
 Open access Journal Article DOI:10.1080/00207160412331290667

Algorithms to solve the knapsack constrained maximum spanning tree problem
— Source link

Takeo Yamada, Kohtaro Watanabe, Seiji Kataoka

Institutions: National Defense Academy of Japan

Published on: 01 Jan 2005 - International Journal of Computer Mathematics (Taylor & Francis)

Topics: Continuous knapsack problem, Knapsack problem, Minimum spanning tree, Spanning tree and
Cutting stock problem

Related papers:

 Algorithms for the minimum spanning tree problem with resource allocation

 Spanning Trees with Node Degree Dependent Costs and Knapsack Reformulations

 An effective ant-based algorithm for the degree-constrained minimum spanning tree problem

 Minimal spanning tree subject to a side constraint

 The quadratic minimum spanning tree problem

Share this paper:

View more about this paper here: https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-
3iu3da20t1

https://typeset.io/
https://www.doi.org/10.1080/00207160412331290667
https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1
https://typeset.io/authors/takeo-yamada-17v7e6ukxh
https://typeset.io/authors/kohtaro-watanabe-1wqcnjc374
https://typeset.io/authors/seiji-kataoka-1vmx6ac8u5
https://typeset.io/institutions/national-defense-academy-of-japan-3vw8fpel
https://typeset.io/journals/international-journal-of-computer-mathematics-x5k2uf45
https://typeset.io/topics/continuous-knapsack-problem-308r7heo
https://typeset.io/topics/knapsack-problem-3vu7m6ga
https://typeset.io/topics/minimum-spanning-tree-218lm6ym
https://typeset.io/topics/spanning-tree-zd2ftzqm
https://typeset.io/topics/cutting-stock-problem-3hatxvwk
https://typeset.io/papers/algorithms-for-the-minimum-spanning-tree-problem-with-u0415v1s6n
https://typeset.io/papers/spanning-trees-with-node-degree-dependent-costs-and-knapsack-29zidmgvul
https://typeset.io/papers/an-effective-ant-based-algorithm-for-the-degree-constrained-fmsxh2r6jj
https://typeset.io/papers/minimal-spanning-tree-subject-to-a-side-constraint-1oduoxr9vt
https://typeset.io/papers/the-quadratic-minimum-spanning-tree-problem-2kovrscaw8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1
https://twitter.com/intent/tweet?text=Algorithms%20to%20solve%20the%20knapsack%20constrained%20maximum%20spanning%20tree%20problem&url=https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1
https://typeset.io/papers/algorithms-to-solve-the-knapsack-constrained-maximum-3iu3da20t1

International Journal of Computer Mathematics

Vol. 82, No. 1, January 2005, 23–34

Algorithms to solve the knapsack constrained maximum

spanning tree problem

TAKEO YAMADA*, KOHTARO WATANABE and SEIJI KATAOKA

Department of Computer Science, The National Defense Academy Yokosuka,
Kanagawa 239-8686, Japan

(Received 19 April 2004)

The knapsack problem and the minimum spanning tree problem are both fundamental in operations
research and computer science. We are concerned with a combination of these two problems. That
is, we are given a knapsack of a fixed capacity, as well as an undirected graph where each edge is
associated with profit and weight. The problem is to fill the knapsack with a feasible spanning tree such
that the tree profit is maximized. We prove this problem NP-hard, present upper and lower bounds,
develop a branch-and-bound algorithm to solve the problem to optimality and propose a shooting
method to accelerate computation. We evaluate the developed algorithm through a series of numerical
experiments for various types of test problems.

Keywords: Minimum spanning tree problem; Knapsack problem; Combinatorial optimization

C.R. Categories: G.2.1; G.1.6

1. Introduction

Let us consider an undirected graph [1, 2] G = (V , E), where V is a finite set of vertices and

E ⊆ V × V is the set of edges. Here, each edge is associated with two kinds of numbers,

namely profit p: E → Z+ and weight w: E → Z+. We also have a knapsack of integer

capacity c > 0. We assume G to be connected and simple in the sense that there exist neither

self-loops nor parallel edges. For a spanning tree T in G, we define its profit and weight as

the sum of the profits and weights of the constituent edges, and these are denoted as p(T) and

w(T), respectively. A spanning tree T is said to be feasible if it satisfies w(T) ≤ c.

Our problem is to find a spanning tree that maximizes the profit among all the feasible

spanning trees. Mathematically, this is formulated as follows.

KCMST:

maximize p(T) (1)

subject to w(T) ≤ c, (2)

T is a spanning tree. (3)

* Corresponding author. Fax: +81-46-844-5911; Email: yamada@nda.ac.jp

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online © 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/00207160412331290667

24 T. Yamada et al.

We call this the knapsack constrained maximum spanning tree problem, or KCMST for short,

since this is a combination of the maximum spanning tree problem and the knapsack problem,

both of which are fundamental in operations research and computer science. Indeed, for c = ∞

KCMST is the maximum spanning tree problem, which can be easily solved by the algorithms

of Kruskal [3] or Prim [4]. On the other hand, if constraint (3) is dropped the problem reduces

to the 0–1 knapsack problem [5, 6].

Throughout the paper we denote n := |V | and m := |E|, and p∗ is the optimal objective

value to KCMST. First, we prove NP-hardness [7] of the problem.

THEOREM 1 KCMST is NP-hard.

Proof Corresponding to the knapsack problem

KP:

maximize
∑

pixi (4)

subject to
∑

wixi ≤ c, (5)

xi ∈ {0, 1}, (6)

we construct a graph consisting of the vertex set V = {0, 1, 1′, 2, 2′, . . . , n, n′} and the

edge set E = {(0, 1), (0, 1′), (1, 1′), . . . , (0, n), (0, n′), (n, n′)}. The profits and weights are

defined as p(0, i) = pi , w(0, i) = wi , p(0, i ′) = w(0, i ′) = 0, p(i, i ′) = M , w(i, i) = 0 for

i = 1, . . . , n (figure 1), where M is a sufficiently large number. We note that an optimal

solution to KCMST for this graph necessarily includes edges {(i, i ′)| i = 1, . . . , n}. Also, an

arbitrary feasible spanning tree including all these edges naturally corresponds, in an one-to-

one way, to a feasible solution to KP. Thus KP is solved by solving KCMST, which completes

the proof since KP is itself NP-hard. �

Although literature abounds on the maximum (minimum) spanning tree problem [1, 8] and

the knapsack problem [5, 6], as well as on their variations [9–11], few previous researches

have been published on KCMST.Yamamoto and Kubo [12] formulated the problem, discussed

the Lagrangean relaxation, but neither proved NP-hardness nor gave solution algorithms. In

this paper, we develop algorithms to solve the problem approximately as well as to optimality.

Figure 1. Proof of NP-hardness.

Spanning tree problems 25

2. Lagrangean relaxation

The Lagrangean relaxation [13, 14] to KCMST is given as follows.

Lagrange:

maximize L(λ, T) := p(T) + λ(c − w(T)) (7)

subject to T is a spanning tree. (8)

For a fixed λ, this is simply a maximum spanning tree problem which is easily solved. Let Tλ

denote an optimal solution to this problem with the objective value L(λ). Then, the following

proposition holds.

PROPOSITION 1

(i) For an arbitrary λ ≥ 0, L(λ) gives an upper bound to KCMST, i.e. L(λ) ≥ p∗.

(ii) L(λ) is piecewise linear and convex in [0, ∞).

(iii) If L(λ) is differentiable at λ,

dL(λ)

dλ
= c − w(Tλ). (9)

Proof (i) is simply a basic principle of the Lagrangean relaxation. For a fixed spanning tree T ,

L(λ, T) is linear with respect to λ, and thus L(λ) is obtained by taking the upper envelope of the

linear functions corresponding to all the spanning trees (figure 2). Hence, L(λ) is piecewise

linear and convex, and when differentiable its derivative is given by equation (9). �

Let L(λ) be minimum at λ♭ ≥ 0. From (ii) and (iii) of Proposition 1, we note that Tλ is

feasible if λ > λ♭, and infeasible if λ < λ♭. Note that λ♭ < ∞ if and only if L(λ) is bounded

from below. In this case, let T ♭ := Tλ♭+0. This gives a feasible solution, which we call the

Lagrangean solution, and the corresponding Lagrangean lower bound is denoted as p♭ :=

p(T ♭).

The Lagrangean function also satisfies the following proposition.

Figure 2. Lagrangean function L(λ).

26 T. Yamada et al.

PROPOSITION 2

(i) If λ♭ = ∞, KCMST is infeasible.

(ii) If T0 is feasible (i.e. w(T0) ≤ c), then λ♭ = 0 and T0 is optimal to KCMST.

(iii) If w(T ♭) = c, T ♭ is optimal to KCMST.

Proof First, if λ♭ = ∞ we have p♭ = −∞ and thus c < w(T) for all spanning trees T , which

proves (i). Next, if T0 is feasible it is obtained in KCMST by ignoring the knapsack constraint

(2). Then, (ii) is straightforward from Proposition 1. In addition, if w(T ♭) = c holds, the upper

and lower bounds coincide by p̄ = L(λ♭) = p(T ♭) = p♭. Thus, (iii) is proved. �

The optimal λ♭ can be obtained by the following bisection method.

ALGORITHM BISECTION

Step 0: Start with λL := 0 and λH such that dL(λH)/dλ ≥ 0.

Step 1: Set λ := (λL + λH)/2, and find Tλ.

Step 2: If w(Tλ) ≤ c set λH := λ; otherwise set λL := λ.

Step 3: If |λH − λL| < ε output λ♭ := λH and stop; otherwise go back to Step 1.

Here ε > 0 is an arbitrary tolerance level for λ♭, which we take as ε = 0.01. We start with

an appropriate interval between λL and λH where L(λ) is negatively and positively sloped,

respectively (Step 0). We take the midpoint and solve the Lagrangean relaxation problem to

find the corresponding tree Tλ (Step 1). We update either the lower or upper bound depending

on whether w(Tλ) ≤ c holds or not (Step 2). This is repeated until the interval is sufficiently

small (Step 3).

Thus we obtain the ‘best’ upper bound p̄ := ⌊L(λ♭)⌋.

Example 1: Figure 3 shows a plane graph with n = 20 and m = 46, where edges are num-

bered in italic. The edge weights and profits are shown in table 1; these are uniformly and

Figure 3. Graph for Example 1.

Spanning tree problems 27

Table 1. Data for the graph of figure 3.

Edge Root Top Profit Weight Edge Root Top Profit Weight

e1 v1 v2 27 16 e24 v8 v16 23 16
e2 v1 v6 43 77 e25 v10 v9 48 73
e3 v1 v11 79 66 e26 v15 v9 46 37
e4 v3 v2 70 46 e27 v9 v16 3 22
e5 v4 v2 96 37 e28 v12 v10 61 4
e6 v2 v5 26 80 e29 v13 v10 54 35
e7 v6 v2 7 73 e30 v10 v14 94 84
e8 v3 v4 80 55 e31 v10 v15 34 37
e9 v8 v3 65 5 e32 v20 v10 60 65
e10 v5 v4 26 24 e33 v11 v12 72 14
e11 v7 v4 51 81 e34 v11 v19 89 68
e12 v4 v8 49 50 e35 v12 v13 65 55
e13 v5 v6 24 19 e36 v12 v20 95 63
e14 v5 v7 6 42 e37 v14 v13 63 14
e15 v6 v7 38 5 e38 v13 v19 12 55
e16 v6 v11 32 48 e39 v14 v15 62 27
e17 v6 v12 43 65 e40 v19 v14 1 93
e18 v6 v20 49 35 e41 v15 v16 44 76
e19 v8 v7 84 3 e42 v15 v18 52 97
e20 v9 v7 48 79 e43 v16 v17 74 67
e21 v7 v10 8 3 e44 v18 v16 37 48
e22 v7 v20 77 1 e45 v17 v18 23 24
e23 v9 v8 62 17 e46 v19 v18 94 100

Table 2. Behavior of bisection.

Iteration λL λH λ L(λ) dL(λ)/dλ

1 0.00 10.00 5.00 2091.00 220.00
2 0.00 5.00 2.50 1541.00 220.00
3 0.00 2.50 1.25 1307.75 119.00
4 0.00 1.25 0.63 1291.38 −65.00
5 0.63 1.25 0.94 1277.25 60.00
6 0.63 0.94 0.78 1281.22 −65.00
7 0.78 0.94 0.86 1278.25 −16.00
8 0.86 0.94 0.90 1277.63 −16.00
9 0.90 0.94 0.92 1277.31 −16.00

10 0.92 0.94 0.93 1277.16 −16.00

Figure 4. Heuristic and exact solutions to the instance of Example 1. (a) Lagrangean solution T ♭, (b) 2-opt solution
T ♯ and (c) optimal solution T ∗.

28 T. Yamada et al.

independently distributed over [1, 100], and the knapsack capacity is set to c = 600. Figure 2

is actually L(λ) for this example. Table 2 shows the behavior of Bisection. From this we obtain

λ♭ = 0.94 with p̄ = 1277. The corresponding T ♭ is shown in Figure 4(a) with p♭ = 1221 and

w(T ♭) = 540.

3. A heuristic algorithm

In section 2, we have already stated how a feasible solution T ♭, and thus a lower bound p♭, can

be found. This approximate solution may further be improved by applying any of the heuristic

algorithms [15, 16], which is now standard in combinatorial optimization. Here we mention

the 2-opt local-search method, which starts with T ♭ as an initial solution and continues to

improve the solution as far as possible.

For an arbitrary spanning tree, an edge included (not included, respectively) in that tree is

referred to as a tree (co-tree, respectively) edge. Adding an arbitrary co-tree edge to the tree

induces a cycle in that graph. Then, by removing a tree-edge from that cycle we obtain another

spanning tree. We say that these two spanning trees are neighbors of each other (figure 5). For

a feasible spanning tree T we define its neighborhood N(T) by

N(T) := {T ′|T ′ is a feasible neighbor of T } (10)

The local-search algorithm is as follows.

ALGORITHM LOCAL_SEARCH

Step 0: Start with T := T ♭.

Step 1: If there exists T ′ ∈ N(T) such that p(T ′) > p(T) go to Step 2; otherwise output T

and stop.

Step 2: Set T := T ′ and go to Step 1.

Let T ♯ be the output of this algorithm. This is referred to as the 2-opt solution, and the

corresponding 2-opt lower bound is denoted as p♯ := p(T ♯).

Example 2: For T ♭ of Example 1, Local_Search improves solution by exchanging, step-

by-step, tree and co-tree edges as e13 ↔ e10, e15 ↔ e18 and e29 ↔ e35. The objective value

increases as 1221 → 1223 → 1234 → 1245. The output T ♯ is shown in Figure 4(b), where

we have p♯ = 1245 with w(T ♯) = 595.

4. A branch-and-bound algorithm

Now we can construct a branch-and-bound (henceforth B&B) algorithm using the heuristic

solution as well as the upper and lower bounds discussed in the previous sections.

Figure 5. Neighboring trees.

Spanning tree problems 29

Let T be an arbitrary feasible spanning tree. Initially this may be taken as T := T ♯, and

explicitly written as T = {e1, e2, . . . , en−1}. From this we generate a series of subproblems

in the following way. The ith subproblem is to find an optimal solution that includes

{e1, . . . , ei−1}, but does not include ei (i = 1, . . . , n − 1). Clearly the KCMST is solved if

we have solved all these subproblems, and to accomplish this we repeat the same thing recur-

sively with respect to the subproblems. Such a decomposition of a combinatorial optimization

problem into a set of subproblems can be seen in the literature [17, 18].

We consider a more general situation where we have a pair of disjoint edge sets F and

R. A spanning tree T is said to be (F, R)-admissible if it includes all the edges of F , but

does not include those of R. These are referred to as fixed and restricted edges, respectively.

Then, the subproblem P(F, R) is to find an optimal solution that is feasible as well as (F, R)-

admissible. Note that the upper and lower bounds introduced in the previous sections are easily

modified to account for (F, R)-admissibility. Let these be denoted as p♯(F, R) and p̄(F, R),

respectively, and T ♯(F, R) is the corresponding 2-opt solution. In addition, T † and p† represent

the incumbent solution and the corresponding objective value, respectively. Initially these are

T † := ∅ and p† := −∞.

The following algorithm solves P(F, R).

ALGORITHM B&B(F, R)

Step 1: If P(F, R) is infeasible or p̄(F, R) ≤ p†, terminate P(F, R).

Step 2: If P(F, R) is solved to optimality, update, if necessary, the incumbent solution (and

p†) and terminate.

Step 3: Otherwise, find an (F, R)-admissible T ♯(F, R) by the heuristic method of section 3.

If necessary, update the incumbent.

Step 4: Use T ♯(F, R) to divide the problem into a set of mutually disjoint sub-subproblems,

and apply B&B recursively to these sub-subproblems.

In this algorithm, if 2-opt solution is written as T ♯(F, R) = F ∪ {ek+1, . . . , en−1} with

k := |F |, the sub-subproblems are generated in Step 4 as P(Fi, Ri), where Fi := F ∪

{ek+1, . . . , ei−1} and Ri := R ∪ {ei} for i = k + 1, . . . , n − 1.

By calling B&B (∅, ∅), KCMST is solved. We note that in this algorithm subproblems are

examined in depth-first fashion [19, 20], due to the nature of recursive calls.

Example 3: For the problem of Example 1, we start with p♯ = 1245 and p̄ = 1277. B&B

finds p∗ = 1263 after generating 303 subproblems. The optimal spanning tree is shown in

figure 4(c), where we have w(T ∗) = 594.

5. Shooting method

In the standard B&B method, the initial value for the incumbent value is usually set to p† :=

−∞. In the shooting method we make a guess for this value, and run B&B using this value

as if it is actually an initial incumbent value, i.e., p† ≤ p∗. We may fail to obtain an optimal

solution, since p∗ is unknown and therefore the guess may not be correct. If this happens, we

simply repeat B&B with the guess lowered.

More precisely, let B&B [p] denote the algorithm B&B (∅, ∅) run with p† := p ∈ [p, p̄]

used as the initial incumbent value, and φ(p) be the number of subproblems generated by

B&B [p]. For the lower bound we may use either p♭ or p♯, but in the sequel we denote this

simply as p. Then, we have the following.

30 T. Yamada et al.

PROPOSITION 3

(i) If p ≤ p∗, B&B [p] correctly solves KCMST.

(ii) Otherwise, if p > p∗ B&B [p] fails, i.e., it terminates without finding the solution to

KCMST.

(iii) φ(p) is a non-increasing function of p in [p, p̄].

Proof These are straightforward from the behavior of the B&B method. �

Then, the shooting method is as follows.

ALGORITHM SHOOTING_METHOD

Step 1: Start with the interval [p, p̄].

Step 2: Set p† := αp + (1 − α)p̄.

Step 3: Run B&B [p†]. If optimal solution is found, output it and stop.

Step 4: Otherwise, update p̄ := p† and go back to Step 2.

Here α is a constant in [0, 1]. After some preliminary numerical tests, we fix this value as

α = 0.3. At each iteration of Shooting_Method the interval [p, p̄] shrinks by the factor of

1 − α, and as soon as p† ≤ p∗ is satisfied KCMST is solved to optimality.

Example 4: For the problem of Example 1, we first try p† = (⌊0.3 · 1245 + 0.7 ·

1277⌋ =)1267. B&B [1267] fails after generating 55 subproblems, since 1267 > p∗.

We try again with p† = (⌊0.3 · 1245 + 0.7 · 1267⌋ =)1260, and after examining 108 more

subproblems obtain the same optimal solution as in Example 3.

6. Numerical experiments

We have implemented the B&B algorithm in ANSI C language and conducted a series of

numerical tests on an IBM RS/6000 44P Model 270 workstation. The algorithm with/without

shooting is henceforth denoted as B&B/Shooting and B&B/No-shooting, respectively. The

test problems are plane graph Pn,m and complete graph Kn. Figure 3 is an example of P20,46.

For edge weights and profits we consider three cases.

(a) Uncorrelated: p(e) and w(e) (e ∈ E) are independently and uniformly distributed over

[1, 100].

(b) Weakly correlated: w(e) are similarly distributed over [1, 100], and p(e) := ⌊0.8w(e) +

v(e)⌋, where v(e) is uniformly random over [1, 20].

(c) Strongly correlated: w(e) are distributed similarly, and p(e) := ⌊0.9w(e) + 10⌋.

Knapsack capacities are set to c = 35n for plane graphs, and c = 20n − 20 for complete

graphs.

Table 3 shows the result of experiments of B&B/Shooting for the uncorrelated case, where

each row is the average of 10 randomly generated instances. Here, Err
♭

L represents the relative

error of the Lagrangean lower bound against the optimal value, i.e.,

Err
♭

L :=
100(p∗ − p♭)

p∗
(%). (11)

Spanning tree problems 31

Table 3. Result of experiments: uncorrelated case.

Problem c Err
♭
L Err

♯
L ErrU #Rep p∗ #Sub Sec.

P50,127 1,750 0.8239 0.3361 0.1165 2.5 3,689.8 320.4 0.43
P100,260 3,500 0.5458 0.2307 0.0376 2.1 7,456.4 889.5 1.78
P200,560 7,000 0.4046 0.1822 0.0054 1.2 14,928.9 1,492.9 5.46
P400,1120 14,000 0.1262 0.0684 0.0020 1.0 30,111.9 3,051.4 24.44
P600,1680 21,000 0.1195 0.0525 0.0016 1.2 44,926.1 5,294.8 75.25
P800,2240 28,000 0.2947 0.1241 0.0007 1.0 59,793.4 21,721.3 466.37
P1000,2800 35,000 0.1654 0.0729 0.0004 1.0 74,799.2 20,351.1 592.77
K40 780 0.2205 0.0762 0.0299 1.3 3,673.3 187.9 0.87
K60 1,180 0.3799 0.0985 0.0088 1.0 5,686.3 179.1 1.89
K80 1,580 0.2668 0.1250 0.0052 1.0 7,682.7 352.6 6.54
K100 1,980 0.1476 0.0423 0.0010 1.0 9,686.5 376.7 12.48
K120 2,380 0.1205 0.0410 0.0017 1.0 11,701.9 468.5 23.69
K140 2,780 0.0561 0.0226 0.0000 1.0 13,717.3 832.4 60.95
K160 3,180 0.0897 0.0388 0.0000 1.0 15,714.3 9800.1 476.26
K180 3,580 0.1004 0.0446 0.0006 1.0 17,724.2 5152.7 636.54
K200 3,980 0.0400 0.0167 0.0005 1.0 19,733.1 2356.8 375.26

Err
♯

L is analogously defined for 2-opt lower bound p♯, and

ErrU :=
100(p̄ − p∗)

p∗
(%). (12)

In addition, #Rep is the number of shooting trials repeated, p∗ is the optimal objective value,

#Sub is the total number of subproblems generated and Sec. is the CPU time in s.

Tables 4 and 5 are the results of B&B/Shooting for the weakly and strongly correlated

cases, respectively. Superscribed in the column of Sec. are the number of subproblems

solved within 2000 CPU seconds. For example, we were able to solve 8 instances out of

10 for P600,1680 with weakly correlated edges. In these cases, the average was taken over the

instances solved within the time limit. Superscripts are omitted if all 10 instances were solved.

We were able to solve KCMST for graphs with up to 1000 vertices in reasonable CPU

time, but as in ordinary knapsack problems, the computation becomes harder as the profits

and weights are more strongly correlated. From tables 3–5, we observe the following.

• Upper bound (p̄) is very close to the optimal objective value (p∗) for almost all cases tested.

The relative error ErrU is usually less than 1%, and often much smaller.

Table 4. Result of experiments: weakly correlated case.

Problem c Err
♭
L Err

♯
L ErrU #Rep p∗ #Sub Sec.

P50,127 1,750 4.1238 1.1609 0.0680 1.3 2,058.8 512.2 0.81
P100,260 3,500 2.8292 0.5857 0.0145 1.1 4,131.9 1,156.8 2.71
P200,560 7,000 1.0505 0.2632 0.0024 1.0 8,358.1 2,906.7 13.11
P400,1120 14,000 0.8110 0.1824 0.0012 1.0 16,720.4 4,602.5 47.15

P600,1680 21,000 0.8169 0.1670 0.0004 1.0 25,156.5 22,442.4 371.848

P800,2240 28,000 0.4233 0.1031 0.0006 1.0 33,544.2 24,887.8 509.225

K20 380 5.6257 0.7709 0.2132 1.4 609.7 114.7 0.25
K40 780 4.0664 0.4950 0.0228 1.0 1,313.2 206.1 1.17
K60 1,180 5.3884 0.5215 0.0050 1.0 2,013.6 475.2 6.09
K80 1,580 4.7316 0.3388 0.0037 1.0 2,715.8 1,693.4 38.15

K100 1,980 2.3565 0.1727 0.0000 1.0 3,416.1 5,174.2 377.618

K120 2,380 3.6588 0.2062 0.0000 1.0 4,121.6 8,644.4 451.068

32 T. Yamada et al.

Table 5. Result of experiments: strongly correlated case.

Problem c Err
♭
L Err

♯
L ErrU #Rep p∗ #Sub Sec.U

P50,127 1,750 9.3194 0.1559 0.0049 1.0 2052.7 4,903.9 2.84

P100,260 3,500 16.5958 0.2649 0.0000 1.0 4114.9 34,7796.0 405.458

K20 380 18.0839 0.3401 0.0378 1.0 529.2 363.8 0.53
K30 580 14.5540 0.3212 0.0000 1.0 809.4 36,970.2 99.63

K40 780 8.6530 0.1193 0.0183 1.0 1089.8 50,636.5 226.306

• Lower bounds (p♭, p♯) are also within less than 1% of relative errors in the uncorrelated

case. However, the Lagrangean solution (p♭) deteriorates in the correlated cases. Even in

such a case, 2-opt heuristics gives a solution of less than 1% error from the optimal.

• Usually, we obtain more accurate bounds as the size of problem (n) increases.

Figure 6 compares the optimal objective value as the function of n. Here figure 6(a, b),

respectively) is the result for plane (complete, respectively) graphs, and the solid (broken,

respectively) lines represent the uncorrelated (weakly correlated, respectively) case. From

these we see the following.

• For the cases tested, the optimal objective value is almost linear with respect to n.

• Correlation between profits and weights makes the optimal value lower.

Figure 7 shows the number of subproblems generated, whereas figure 8 gives the CPU time

in s.Again, (a) is for plane graphs and (b) is for complete graphs in these figures, and thick solid

(broken, respectively) lines represent the results of B&B/Shooting for uncorrelated (weakly

correlated, respectively) case, whereas the thin solid line is the results of B&B/No-shooting

for uncorrelated case. In figures 7(b) and 8(b), values on the thin solid line need some caution

for n ≥ 160, since these are averages of only solved (less than 10) instances.

From these we conclude the following:

• Correlation between profit and weight usually makes the number of subproblems and CPU

time larger, and thus makes problem harder to solve.

• For plane graphs, shooting makes the number of subproblems generated and CPU time

smaller.

• This effect of shooting is not so clear for complete graphs. However, for n ≤ 140 where the

algorithms solved all 10 instances, B&B/Shooting is superior to B&B/No-shooting both

in #Sub and CPU time.

Figure 6. Optimal objective values obtained by B&B/Shooting.

Spanning tree problems 33

Figure 7. Number of subproblems generated.

Figure 8. CPU time in s.

7. Conclusion

We have formulated the problem KCMST, proved it is NP-hard, derived upper and lower

bounds, developed a B&B algorithm, proposed a shooting method and conducted some numer-

ical experiments. As a result, we were able to solve KCMST with up to 1000 vertices in less

than 2000 s. The shooting method was found to be effective, especially for plane graphs.

However, the B&B algorithm presented here is quite unsophisticated. To solve larger prob-

lems to optimality, more advanced algorithms are required. Investigation of the polyhedral

structure [21] of the problem may lead to such an algorithm.

References

[1] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., 1993, Network Flows: Theory, Algorithms, and Applications

(Englewood Cliffs, NJ: Prentice-Hall).
[2] Busacker, R.G. and Saaty, T.L., 1965, Finite Graphs and Networks: An Introduction with Applications (New

York: McGraw-Hill).
[3] Kruskal, J.B., 1956, Proceedings of the American Mathematical Society, 7, 8–50.
[4] Prim, R.C., 1957, Bell System Technical Journal, 36, 1389–1401.
[5] Martello, S. and Toth, P., 1990, Knapsack Problems: Algorithms and Computer Implementations (Chichester:

John Wiley & Sons).
[6] Salkin, U.M. and de Kluyver, C.A., 1975, Naval Research Logistics, 22, 127–144.
[7] Garey, M.R. and Johnson, D.S., 1979, Computers and Intractability: A Guide to the Theory of NP-Completeness

(San Francisco: Freeman and Company).
[8] Graham, R.L. and Hell, P., 1985, Annals of the History of Computing, 7, 43–57.
[9] Samphaiboon, N. and Yamada, T., 2000, Journal of Optimization Theory and Applications, 105, 659–676.

[10] Yamada, T., Futakawa, M. and Kataoka, S., 1998, European Journal of Operational Research, 106, 177–183.
[11] Yamada, T., Watanabe, K. and Kataoka, S., 2002, Information Processing Society of Japan, 43, 2864–2870.

34 T. Yamada et al.

[12] Yamamoto, Y. and Kubo, M., 1997, Invitation to the Traveling Salesman’s Problem (in Japanese) (Tokyo:
Asakura).

[13] Nemhauser, G.L. and Wolsey, L.A., 1988, Integer and Combinatorial Optimization (New York: John Wiley &
Sons).

[14] Wolsey, L.A., 1998, Integer Programming (New York: John Wiley & Sons).
[15] Aarts, E. and Lenstra, J.K. (Eds.), 1997, Local Search in Combinatorial Optimization (Chichester, UK: John

Wiley & Sons).
[16] Osman, I.H. and Kelly, J.P. (Eds.), 1996, Meta-heuristics: Theory and Applications (Boston, MA: Kluwer).
[17] Hamacher, H.W. and Queyranne, M., 1985, Annals of Operations Research, 4, 123–143.
[18] Lawler, E.L., 1972, Management Science, 18, 401–405.
[19] Baase, S., 1993, Computer Algorithms: Introduction to Design and Analysis, 2nd ed. (Reading, MA: Addison-

Wesley).
[20] Sedgewick, R., 1998, Algorithms in C, 3rd ed. (Reading, MA: Addison-Wesley).
[21] Korte, B. and Vygen, J., 2000, Combinatorial Optimization (Berlin: Springer).

