
University of Dayton
eCommons
Electrical and Computer Engineering Faculty
Publications

Department of Electrical and Computer
Engineering

11-1995

Aliasing Reduction in Staring Infrared Imagers
Utilizing Subpixel Techniques
Joseph C. Gillette
Technology/Scientific Services Inc.

Thomas M. Stadtmiller
Technology/Scientific Services Inc.

Russell C. Hardie
University of Dayton, rhardie1@udayton.edu

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub

Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,
Instrumentation Commons, Optics Commons, and the Other Engineering Commons

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at eCommons. It has been accepted
for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of eCommons. For more information, please
contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Gillette, Joseph C.; Stadtmiller, Thomas M.; and Hardie, Russell C., "Aliasing Reduction in Staring Infrared Imagers Utilizing Subpixel
Techniques" (1995). Electrical and Computer Engineering Faculty Publications. 11.
https://ecommons.udayton.edu/ece_fac_pub/11

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/125?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/11?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Aliasing reduction in staring infrared imagers
utilizing subpixel techniques

Joseph C. Gillette
Thomas M. Stadtmiller
Technology/Scientific Services, Inc.
WL/AARI-3 Building 622
3109 P Street
Wright Patterson Air Force Base, Ohio

45433-7700
E-mail: gillette@goofy.aa.wpafb.af.mil

Russell C. Hardie
University of Dayton
300 College Park
Dayton, Ohio 45469-0226
E-mail: rhardie@engr.udayton.edu

1 Introduction
Image acquisition using an infrared (IR) sensor is susceptible
to a variety of degradation processes. Imperfect optics, finite
detector arrays, and finite individual detector sizes all con-
tribute to the nonideal sampling of the scene information.
The problem addressed in this paper is that of insufficient
sample rate. A standard staring JR system uses a fixed two-
dimensional detector array, which corresponds to a fixed spa-
tial sampling frequency determined by the detector pitch or
spacing. The Nyquist theorem dictates that aliasing will occur
when sampling a scene containing spatial frequencies ex-
ceeding half this sampling frequency. Most natural scenes
are not bandlimited, and the aliasing resulting from under-
sampling can significantly degrade the quality and utility of
the image.

In this paper, we introduce and analyze techniques to re-
duce the aliased signal energy in a staring infrared imaging
system and significantly improve the image quality. The al-
gorithms proposed use multiple undersampled time frames
of a stationary scene to estimate a single high-resolution im-
age. The techniques rely on subpixel shifts between the time
frames such that each time frame can provide unique samples
of the scene. By properly combining the set of shifted images,
an image effectively sampled at a higher rate than the mdi-

Abstract. We introduce and analyze techniques for the reduction of al-
iased signal energy in a staring infrared imaging system. A standard
staring system uses a fixed two-dimensional detector array that corre-
sponds to a fixed spatial sampling frequency determined by the detector
pitch or spacing. Aliasing will occur when sampling a scene containing
spatial frequencies exceeding half the sampling frequency. This aliasing
can significantly degrade the image quality. The aliasing reduction
schemes presented here, referred to as microscanning, exploit subpixel
shifts between time frames of an image sequence. These multiple im-
ages are used to reconstruct a single frame with reduced aliasing. If the
shifts are controlled, using a mirror or beam steerer for example, one
can obtain a uniformly sampled microscanned image. The reconstruction
in this case can be accomplished by a straightforward interlacing of the
time frames. If the shifts are uncontrolled, the effective sampling may be
nonuniform and reconstruction becomes more complex. A sampling
model is developed and the aliased signal energy is analyzed for the
microscanning techniques. Finally, a number of experimental results are
presented that illustrate the perlormance of the microscanning methods.

vidual frames can be obtained. This process is referred to as

The microscanning techniques presented here are divided
into the categories of controlled and uncontrolled. For con-
trolled microscanning, the relative subpixel shifts between
image frames are produced intentionally. This can be accom-
plished using a microscan mirror or beam steerer, for ex-
ample. With control over the shifts, a set of images can be
generated so as to form a uniform high-resolution grid. Thus,
the high-resolution image is generated by a straightforward
interlacing of the undersampled image frames. In an uncon-
trolled microscanning case, shifts between the frames are
uncontrolled and are generally unknown a priori. Such shifts
may occur as the result of random motion between the scene
and the focal plane from either vibration or camera panning.
Thus, the resulting sampling ofthe scene may be nonuniform,
and the high-resolution reconstruction becomes more com-
plex. While the controlled microscanning technique has been
analyzed previously, the uncontrolled microscanning tech-
nique proposed here is novel. Another technique for high-
resolution image reconstruction has been proposed by Kim
et al.2 using a weighted recursive least-squares algorithm.
The algorithm proposed in our paper offers greater compu-
tational simplicity and lends itself to real-time implementa-
tion.

This paper is organized as follows. In Sec. 2, we develop
a theoretical model for the nonideal sampling of the staring
array imager as well as a figure of merit for aliased signal

Subject terms: microscanning; aliasing; high resolution; subpixel; infrared imaging;
motion estimation.
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ALIASING REDUCTION IN STARING INFRARED IMAGERS UTILIZING SUBPIXEL TECHNIQUES

energy. Section 3 describes microscanning in the controlled
and uncontrolled cases. An analysis of aliased signal energy
using microscanning is also developed. In Sec. 4, a number
of experimental results are presented that illustrate the per-
formance of the microscanning techniques on real imagery.
Finally, some conclusions are given in Sec. 5.

2 Sampling Theory
Before describing microscanning, some background on sam-
pling theory in an imaging system is reviewed. In Sec. 2.1,
nonideal sampling is discussed, and the effects of the optics,
sampling array size, and detectors in real sampling are mod-
eled. In Sec. 2.2, a figure of merit for aliased energy is de-
veloped.

2.1 Nonideal Sampling in a Staring Array

In a staring array, sampling is performed by a finite array of
in the spatial domain and

detectors, which must integrate incident photon flux collected
through an optical system. Thus, there are three main con-
siderations in the model: the optics, the detector charge in-
tegration, and the finite-size detector array.

The block diagram in Fig. 1 illustrates the sampling pro-
cess in a staring array. First, consider the optics. The point
spread function of the optics, denoted psf(x,y), modifies the
object scene, o(x,y), so that

f(x,y)=psf(x,y)*o(x,y) . (1)

The optical transfer function OTF() is the Fourier transform
of psf(.). Since psf(.) is infinite in extent, OTF(.) effectively
bandlimits the input scene, as higher spatial frequencies can-
not enter the optics pupil.3'4 However, this may not be suf-
ficient to prevent aliasing.

Next, consider the integration of charge over each detector.
The object scene incident on the detector array is continuous
and must be sampled and quantized. The incident photons
on the individual detectors are essentially averaged over the
area of the detector.'° This integration can be written as

fi(xY)=J Jf(vX)d(x_ v,y — X) dX dv

=f(x,y) * d(x,y)

where d(.) is determined by the detector geometry. This result
is limited by the extent of the detector array. The limiting
function is expressed as r(.) and, when applied to f(x,y),
results in

To apply this integration to all of the detectors, it is multiplied
by the sampling lattice, yielding Ix yr(x,y)=rectl — — I

\X'YJP.o(xy) f(x,y) f(x,y) f,(x,y) i(x,y) (mn)
—÷ psf( Y) d( y) X X H screte

Point Spread Detector
Function tntegration

OPTICAL ENGINEERING / November 1995/Vol. 34 No. 11/3131

i(x,y) fr(X,Y) samp(x,y)

where

samp(x,y) =
m

y

= 8(x—mx,y—ny)
m= — n= —

Combining Eqs. (1), (2), (3), and (4) results in

i(x,y)= [o(x,y) * psf(x,y) *d(x,y)]r(x,y) samp(x,y)

(4)

(5)

(6)

I(1'2) = [O(1,2) OTF(1,2) D(1,2)J * R(1,2)
* SAMP(1,2) (7)

in the frequency domain, where

R(1,2)=3{r(x,y)} , (8)

D(1,2)={d(x,y)} , (9)

and

SAMP.(1,2) =3{samp(x,y)}

=L1Ly m- nc 2)
m=- n 22).

(10)

The operator {.} represents the continuous Fourier trans-
form.

Equations (6) and (7) are the results for the general case,
and the functions d(.) and r(.) can represent any geometry.

(2) However, for our imaging system, the effects due to the
detector integration will be defined as

1 (xy\
d(x,y)=— recti —,— I , (11)

fab \a bj

(3)
where a and b are the dimensions of the individual detectors.
The detector array is also rectangular, so that

(12)

where X and Y are the dimensions of the detector array. The
frequency-domain representations for each of these func-
tions are

D(1,2) =sinc(a1,b2) (13)

fr(x,Y) =f1(x,y)r(x,y)

r(x,y( samp)x,y)

Finite Detector Sampling
Array Function

Fig. 1 Basic block diagram of the imaging system. and
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=
IT Fpre(i d1 d2pre

ER=J JT
rV2 r'2

=J J Fpre(i)V d1 d2
—/2 —/2

rV2 r'2
E0=j j O(1,2)2 d1 d2

—j/2 —/2

-E0-ER
y R

E0

R(1,2) =XY sinc(X1,Y2)

An illustration of the detector array is shown in Fig. 2.
The last block in Fig. 1 represents the conversion of i(x,y),

which contains only Dirac delta functions, to a discrete se-
quence i(m,n).

The following section develops a measure of aliasing dis-
tortion and resolution degradation as a function of the sam-
pling frequency.

2.2 Aliased Signal Energy
A quantitative measure of the benefits of microscanning is
important for objective evaluation. To begin, consider Eq. (7)
rewritten as

'(1'2) =O(i,2)Hpre(i,2) * SAMPSS(1,2) , (15)

where Hpre(i,2) can be thought of as a presampling filter
and is given by

Hpre(1,2) = [OTF(1,2) D(1,2)]* XY sinc(X1,Y2)

An ideal low-pass "boxcar" filter with cutoffs of /2 and
/2 is desired here; however, due to the nonideal elements
in the optics and sampling process, this cannot be imple-
mented. The spectrum just before the sampler is given by

Fpre(1,2) = O(1,2)Hpre(1,2) . (17)

The total signal energy is given by

(14) where Fpre(i,2)I2 5 the energy spectral density (ESD) of
the filtered object scene.

Next, consider an ideal reconstruction filter,

H'1(1,2) =
{

1 < /2 2I </2
(19)0 otherwise.

The signal energy after the reconstruction filter is given by

d1 d2

(20)

The signal energy outside the passband of Ha1,2) will
be folded over in the sampled signal spectrum as aliased
energy. This can be rephrased simply: all energy at frequen-
cies greater than half the sampling frequency is considered
aliased energy. This aliased energy can be expressed as

(1i\ E jtota1 E) a pre R

The aliasing enor can be defined as the ratio of the aliased
energy to the total energy in the reconstructed spectrum, or

E
a (22)

ER

The ratio of signal to aliasing noise energy, denoted SNRa,
is given by

ER 1(18) SNRa . (23)

In the same manner, a measure of image-resolution degra-
dation can be defined.5 This effect is due to the presampling
filter. The energy of the object scene can be expressed as

(24)

where O(1,2)2 is the energy spectral density of the object
scene. The resolution error due to the presampling filter is
defined as

. (25)

The error values R and a will vary with different sampling
frequencies, optics, and detector arrays. The figure of merit
SNRa 5 used to evaluate the microscanning techniques. Note
that resolution error is not decreased with sampling fre-
quency. The resolution error relates only to the difference
between the input signal and the output of the presampling
filter. Thus, it may increase with higher sampling rates. An
inverse filter can be used to attempt to remove the effects of
the presampling filter.

3 Microscanning Theory
This section describes both controlled and uncontrolled mi-

M ''

Ax

I lb Active
Area

I

x

Fig. 2 Detector array. Notice that the active detector width is less
than the sampling pitch in both dimensions.
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The effect of the finite detector array will be small compared
to the effects of the detector integration and psf(x,y). It is
clear that with the fixed sampling function, the sampling
frequencies are also fixed. The level-L microscanned image
can be modeled as

i1(x,y) = [d(x,y) * o(x,y) * psf(x,y)]
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(27)

+ 1

4+

-:
-8

4f

:—2

:r: :-" - -.( - :i
..4 13 ••4.

' )4
4_11
.. 3 4
21 2

croscanning to reduce image aliasing. Specifically, Sec. 3.1
describes controlled microscanning and provides an analysis
of the aliased image energy in a specific example. Section
3.2 develops the uncontrolled microscanning technique.

3.1 Controlled Microscanning
Controlled microscanning implies that the subpixel shifts be-
tween temporal image frames are controlled and are therefore
known a priori. Furthermore, these shifts are generally se-
lected to produce a set of images that fall onto a uniform
grid. We define a level =L microscan to be one where L2
frames are imaged and each frame has its own unique con-
trolled subpixel shift, each shift being part of a uniform grid.
This means that each frame has a relative pixel shift that is
an integer multiple of ilL. The shifted images are simply
interlaced on the uniform grid to form a high-resolution
microscanned image. Since no processing of the images is
required, controlled microscanning can readily be imple-
mented in real time. An example of a level-2 microscan is
depicted in Fig. 3.

Watson et 1 have developed a sampling model for a
level-2 microscan. This model introduces additional shifted
sampling functions, resulting from a shift of the object on
the detector array. Here we extend this result to a level-L
microscan. To do this, consider the model of the sampled
image from (6), ignoring the effect ofthe finite detector array:

i(x,y) = [d(x,y) * o(x,y) * psf(x,y)] samp(x,y)

The basic assumption is that the object and the imaging sys-
tem remain constant during the acquisition of the multiple
frames. Taking the Fourier transform of(27) yields the spatial
frequency spectrum of the microscanned image,

'2) = [D(1,2)O(1'2) OTF(1'2)1

* . (28)

Thus, level-L microscanning effectively increases the sam-
pling rate by L without changing the detector size or spacing.
This will, in turn, reduce aliasing.

Example 1 illustrates the effect of controlled microscan-
ning on a' R' and SNRa for a specific imaging system.

Example 1 (Aliasing and resolution error). Consideran
imager havingf/3 100-mm optics, a detector pitch of 50 jim
(zx =Ly=50 jim), and an active detector area of 40 jim
x40 jim operating at a wavelength of 4 jim (the center of
the midwavelength JR spectrum). The sampling frequency is
2 cycles/mrad, and, neglecting the finite extent ofthe detector
array, the signal will be bandlimited to the OTF cutoff of
8.33 cycles/mrad. Because of the sampling frequency, any
signal energy above a frequency of 1 cycle/mrad will be
aliased.

Now, consider light from a point source entering the
imaging system. The ESD of the prefiltered point source is
given by

I'pre(i,2)I2= I0TF(1,2) D(1,2)I2 . (29)

The 1-D magnitude response of OTF(.), or the modulation
transfer function MTF(.), for the system used here is shown
in Fig. 4. This response is a theoretical result based upon
system parameters and the assumption is that there are no
obscurations or aberrations.3'4 Also shown in Fig. 4 are D(1)
and the ESD of the prefiltered point source.

Note that for a level-L microscan, the aliased energy is
given by the area under the ESD for frequencies greater than
L cycles/mrad and less than —Lcycles/mrad. Table 1 records
the theoretical results of the resolution degradation and al-
iasing errors for various microscan levels.

A plot ofthe SNRa results in Table 1 can be seen in Fig. 5.
(26) As the microscan level increases, the sampling frequency

OPTICAL ENGINEERING I November 1995 /VoI. 34 No. 11 /3133

FIELD 2

DETECTOR SIZE

4

- 4 3 4

-- -r -i 1 2

3±T1t ____
MICROSCAN

MIRROR PATTERN

4 3 4 3 4 3 4J_--.-J_
Fig. 3 Illustration of a level-2 microscanning process. The individual
images are shifted by half pixels for four separate positions. The
reconstructed image has four times as many unique samples as any
of the four fields.
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Block Matching Algorithm
Step 1: Select block ofsize M x Nfrom the currentframe.
Step 2: Find the whole-pixelmotion vector by minimizing the MAE between this block

and corresponding blocks in the next sequential frame.
Step 3: Expand the blockfrom Step 1 and the blockfrom Step 2 which resulted in the

minimum MAE using a spatial interpolator.
Step 4: Repeat Step 1 and Step 2 using the expanded blocks as the new images tofind

the subpixel motion vector.
Step 5: Add the whole pixel motion vectorfrom Step 2 and the subpixel motion vector

from Step 4 tofind the estimated motion vector.
Step 6: Repeat Steps 1-5forp blocks. Thefinal estimated motion vector is the aver-

age ofthe p motion estimates.

increases accordingly, thus reducing aliasing. Since the OTF
cuts off at 8.33 cycles/mrad, a level-9 microscan (sampling
frequency of 1 8 cycles/mrad) will eliminate aliasing. Note
that there is only a 3.8-dB improvement from level 2 to
level 3, due to the shape of the ESD in Fig. 4. Also note that
the resolution error R increases as the micrsocan level in-
creases. This is due to a relative decrease in ER with respect
to E0 as the sampling frequency increases.

3.2 Uncontrolled Microscanning
Controlled microscanning systems mechanically shift the
field-of-view (FOV) of the imagers optical system in ilL
increments. In reality, additional shifts may be present due
to motion and vibration of the imager' s platform. If these
shifts become large enough, then the reconstructed micro-

___________ _______ _______ _______ scanned image becomes degraded. In such cases, it may be
beneficial to estimate the shifts between the sequential frames
and use these estimates to reconstruct the high-resolution

__________ ______ _______ ______ microscanned image. Furthermore, using random shifts alone
may eliminate the need for the microscan mirror and driver
system. Sections 3.2. 1 and 3.2.2 introduce a motion esti-
mation technique and high-resolution reconstruction tech-
nique for uncontrolled microscanning, respectively.

3.2.1 Block matching

Estimating the subpixel shifts that occur between successive
___________ _______ _______ _______ frames is the first step in producing a high-resolution image

from the low-resolution images. These subpixel shifts can be
estimated using the block matching algorithm (BMA).68 The
BMA, summarized in Table 2, estimates the displacement
vector by comparing the gray-scale values of successive
frames on a block-by-block basis. First a template is defined
by selecting a block i k(m,n) of size M X N from the k'th frame
ik(m,n). A motion vector can then be estimated by scanning
the template through a search area in the next sequential
frame. The size of the search area can be expressed as
(M + 2P) x (N+ 2P), where P represents the maximum whole
pixel shift. At each position in the search area, the mean
absolute error (MAE) between the template and the overlap-
ping block is calculated as

M N
MAE(Pm,Pn) =

m=1 n=1
ik(m,n) — 1k± 1(m +Pm, n +p)

(1Pm'Pn1) . (30)

6 7 8 The position (Pm'Pn) at which the MAE is a minimum pro-
vides an estimate of the nearest whole pixel shift. Once the
integer pixel shift is found, subpixel accuracy can be achieved

3134 I OPTICAL ENGINEERING I November 1 995 I Vol. 34 No. 11

Magnitude of the OTF, 0 and the ESD
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Table 2 The block matching algorithm.
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Frequency (cyc/mr)

Fig. 4 The magnitudes of OTF(.), the detector transfer function D(.),
and the ESD of the prefiltered points source.

Table 1 Theoretical results for the resolution and aliasing errors as
well as the aliasing signal-to-noise ratio.

Microscan
Level (L) R A

SNR0

(dB)

1 0.5741 0.2068 15.7

2 0.7699 0.0186 39.8

3 0.8462 0.0127 43.6

4 0.8846 0.0026 59.5

5 0.8893 5.68e-4 74.7

6 0.8893 2.28e-4 83.8

7 0.8893 3.35e-6 126.1

8 0.8893 2.89e-8 173.5

160

140

120

300

z 80

60

40

20

Aliasing Signal to Noise Energy Ratio, SNR

Microscan Level L

Fig. 5 Aliasing signal-to-noise energy ratio as a function of micro-
scan level.
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II01230123
1 1

3 3
2 2

1 1

3 3
2 2

Fig. 6 Illustration of 4x4 high-resolution reconstruction. Image 1 is
placed in bin (0,0). Image 2, with a shift of (½,½) of a pixel, is placed
in bin (2,2). Image 3, with a shift of (0¼), is placed in (0,1).

byapplying spatial interpolation to the template and the block
that resulted in the minimum MAE. The precision to which
the shifts can be estimated is determined by the number of
interpolation points in between the original data points. The
fractional part of the motion vector can then be determined
by minimizing the MAE over the finer sampling grid. The
estimated motion vector is found by summing the integer and
the fractional motion vectors.

A number of factors, including block selection, block size,
and the number of estimated shifts to average over, affect
the performance of the BMA. For best performance, the se-
lected blocks should contain scene detail such as edges to
estimate the shifts between the two frames. The BMA tends
to perform poorly in areas with little or no detail. Also, since
we are measuring shifts in both the horizontal and vertical
directions, edges or scene detail must span in both directions.
To ensure good block selection, we propose using only those
blocks that result in maximum values of

M N r
_±_ I i(m+ 1,n) — i(m— 1,n)

MNm1 n=1 L 2

Ii(m,n+ 1)—i(m,n— 1)

L 2

Choosing the top s blocks will ensure that each selected
block has contrast in both the horizontal and vertical direc-
tions. A final motion vector is obtained by averaging the s
shift estimates.

3.2.2 High-resolution image reconstruction
Given accurate frame-to-frame shift estimates from sequen-
tial undersampled frames, a higher-resolution image can be
constructed. This is done by mapping the lower-resolution
images onto a single high-resolution grid according to the
estimated interframe displacements. The first frame in an
image sequence is mapped onto the (0,0) position ofthe L XL
high-resolution grid (see Fig. 6). The successive frames are
then mapped into the appropriate "bins" according to the
estimated shift. An example of a 4 X 4 high-resolution micro-

High Resolution Reconstruction Algorithm

scan is illustrated in Fig. 6. Frame 1 is placed in bin (0,0).
Frame 2 is placed in bin (2,2), resulting from a shift of(Y2,Y2).
Frame 3 is placed in bin (0, 1 ), resulting from a shift of (0, Y4).
This process is continued until each of the bins is filled. If
the estimated shift for multiple frames is the same, then the
values at those positions can be averaged for noise suppres-
sion. If empty bins are present, an interpolation algorithm
must be implemented. The computationally simplest method
is a nearest-neighbor interpolation algorithm. This will fill
the empty bin with the closest neighboring pixel value. Ta-
ble 3 summarizes the uncontrolled microscanning process.

This reconstruction method is desirable because of its
computational simplicity. A high-resolution image with de-
creased aliasing can be constructed quickly with few oper-
ations, and therefore lends itself to real-time implementation.

4 Experimental Results
In this section, experimental results illustrating the perfor-
mance of controlled microscanning, the BMA, and the high-
resolution reconstruction algorithm are presented.

4.1 Controlled Microscanning
A controlled microscan was performed on a spoke target
using the variable parameter forward-looking infrared
(VPFLIR) testbed.9 A single-frame midwave (3 to 5 rim) IR
image of size 128 X 128, expanded to 256 X 256 using pixel
replication, is shown in Fig. 7(a). Pixel replication has been
used to facilitate comparison with the microscanned image.
The 2 X2 controlled microscanned image is shown in Fig.
7(b). Notice how the aliasing is reduced and how much further
towards the center of the target the spokes extend before being
distorted.

4.2 Block Matching Algorithm

(3 1)
In order to test the BMA and high-resolution reconstruction
algorithm, a 4 X4 microscan mirror pattern has been pro-
grammed, which shifts the image in Y4-pixel increments in
both the horizontal and vertical directions. A total of sixteen
64 x64 staring images have been recorded in this fashion.
Figure 9(a) shows one staring image. This is a midwave JR
image of a hanger at the Wright-Patterson Air Force Museum.
Pixel replication has been used to produce a 256 X 256 image
to facilitate comparison with the reconstructed microscanned
image.

Six blocks of size 10 X 10 have been used in the BMA to
obtain the shift estimates. Bilinear interpolation has been
executed on the blocks to estimate the interpixel values, thus
allowing for subpixel shift estimates. Table 4 shows the re-
sults of the block matching algorithm. The expected shift in
the horizontal and vertical directions, as programmed into
the microscan system, is listed in the first row and first column
respectively. The percentage error of the estimated shift for
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m
1 2

n

Table 3 High-resolution reconstruction algorithm.

1

2

0
1

2
3

0
1

2
3

Step 1: Expand thefirstframe by interlacing it with rows and columns ofzeros, thus
creating the high resolution grid.

Step 2: Interlace the sequential frames based upon their measured shft from the
BMA.

Step 3: Averageframes landing in the same binsfor noise suppression.
Step 4: Interpolate tofill empty bins and complete the high resolution image.



GILLETTE, STADTMILLER, and HARDIE

Table 4 Motion estimation results (values are percentage errors of
the pixel).

0.00

0.00 0.25 0.50 0.75

(0,0) (0,0) (0,12.5) (0,0)

0.25 (12.5,0) (12.5,0) (12.5, 12.5) (12.5,0)

0.50 (20.85, 0) (18.75, 0) (18.75, 12.5) (18.75, 0)

0.75 (2.08,0) (2.08,0) (4.17, 12.5) (8.33,0)

each position is provided in Table 4. These errors are corn-
puted with respect to the prograrnrned rnirror shifts.

Since accurate subpixel shift estimates are the key to good
performance, the BMA has been tested as the noise in the
image is increased. Since the imagery is real FUR imagery,
a noise floor is already present. Additional white Gaussian
noise has been added to the images. The plot in Fig. 8 shows
the percentage error in both the horizontal and vertical di-
rections as a function of the additive noise level. As can be
seen, the BMA performs well until the noise reaches a var-
iance ofjust over 200 ADUs (analog-digital units). Beyond
that, the percentage error tends to fluctuate. This may be due
to the block selection process. Note that the image variance
in this example is 3059 ADUs.

4.3 High-Resolution Reconstruction
The image reconstructed using the estimated shifts from the
BMA is shown in Fig. 9(b). The BMA and reconstruction
algorithms have been implemented on these images using no
a priori information about the preprogrammed shifts. Each
of the 16 staring images has been placed in its bin according
to the BMA estimates. Multiple frames placed in the same
bin have been averaged. Any empty bins have been filled
using a nearest-neighbor interpolation. Ties have been re-
solved by selecting the pixel value directly above the empty
bin. If an empty bin occurred in the first row of the high-
resolution grid, it has been filled with the pixel value directly
to its left. Notice the improvement in resolution in Fig. 9(b).
In Fig. 9(a), neither the row of pine trees across the center
of the image nor the rockets behind them are distinguishable.
In the high-resolution reconstructed image these objects be-
come identifiable. Furthermore, the ''blockiness' ' seen in
Fig. 9(a) is significantly reduced in Fig. 9(b).

5 Conclusions
It is shown here that microscanning is a viable procedure for
reducing the aliased energy in staring array imagery. Con-
trolled microscanning generates a uniform high-resolution
sampling grid. There are instances, however, when a uniform
sampling lattice is not available due to unwanted platform
vibration. In addition, one may have an image sequence with
subpixel shifts due only to random motion (obtained with no
microscan minor). In these cases, the uncontrolled micro-
scanning technique can be used to reconstruct a high-
resolution image from multiple undersampled image frames.
The algorithms proposed here are computationally simple,
and since many imagers can collect scene data at a more rapid
rate than a display can operate, they can be utilized in real
time. By exploiting these additional frames, image quality
can be significantly improved.
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Fig. 7 Spoke-target comparison. Image (a) is a staring image, and
image (b) is a Ievel-2 microscan of the same target. Pixel replication
has been applied to the staring image to facilitate a comparison.
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