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Abstract. In this paper we study the possibility of removing aliasing
in a scene from a single observation by designing an alias-free upsam-
pling scheme. We generate the unknown high frequency components of
the given partially aliased (low resolution) image by minimizing the total
variation of the interpolant subject to the constraint that part of una-
liased spectral components in the low resolution observation are known
precisely and under the assumption of sparsity in the data. This pro-
vides a mathematical basis for exact reproduction of high frequency
components with probability approaching one, from their aliased ob-
servation. The primary application of the given approach would be in
super-resolution imaging.

1 Introduction

Images with high spatial resolution are always a necessity in computer vision
applications. Resolution enhancement using interpolation techniques is of lim-
ited application because of the aliasing present in the low resolution (LR) image.
Hence researchers have been working in the field of super-resolution (SR) where a
high-resolution (HR) image is reconstructed using one or more LR observations.
In general, super-resolution involves deblurring, denoising and alias-removal.
There are, in general, two classes of super-resolution techniques: reconstruction-
based and learning-based [1]. In reconstruction-based SR techniques several LR
images are used to reconstruct the super-resolved image. In learning-based meth-
ods proposed in the literature, one or more LR observations are used, but they
make use of a database of several HR images to estimate the HR image corre-
sponding to the given LR image.

All existing papers claim that they have been able to generate additional high
frequency components through the use of multiple exposures or learning from
the database. But there has been no mathematical proof or studies to show
that the generated high frequency components are, indeed, the correct ones! For
example, even a bilinear interpolation will generate (spurious) high frequency
components. Unlike all previous work, we provide a mathematical basis based
on which the correctness of the generated high frequency components can be
established. In this paper we study only one specific aspect of SR, the alias
removal part, at an exact theoretical level. We deal with a very specific case-
only a single LR observation, no multiple view collation and no learning from a
database. In effect, we show how much additional information can be extracted
from a single observation through alias removal alone.
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The super-resolution idea was first proposed by Tsai and Huang[2]. Their fre-
quency domain approach reconstructs an HR image from a sequence of several
LR undersampled images by exploiting the relationship between the continu-
ous and the discrete Fourier transforms of the undersampled frames. A different
approach to the super-resolution restoration problem was suggested by Irani et
al. [3] based on the iterative back projection method. A maximum aposteriori
(MAP) estimator with Huber-Markov random field prior is described by Schultz
and Stevenson in [4]. Elad and Feuer [5] proposed a unified methodology for
super-resolution restoration from several geometrically warped, blurred, noisy
and down-sampled images by combining maximum likelihood, MAP and projec-
tion onto convex sets approaches. Nguyen et al. proposed circulant block pre-
conditioners to accelerate the conjugate gradient descent method while solving
the Tikhonov-regularized super-resolution problem [6].

In all the above methods, the quality of the super-resolved image is measured
either by means of visual inspection or using a PSNR check. It can be easily
shown that the PSNR measure is heavily biased towards the lower part of the
spectrum due to the fact that most of the energy is contained in this region.
Hence the PSNR may not be a good measure to evaluate the performance of
an SR scheme. The issue that the reconstructed components are really the high
frequency components has not really been investigated so far. Our work in this
paper is a study in this direction. In [7], Lin and Shum determine the quantitative
limits of reconstruction-based super-resolution algorithms and obtain the up-
sampling limits from the conditioning analysis of the coefficient matrix. But it is
restricted to a perturbation analysis and not on spectral resolvability. Shahram
and Milanfar in [8] study how far beyond the classical Rayleigh limit of resolution
one can reach at a given signal to noise ratio using statistical analysis. Here the
authors do not study the system performance in the presence of aliasing.

Rajan et al. have analyzed the possibility of alias-free upsampling of images
in [9] through the use of a generalized interpolation. They have shown the condi-
tions under which such an interpolation is possible. However, it requires several
observations and the knowledge of a non-linear transform to achieve this. We
study the issue of alias-free interpolation at a more fundamental level and re-
strict ourselves to using a single observation. Our work is motivated by the work
of Candes et al. [10] where the authors address the problem of exact signal
reconstruction from incomplete frequency information. We build on the theo-
rem developed by them to derive a method for exact removal of aliasing while
interpolating an image.

The reminder of the paper is organized as follows. We discuss the LR image
formation process in section 2. We also define the problem here. A relevant
theorem which we make use of in solving the problem is stated in 3. Some
useful corollaries are also given. Section 4 explains our alias-free interpolation
technique. In section 5 we discuss the computational scheme to solve the problem.
We present experimental results on different types of images in section 6, and
the paper concludes in section 7.
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2 Aliasing in LR Image

It is assumed that the observed low resolution image is produced from a single
high resolution image under the following generative model. Let z̄ represent
the lexicographically ordered high resolution image of K2 × 1 pixels. If ḡ is the
N2×1 lexicographically ordered vector containing pixels from the low resolution
observation, then it can be modeled as

ḡ = DAz̄ (1)

where D is the decimation matrix, size of which depends on the decimation
factor and A is the blur matrix, assumed to be an identity matrix in this paper
for the specific task of studying the alias-removal property.

The LR image formed through the above process will, in general, be aliased.
The aliasing mechanism is illustrated in Figure 1. The spectrum of a continuous-
time 1-D signal xc(t) band limited to B is shown in Figure 1(a). The spectrum
of the sampled signal x(n) sampled at a rate F < 2B is shown in Figure 1(b).
Of course the spectrum will be aliased since the signal is sampled at a rate less
than the Nyquist rate. The resultant aliased spectrum of the sampled signal
is shown in Figure 1(c). As can be noted from Figure 1(c) the portion of the
spectrum F − B ≤ ω ≤ B will be aliased and the rest will be alias-free. A
similar form of aliasing takes place in low resolution images unless the blur
matrix A in equation (1) is quite severe. The knowledge about the portion of
the spectrum 0 ≤ ω ≤ F − B will be used as a constraint, as these components
are free from aliasing, in the proposed method to recover the high frequency
components.
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ω
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ω
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F−B F00 B B

Fig. 1. Illustration of the aliasing process: (a) Spectrum of a continuous-time signal
xc(t), (b) components of the spectrum of the sampled signal x(n), and (c) resultant
spectrum of x(n)

Having explained the aliasing process, we now define our problem in terms of
alias-free interpolation: Given an LR image g(x, y) of size N ×N whose spectrum
is partially aliased, generate an interpolated image z(x, y) of size 2N ×2N which
is completely alias-free under the assumption that the image consists of piece-wise
constant intensity regions. The significance of the assumption will be explained
in the next section.
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3 A Relevant Theorem by Candes et al.

Theorem 1: Consider a discrete-time 1-D signal f ∈ CN and a randomly chosen
set of frequencies Ω of mean size τN, 0 < τ < 1. Then for each ζ > 0, suppose
that f obeys

#{n, f(n) �= 0} ≤ α(ζ) · (log N)−1 · #Ω, (2)

then with probability at least 1 − O(N−ζ), f can be reconstructed exactly as
the solution to the l1 minimization problem

min
h

N−1∑

n=0

|h(n)| s.t. H(ω) = F (ω) ∀ω ∈ Ω (3)

where H(ω) and F (ω) are the discrete Fourier transforms of h(n) and f(n)
respectively and # refers to the count.

Here ζ is an accuracy parameter in the term O(N−ζ) and α(ζ) has been shown
to be equal to (1+o(1))/(29.6(ζ+1)) under certain conditions in [10]. In a simple
language it means that as one selects more spectral components compared to the
number of non-zero elements in f(n), one is likely to recover the true function
f(n) with a higher accuracy. Proof of the theorem can be found in [10]. This
is typically known as data sparsity problem [11], one such common example of
which is inpainting [12] where one is required to reconstruct the missing data.
An interesting reference to this work is by Chan et al. [13] where the authors
investigate the reverse problem, i.e., how much loss in data can be tolerated for
a faithful reconstruction of a signal as opposed to what Candes et al. [10] has
studied.

According to the theorem the discrete-time signal f can be reconstructed from
its partial frequency samples as the solution to the constrained l1 optimization
problem as stated above. It may be noted that the reconstruction is possible if the
signal consists of a limited number of spikes (Kronecker delta) only. However,
most of the input signals or images do not satisfy the above condition. If we
consider this function to be a derivative (forward difference in the discrete case)
of the function f(n), then the corresponding l1 minimization should be performed
on the derivative of h(n), or in other words, one has to minimize the total
variation (TV). This leads to the following corollary.

Corollary 1: A piecewise constant object can be reconstructed from incom-
plete frequency samples provided the number of discontinuities satisfy the above
condition 2, as the solution to the minimization problem

min
h

N−1∑

n=0

|h(n) − h(n − 1)| s.t. H(ω) = F (ω) ∀ω ∈ Ω (4)

Corollary 2: If f(x, y) is a two-dimensional object, it can be reconstructed from
its incomplete frequency samples as the solution to the minimization problem

min
h

∑ ∑
(|hx| + |hy|) s.t. H(ω) = F (ω) ∀ω ∈ Ω (5)
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where hx(x, y) = h(x, y) − h(x − 1, y) and hy(x, y) = h(x, y) − h(x, y − 1).
This is similar to minimizing the total variation norm of h(x, y). But this is not
rotationally symmetric.

It may be noted that the same solution was proposed in 1981 by Levy and
Fullagar [14] in connection with the reconstruction of geophysical data. Also see
the reference [15] for a similar work. Candes et al. have provided a theoretical
footing of the existing solution. It may be noted that total variation-based image
interpolation methods are also proposed in [16] and [17]. But the authors do not
specifically address the issue of alias removal. For a detailed review of TV, readers
are referred to [18].

4 Alias-Free Interpolation

The problem addressed in [10] is a restoration problem where the discrete-time
signal is reconstructed from its incomplete Fourier samples such as in computed
tomography. However, they do not consider the effect of aliasing on the sampled
data. But our problem is a signal interpolation one, where only one LR obser-
vation g is available, which is the decimated version of the unknown HR image
z as explained in section 2. Of course, g will be aliased. We wish to remove
this aliasing completely while interpolating the image assuming the aliasing to
be only partial. It may be noted that without the interpolation (use of a denser
grid to represent the data), one cannot recover the aliased components. To apply
the above theorem to our problem, a partial knowledge about Z(ω) should be
available. We now explain how a partial knowledge of Z(ω) can be obtained from
the given observation G(ω). Our alias-free interpolation procedure is illustrated
in Figure 2 with respect to a given 1-D LR sequence g(n) of length N . Note that
unlike in theorem 1, we are dealing with real valued function g(n) and hence the
spectrum is always conjugate symmetric and one has to consider only one half of
the spectral components. Figure 2(a) shows the partially aliased spectrum of the
LR sequence g(n) of length N . We assume that G(ω) in 0 ≤ ω ≤ M is free from
aliasing and the remaining portion is aliased. This corresponds to the assump-
tion that the continuous signal gc(t) is band limited to the normalized frequency
(1 − M/N), where 0 ≤ M ≤ N/2. The smaller the value of M , the larger is the
amount of aliasing. Figure 2(b) shows the spectrum of the HR sequence z(n) of

aliased

ω

G(ω )

free
alias−

M0

(a)

N/2

Z(ω )

0 M

alias−free
reconstruction

NN−MN/2
ω

(b)

Fig. 2. Illustration of (a) partially aliased spectrum of the LR sequence g(n), and (b)
spectrum of the HR sequence z(n) to be estimated. Note that only half of the spectrum
is shown due to conjugate symmetry.
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length 2N to be estimated. The alias-free interpolation method should recover
the frequency components in the region M ≤ ω ≤ N − M in Z(ω) as shown in
Figure 2 (b). From the figure, note that we have

Z(i) = qG(i) for 0 ≤ i < M (6)

Z(i) = 0 for N − M < i ≤ N (7)

and using the property of aliasing (wrapping around of frequencies)

Z(i) + Z(N − i) = qG(i) for M ≤ i ≤ N/2 (8)

Hence the alias-free reconstruction of the high resolution signal involves recov-
ering the spectrum Z(ω) given equations (6-8). Clearly, this cannot be done
without additional constraints. Note that one needs the scale factor q (equal to
2 in this study) to satisfy the energy relationship (Parseval’s theorem). In order
to recover z(n), we need state the following theorem.

Theorem 2: Given a discrete-time partially aliased 1- D signal g ∈ RN , and
two distinct spectral intervals Ωf = {0 ≤ ω < M} and Ωa = {M ≤ ω ≤ N/2}
and another discrete-time signal z ∈ R2N satisfying Nyquist criterion with three
distinct spectral intervals Ωf

′ = Ωf , Ωa
′ = {M ≤ ω ≤ N − M} and Ω0

′ =
{N −M < ω ≤ N}, under conditions very similar to those defined in theorem 1,
z can be recovered exactly from g as a solution to the l1 minimization problem

min
z

2N−1∑

n=0

|z(n)| (9)

subject to the constraints

Z(ω) = 2G(ω) ∀ω ∈ Ωf
′ (10)

Z(ω) + Z(N − ω) = 2G(ω) ∀ω ∈ Ωa (11)

Z(ω) = 0 ∀ω ∈ Ω0
′ (12)

One can follow arguments similar to those in [10] except that the partitions
are deterministic and hence it will lead to different values of the parameters α
and ζ. It may be noted that the partitions Ωf and Ωa correspond to the alias-free
and the aliased components of the low resolution signal g, respectively. Since the
partition is known, it implicitly means that we know the extent of aliasing in the
observation. Furthermore, the above theorem assumes that the signal consists
of a limited number of Kronecker deltas. Extending the theorem to deal with
piece-wise constant signal, and also on the 2 − D lattice, we realize that we
should minimize the expression

min
z

∑ ∑
(|zx| + |zy|) (13)

instead of equation (9) to recover the high resolution image z. (The multiplication
factor q in equations (10) and (11) should be replaced by q2 = 4 due to the



Alias-Free Interpolation 261

extension to 2 − D.) It may be noted that if z is, indeed, piecewise constant
then it cannot ideally be band limited, and hence the partition Ωf will not be
completely free from aliasing.

Now we look at the issue of the choice of the value of M for alias removal.
It is assumed in theorem 2, that M is known. This is tantamount to assuming
the highest frequency component present in z is known apriori. However, one
would not know M in practical super-resolution applications. We suggest that
one solves the problem for different values of M and then compare the results.
However, as the value of M is lowered from N/2 toward 0, the cardinality of the
set Ωf reduces and the reconstruction would be progressively more unreliable.
It also leads to the following observation that one cannot use an interpolation
factor q greater than 2 as this would mean M = 0, implying a several fold
aliasing when Ωf = {∅} and hence reconstruction would be very unreliable.

5 Computational Method

Theorem 2 provides a theoretical basis for obtaining the alias-free interpolated
image z. We now provide the computational tool to solve this. We obtain the
solution to the above optimization problem using linear programming (LP).
The objective function for the LP problem is the total variation cost as given in
equation (13). The equality constraints are obtained using equations (10), (11)
and (12). The equality constraints corresponding to equation (10) can be written
in the form

Tf z̄ = Ḡf (14)

where T is the 2N × 2N DFT matrix with elements T (m, n) = [e−jπ/N ]mn and
Tf represents the top M rows of T . Thus Tf is an M × 2N matrix. Similarly Ḡ
is the DFT of the observation qg(n) and Ḡf corresponds to the top M elements
of Ḡ. The equality constraints corresponding to equation (11) can be written as

Taz̄ = Ḡa (15)

where Ta is an (N/2 − M + 1) × 2N matrix whose each row is obtained by
summing the corresponding two rows of the DFT matrix Tf as per the indices
shown in equation (8). Ḡa corresponds to the spectral components (M + 1) to
(N/2 − M) in Ḡ. Similarly equation (12) can be written as a linear equality

T0z̄ = 0̄ (16)

where T0 consists of the (N − M + 1) to N rows of the DFT matrix T and
0̄ is a null vector. All the above three linear equations can now be compactly
written as ⎡

⎣
Tf

Ta

T0

⎤

⎦ z̄ =
[
Ḡ
0̄

]
(17)

which is of the form Cz̄ = d̄. We also know that z(n) ≥ 0 ∀n as z(n) corresponds
to an image. Also note that the above equation is meant for the first half of the
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spectrum. One would get an equivalent constraint for the other half based on
the conjugate symmetry. Hence equations (9) and (17) constitute a standard
LP problem. We have explained the problem with respect a 1 − D signal and it
should be suitably changed to handle 2 − D images.

To solve the l1 minimization using LP equation (13) should be written as

min
z

∑ ∑
((z+

x + z−x ) + (z+
y + z−y )) (18)

where z+
x = max(zx, 0) and z−x = − min(zx, 0), etc. Unfortunately, this increases

the dimensionality of the unknown variables by five fold, increasing the compu-
tation significantly. Further the constraint equations involve complex numbers
when the relationships have to be split into real and imaginary parts separately,
increasing the computation further. We generate the appropriate constraint ma-
trix and solve using the linprog routine in Matlab. But, even for a 128×128 image,
the computational resources required are very large. Unfortunately, Matlab fails
to allocate the necessary memory even for a small sized image. A typical option
in LP is to utilize the possible sparseness properties of C matrix in equation
(17). Unfortunately again, C does not have any sparseness as the DFT matrix
T is not a sparse one. So we solve it as a sequential 1-D problem taking first
the rows and then the columns. Hence the results obtained by this method for
images in this paper are all sub-optimal.

6 Experimental Results

In this section we present the results of alias-free interpolation obtained using
the proposed approach. All the LR images are of size 64 × 64. All the results
shown in this section are for interpolation factor of 2 for the reason described
in section 4. Since the amount of aliasing M is not known, we show results for
various choices of M .

First we show the applicability of the proposed method on a simulated 1 − D
data. Figure 3 (a) shows a low resolution rectangular pulse train and the corre-
sponding spectrum is shown in Figure 3 (b). The signal shown in Figure 3 (a)
is superimposed with three high frequency components corresponding to the
normalized frequencies 35/64, 36/64 and 37/64 to obtain the signal shown in
Figure 3 (c). Clearly, these three spectral components are aliased ones.
Figure 3 (d) shows the spectrum of the aliased signal. One cannot find that
the signal is aliased either from Figures 3 (c) or 3 (d). Figure 3 (e) shows the
interpolated signal using the proposed method and its spectrum is shown in
Figure 3 (f). One can see that there are spectral components at locations beyond
the normalized frequency 32/128. These components match quite well with the
introduced high frequency components. We have used M = 26 in this exam-
ple. To further see the gain arising out of the proposed method, one can note
that the spectrum of the rectangular pulse train (without the additional high
frequency components) shown in Figure 3 (b) compares very favorably with the
spectrum of the interpolated signal till the normalized frequency of 32/128. On
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Fig. 3. Demonstration of the proposed approach for a 1 − D signal: (a) alias-free LR
signal, (b) spectrum of (a), (c) aliased LR signal, (d) spectrum of (c), (e) interpolated
signal using the proposed approach and (f) spectrum of (e)

comparing the interpolated signal in Figure 3 (e) with the low resolution signal
in Figure 3 (c), one can clearly see that Figure 3 (e) cannot be obtained by the
linear or cubic interpolation of the original signal. (see the highlighted spectral
components in Figure 3 (f)). This confirms the utility of the proposed method.
Further, to illustrate the capability of our method we compare the results of our
alias free interpolation with spline interpolation in Figure 4. Figure 4 (a) shows a
low resolution rectangular pulse train and the corresponding spectrum is shown
in Figure 4 (b). The spline interpolated result and the corresponding spectrum
are shown in Figures 4 (c) and (d) respectively. The alias free interpolated sig-
nal and its spectrum are shown in Figures 4 (e) and (f), respectively. As can
be observed, the alias free interpolated signal is almost free from overshoot and
ripples as compared to the spline interpolated one.

Figure 5 (a) shows a partially aliased low resolution Lena image of size 64×64.
Figure 5 (b) shows the bicubic interpolated image for comparison to the pro-
posed method. Figures 5 (c-e) show the alias-free interpolation results obtained
using the sub-optimal linear programming method. Figure 5 (c) corresponds to
the result where 10% ( M = 29), additional high frequency components are
generated. Here we assume that the aliasing in the LR image is small, only
10% of the entire spectrum. If we assume that the aliasing in the LR observa-
tion is about 20%, the corresponding alias-free interpolated image is shown in
Figure 5 (d). This corresponds to the choice of M = 26. Figure 5 (e) shows the
alias-free interpolated image where we attempt to generate 30% additional high
frequency components assuming that 30% of the spectrum of the LR image is
aliased. As can be observed from Figures 5 (c-e), there is a gradual reduction
in the quality of the reconstructed image as the aliasing in the LR image is
assumed to have increased from 10% to 30%. This is due to the fact that only
a smaller subset of spectral components are known exactly. In comparison to
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Fig. 4. Demonstration of the proposed approach for another 1−D signal: (a) LR signal,
(b) spectrum of (a), (c) spline interpolated signal, (d) spectrum of (c), (e) interpolated
signal using the proposed approach and (f) spectrum of (e)

(a) (b)

(c) (d) (e)

Fig. 5. (a) A low resolution Lena image, (b) bicubic interpolated image. Interpolated
images using the proposed approach generating additional (c) 10%, (d) 20% and (e)
30% high frequency components.

the bicubic interpolated image, the result using the proposed approach is much
sharper. Observe the eyes, hair strands, etc. in Figure 5 (d). Some of the regions
are highlighted in the figure. We have observed that the reconstruction becomes
poor when the aliasing present in the LR image is assumed to be more than 20 to
30%. Now we perform the experiments on a severely aliased randomly textured
image. The purpose of this experiment is to demonstrate that one does not get
any improvement during interpolation if the signal is highly aliased. The LR
observation is shown Figure 6 (a). The interpolated images using the proposed
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Fig. 6. (a) A severely aliased low resolution texture image, (b) bicubic interpolated
image. Interpolated images using the proposed approach generating (c) 10%, (d) 20%
and (e) 30% high frequency components, (f) Interpolated image when the LR image is
fully aliased.

approach are shown in Figures 6 (c-e) assuming 10%, 20% and 30% aliasing,
respectively, in the given LR image. As the aliasing present in the LR image
is very high, the proposed method does not give a significant edge over bicu-
bic interpolation as can be observed from Figures 6 (c-e). Now we assume that
the entire spectrum is aliased, ie,Ωf = {∅} in theorem 2 (M=1). Figure 6 (f)
shows the corresponding interpolated result. We observe that the reconstruction
is quite inferior as we do not have any of the spectral components known exactly.

7 Conclusion

In this paper we have presented a method for alias-free interpolation from a
partially aliased low resolution image. We have provided a theoretical basis on
how an alias-free upsampling can be achieved. In order to interpolate the given
LR image we generate the exact additional high frequency components assuming
a knowledge of the nature of aliasing in the spectrum of the LR observation and
assuming a piecewise constant intensity image. The alias-free interpolation is
achieved by solving the l1 optimization. A sub-optimal computational procedure
using linear programming is also presented.
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