A},)le), and (3) there exists A’ € ()\il, Al.z) such that
Ri(M)=L.

1. For Case (1), we proceed to the next step, along with the interval (k} , kl.z). Clearly,
the algorithm invariants hold and Lemma 4(c) holds for i.
2. For Case (2), the next lemma shows that it actually cannot happen due to
A e (L ad).
Lemma 5 It is not possible that R; (1) > L for any » € (A},)\l.z).

1

Proof Assume to the contrary that R;(A) > L for any A € (k}, Al.z). Since A* €
()Lil,)\%), let A” be any value in (A}, A*). Dueto A/ € (Xil,)Liz), we have R; () > L.
But this would imply that we have found a feasible solution where the displacement
of each sensor is at most A”, which is smaller than A*, incurring contradiction. O

3. For the Case (3), note that the slope of R; (1) on (A}, Al.z) cannot be 0. To see this,

suppose to the contrary the slope of R; (1) on ()Ll.l,)Liz) is 0. Then, R; (A) = L for
any A € (A}, A?). Since A* € (A}, A7), forany A1’ € (A}, A*), R;(\') = L, which
means that there is a feasible solution where the displacement of each sensor is at
most A" < A*, incurring contradiction.
Hence, R; (1) on ()»il, k?) is a line segment of slope 1, and thus we can determine
in constant time the unique value A" € (A},)‘12) such that R;(A") = L. Clearly,
A* <). By Corollary 1, we determine whether A* = A'. If A* =)/, then we
terminate the algorithm; otherwise, we have A* € (A} ,2)) and update)\% to .
We proceed to the next step, along with the interval (A},)»?). Again, the algorithm
invariants hold and Lemma 4(c) holds for i.

This finishes the discussion of step i of our algorithm. The running time of step i
is O (nlogn). Note that in each case where we proceed to the next step, the statement
of Lemma 4 holds for i, and thus Lemma 4 has been proved.

In the following lemma, we show that the algorithm must stop within at most n
steps.

@ Springer

396 Discrete Comput Geom (2013) 50:374-408

Lemma 6 The algorithm finds A* in at most n steps.

Proof Assume the critical set is Sx(A*) for some & if we run our decision algorithm
with & = A*. Since there are n sensors from the input, we have 1 < k < n.

We claim that our algorithm finds A* in at most k steps. Suppose to the contrary
that the algorithm does not find A* in the first k steps. In other words, the algorithm
does not stop after step k. By the algorithm invariants, after step k, we have an interval
(A, A3) such that A* € (A}, A7) and Sk (L) = Sk (A*) forany A € (A}, A2). Further, by
Lemma 4, Ry (A) < L forany A € (AL, A,%), which means that the sensors in Sg(A™)
cannot cover the entire barrier B for any A € (AL, A,%), contradicting with that Sy (A*)
is the critical set for the decision algorithm when A = A*.

Therefore, our algorithm finds A* in at most k steps. The lemma thus follows. 0O

After A* is found, by applying our decision algorithm on A = 1*, we finally produce
an optimal solution in which the displacement of every sensor is at most A*. Since
each step takes O (n logn) time, the total time of the algorithm is O (n? log n).

Theorem 3 The general BCLS problem is solvable in O (n”logn) time.

We shall make a technical remark. The typical parametric search [6,14] usually
returns with an interval containing the optimal value and then uses an additional step to
find the optimal value. In contrast, our algorithm is guaranteed to find the optimal value
A* directly. This is due to the mechanism in our algorithm that requires R; (A) < L for
any A € ()Ll.l, Al.z) after each step i if the algorithm is not terminated. This mechanism
actually plays the role of the additional step used in the typical parametric search.

3 The Uniform Case of BCLS

In this section, we present an O (n log n) time algorithm for the uniform case of BCLS.
Previously, the best-known algorithm for it takes O(nz) time [8]. Further, for the
special uniform case when all sensors are initially located on the barrier B, we solve
itin O(n) time.

3.1 Preliminaries

Recall that in the input, all sensors are ordered from left to right by their initial positions,
ie., x; <xp <--- < Xx,.Suppose in a solution, the destination of each sensor s; is y;
(1 <i < n); then we say that the solution is order preserving if y; < y» < --- < y,.
In the uniform case, since all sensors have the same range, we let denote the sensor
range. The next lemma was known [8].

Lemma 7 (Czyzowicz et al. [8]) For the uniform case, there is always an optimal
solution that is order preserving.

As discussed in [8], Lemma 7 is not applicable to the general BCLS. Consequently,
the approach in this section does not work for the general BCLS.

@ Springer

Discrete Comput Geom (2013) 50:374—408 397

Based on the order preserving property in Lemma 7, the previous O(n?) time
algorithm [8] tries to cover B from left to right; each step picks the next sensor and re-
balances the current maximum sensor movement. Here, we take a completely different
approach.

Denote by 1* the maximum sensor movement in an optimal solution. We use OPT
to denote an optimal order preserving solution in which the destination for each sensor
si is yi (1 <i < n). For each sensor s;, if x; > y; (resp., x; < y;), then we say s; is
moved to the left (resp., right) by a distance |x; — y;|. A set of sensors is said to be
in attached positions if the union of their covering intervals is a continuous interval
on the x-axis whose length is equal to the sum of the lengths of the covering intervals
of these sensors. A single sensor is always in attached position. The following lemma
was proved in [8].

Lemma 8 (Czyzowicz et al. [8]) If A* > 0, then in OPT, there exists a sequence of
consecutive sensors i, Si+1, . .., §j withi < j such that they are in attached positions
and one of the following three cases is true. (a) The sensor s is moved to the left by
the distance * and y; = r (i.e., the sensors s;, si11, . .., s together cover exactly the
interval [0, 2r (j — i 4+ 1)]). (b) The sensor s; is moved to the right by the distance *
andyj =L —r.(c) Fori # j (ie, i < j), the sensor s; is moved to the right by the
distance * and the sensor s is moved to the left by the distance 1*.

Cases (a) and (b) in Lemma 8 are symmetric. By Lemma 8, for each pair of sensors
si and s; withi < j, we can compute three distances A1 (i, j), A2(7, j), and A3(i, j)
corresponding to the three cases in Lemma 8 as candidates for the optimal distance
A*. Specifically, A1 (i, j) = x; — [2r(j — i) + r], where the value 2r(j — i) + r is
supposed to be the destination of the sensor s ; in OPT if case (a) holds. Symmetrically,
A, j) =[L—-2r(j—1)—r]—x;.LetA3(i, j) = [xj —x; —2r(j —i)]/2 fori < j.
Let A be the set of all A (i, j), A2(Z, j), and A3(i, j) values. Clearly, A* € A and
|A| = ©(n?). By using an algorithm for the decision version of the uniform case to
search in A, one can find the value A*. Recall that the decision problem is that given
any value), determine whether there exists a feasible solution for covering B such
that the moving distances of all sensors are at most A. Thus, A* is the smallest value
in A such that the answer to the decision problem on that value is “yes”. A simple
greedy O (n) time algorithm was given in [8] for the decision problem.

Lemma 9 (Czyzowicz et al. [8]) The decision version of the uniform case is solvable
in O (n) time.

But, the above approach would take Qn?) time due to |A] = O (n?). To reduce
the running time, we cannot compute the set A explicitly. In general, our O(nlogn)
time algorithm uses the following idea. First, instead of computing all elements of
A explicitly, we compute one element of A whenever we need it (we may do some
preprocessing for this). Second, suppose we already know (implicitly) a sorted order
of all values in A; then we can use binary search and the decision algorithm for Lemma
9 to find A*. However, we are not able to order the values of A into a single sorted list;
instead, we order them (implicitly) in O (n) sorted lists and each list has O (n) values.
Consequently, by a technique called binary search in sorted arrays [4], we compute
A*in O (nlogn) time. The details of our algorithm are given in the next subsection.

@ Springer

398 Discrete Comput Geom (2013) 50:374-408

3.2 Our Algorithm for the Uniform Case

Due to the order preserving property, it is easy to check whether A* = 0 in O (n) time.
In the following, we assume A* > 0.

We focus on how to order (implicitly) the elements of A into O (n) sorted lists and
each list contains O (n) elements. We also show that after preprocessing, each element
in any sorted list can be computed in O(1) time using the index of the element. We
aim to prove the next lemma.

Lemma 10 In O(nlogn) time, the elements of A can be ordered (implicitly) into
O (n) sorted lists such that each list contains O (n) elements and each element in any
list can be computed in constant time by giving the index of the list and the index of
the element in the list.

The following technique, called binary search on sorted arrays [4], will be applied.
Suppose there is a “black-box” decision procedure IT available such that given any
value a, IT can report whether a is a feasible value to a certain problem in O (T') time,
and further, if a is a feasible value, then any value larger than a is also feasible. Given
a set of m arrays A;, 1 < i < m, each containing O (n) elements in sorted order, the
goal is to find the smallest feasible value § in A = |/, A;. Suppose each element of
any array can be obtained in constant time by giving its indices. An algorithm for the
following result was presented by Chen et al. in [4].

Lemma 11 (Chenetal. [4]) The value § in A can be computed in O ((m+T) log(nm))
time.

If we use the algorithm for Lemma 9 as the decision procedure I, then by Lemmas
10 and 11, we can find 1* in A in O(nlogn) time. After A* is found, we can apply
the algorithm for Lemma 9 to compute the destinations of all sensors, in O (n) time.
Hence, we have the following result.

Theorem 4 The uniform case of the BCLS problem is solvable in O (nlogn) time.

In the rest of this subsection, we focus on proving Lemma 10.

For each 1 <t < 3, let A, denote the set of all A,(i, j) values. Clearly, A =
A1U Ay U As. We seek to order each of the three sets A1, Aj, and A3 into sorted lists.

We discuss A first. This case is trivial. It is easy to see that for each given value
Jj, we have A1(i1, j) < A1(ia, j) for any iy < i» < j. Thus, for every value j, we
have a sorted list A1 (1, j), A1(2, j), ..., A1(j, j) of j elements, and each element can
be computed in constant time by using the index of the element in the list. Therefore,
we have n sorted lists, and clearly, the set of elements in all these lists is exactly Aj.
Hence, we have the following lemma.

Lemma 12 In O(nlogn) time, the elements of A1 can be ordered (implicitly) into
O (n) sorted lists such that each list contains O (n) elements and each element in any
list can be computed in constant time by giving the index of the list and the index of
the element in the list.

The set A, can be processed in a symmetric manner as A1, and we omit the details.

@ Springer

Discrete Comput Geom (2013) 50:374—408 399

Lemma 13 In O (nlogn) time, the elements of A> can be ordered (implicitly) into
O (n) sorted lists such that each list contains O (n) elements and each element in any
list can be computed in constant time by giving the index of the list and the index of
the element in the list.

In the following, we focus on ordering (implicitly) the set A3 and showing the
following lemma, which, together with Lemmas 12 and 13, proves Lemma 10.

Lemma 14 In O(nlogn) time, the elements of A3 can be ordered (implicitly) into
O (n) sorted lists such that each list contains O (n) elements and each element in any
list can be computed in constant time by giving the index of the list and the index of
the element in the list.

Proving Lemma 14 is a main challenge to our uniform case algorithm. The reason
is that, unlike A1 and Aj, for a given j, for any 1 < i; < iy < j, either A3(i1, j) <
A3(i2, j) or A3(i1, j) > A3(i2, j) is possible. Hence, to prove Lemma 14, we have to
find another way to order the elements of As.

Our approach is to first remove some elements from Az that are surely not A* (for
example, negative values cannot be A*). We begin with some intuitions. We say two
intervals on the x-axis are strictly overlapped if they contain more than one common
point. In the following discussion, the sensors are always at their input positions unless
otherwise stated. We define two subsets of sensors, S, and Sp, as follows. A sensor s;
isin S, if and only if there is no sensor s; with i < j such that their covering intervals
are strictly overlapped (e.g., Fig. 8). A sensor s; is in S, if and only if there is no sensor
sj withi < j such that their covering intervals are strictly overlapped. Let the indices
of sensors in S, be aj, az, . .., a,, and the indices of sensors in Sp be by, by, ..., by,,
from left to right. We claim n; = n;. To see this, consider the interval graph G in
which the covering interval of each sensor is a vertex and two vertices are connected
by an edge if their corresponding intervals are strictly overlapped. Observe that in
each connected component of G, there is exactly one interval whose corresponding
sensor is in S, and there is exactly one interval whose corresponding sensor is in Sp,
and vice versa. Thus, n; = ny, which is the number of connected components of G.
Let m = n1 = ny < n. Further, it is easy to see that the covering intervals of both a;
and b; must be in the same connected component of G and @; < b;. Indeed, a; (resp.,
b;) is the leftmost (resp., rightmost) sensor in the subset of sensors whose covering
intervals are in the same connected component of G (Fig. 8). Note that a; = b; is
possible. Hence, G has m connected components.

For each 1 < i < m, let G; denote the connected component containing the
covering intervals of a; and b; ; with a little abuse of notation, we also use G; to denote
the subset of sensors whose covering intervals are in the connected component G;.
Clearly, G; = {sj | a; < j < b;} (e.g., Fig. 8). We also call G; a group of sensors.
The groups G, G2, ..., G, form a partition of S. The sensor s, (resp., sp;) is the
leftmost (resp., rightmost) sensor in Gj.

Lemma 15 For any two sensors s; and sj with i < j, if s; &€ Sp or s; & Sa, then
A3,) # A%

@ Springer

400 Discrete Comput Geom (2013) 50:374-408

a.
a; i
i iy
b bl bi+1
i-1
> x
Fig. 8 Illustrating three groups of sensors: G;_1, G;, and G;1. The sensors with indices a;_1, a;, and

aj41 (resp., bj_1, b;, and b; ;1) are in S, (resp., Sp), which are indicated by thick segments

Proof Assume s; & Sp. In the following, we prove that A3(i, j) cannot be A* for any
i< j.

Suppose s; is in the group Gy. Theni < by due to s; & Sp. Further, the covering
intervals of s; and s;4+1 must be strictly overlapped (otherwise, s; would be in Sp).
Assume to the contrary A3(i, j) = A*, which implies that case (c) in Lemma 8 holds.
Thus, in the corresponding OPT, s; is moved to the right by the distance A3(i, j) and
all sensors s;, si+1,...,s; must be in attached positions. It is easy to see that the
sensor §;4+1 must move to the right by the distance A3(i, j) + 2r — (xj+1 — x;). Since
the covering intervals of s; and s;41 are strictly overlapped, 2r — (x;4+1 — x;) > O.
Therefore, the moving distance of s; 11 must be larger than that of s;. Since the moving
distance of s; is A3(i, j) = A*, we have contradiction. Hence, A3(Z, j) cannot be A*.

Assume s5; & S,. Then by a symmetric argument, we can prove A3(i, j) # A* for
any i < j. O

By Lemma 15, if A* € A3, then it can only be in the set A} = {A3(i, j) | i <
joi € Sp,j € Sa}, and |Af| = O(m?). Thus, we seek to order the elements of A
into O (m) sorted lists and each list contains O (m) elements. One might be tempting
to use the following way. Clearly, foreach 1 <k <m — 1, A/3 contains A3(Sp, , Sa;,)
forall h = k+ 1,k + 2,...,m, and hence one may simply put them into a list.
However, such a list is not necessarily sorted. Specifically, for any two indices &1 and
hy withk + 1 < hy < hy < m, either A3(sp,, Sahl) < A3(Spys sah2) or A3(Spy Sahl) >
A3(Spy Sﬂhz) is possible. Our approach relies on additional observations. Below, for
simplicity of notation, we use A3(by, ay) to refer to A3(sp, , Sq;,). We first examine the
value of each A3(bx, ap,) in Aj.

By definition, we have A3(bi, axq1) = (xg,, — Xp, — 2r)/2, and this is equal to
half the length of the interval between the right extension of s;, and the left extension
of 54, which we call a gap. Note that this gap is ¢ when the two sensors sp, and s, ,
are in attached positions. Foreach 1 < k < m — 1, define gy = x4, — X, —2r, which
is the length of the corresponding gap. Hence, A3(by, ar+1) = gk /2. Further, for each
1 < k < m, we define the widrh of the group G as the length of the union interval of
the covering intervals of the sensors in G, and define /; as the sum of the lengths of
the covering intervals of the sensors in Gx minus the width of Gy, i.e., [x is equal to
2r(by — ax + 1) minus the width of G. We then have the following observation.

Observation 3 For every k with 1 <k <m — 2, we have A3(by, ap) = (Z?;k] & —
Il 1)/2 for each h withk +2 < h < m.

Proof By definition, A3(bk, ap) = [(xq, — Xp, — 2r) — 2r(ap — by — 1)]/2. It is easy
to see that the value x,, — x5, — 2r is equal to Zi:kl g: plus the sum of the widths

@ Springer

Discrete Comput Geom (2013) 50:374—408 401

of all groups Gi+1, G2, ..., Gr—1, and the value 2r(ap — by — 1) is equal to the
sum of the lengths of the covering intervals of the sensors in the union of the groups
Gi+1, Gr42, - .., Gp—1. According to definitions of [, for k +1 <t < h — 1, the
observation follows. O

The following lemma will be useful later.

Lemma 16 For four indices ki, ky, h1, and ha, suppose max{ky, ko} < min{hy, ho},
then A3(by,, an,) —Asz(by,, an,) = Az(biy, an) — A3(by,, an,), and consequently,
A3(bry s any) < A3(bk,, an,) if and only if A3(br,, an,) < A3(bk,, an,).

Proof Note that for every 1 < k < m — 2, we have A3(bx,ap) = (Z?:_kl g —
ﬁ:le l)/2fork +2 < h <m,and A3(bg, ap) = gr/2 forh =k + 1.
If h1 = hy, then the lemma trivially follows since A3(bk,, an,) = A3(by,, an,)
and A3(by,, an,) = A3(b,, ap,). Thus we consider i # hj, and only show the
case with 11 < hj (the case with hy > hj is similar). By their definitions, we have

23(biy» any) — A3 by any) = (= 3021 e + 3002, 1) /2. Similarly, A3 (by, , an,) —
A3 (bky, any) = (— Zf’i;l] & + Zhr] 1)/2. Hence, the lemma follows. O

t=h

Lemma 16 implies that for any k| and kp with 1 < k; < kp < m — 1, the sorted
order of A3(by,,a;) forall t = kp + 1, ko + 2, ..., m is the same as that of the list
A3(bi,, a;) fort = ko + 1,k +2,..., m in terms of the indices of a;. This means
that if we sort the values in the list A3(b1, a;) for all t = 2, 3, ..., m, then for any
1 < k < m — 1, the sorted order of the list A3(bg, a;) withallt =k+ 1, k+2,...,m
is also obtained implicitly. Our “ordering” algorithm works as follows.

We first explicitly compute the values A3(by, a;) for all t = 2,3, ..., m, which
takes O(m) time, and then sort them in O(mlogm) time. Let p be the permuta-
tion of 2,3,...,m such that the increasing sorted list of these A3(bi1, a;) values
is A3(b1, ap)), A3(b1, ap@)), - .., A3(b1, apou—1)). Note that the permutation p is
immediately available once we obtain the above sorted list. Forany 1 < k < m, we say
the element A3 (b, ap) isvalidif k+1 < h < m and is undefined otherwise. By Lemma
16, the valid elements in each list A3 (bx, ap(1)), A3(bk, ap2)), - - ., A3(bg, apn—1y) are
also sorted increasingly. Further, if we compute g1, g2, ..., gm—1and /1, o, ..., [, as
well as their prefix sums in the preprocessing, then given the index of any valid element
in the list, we can obtain its actual value in O (1) time. Clearly, the preprocessing takes
O (nlogn) time. Thus, we have ordered (implicitly) the elements of A’3 into O(m)
sorted lists and each list has O (m) elements.

However, we are not done yet. Since eventually we will apply the binary search
technique of Lemma 11 to these sorted lists and the lists contain undefined elements,
the algorithm may take an undefined element in such a list and use it in the decision
procedure which is the algorithm for Lemma 9. But, the undefined elements do not
have meaningful values. To resolve this, we assign (implicitly) to each undefined
element an “appropriate” value, as follows. For each 1 < k < m, let L(k) denote the
list A3(bi, ap(1y), A3(bk, ap2), - .., A3(bk, apem—1)). If 1 < k < m, then the list £(k)
has some undefined elements. For each undefined element, we (implicitly) assign an
actual value to it such that the resulting new list is still sorted. The idea is inspired
by Lemma 16. We use the list £(1) as the reference list since all its elements are

@ Springer

402 Discrete Comput Geom (2013) 50:374-408

valid. Every other list £(k) has at least one valid element, for example, the element
A3 (br, ar+1). We compute explicitly the value Az (by, ax41) foreach 1 < k < m, in
O (m) time. For a list £(k) with 1 < k < m and any undefined element A3 (bx, a,;)) in
L(k), we assign to it (implicitly) the value A3 (by, ax1) +A3(b1, apiy) — A3(b1, axs1)
(note that all these three values have already been computed explicitly). The lemma
below shows that the resulting new list £(k) is still sorted increasingly with this value
assignment scheme.

Lemma 17 For any 1 < k < m, the list L(k) is still sorted increasingly after all its
undefined elements are assigned values implicitly.

Proof Consider any k with 1 < k < m, and any two indices i and j with 1 <i <
J < m — 1.Itis sufficient to prove A3(by, api)) < A3(br, ap(j))-

If both values are valid, then by Lemma 16, the inequality holds. Otherwise,
we assume A3(bg, ap()) is undefined. After our value assignment, A3(by, api)) =
A3(bi, axy1) + A3(b1, apy) — A3(b1, ar+1). Depending on whether A3(by, ap(jy) is
undefined, there are two cases.

If A3(bx,ap(jy) is undefined, then we have A3(br,apj)) = A3z(br, axy1) +
A3(b1, ap(j)) — A3(b1, axv1). Hence, A3(bi, ap(j)) — A3 (b, apiy) = r3(b1, apjy) —
A3(b1,apiy) = 0 due to j > i.If A3(b, ap(j)) is valid, then by Lemma 16, we
have A3(bi, ap(j)) = A3(bi, ax1) +A3(b1, ap(j)) —A3(b1, axs1). Thus, A3 (b, ap(j))
— A3(bk, api)) = A3(b1, ap(j)) — A3(b1, apiy) = 0.

Therefore, in both cases, we have A3(by, ap)) < A3(b, ap(j)), which proves the
lemma. O

In summary, in O (n log n) time, we have (implicitly) ordered the elements of A’ into
O (m) sorted lists and each list has O (m) elements such that every element in any list
can be obtained in O (1) time. Hence, Lemma 14 is proved. We remark that assigning
values to the undefined elements in A’ as above does not affect the correctness of our
algorithm. Assigning values to undefined elements only makes our candidate set A for
A* alittle larger (by a constant factor), which obviously does not affect the algorithm
correctness because the larger candidate set still contains A*. One might also see that
the statement of Lemma 14 (and thus Lemma 10) is a little imprecise since we actually
ordered only the elements in a subset A’3 of A3z (not the entire set A3).

3.3 The Special Uniform Case

In this subsection, we consider the special uniform case in which all sensors are initially
located on the barrier B = [0, L], i.e.,0 < x; < L foreach 1 <i < n. We give an
O (n) time algorithm for it. Again, we assume A* > 0.

Clearly, Lemmas 7 and 8 still hold. Further, since all sensors are initially on B,
in case (a) of Lemma 8, s; must be s1. To see this, since s; is initially located on
B = [0, L], it is always the best to use s to cover the beginning portion of B due to
the order preserving property. We omit the formal proof of this. Similarly, in case (b)
of Lemma 8, s; must be s,,. We restate Lemma 8 below as a corollary for this special
case.

@ Springer

Discrete Comput Geom (2013) 50:374—408 403

Corollary 2 If A* > 0, then in OPT, there exists a sequence of consecutive sensors
SisSitl, ..., 8 withi < j such that they are in attached positions and one of the
following three cases is true. (a) The sensor s is moved to the left by the distance A*,
i =1, and yy = r. (b) The sensor s; is moved to the right by the distance A*, j = n,
andy, = L —r.(c) Fori # j (i.e., i < j), the sensor s; is moved to the right by the
distance * and the sensor s; is moved to the left by the distance 1*.

Forany 1 < i < j < n, we define A3(i, j) in the same way as before, i.e.,
A3, j) = [xj — x; — 2r(j — i)]/2, which corresponds to case (c) of Corollary 2.
For each 1 < j < n, define)Jl (j) = xj +r — 2rj, which corresponds to case (a).
Similarly, for each 1 < i < n, define A,(i) = L — 2r(n — i) — (x; + r), which
corresponds to case (b). We still use A3 to denote the set of all A3(i, j) values. Define
A= ()11 <j<nband A; = {A5(0) | 1 <i <n}.Let A" = A} U A, U As.
By Corollary 2, we have A* € A’. The following lemma is crucial to our algorithm.

Lemma 18 The optimal value)* is the maximum value in A’.

Proof Let A’ be the maximum value in A’. It suffices to show A* < A" and 1’ < A*.
Since A* € A’, A* <)\ trivially holds. Below, we focus on proving A’ < A*.

Since A* > 0,1" > 0 holds. Clearly, either A" € A}, or 2" € A}, or A’ € A3. Below
we analyze these three cases.

If A’ € A, then suppose A" = 1/ (j) for some j. Since A’ > 0, we have 0 < A" =
M(j) =xj+r—2rj,and thus x; —r > 2r(j — 1). Since all sensors are initially on
the barrier B, x; < L holds. Hence, even if all sensors s1, 52, ..., s;—1 are somehow
moved such that they are in attached positions to cover the sub-interval [0, 2r(j — 1)]
of B, the sub-interval [2r(j — 1), x; — r] of B is still not covered by any of the

sensors si, 82, ..., sj—1. By the order preserving property, to cover the sub-interval
[2r(j — 1), x; — r], the best way is to move s; to the left such that the new position
of s is at 2r(j — 1) + r (i.e., the sensors s1, 52, ..., s; are in attached positions),

for which the moving distance of s is exactly A (). Therefore, the maximum sensor
movement in any optimal solution has to be at least A} (j). Thus, 2" = 1| (j) < 1*.

If A" € A, then the analysis is symmetric to the above case and we omit the details.

When)/ € Aj, the analysis has a similar spirit and we briefly discuss it. Suppose
AMo= 230, j) = [x; —x; —2r(j — i)]/2 for some i < j. Since all sensors are
initially on the barrier B, we have 0 < x; < x; < L. Consider the sub-interval
[x; +7r,x; —r] of B. Because A > 0, we have xj —x; —2r(j —i) > 0, and
thus (x; —7) — (x; +7) > 2r(j — i — 1). This implies that even if we somehow
move the sensors $;41, S;42, ..., Sj—1 such that they are in attached positions inside
[x; + 7, xj — r], there are still points in [x; + r, x; — r] that are not covered by the
Sensors S;y1, $i+2, ..., S;j—1. By the order preserving property, to cover the interval
[x; +r, x; — r], we have to use both s; and s; and the best way is to move s; to the
right and move s; to the left by an equal distance so that all sensors s;, Si41, ..., S;
are in attached positions, for which the moving distances of s; and s; are both A3(, ;)
exactly. Therefore, the maximum sensor movement in any optimal solution has to be
at least A3(i, j). Thus, ' = A3(i, j) < A*.

In summary, in any case, A’ < A* holds. The lemma thus follows. O

@ Springer

404 Discrete Comput Geom (2013) 50:374-408

Base on Lemma 18, to compute A*, we only need to find the maximum value in A,
which can be easily obtained in O (1n?) time by computing the set A" explicitly (note
that |A'| = © (nz)). Yet, we show below that we can find its maximum value in O (n)
time without computing A’ explicitly.

Lemma 19 The maximum value in A’ can be computed in O (n) time.

Proof Let A1, Ay, and A3 be the maximum values in the three sets A}, A/z, and As,
respectively. It is sufficient to show how to compute A1, A2, and A3 in O (n) time.

Both the sets A} and A/, can be computed explicitly in O (n) time. Thus, we can
find A1 and X, in O(n) time. Below, we focus on computing A3.

Note that for each value A3(i, j) € Az with i < j, we have A3(i, j) =
[xj —x; —2r(j —i)]/2. Foreach 1 <t < n — 1, define z; = x;41 — x; — 2r.
Hence, A3(i, j) = (zt]:_l-l z¢)/2. This implies that finding the maximum value in
A3z is equivalent to finding a consecutive subsequence of z1, z2, ..., Z,—1 such that
the sum of the subsequence is the maximum among all possible consecutive subse-
quences, which is an instance of the well studied maximum subsequence sum problem.
This problem can be solved easily in O (n) time. Specifically, we first compute all val-
ues z1, 22, . - -, Zn—1, in O(n) time. If all values are negative, then A3 is the maximum
value divided by 2. Otherwise, we let z6 = 0,and foreach1 <t < n —1, let
7; = max{z;_,, 0} 4 z;. It is not difficult to see that A3 = % -max|<;<,—1{z;}. Hence,
X3 can be computed in O (n) time. The lemma thus follows. O

After A* is computed, we use the linear time decision algorithm for Lemma 9 to
compute the destinations of all sensors such that the maximum sensor movement is at
most A*.

Theorem 5 The special uniform case of the BCLS problem is solvable in O (n) time.

4 The Simple Cycle Barrier Coverage

In this section, we discuss the simple cycle barrier coverage problem and present
an O(n) time algorithm for it. Mehrandish [15] gave an O(n?) time algorithm by
somehow generalizing the O (n?) time algorithm [8] for the uniform BCLS.

In this problem, the target region R is on the plane enclosed by a simple cycle B that
is the barrier we aim to cover. The sensors in S = {s1, 52, .. ., 5, } are initially located
on B and each sensor is allowed to move only on B (e.g., not allowed to move inside
or outside R). All sensors in S have the same range r. Here, the distance between any
two points on B is not measured by their Euclidean distance in the plane but by their
shortest distance along B. If a sensor is at a point p on B, then it covers all points of
B whose distances to p are at most r. Suppose all sensors in S are initially ordered
clockwise on B as specified by their indices. Our goal is to move the sensors along B
to form a coverage of B such that the maximum sensor movement is minimized.

Since B is a cycle here, a sensor is said to move clockwise or counterclockwise
(instead of right or left). Let L be the length of B. Again, we assume L < 2nr
(otherwise, it would not be possible to form a coverage of B). Since B is a cycle,

@ Springer

Discrete Comput Geom (2013) 50:374—408 405

if L < 2r, then every sensor by itself forms a coverage of B. Below, we assume
L > 2r. Imagine that we pick a point py on the interval of B from s, clockwise to
s1 as the origin of B, and define the coordinate of each point p € B as the distance
traversed as we move from pg to p clockwise along B. Let the input coordinate of
each sensor s; € S be x;. Thus, we have 0 < x; < xp < --- < x,, < L. Further, for
each 1 <i < n, we let s;4, denote a duplication of the sensor s; with a coordinate
Xi+n = X; + L, which actually refers to the position on B with the coordinate x;.

Since all sensors have the same range, it is easy to see that there always exists an
order preserving optimal solution OPT in which the sensors are ordered clockwise
along B in the same order as that of their input indices. A formal proof for this is given
in [15]. Again, let A* be the optimal moving distance. We can check whether A* = 0
in O(n) time. Below, we assume A* > 0.

Actually, our algorithm considers a set of 2n sensors, S’ = {s1,52,..., S}
Specifically, the algorithm determines a consecutive sequence of sensors, S, ;=
{sisSiv1,....85} C S’ with 1 < i < j < i + n, and moves the sensors of Sl.’j to
form a barrier coverage of B such that the maximum sensor movement is minimized.
Clearly, for each sensor s; € S, at most one of s and its duplication si4, is in Slf i
In this simple cycle case, the definition of attached positions of the sensors is slightly
different from that in the line segment case. In this case, we call the two endpoints
of the covering interval of a sensor s; its counterclockwise and clockwise extensions,
such that when going clockwise from the counterclockwise extension to the clockwise
extension, we move along the covering interval of s;. One sensor is always in attached
position by itself. Two sensors are in attached positions if the clockwise extension of
one sensor is at the same position as the counterclockwise extension of the other sen-
sor. Note that unlike in the line segment case, if two sensors s; and s; are in attached
positions, say, the clockwise extension of s; is at the same position as the counter-
clockwise extension of s, then since the sensors are on the cycle, it is possible that
the clockwise extension of s; is in the interior of the covering interval of s; (e.g., when
L < 4r). Similarly, a sequence of sensors s;, §j41,...,s; (With1 <i < j <i+n)
are in attached positions if the clockwise extension of s; is at the same position as
the counterclockwise extension of s;,41 for eachi < ¢t < j — 1 (and the clockwise
extension of s; may be in the interior of the covering interval of s;). The next result is
a corollary of Lemma 8.

Corollary 3 If1* > 0, then in OPT, there exist a sequence of sensors s;, Si41, - .., Sj
inS" with1 <i < j < i+ n such that they are in attached positions and the sensor
s; is moved clockwise by the distance A* and the sensor s is moved counterclockwise
by the distance 1*.

For each pairof i and j with 1 <i < j < i+ n, we define A(i, j) = [x; —x; —
2r(j —i)]/2. Let A be the set of all such A(i, j) values. By Corollary 3, A* € A. The
following result is similar to that of Lemma 18.

Lemma 20 The optimal value * is the maximum value in A.

Proof The proof is very similar to that for Lemma 18 and we briefly discuss it below.

@ Springer

406 Discrete Comput Geom (2013) 50:374-408

Let A’ be the maximum value in A. It is sufficient to show A* < A" and A’ < A*.
Due to A* € A, A* <)/ trivially holds. Hence, we focus on proving 1" < A*. Since
2* > 0, we have ' > 0.

Suppose A" = A(i, j) = [xj —x; — 2r(j — i)]/2 for some i and j with 1 <
i < j < i+ n.Consider the clockwise interval [x; + 7, x; — r] on B, i.e., the
union of the points on B from x; + r to x; — r clockwise. Since A > 0, we have
Xj—x; —2r(j —i) > 0,and thus (x; —r) — (x; +7) > 2r(j —i — 1). This implies
that even if we somehow move the sensors s; 41, S;42, ..., sj—1 such that they are in
attached positions inside [x; + r, x; — r], there are still points in [x; + r, x; — r] that
are not covered by the sensors s; 41, Si42, . .., Sj—1. By the order preserving property,
to cover the interval [x; + 7, x; — r] on B, the best way is to move s; clockwise and
move s; counterclockwise by the same distance, for which the moving distances of
s; and s; are both A(i, j) exactly. Therefore, the maximum sensor movement in any
optimal solution has to be at least A(i, j). Thus, A’ = A(i, j) < A*.

The lemma thus follows. O

By using the same algorithm for Lemma 19, we can find A* in A in O(n) time.
With the value 1*, we can then easily compute an optimal solution (i.e., compute the
destinations of all sensors) in O (n) time, as follows.

Suppose A* = A(i, j) € A forsomei and j with 1 <i < j < i+ n. In the case of
i >n,wehave j > nandleti =i —nand j = j —n. Thus, we still have A* = A(i, j)
since A(i, j) = A(i —n, j —n) wheni > nand j > n. Below, we assume 1 <i <n.
Note that j > n is possible.

First, we move s; clockwise by the distance 1* and move s; counterclockwise by the
same distance A*. Next, move all sensors s;41, $;i+2, ..., S j—1 such that the sensors
Si,Si41,...,8; are in attached positions. Since A* is the maximum value in A by
Lemma 20, the above movements of the sensors s; 1, Si42, ..., 5j—| are at most AE.
Then, starting at the sensor 5,41, we consider the other sensors s;41, 842, ...,8i-1
of S clockwise along B, and move them to cover the portion of B that is not covered
by the sensors s;, S;+1, ..., s;. For this, we can view the remaining uncovered portion
of B as a line segment and apply the linear time greedy algorithm for Lemma 9 with
the value A*. The overall running time is O (n).

Theorem 6 The simple cycle barrier coverage problem is solvable in O(n) time.

Note that the case L < 2nr is also discussed in [15], where an issue of balance
points appears. In the case L > 2nr that we consider, the issue does not exist because
the entire cycle B must be covered by the sensors in the optimal solution.

5 Conclusions

We present several algorithms on minimizing the maximum sensor movement for bar-
rier coverage on linear domains. We present the first-known polygonal time algorithm
for the problem where the barrier is a line segment and the sensors have different
sensing ranges, and the algorithm runs in O (n? logn) time. If the sensing ranges are
the same, we give an O (nlogn) time solution, and further if the sensors are initially

@ Springer

Discrete Comput Geom (2013) 50:374—408 407

located on the barrier segment, then the algorithm runs in O (n) time. In addition, if
the barrier is a simple cycle and the sensing ranges are the same, our approach can
solve the problem in O (n) time. Each of these results either is first-known or improves
the previous best-known algorithms.

Aninteresting question is whether our O (n? log n) time algorithm can be improved.
One possible direction, as we did for the uniform case in Sect. 3, is to try to determine
a set A of candidate values such that A* € A, and then use our decision algorithms
given in Sect. 2.1 to find A* in A. It would also be interesting to see whether our
techniques can be extended to solve the non-uniform simple cycle case where the
sensing ranges are different. In addition, since when all sensors are initially located on
the barrier segment the uniform case can be solved faster, it is natural to ask whether
our O(n”logn) time algorithm for the non-uniform case can be made faster if all
sensors are initially located on the barrier segment.

Acknowledgments The authors would like to thank an anonymous reviewer for helping improve the
presentation of the paper. The research of Chen was supported in part by NSF under Grants CCF-0916606
and CCF-1217906.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput.
Netw. 38(4), 393-422 (2002)

2. Bhattacharya, B., Burmester, B., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile
sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515-5528 (2009)

3. Chen, A, Kumar, S., Lai T.: Designing localized algorithms for barrier coverage. In: Proceedings of
the 13th Annual ACM International Conference on Mobile Computing and Networking, pp. 63-73
(2007)

4. Chen, D.Z., Wang, C., Wang, H.: Representing a functional curve by curves with fewer peaks. Discrete
Comput. Geom. 46(2), 334-360 (2011)

5. Chen, D.Z., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering circular regions. In:
Proceedings of the 23rd International Symposium on Algorithms and Computation, pp. 332-341 (2012)

6. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM 34(1), 200-208
(1987)

7. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for slope selection. SIAM
J. Comput. 18(4), 792-810 (1989)

8. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, 1., Narayanan, L., Opatrny, J., Stacho, L.,
Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a
line segment. In: Proceedings of the 8th International Conference on Ad-Hoc, Mobile and Wire-
less Networks. Lecture Notes in Computer Science, vol. 5793, pp. 194-212. Springer, Heidelberg
(2009)

9. Czyzowicz,J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia,
J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In:
Proceedings of the 9th International Conference on Ad-Hoc, Mobile and Wireless Networks. Lecture
Notes in Computer Science, vol. 6288, pp. 29-42. Springer, Heidelberg (2010)

10. Hu, S.: “Virtual Fence’ along border to be delayed. Washington Post, February 28, (2008)

11. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wirel. Netw. 13(6), 817-834
(2007)

12. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with coverage guar-
antee. ACM SIGMOBILE Mobile Comput. Commun. Rev. 12(2), 50-52 (2008)

13. Li, M., Sun, X., Zhao, Y.: Minimum-cost linear coverage by sensors with adjustable ranges. In Pro-
ceedings of the 6th International Conference on Wireless Algorithms, Systems, and Applications,
pp. 25-35 (2011)

@ Springer

408 Discrete Comput Geom (2013) 50:374-408

14. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM
30(4), 852-865 (1983)

15. Mehrandish, M.: On routing, backbone formation and barrier coverage in wireless ad doc and sensor
networks. PhD thesis, Concordia University, Montreal, QC, Canada. http://spectrum.library.concordia.
ca/7326/1/Mehrandish_PhD_S2011.pdf (2011)

16. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers.
In: Proceedings of IEEE, Wireless Communications and Networking Conference, pp. 653-658 (2011)

17. Tan, X., Wu, G.: New algorithms for barrier coverage with mobile sensors. In: Proceedings of the 4th
International Workshop on Frontiers in Algorithmics. Lecture Notes in Computer Science, vol. 6213,
pp- 327-338. Springer, Heidelberg (2010)

18. Yang, S.,Li, M., Wu, J.: Scan-based movement-assisted sensor deployment methods in wireless sensor
networks. IEEE Trans. Parallel Distrib. Syst. 18(8), 1108-1121 (2007)

19. Zou, Y., Chakrabarty, K.: A distributed coverage and connectivity-centric technique for selecting active
nodes in wireless sensor networks. IEEE Trans. Comput. 54(8), 978-991 (2005)

@ Springer

http://spectrum.library.concordia.ca/7326/1/Mehrandish_PhD_S2011.pdf
http://spectrum.library.concordia.ca/7326/1/Mehrandish_PhD_S2011.pdf

	Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain
	Abstract
	1 Introduction
	1.1 Problem Definitions, Previous Work, and Our Results
	1.2 Related Work
	1.3 An Overview of Our Approaches

	2 The General Case of BCLS
	2.1 The Decision Version of the General BCLS
	2.1.1 Preliminaries
	2.1.2 The Algorithm Description
	2.1.3 The Correctness of the Algorithm
	2.1.4 The Algorithm Implementation
	2.1.5 Another Decision Version

	2.2 The Optimization Version of the General BCLS

	3 The Uniform Case of BCLS
	3.1 Preliminaries
	3.2 Our Algorithm for the Uniform Case
	3.3 The Special Uniform Case

	4 The Simple Cycle Barrier Coverage
	5 Conclusions
	Acknowledgments
	References

