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ABSTRACT 
There is a growing demand for network devices capable of 
examining the content of data packets in order to improve 
network security and provide application-specific services. Most 
high performance systems that perform deep packet inspection 
implement simple string matching algorithms to match packets 
against a large, but finite set of strings. However, there is growing 
interest in the use of regular expression-based pattern matching, 
since regular expressions offer superior expressive power and 
flexibility. Deterministic finite automata (DFA) representations 
are typically used to implement regular expressions. However, 
DFA representations of regular expression sets arising in network 
applications require large amounts of memory, limiting their 
practical application. 

In this paper, we introduce a new representation for regular 
expressions, called the Delayed Input DFA (D2FA), which 
substantially reduces space requirements as compared to a DFA. 
A D2FA is constructed by transforming a DFA via incrementally 
replacing several transitions of the automaton with a single 
default transition. Our approach dramatically reduces the number 
of distinct transitions between states. For a collection of regular 
expressions drawn from current commercial and academic 
systems, a D2FA representation reduces transitions by more than 
95%. Given the substantially reduced space requirements, we 
describe an efficient architecture that can perform deep packet 
inspection at multi-gigabit rates. Our architecture uses multiple 
on-chip memories in such a way that each remains uniformly 
occupied and accessed over a short duration, thus effectively 
distributing the load and enabling high throughput. Our 

architecture can provide cost-effective packet content scanning at 
OC-192 rates with memory requirements that are consistent with 
current ASIC technology.   

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – 
Security and protection (e.g., firewalls) 

General Terms 
Algorithms, Design, Security. 

Keywords 
DFA, regular expressions, deep packet inspection. 

1. INTRODUCTION 
Many critical network services handle packets based on payload 
content, in addition to the structured information found in packet 
headers. Forwarding packets based on content (either for the 
purpose of application-level load-balancing in a web switch or 
security-oriented filtering based on content signatures) requires 
new levels of support in networking equipment. Traditionally, this 
deep packet inspection has been limited to comparing packet 
content to sets of strings. State-of-the-art systems, however, are 
replacing string sets with regular expressions, due to their 
increased expressiveness. Several content inspection engines have 
recently migrated to regular expressions, including: Snort [5], Bro 
[4], 3Com’s TippingPoint X505 [20], and various network 
security appliances from Cisco Systems [21]. Cisco, in fact, has 
integrated the regular expression based content inspection 
capabilities into its Internetworking Operating System (IOS) [21]. 
Additionally, layer 7 filters based on regular expressions [30] are 
available for the Linux operating system. While flexible and 
expressive, regular expressions have traditionally required 
substantial amounts of memory, which severely limits 
performance in the networking context.  
To see why, we must consider how regular expressions are 
implemented. A regular expression is typically represented by a 
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deterministic finite automaton (DFA). For any regular expression, 
it is possible to construct a DFA with the minimum number of 
states [2, 3]. The memory needed to represent a DFA is, in turn, 
determined by the product of the number of states and the number 
of transitions from each state. For an ASCII alphabet, each state 
will have 256 outgoing edges. Typical sets of regular expressions 
containing hundreds of patterns for use in networking yield DFAs 
with tens of thousands of states, resulting in storage requirements 
in the hundreds of megabytes. Table compression techniques are 
not effective for these tables due to the relatively high number of 
unique ‘next-states’ from a given state. Consequently, traditional 
approaches quickly become infeasible as rule sets grow. 
In this paper, we introduce a highly compact DFA representation. 
Our approach reduces the number of transitions associated with 
each state. The main observation is that groups of states in a DFA 
often have identical outgoing transitions and we can use this 
duplicate information to reduce memory requirements. For 
example, suppose there are two states s1 and s2 that make 
transitions to the same set of states, {S}, for some set of input 
characters, {C}. We can eliminate these transitions from one 
state, say s1, by introducing a default transition from s1 to s2 that 
is followed for all the characters in {C}. Essentially, s1 now only 
maintains unique next states for those transitions not common to 
s1 and s2 and uses the default transition to s2 for the common 
transitions. We refer to a DFA augmented with such default 
transitions as a Delayed Input DFA (D2FA). 
In practice, the proper and effective construction of the default 
transitions leads to a tradeoff between the size of the DFA 
representation and the memory bandwidth required to traverse it. 
In a standard DFA, an input character leads to a single transition 
between states; in a D2FA, an input character can lead to multiple 
default transitions before it is consumed along a normal transition. 
Our approach achieves a compression ratio of more than 95% on 
typical sets of regular expressions used in networking 
applications. Although each input character potentially requires 
multiple memory accesses, the high compression ratio enables us 
to keep the data structure in on-chip memory modules, where the 
increased bandwidth can be provided efficiently. 
To explore the feasibility of this approach, we describe a single-
chip architecture that employs a modest of amount on-chip 
memory, organized in multiple independent modules. Modern 
VLSI technology easily enables this sort of integration of several 
embedded memories on a single die; for example, IBM’s ASIC 
fabrication technology [23] can integrate up to 300 Mbits of 
embedded memory on one chip. We use multiple embedded 
memories to provide ample bandwidth. However, in order to 
deterministically execute the compressed automata at high rates, it 
is important that the memory modules are uniformly populated 
and accessed over short periods of time. To this end, we develop 
load balancing algorithms to map our automata to the memory 
modules in such a way that deterministic worst-case performance 
can be guaranteed. Our algorithms can maintain throughput at 10 
Gbps while matching thousands of regular expressions. 
To summarize, our contributions are a) the D2FA representation 
of regular expressions which significantly reduces the amount of 
memory required, b) a single-chip architecture that uses the D2FA 
representation, and c) a load balancing algorithm which ensures 
that on-chip resources are uniformly used, thereby enabling 
worst-case performance guarantees. 

The remainder of the paper is organized as follows. Background 
on regular expressions and related work are presented in Section 
2. Section 3 describes the D2FA representation. Details of our 
construction algorithm and the compression results are presented 
in Section 4. Section 5 presents the system architecture, load 
balancing algorithms and throughput results. The paper ends with 
concluding remarks in Section 6. 

2. BACKGROUND AND RELATED WORK 
Deep packet inspection has recently gained popularity as it 
provides the capability to accurately classify and control traffic in 
terms of content, applications, and individual subscribers. Cisco 
and others today see deep packet inspection happening in the 
network and they argue that “Deep packet inspection will happen 
in the ASICs, and that ASICs need to be modified” [19]. Some 
applications requiring deep packet inspection are listed below: 

• Network intrusion detection and prevention systems 
(NIDS/NIPS) generally scan the packet header and payload in 
order to identify a given set of signatures of well known 
security threats. 

• Layer 7 switches and firewalls provide content-based filtering, 
load-balancing, authentication and monitoring. Application-
aware web switches, for example, provide scalable and 
transparent load balancing in data centers. 

• Content-based traffic management and routing can be used to 
differentiate traffic classes based on the type of data in packets.  

Deep packet inspection often involves scanning every byte of the 
packet payload and identifying a set of matching predefined 
patterns. Traditionally, rules have been represented as exact 
match strings consisting of known patterns of interest. Naturally, 
due to their wide adoption and importance, several high speed and 
efficient string matching algorithms have been proposed recently. 
Some of the standard string matching algorithms such as Aho-
Corasick [7] Commentz-Walter [8], and Wu-Manber [9], use a 
preprocessed data-structure to perform high-performance 
matching. A large body of research literature has concentrated on 
enhancing these algorithms for use in networking. In [11], Tuck et 
al. presents techniques to enhance the worst-case performance of 
Aho-Corasick algorithm. Their algorithm was guided by the 
analogy between IP lookup and string matching and applies 
bitmap and path compression to Aho-Corasick. Their scheme has 
been shown to reduce the memory required for the string sets used 
in NIDS by up to a factor of 50 while improving performance by 
more than 30%. 
Many researchers have proposed high-speed pattern matching 
hardware architectures. In [12] Tan et al. propose an efficient 
algorithm that converts an Aho-Corasick automaton into multiple 
binary state machines, thereby reducing the space requirements. 
In [13], the authors present an FPGA-based design which uses 
character pre-decoding coupled with CAM-based pattern 
matching. In [14], Yusuf et al. use hardware sharing at the bit 
level to exploit logic design optimizations, thereby reducing the 
area by a further 30%. Other work [25, 26, 27, 28, 29] presents 
several efficient string matching architectures; their performance 
and space efficiency are well summarized in [14]. 
In [1], Sommer and Paxson note that regular expressions might 
prove to be fundamentally more efficient and flexible as 
compared to exact-match strings when specifying attack 
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signatures. The flexibility is due to the high degree of 
expressiveness achieved by using character classes, union, 
optional elements, and closures, while the efficiency is due to the 
effective schemes to perform pattern matching. Open source 
NIDS systems, such as Snort and Bro, use regular expressions to 
specify rules. Regular expressions are also the language of choice 
in several commercial security products, such as TippingPoint 
X505 [20] from 3Com and a family of security appliances from 
Cisco Systems [21]. Although some specialized engines such as 
RegEx from Tarari [22] report packet scan rates up to 4 Gbps, the 
throughput of most such devices remains limited to sub-gigabit 
rates. There is great interest in and incentive for enabling multi-
gigabit performance on regular expressions based rules. 

Consequently, several researchers have recently proposed 
specialized hardware-based architectures which implement finite 
automata using fast on-chip logic. Sindhu et al. [15] and Clark et 
al. [16] have implemented nondeterministic finite automata 
(NFAs) on FPGA devices to perform regular expression matching 
and were able to achieve very good space efficiency. 
Implementing regular expressions in custom hardware was first 
explored by Floyd and Ullman [18], who showed that an NFA can 
be efficiently implemented using a programmable logic array. 
Moscola et al. [17] have used DFAs instead of NFAs and 
demonstrated significant improvement in throughput although 
their datasets were limited in terms of the number of expressions. 
These approaches all exploit a high degree of parallelism by 
encoding automata in the parallel logic resources available in 
FPGA devices. Such a design choice is guided partly by the 
abundance of logic cells on FPGA and partly by the desire to 
achieve high throughput as such levels of throughput might be 
difficult to achieve in systems that store automata in memory. 
While such a choice seems promising for FPGA devices, it might 
not be acceptable in systems where the expression sets needs to be 
updated frequently. More importantly for systems which are 
already in deployment, it might prove difficult to quickly re-
synthesize and update the regular expressions circuitry. 
Therefore, regular expression engines which use memory rather 
than logic, are often more desirable as they provide higher degree 
of flexibility and programmability. 

Commercial content inspection engines like Tarari’s RegEx 
already emphasize the ease of programmability provided by a 
dense multiprocessor architecture coupled to a memory. Content 
inspection engines from other vendors [33, 34], also use memory-
based architectures. In this context, Yu et al. [10] have proposed 
an efficient algorithm to partition a large set of regular 
expressions into multiple groups, such that overall space needed 
by the automata is reduced dramatically. They also propose 
architectures to implement the grouped regular expressions on 
both general-purpose processor and multi-core processor systems, 
and demonstrate an improvement in throughput of up to 4 times. 
In this paper, we extend these memory-based architectures and 
propose algorithms which can enable the efficient implementation 
of regular expressions at multi-gigabit rates while preserving the 
flexibility provided by programmability. 

3. DELAYED INPUT DFAS 
It is well-known that for any regular expression set, there exists a 
DFA with the minimum number of states [3]. The memory needed 
to represent a DFA is determined by the number of transitions 

from one state to another, or equivalently, the number of edges in 
the graph representation. For an ASCII alphabet, there can be up 
to 256 edges leaving each state, making the space requirements 
excessive. Table compression techniques can be applied to reduce 
the space in situations when the number of distinct “next-states” 
from a given state is small. However, in DFAs that arise in 
network applications, these methods are typically not very 
effective because on average, there are more than 50 distinct 
“next-states” from various states of the automaton. 
We introduce a modification to the standard DFA that can be 
represented much more compactly. Our modifications are based 
on a technique used in the Aho-Corasick string matching 
algorithm [7]. We extend their technique and apply it to DFAs 
obtained from regular expressions, rather than simple string sets. 

3.1 Motivating Example 
We introduce our approach using an example. The left side of 
Figure 1 shows a standard DFA defined on the alphabet 
{a,b,c,d} that recognizes the three patterns, p1=a+, p2=b+c, and 
p3=c*d+ (in these expressions, the asterisk represents 0 or more 
repetitions of the immediately preceding sub-expression, while 
the plus sign represents one or more repetitions). In this DFA, 
state 1 is the initial state, and states 2, 5 and 4 are match states for 
the three patterns p1, p2 and p3, respectively. 
The right side of Figure 1 shows an alternate type of DFA, which 
includes unlabeled edges that are referred to as default transitions. 
When matching an input string, a default transition is used to 
determine the next state, whenever the current state has no 
outgoing edge labeled with the current input character. When 
following a default transition the current input character is 
retained. Consider the operation of the two automata on the input 
string aabdbc. For this input, the sequence of states visited by 
the left-hand automaton is 1223435, where the underlined states 
are the match states that determine the output value for this input 
string. The right-hand automaton visits states 1212314135. Notice 
that the sequence of match states is the same, so if the second 
output associates these states with the same three patterns, it 
produces the same output as the first one. Indeed, it is not difficult 
to show that the two automata visit the same sequence of match 
states for any input string. That is, they produce the same output, 
for all inputs and are hence equivalent.  
Note that the right-hand automaton in Figure 1 has just nine 
edges, while the one on the left has 20. We find that for the more 
complex DFAs that arise in network applications, we can 
generally reduce the number of edges by more than 95%, 
dramatically reducing the space needed to represent the DFA. 
There is a price for this reduction of course, since no input is 
consumed when default edges are followed. In the example in 
Figure 1, no state with an incoming default transition also has an 
outgoing default transition, meaning that for every two edges 
traversed, we are guaranteed to consume at least one input 
character. Allowing states to have both incoming and outgoing 
default transitions leads a more compact representation, at the 
cost of some reduction in the worst-case performance. 

3.2 Problem Statement 
We refer to an automaton with default transitions as a Delayed 
Input DFA (D2FA). We represent a D2FA by a directed graph, 
whose vertices are called states and whose edges are called 

341



transitions. Transitions may be labeled with symbols from a finite 
alphabet Σ. Each state may have at most one unlabeled outgoing 
transition, called its default transition. One state is designated as 
the initial state and for every state s, there is a (possibly empty) 
set of matching patterns, µ(s). 

For any input string x∈Σ∗, we define the destination state, δ(x) to 
be the last state reached by starting at the initial state and 
following transitions labeled by the characters of x, using default 
transitions whenever there is no outgoing transition that matches 
the next character of x (so, for the D2FA on the right side of 
Figure 1, δ(abcb)=3 and δ(dcbac)=1). We generalize δ to 
accept an arbitrary starting state as a second argument; so for the 
D2FA on the right side of Figure 1, δ(abcb,2) =3. 

Consider two D2FAs with destination state functions δ1 and δ2, 
and matching pattern functions µ1 and µ2. We say that the two 
automata are equivalent if for all strings x, µ1(δ1(x))=µ2(δ2(x)). In 
general, given a DFA that recognizes some given set of regular 
expressions, our objective is to find an equivalent D2FA that is 
substantially more memory-efficient. 
We can bound the worst-case performance of a D2FA in terms of 
the length of its longest default path (that is, a path comprising 
only default transitions). In particular, if the longest default path 
has k transitions, then for all input strings, the D2FA will consume 
at least one character for every k transitions followed. To ensure 
that a D2FA meets a throughput objective, we can place a limit on 
the length of the longest default path. This leads to a more refined 
version of the problem, in which we seek the smallest equivalent 
D2FA that satisfies a specified bound on default path length. 

3.3 Converting DFAs to D2FAs 
Although, we are in general interested in any equivalent D2FA, 
for a given DFA, we have no general procedure for synthesizing a 
D2FA directly. Consequently, our procedure for constructing a 
D2FA proceeds by transforming an ordinary DFA, by introducing 
default transitions in a systematic way, while maintaining 
equivalence. Our procedure does not change the state set, or the 
set of matching patterns for a given state. Hence, we can maintain 
equivalence by ensuring that the destination state function δ(x), 
does not change. 
Consider two states u and v, where both u and v have a transition 
labeled by the symbol a to a common third state w, and no default 
transition.  If we introduce a default transition from u to v, we can 

eliminate the a-transition from u without affecting the destination 
state function δ(x). A slightly more general version of this 
observation is stated below. 
Lemma 1. Consider a D2FA with distinct states u and v, where u 
has a transition labeled by the symbol a, and no outgoing default 
transition. If δ(a,u)=δ(a,v), then the D2FA obtained by 
introducing a default transition from u to v and removing the 
transition from u to δ(a,u) is equivalent to the original DFA. 

Note that by the same reasoning, if there are multiple symbols a, 
for which u has a labeled outgoing edge and for which 
δ(a,u)=δ(a,v), the introduction of a default edge from u to v 
allows us to eliminate all these edges. Our procedure for 
converting a DFA to a smaller D2FA applies this transformation 
repeatedly. Hence, the equivalence of the initial and final D2FAs 
follows by induction. The D2FA on the right side of Figure 1 was 
obtained from the DFA on the left, by applying this 
transformation to state pairs (2,1), (3,1), (5,1) and (4,1). 

For each state, we can have only one default transition, so it’s 
important to choose our default transitions carefully to allow us to 
get the largest possible reduction. We also restrict the choice of 
default transitions to ensure that there is no cycle defined by 
default transitions. With this restriction, the default transitions 
define a collection of trees with the transitions directed towards 
the tree roots and we can identify the set of transitions that gives 
the largest space reduction by solving a maximum weight 
spanning tree problem in an undirected graph which we refer to as 
the space reduction graph. 
The space reduction graph for a given DFA is a complete, 
undirected graph, defined on the same vertex set as the DFA. The 
edge joining a pair of vertices (states) u and v is assigned a weight 
w(u,v) that is one less than the number of symbols a for which 
δ(a,u)=δ(a,v). The space reduction graph for the DFA on the left 
side of Figure 1 is shown in Figure 2. Notice that the spanning 
tree of the space reduction graph that corresponds to the default 
transitions for the D2FA in Figure 1 has a total weight of 
3+3+3+2=11, which is the difference in the number of transitions 
in the two automata. Also, note that this is a maximum weight 
spanning tree for this graph. Figure 3 shows D2FAs corresponding 
to two different maximum weight spanning trees. Note that while 
these two automata use the same number of edges as the one in 
Figure 1, they have default paths of length 3 and 2, respectively, 
meaning that their worst-case performance will not be as good. 
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Figure 1. Example of automata which recognize the expressions a+, b+c, and c*d+ 
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4. BOUNDING DEFAULT PATHS 
If our only objective was minimizing the space used by a D2FA, it 
would suffice to find a maximum weight spanning tree in the 
space reduction graph. The tree edges correspond to the state pairs 
between which we create default transitions. The only remaining 
issue is to determine the orientation of the default transitions. 
Since each vertex can have only one outgoing default transition, it 
suffices to pick some arbitrary state to be the root of the default 
transition tree and direct all default transitions towards this state. 

Unfortunately, when this procedure is applied to DFAs arising in 
typical network applications, the resulting default transition tree 
has many long paths, implying that the D2FA may need to make 
many transitions for each input character consumed. We can 
improve the performance somewhat, by selecting a tree root that 
is centrally located within the spanning tree. However, this still 
leaves us with many long default paths. The natural way to avoid 
long default paths is to construct a maximum weight spanning tree 
with a specified bounded diameter. Unfortunately, the 
construction of such spanning trees is NP-hard [39]. It’s also not 
clear that such a spanning tree leads to the smallest D2FA. What 
we actually require is a collection of bounded diameter trees of 
maximum weight. While this problem can be solved in 
polynomial time if the diameter bound is 1 (this is simply 
maximum weight matching), the problem remains NP-hard for 
larger diameters. 
Fortunately, we have found that fairly simple methods, based on 
classical maximum spanning tree algorithms, yield good results 
for D2FA construction. One conceptually straight-forward method 
builds a collection of trees incrementally. The method (which is 
based on Kruskal’s algorithm [36]) examines the edges in 
decreasing order of their weight. An edge {u,v} is selected as a 
“tree-edge” so long as u and v do not already belong to the same 
tree, and so long as the addition of the edge will not create a tree 
whose diameter exceeds a specified bound. Once all the edges 
have been considered, the tree edges define default transitions. 
We orient the default transitions in each tree by directing them 
towards a selected root for that tree, where the roots are selected 
so as to minimize the distance to the root from any leaf. 
The one complication with this method is checking the diameter 
bounds. We can do this efficiently by maintaining for each vertex 
u a value d(u) which specifies the number of edges in the longest 
tree path from u to a vertex in the same tree. These values can be 
used to check that the addition of a new edge will not violate the 
diameter bound. When a new tree edge is added, the distance 
values must be updated for vertices in the tree formed by the 
addition of the new edge. This can be done in linear time for each 

update. Consequently, the total time needed to maintain the 
distance values is O(n2). Since Kruskal’s algorithm, on which our 
algorithm is based, requires O(n2log n) time on complete graphs, 
the diameter checking does not increase the asymptotic running 
time of the algorithm. 
One refinement to this fairly simple algorithm is shown below. 
While examining the edges in decreasing order of their weights, 
we also look for an edge among all equal weight edges, which 
results in the minimum expansion in the diameter of the trees 
joined. In practice, since there are only 255 different weight 
values, at any point in time, there will often be plenty of equal 
weight edges to choose from. The resulting refined algorithm 
begins with the weighted undirected space reduction graph 
G=(V,W) and modifies an edge set default which form the default 
transition trees. First it considers all edges of weight 255, and 
incrementally constructs default trees of small diameters. Then it 
repeatedly considers smaller weight edges and adds them to the 
default transition trees. 
It turns out that the refinement generally leads to default transition 
trees with significantly smaller diameter as compared to a normal 
spanning tree, which remains oblivious about the diameter 
buildup of the trees until the diameter bound is reached. In a 
setup, where the diameter bound is not applied, refined spanning 
tree algorithm creates default transition trees of equal weight but 
relatively smaller diameter. When diameter bound is applied, the 
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Figure 2. Space reduction graph for DFA in Figure 1. 
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Figure 3. D2FAs corresponding to two different maximum 

weight spanning trees 

procedure refinedmaxspantree (graph G=(V, W), 
           modifies set edge default); 
(1) vertex u, v; set edges; set weight-set[255]; 
(2) default := {}; edges := W; 
(3) for edge (u, v) ∈ edges ⇒ 
(4)  if weight(u, v) > 0 ⇒ 
(5)   add (u, v) to weight-set[weight(u, v)]; 
(6)  fi 
(7) for integer i = 255 to 1 ⇒ 
(8)  do weight-set[i] ≠ [ ] ⇒ 
(9)   Select (u, v) from weight-set[i] which leads to the 
(10)   smallest growth in the diameter of the default tree 
(11)   if vertices u and v belongs to different default trees ⇒
(12)    if default U (u, v) maintains the diameter bound ⇒
(13)     default := default U (u, v); 
(14)    fi 
(15)   fi 
(16)  od 
(17) rof 
end; 
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refined algorithm creates trees with higher weight too. This 
happens, because a normal spanning tree, in its process, quickly 
creates several trees whose diameter is “too large” and hence can 
not be further linked to any tree. The refined version ensures that 
tree diameter remains small; hence more trees can be linked, 
resulting in higher weight. 
In order to illustrate the effect of this refinement, we take a 
synthetic DFA, which consists of 31 states. All pairs of states u 
and v were assigned transitions on a random number (drawn from 
a geometric distribution with success probability, π = 0.05, thus 
mean, E(X) = 19) of symbols a such that δ(a,u)=δ(a,v). Thus the 
weight of the edges in the space reduction graph was 
geometrically distributed. When we ran the normal and refined 
versions of spanning tree algorithms without any diameter bound, 
they created spanning trees of weight 1771, as shown in Figure 4. 
While the weights of both trees are maximum, their diameters are 
13 and 10 respectively. If we choose nodes 28 and 29, 
respectively, as the root of these two trees, the longest default 
paths will contain 7 and 5 edges, while the average length of 
default paths will be 3.8 and 2.8, respectively. 
Clearly, the refinement in the spanning tree algorithm reduces the 
memory accesses needed by a D2FA for every character. We will 
later see that when diameter bounds are applied, refined spanning 
tree creates more compact D2FAs as well. 
When we bounded the diameter of the spanning tree to 7, and ran 
our algorithm on the same synthetic DFA, it created three default 
transition trees, as shown in Figure 5. The total weight of all three 
trees was 1653, which suggests that the resulting DF2A will 
require slightly more space as compared to the one with no 
diameter restraint. However, bounding the diameter to 7 ensures 
an important property that the length of all default paths can be 
easily limited to 4 and hence the D2FA will require at most 4 
memory accesses per character. 

4.1 Results on some regular expression sets 
In order to evaluate the space reductions achieved by a delayed 
input DFA, or D2FA, we performed experiments on regular 
expression sets used in a wide variety of networking applications. 
Our most important dataset are the regular expression sets used in 
deep packet inspection appliances from Cisco Systems [38]. This 
set contains more than 750 moderately complex expressions, 
which are used to detect the anomalies in the traffic. It is widely 
used across several Cisco security appliances and Cisco 
commonly employs general purpose processors with a gigabyte or 
more memory to implement them. In addition to this set, we also 
considered the regular expressions used in the open source Snort 
and Bro NIDS, and in the Linux layer-7 application protocol 
classifier. Linux layer-7 protocol classifier consists of 70 
expressions. Snort contains more than a thousand and half 
expressions, although, they don’t need to be matched 
simultaneously. An effective way to implement the Snort rules is 
to identify the expressions for each header rule and then group the 
expressions corresponding to the overlapping rules (the set of 
header rules a single packet can match to). We use this approach. 
For the Bro NIDS, we present results for the HTTP signatures, 
which consist of 648 regular expressions. 
Given these regular expression sets, as the first step to construct 
DFAs with a small number of states, we used the set splitting 
techniques proposed by Yu et al. in [10]. It splits the regular 
expressions into multiple sets so that each set creates a small 
DFA. We created 10 sets of rules from the Cisco regular 
expressions, and were able to reduce the total memory footprint to 
92 MB, as there were a total of 180138 states, and each individual 
DFA had less than 64K states, (thus 2 bytes encodes a state). 
Clearly, such efficient grouping resulted in significant space 
reduction over more than a gigabyte space required otherwise. We 
split the Linux layer-7 expressions into three sets, such that the 
total number of states was 28889. For the Snort set, we present 
results for the header rule “tcp $EXTERNAL_NET any -> 
$HTTP_SERVERS $HTTP_PORTS,” which consists of 22 complex 
expressions. Since Snort rules were complex, with long length 
restriction on various character classes, we applied rewriting 
techniques proposed in [10] to some rules and split them further 
into four sets. Bro regular expressions were generally simple and 
efficient therefore we were able to compile all of them in a single 
automaton. The key properties of our representative regular 
expression groups are summarized in Table 1. 
In order to estimate the reduction objectives of D2FA, we 
introduce a term duplicate transition. Transitions are duplicate if 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
2829

30

31

1

2

3

4
5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

 
Figure 4. Default transition trees formed by the spanning tree algorithm and by our refined version 
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there exists more than one of them leading to the same “next 
state” for the same input character. For example in Figure 1, if the 
transitions on input b from states 1 is termed original then the 
ones from state 2, 3, 4 and 5 are duplicates. Even though, it may 
not be possible to eliminate all duplicate transitions, it still gives a 
good estimate on the upper bound of the number of transitions 
that can be eliminated by constructing a D2FA from the DFA. 
After constructing the minimum state DFAs from these regular 
expressions, we used both normal and refined versions of 
spanning tree to construct the corresponding D2FAs. The 
reduction in the number of transitions is shown in Table 2 with no 
diameter bounds applied. The length of default paths, which gives 
an estimate of the added memory bandwidth a D2FA will need 
over a DFA, are also shown. It is clear that, D2FAs eliminates 
nearly all duplicate transitions from the DFAs. It is also apparent 
that refined version of spanning tree creates substantially smaller 
default paths as compared to a normal spanning tree. In order to 
get a sense of the distribution of the number of labeled transitions 
per states of a D2FA, we plot it in Figure 6, for the Cisco regular 
expression group containing 590 expressions. Majority of states 
has 2 or fewer labeled transitions. Note that most states have 2 
transitions because most rules are case insensitive, like [d-eD-E0-
9\-_][/\\][^/\\\r\n?\x26\s\t:]*[.][Nn][Uu]. 
Since the above results are with no diameter restrictions, default 
transition paths are quite long. In order to achieve smaller default 
paths, we ran our algorithm with the diameter restricted to a small 
constant. In this case, we first compare the reductions achieved by 
normal spanning tree and by our refined version. In Table 3, we 

report the number of transitions in the resulting D2FA, with the 
length of default paths bounded to 4 edges. Clearly, refined 
version of spanning tree yields relatively more compact D2FA. 
In Figure 7, we plot the reduction in the number of transitions of a 
DFA, as ratio of number transitions in the D2FA and number of 
distinct transitions (transitions leading to distinct “next states”) in 
the original DFA, by applying the refined version of spanning tree 
and bounding the default paths at different values. It is obvious 
that smaller default path restrictions produce D2FAs with 
relatively higher number of labeled transitions. Note that, the 
reduction numbers plotted are with respect to the total number of 
distinct transitions (leading to different “next states”) at various 
states in the original DFA, and not all transitions. Clearly this 
metric is conservative and suggests the space reduction by D2FA 
over a DFA using the best (possibly hypothetical) table 
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Table 1. Our representative regular expression groups 

Source # of 
regular 

expressio
ns 

Avg. ASCII 
length of 

expressions 

% expressions 
using 

wildcards (*, 
+, ?) 

% expressions
length 

restrictions 
{,k,+} 

Cisco 590 36.5 5.42 1.13 
Cisco 103 58.7 11.65 7.92 
Cisco 7 143.0 100 14.23 
Linux 56 64.1 53.57 0 
Linux 10 80.1 70 0 
Snort 11 43.7 100 9.09 
Snort 7 49.57 100 28.57 
Bro 648 23.6 0 0 

Table 2. Original DFA and the D2FA constructed using the normal and the refined spanning tree, without any diameter bound 

  Original DFA  Delayed  input DFA, D2FA 
    Normal spanning tree Refined spanning tree 
 DFA Total # of 

states 
Total # of 
transitions  

Total # of 
distinct 

transitions 

Total # of 
duplicate 

transitions

%   
duplic
ates 

 Total # of 
transitions

%    
reducti

on 

Avg. 
default
length

Max. 
default 
length

Total # of 
transitions 

%   
reducti

on 

Avg. 
default
length

Max. 
default 
length

 Cisco590 17713 4534528 1537238 4509852 99.45  36519 99.2 18.32 57 36519 99.2 8.47 17 
 Cisco103 21050 5388800 1236587 5346595 99.21  53068 99.0 16.65 54 53068 99.0 7.82 19 
 Cisco7 4260 1090560 312082 1063896 97.55  28094 97.4 19.61 61 28094 97.4 10.91 23 
 Linux56 13953 3571968 590917 3517044 98.46  58571 98.3 7.68 30 58571 98.3 5.62 21 
 Linux10 13003 3328768 962299 3052433 91.69  285991 91.3 5.14 20 285991 91.3 4.64 17 
 Snort11 41949 10738944 540259 10569778 98.42  168569 98.4 5.86 9 168569 98.4 3.43 6 
 Bro648 6216 1591296 149002 1584357 99.56  7082 99.5 6.45 17 7082 99.5 2.59 8 

Table 3. Number of transitions in D2FA with default path 
length bounded to 4 

DFA Normal spanning tree Refined spanning tree
Cisco590 97873 70793 
Cisco103 115654 82879 
Cisco7 37520 36091 

Linux56 69437 66739 
Linux10 314915 302112 
Snort11 180545 178354 
Bro648 11906 8078 
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compression scheme which enables it to store only the distinct 
transitions. If we would use the total transitions in a DFA as our 
metric, D2FA will result in even higher reduction. 

4.2 Summarizing the results 
The results suggest that a delayed input DFA or D2FA can 
substantially reduce the space requirements of regular expression 
sets used in many networking applications. For example, using 
D2FA, we were able to reduce the space requirements of regular 
expressions used in deep packet inspection appliances of Cisco 
Systems to less than 2 MB. We also saw significant reduction in 
the Bro and Linux layer-7 expressions. Snort expressions resulted 
in moderate improvements (according to our conservative metric) 
as there were fewer distinct transitions per state. 
D2FA reduces the space requirements at the cost of multiple 
memory accesses per character. In fact, splitting an expression set 
into multiple groups adds to the number of memory accesses as it 
creates multiple D2FAs, all of which needs to be executed in 
parallel. Although, D2FA performs equally well on expression 
sets which are not split, we decided to split, in order to reduce the 
total number of states in the DFA to begin with (e.g. 92 MB for 9 
partitions of the Cisco rules versus 1+ GB without clever rule 
partitioning). Such a design choice makes sense in our context, 
because we use multiple embedded memories, which provides us 
with ample bandwidth, but limited capacity. We now present our 
architecture and algorithms to map the D2FAs onto them. 

5. REGEX SYSTEM ARCHITECTURE 
In this section, we propose an efficient regular expression engine 
consisting of multiple embedded memories and processors. We 
also propose algorithms to efficiently map the D2FA onto the 
architecture. 
One of our design objectives is flexibility, so we predominantly 
use embedded memories in order to store the automata rather than 
synthesizing them in logic gates [18]. Using memory rather than 
logic allows the architecture to remain flexible in the face of 
frequently updating regular expressions. In addition to dense 
ASIC embedded memory technologies like IBM’s [23], modern 
FPGAs such as the Xilinx Virtex-4 contain several hundreds of 
18Kbit memory blocks [24] providing several megabytes in 
aggregate. The embedded memories in FPGAs have multiple 
ports and clock rates of up to 300 MHz. Of course, ASIC 
technologies provide higher degree of flexibility, with the number 

of ports, the size of each memory, and the clock rate all being 
design specific. Thus, a memory-based design is eminently 
practical. Given this, we design our embedded memory 
architecture with the following points in mind.  

• While small memories often clock at higher rates, every 
additional memory adds to the overhead of the control circuitry. 
Therefore, we intend to use an adequate number of reasonably 
sized memories, so that the overall bandwidth remains 
appropriate while maintaining reasonable control complexity. 

• Using multiple, equally-sized embedded memories will enable 
the architecture to scale capacity and bandwidth linearly with 
increasing on-chip transistor density. 

• A die with several equally sized memories can achieve efficient 
placement and routing, resulting in minimal wasted die area. 

Therefore, our design will use memories of equal size, 
independent of the characteristics of any particular data set. In 
fact, using several small equally sized memories is a natural 
choice given that the kind of expressions and the resulting 
automata are likely to change very often. 
The resulting architecture consists of a symmetric tile of equally 
sized embedded memories; the logical organization of this system 
is shown in Figure 8. Note that FPGAs, with hundreds of fix-sized 
memory modules, fall within the scope of this architecture. As 
can be seen, there are multiple memories, each accessible by an 
array of regular expression engines. Each engine is capable of 
scanning one packet at a time. Multiple engines are present to 
exploit the packet- and flow-level parallelism available in most 
packet processing contexts. While throughput for an individual 
packet will be limited to that of a single memory, overall system 
throughput can approach the aggregate memory bandwidth. 
To do so, we must map the D2FA to these memories in such a 
way that, a) there is minimal fragmentation of the memory space, 
so that every memory remains uniformly occupied; and b) each 
memory receives a nearly equal number of accesses, so that none 
of them becomes a throughput bottleneck. We now propose 
algorithms to achieve these objectives. 

5.1 Randomized Mapping 
A straightforward uniformly random mapping of states to memory 
modules can provide scalable average-case performance. The 
expectation is that over a long period of time, each memory will 
receive a nearly equal fraction of all references. Thus, with a 
reasonable number of concurrent packets, average throughput can 
remain high. Consider a case of m memory modules and p 
concurrently scanned packets. If each packet generates a read 
request at an interval of l cycles (i.e, the memory read latency), 
we need to scan m×l packets concurrently in order to keep the m 
memories busy. In practice, we need more packets due to random 
conflicts. The problem can be modeled as a balls and bins 
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procedure max-min-coloring (dgraph D(V, W), set color C); 
(1) heap h, c, l; 
(2) for tree t ∈ D ⇒ 
(3)  for vertex u ∈ t ⇒ size(t) := size(t) + size(u); rof 
(4)  h.insert(t, size(t)); 
(5) rof 
(6) for color j ∈ C ⇒ c.insert(j, 0); rof 
(7) do h ≠ [ ] ⇒ 
(8)  t := h.findmax(); h.remove(t); 
(9)  for all depth values i ∈ t ⇒ 
(10)   l.insert(i, size of all vertices at depth i); 
(11)  rof 
(12)  color j := c.findmax(); 
(13)  do l ≠ [ ] ⇒ 
(14)   depth i := l.findmin(); size s := l.key(i); l.remove(); 
(15)   Color vertices at depth i in tree t with color j; 
(16)   c.changekey(j, c.key(j) + s); 
(17)   j := c.findnextmax(); 
(18)  od 
(19) od 
end; 

problem. There are m bins (memory modules) and balls (memory 
requests) arrive to them randomly. Only one can be serviced at 
each bin per cycle, so any remaining balls must wait for 
subsequent memory cycles. If m balls arrive randomly, 1-e-1 
will served and rest has to wait for next cycle. Thus only 65% of 
the memories will be busy. As more balls arrive, more memories 
will remain busy. Thus, scanning many packets concurrently 
improves the overall throughput, while individual packets are 
served relatively slowly. 
We report the throughput of such a randomized architecture in 
Figure 9, assuming a dual-port embedded memory running at 300 
MHz and a read access latency of 4 cycles. In this experiment, we 
have limited the longest default paths in the D2FA to 7. The input 
data was generated from the MIT DARPA Intrusion Detection 
Data Sets [31]. We inserted additional data into these sets so that 
the automaton will detect approximately 1% matches. It is evident 
from the plots that as we increase the number of concurrently 
scanned packets, the overall throughput scales up. Moreover, as 
the number of embedded memories increases, the throughput 
scales almost linearly up to 8 memories, beyond which there is 
little improvement. This saturation is due to significant spatial 
locality in the automata traversal in which some states are visited 
more often than the others. In fact, in some cases, we found that a 
single state is visited almost 30% of the time. If such a state 
resides in memory module k, it is likely that memory module k 
will limit the overall performance irrespective of the number of 
modules. However, such situations are rare, and the average 
performance remains excellent. 
A randomized system is also likely to have a very low worst-case 
throughput as evident from Figure 9. This can be explained as 
follows. A D2FA often needs to traverse multiple default 
transitions for a character; if the maximum default path length is 
limited to 7, then 8 state traversals might be needed for a 
character. Since the state to memory mapping is random, there 
may exist default paths along which all states reside in the same 
memory module (or in a small number of modules). If the input 
data is such that the automaton repeatedly traverses such default 
paths, then throughput will degrade. 
Moreover, when we map multiple automata (one for each regular 
expression group) onto memory modules randomly, default paths 
of different automata may map to the same memory module. In 
this case, packets traversing those paths will be processed serially, 
and overall system throughput could diminish even further. Since 

this randomized approach is subject to these pathological worst-
case conditions, we now propose deterministic mapping 
algorithms capable of maintaining worst-case guarantees. 

5.2 Deterministic and Robust Mapping 
The first goal of a robust and deterministic mapping is to ensure 
that all automata, which are executed simultaneously, are stored 
in different memory modules. This will ensure that each executes 
in parallel without any memory conflicts. Achieving this goal is 
straight-forward, provided that there are more memory modules 
than automata. The second goal is to ensure that all states along 
any default path map to different memory modules. Thus, no 
pathological condition can arise for long default paths as a 
memory module will be referred at most once. Another benefit is 
that we will need fewer concurrent packets to achieve a given 
level of throughput, due to the better utilization of the bandwidth. 
Problem Formulation: We can formulate the above problem as a 
graph coloring problem, where colors represent memory modules 
and default paths of D2FA represent the graph. As we have seen, 
these paths form a forest, where vertices represent states and 
directed edges represent default transitions. Our goal is to color 
the vertices of the forest so that all vertices along any path from a 
leaf to the root are colored with different colors. Moreover, we 
need to ensure that every color is nearly equally used, so that 
memories remains uniformly occupied. Clearly, if d is the longest 
default path, i.e. the depth of the deepest tree, then we need at 
least d+1 colors1. We present two heuristic algorithms, to color 
the trees in the forest. 

5.2.1 Deterministic and Robust Mapping 
The max-min algorithm is similar to the first-fit, decreasing bin-
packing heuristic [37], one of the best known heuristics for 
solving the NP-complete bin packing problem. The algorithm is 
formally described above, where the directed graph D represents 

                                                                 
1 A natural way to construct a D2FA is to limit the default path 

length to the number of memory modules (colors) available to it 
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procedure adaptive-coloring (dgraph D(V, W), set color C); 
(1) heap h; 
(2) for color c ∈ C ⇒ used[c] := 0; deprived[c] := 0; rof 
(3) for vertex u ∈ V ⇒ 
(4)  set color colors[u] := C; 
(5)  h.insert(u, depth(u)); 
(6) rof 
(7) do h ≠ [ ] ⇒ 
(8)  u := h.findmax(); h.remove(u); 
(9)  if |colors[u]| > 1 ⇒ assign-color(u, D, C); fi 
(10) od 
end; 
procedure assign-color (vertex u, dgraph D(V, W) , set color C); 
(1) color c; 
(2) Pick c from colors[u] with min used[c] and max deprived[c];
(3) colors[u] := c; 
(4) used[c] := used[c] + size(u); 
(5) for v ∈ descendents(u) ⇒ colors[v] := colors[v] − c; rof 
(6) for v ∈ ancestors(u) ⇒ colors[v] := colors[v] − c; rof 
(7) calculate-deprived(D, C); 
(8) if def-trans(u) ≠ NULL ⇒ assign-color(def-trans(u), D, C); fi 
end; 
procedure calculate-deprived (dgraph D(V, W) , set color C); 
(1) for color c ∈ C ⇒ deprived[c] := 0; rof 
(2) for vertex u ∈ V ⇒ 
(3)  if |colors[u]| = 1 ⇒ 
(4)   color c := colors[u]; 
(5)   for v ∈ descendents(u) ⇒ 
(6)    if |colors[v]| > 1 ⇒ deprived[c] += size(v); fi 
(7)   rof 
(8)  fi 
(9) rof 
end; 

the default transitions and C the set of all colors. The algorithm 
proceeds by ordering the default transition trees according to their 
size (i.e., the number of vertices times the size of each vertex). 
Then, in decreasing order of size, it colors each tree such that all 
vertices at different depths are colored with one of the d+1 colors. 
Since there are a total of d+1 colors and the maximum depth of a 
tree is d, vertices along all default paths are guaranteed to get 
different colors. In order to ensure that colors are nearly equally 
used, max-min heuristics are used. For a currently selected tree, it 
groups the vertices at different depths and sorts the group with 
respect to the size of all vertices in the group. Then, it assigns the 
most used color to the smallest group and the least used color to 
the largest group. 
When the forest consists of a large number of trees, max-min 
coloring ensures that colors are nearly equally used; thereby 
ensuring that different memory modules will remain uniformly 
occupied. However, when there are a small number of trees, the 
max-min algorithm often leads to uneven memory usage. A 
simple example is shown on the left hand side of Figure 10, where 
there are two trees which are colored with 4 colors. With the max-
min algorithm, color 3 is used to color 7 vertices, while colors 1, 
2 and 4 are each used to color only 3 vertices. An alternative 
coloring, which uses each color uniformly and also ensures that 
vertices along a default path uses different colors, is shown on the 
right hand side in the same figure. We now propose an algorithm 
which produces such coloring. 

5.2.2 Adaptive coloring algorithm 
The max-min algorithm performs poorly because it does not 
exploit situations when multiple colors are available to color a 
vertex. For instance, in the example shown in figure 10, the max-
min algorithm assigned color 3 to all vertices at depth 3, although 
five of these six vertices can be colored with either color 3 or 4. In 
practice, a D2FA creates default trees with many such 
opportunities. This adaptive algorithm exploits this power of 
multiple choices and results in a more uniform color usage. 
It begins by assigning a set of all C colors to all vertices and then 
removes colors from each set until every vertex is fully colored 
(i.e. a single color left in their set). In order to remove appropriate 
colors, it keeps track of two variables for every color. The first 
variable “used” tracks the total number of vertices colored by 
each color, and the second variable “deprived” tracks the future 
choices of colors that remain in the sets of those vertices not yet 
fully colored. More specifically, for every color, deprived 
maintains the number of the vertices, which are deprived of using 
it, as it has been removed from their color set and used maintains 
the number of vertices colored with it. Clearly, the goal is to more 
often use colors a) which most of the vertices are deprived of and 
b) with which fewest vertices are fully colored with. 
After initializing the color sets of each vertex, the next step is to 
decide an ordering of the vertices, in which colors will be 

removed from their color set. An effective ordering is to first 
choose vertices which do not have a high degree of freedom in 
choosing colors. Since vertices along longer default paths have 
fewer choices (e.g. vertices along x deep default paths can pick 
one of d−x+1 colors), they should be colored first. Therefore, 
adaptive algorithm processes vertices of all trees simultaneously, 
in a decreasing order of the depth values. It chooses a vertex, and 
removes all but one color from its color set, thus effectively 
coloring it. Whenever a vertex u is colored with color c, color c is 
removed from the color set of all ancestors and descendents of u, 
since it can’t be used to color any of them. Then, all ancestor 
vertices of u are recursively colored. The algorithm is formally 
presented above. A set colors is kept for every vertex and initially 
it contains all C colors. Once all but one color is removed from 
this set, the vertex gets colored. The steps involved in the coloring 
of two trees by the adaptive algorithm using four colors are 
illustrated in Figure 11. 

5.2.3 Coloring results 
In order to evaluate, how uniformly the min-max and adaptive 
algorithms utilize various colors, we generated D2FA such that 
they have different numbers of default transition trees in the 
corresponding forest. This was achieved by limiting the default 
path length to different values. We also limited ourselves to use 
only d+1 colors (where d is the longest default path), as allowing 
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the use of more colors makes the coloring far easier. Our principal 
metric of coloring efficiency is the maximum discrepancy in color 
usage. If used(i) is the size (number of vertices times the number 
of transitions it has) of all vertices using the i-th color, then the 
maximum color usage discrepancy will be, 

)( max))( min)( max( iusediusediused
iii

−  

Clearly, smaller values of discrepancy reflect more uniform usage 
of various colors. We plot the maximum discrepancy in color 
usage in Figure 12, for different number of default transition trees 
in the forest. It is apparent that adaptive algorithm uses colors 
more uniformly. Using the adaptive coloring algorithm, once we 
limited the default paths to 7 or less, we were able to map all of 
our D2FA to memory modules such that there was a maximum 
discrepancy of less than 7 bytes in the memory occupancy. 
We finally report the throughput of the D2FAs generated from the 
Cisco rules, with the default path length limited to 7, in Figure 13. 
Note that since we are using coloring, we need at least 8 memory 
modules. We assume a dual-port embedded memory running at 

300 MHz, read access latency of 4 cycles and the previous data 
set [31]. The performance achieved by deterministic mapping is 
clearly superior to the randomized mapping, as a) it ensures good 
worst-case throughput, and b) it requires fewer concurrent packets 
to achieve high average throughput. 

6. CONCLUDING REMARKS 
In this paper, we introduce a new representation for regular 
expressions, called the delayed input DFA (D2FA), which 
significantly reduces the space requirements of a DFA by 
replacing its multiple transitions with a single default transition. 
By reduction, we show that the construction of an efficient D2FA 
from a DFA is NP-hard. We therefore present heuristics for D2FA 
construction that provide deterministic performance guarantees. 
Our results suggest that a D2FA constructed from a DFA can 
reduce memory space requirements by more than 95%. Thus, the 
entire automaton can fit in on-chip memories. Since embedded 
memories provide ample bandwidth, further space reductions are 
possible by splitting the regular expressions into multiple groups 
and creating a D2FA for each of them. 
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Figure 11. Various steps involved in the coloring of two trees with adaptive algorithm (assuming equally sized vertices) 
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Figure 12. Plotting maximum discrepancy in color usage, circles 

for max-min and squares for adaptive algorithm 
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Figure 13. Throughput with default path length bounded to 7 

and using adaptive-coloring based deterministic mapping 
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As a side effect, a D2FA introduces a cost of possibly several 
memory accesses per input character, since D2FAs may require 
multiple default transitions to consume a single character. 
Therefore, a careful implementation is required to ensure good, 
deterministic performance. We present a memory-based 
architecture, which uses multiple embedded memories, and show 
how to map the D2FAs onto them in such a way that each 
character is effectively processed in a single memory cycle. As a 
proof of concept, we were able to construct D2FAs from regular 
expression sets used in many widely used systems, including 
those employed in the widely used security appliances from Cisco 
Systems, that required less than 2 MB of embedded memory and 
provided up to 10 Gbps throughput at a modest clock rate of 300 
MHz. Our architecture provides deterministic performance 
guarantees and suggests that with today’s VLSI technology, a 
worst-case throughput of OC192 can be achieved while 
simultaneously executing several thousand regular expressions. 
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