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 

Abstract—Multisampling control provides an attractive way 

to reduce the control delays in LCL-filtered grid-connected 

inverters. Thereby, the bandwidth and stability margin will be 

improved. However, high frequency switching harmonics 

(SHs) is introduced in the control loop when the inverter-side 

current is sampled. In order to investigate the effect of 

multisampled high frequency SHs, the relationship between 

the double-update pulse width modulation (PWM) and multi-

update PWM is deduced through geometric deduction. It is 

shown that the multi-update PWM is equivalent to double-

update PWM with sampling instant shift, and the equivalent 

Nyquist frequency is equal to the switching frequency. 

Moreover, the non-averaged value of current is sampled 

within one switching period and aliased low-order harmonics 

will appear in the grid-side current. Hence, filtering the multi-

sampled SHs is necessary, and an improved repetitive filter is 

proposed to remove all the sampled SHs and keep the 

advantage of phase boost by using the multisampling control. 

The method is evaluated with a single-loop inverter-side 

current control, and its effectiveness is verified through the 

simulation and experiment.  

 
Index Terms—Multisampling, aliasing, low-order harmonics, 

switching harmonics, improved repetitive filter. 

 

I. INTRODUCTION 

CL-filtered grid-connected inverters have been widely 

used in distributed generation systems based on 

photovoltaic, wind turbine, and energy storage systems [1-2]. 

Due to the digital control delays, the control bandwidth and 

the low frequency gains are limited with the given stability 

margins [3-4]. Especially in high-power inverters operating 

at a low switching frequency, the regular sampling methods 

(i.e., single-sampling or double-sampling in a switching 

period) impose constraints on the transient dynamics of the 

system [5-6]. Alternatively, multisampling control is a 

potential candidate, since the control delay is inversely 

proportional to the multisampling rate (the ratio between the 

sampling frequency and the switching frequency) [7-8]. The 

timing diagrams of two regular sampling methods are shown 

in Fig. 1(a) and Fig. 1(b), where Ts is the switching period 

and Tc is the sampling period. In the case of the multisampling 

(see Fig. 1(c)), the state variables are sampled and modulation  
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Fig. 1. Schmatic diagram and switching pattern of digital PWM. (a) 

single-update PWM, (b) double-update PWM, (c) four-update 

PWM. 

signals are updated multiple times in one switching period. 

Therefore, the multisampling has been widely used to 

improve the control bandwidth of power converters including 

grid-connected converters [9-10], dc-dc converters [11-12], 

and motor drives [13-14]. In addition, some advanced control 

methods are combined with multisampling to further improve 

the control performance such as deadbeat controller [15], 

repetitive controller [16], hysteresis controller [17], sliding 

mode controller [18] and model predictive controller [19].  

Although the dynamic performance can be improved, high 

frequency switching harmonics (SHs) are also introduced 

into the control loop by the multisampling technique, which 

affect the whole system loop gain and cause low-order aliased 
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harmonics [20]. However, the aliasing effect of 

multisampled high frequency SHs on the grid-side currents 

is still not fully analyzed, and most researchers focus on the 

aliasing analysis of single/double-sampling control. Indeed, 

the sampling frequency in the digital control is limited, and 

it is always lower than twice the bandwidth of measured 

signals. Consequently, the aliasing is inevitable during the 

sampling process according to Shannon's sampling theorem. 

In an early stage, some simulation based analysis is 

presented to illustrate the aliasing phenomenon when 

sampling at valley/peak of carrier wave within one 

switching period [21-22]. In [23], based on the natural 

sampling SPWM, a multi-frequency PWM model is 

established to analyze the amplitude and phase of aliased 

low-order harmonics. In terms of digital PWM and 

sampling instant, a more general PWM model in the time 

domain is proposed in [24], which analytically explains the 

reason that sampling at valley/peak of carrier wave within 

one switching period can suppress aliasing and shifting 

sampling instant can cause severe aliasing. In order to 

analyze the stability in terms of aliasing, a modified PWM 

model in the frequency domain is proposed for a wide range 

of frequencies, ideally also around and above the Nyquist 

frequency of the converter system [25]. 

In this paper, the relationship between the double-update 

PWM and the multi-update PWM is established through 

geometric deduction. It is revealed that the multi-update 

PWM is equivalent to a double-update PWM with sampling 

instant shift. Then the equivalent Nyquist frequency for the 

multi-update PWM is equal to switching frequency, and the 

previous analyzing methods for the single/double-sampling 

aliasing can be used in the multi-update PWM. Consequently, 

the low-order aliased harmonics are introduced in the multi-

update PWM, because the non-average value is sampled in 

the modulation process.  

In order to suppress the aliasing, five kinds of methods are 

presented in the past ten years. For the interleaved converters, 

the equivalent switching frequency is multiple times larger 

than the switching frequency. If the sampling frequency is 

twice higher than the equivalent switching frequency, the 

average value can be acquired and the aliasing effect is little. 

For example, for the single-phase H-bridge inverter with 

unipolar modulation, four-sampling control can be used 

without sampling switching noise [26]. Similarly, the 

sampling rate can be four times higher than the number of 

cells for the cascaded H-bridge inverter [5, 27]. Moreover, 

the sampling rate can be twice higher than the number of cells 

for the interleaved dc-dc converter and modular multilevel 

converter [28-29]. If the sampling rate is larger than the 

allowable maximum sampling rate, the switching noise is 

also introduced. The noise-free sampling method depends on 

the topology of converter, and it is not suitable for single 

three-phase dc-ac or dc-dc converter.  Second, by replacing 

the zero-order hold with first-order hold in the sampling 

process, the modulation signal is more like a continuous 

signal using multi-update PWM. The arbitrary sampling rate 

can be used with improved harmonic performance, linearity 

and phase delay compared with zero-order hold [30-31]. But 

first-order hold based sampler is still new, and the small 

signal stability analysis and controller design need to be 

further researched. Third, based on the single-edge 

modulator, the multisampled SHs can be compensated 

through an offline pre-distorted carrier. Then the aliasing 

error is reduced to a dc error, which is easily compensated by 

the feedback control [32-33]. However, the double-edge 

modulator is more general in grid-connected applications, 

and the compensation strategy for the single-edge modulator 

cannot be used directly. Fourth, the state variables with less 

switching noise are selected in the control. In [3], the 

capacitor current at one fourth of switching period is selected 

to damp the resonance. The grid-side current and capacitor 

voltage are recommended as the multisampled variables [4]. 

Fifth, the filter-based method is used widely to suppress the 

aliasing. For the multisampling model predictive control, the 

multisampled SHs are estimated with a switched model based 

Kalman filter [19], and the feasibility in the linear control is 

not reported. A multisampling average method is proposed in 

[23], but it is only suitable for single-update PWM and the 

control delay is considerable. In real-time single/double-

sampling control, a high-pass filter is added into the damping 

loop to remove the aliased low-order harmonics and to keep 

the resonant component only [24, 34]. However, the 

multisampled SHs still exist if adding a high-pass filter, 

because the turnover frequency of high-pass filter should be 

lower than the resonant frequency. The anti-aliasing low-pass 

filter or moving-average filter are used in [21-22, 35-37], but 

the introduced delay is large and it will reduce the advantage 

of multisampling control. Simplified repetitive filter (SRF), 

among others, provides a competitive approach to filter out 

SHs, which utilizes the periodic nature of harmonic 

distortions, and does not affect the phase boost of 

multisampling control [20]. 

Unfortunately, the SRF can only remove parts of SHs, 

while the aliasing effects from the sampled SHs still exist. To 

address this challenge, an improved repetitive filter (IRF) is 

proposed in this work to suppress aliasing effect of the 

sampled SHs. This paper begins with an analysis of the 

relationship between double-update PWM and multi-update 

PWM, and the aliasing phenomenon for multi-update PWM 

is illustrated based on the equivalent sampling instant in 

Section II. Then the drawback of SRF is analyzed and the IRF 

is proposed in Section III to remove the sampled high 

frequency SHs and to suppress the aliasing. The proposed 

IRF using multisampling control is tested with the single-

loop inverter-side current feedback control of an LCL-filtered 

inverter. Simulation and experimental results are provided to 

verify the theoretical analysis in Section IV and V, 

respectively. Finally, Section VI concludes this paper. 

II. ALIASING ANALYSIS IN MULTI-UPDATE PWM BASED 

ON GEOMETRIC DEDUCTION 

In the multi-update PWM, although the duty ratio is 

updated multiple times within one switching period, not 

every duty ratio will intersect with the carrier and produce the 

effective pulse pattern [7]. Hence, it is necessary to 

reconsider the mechanism of multi-update PWM in order to 

investigate the effect of sampled SHs. 
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A. Effective Duty Ratio Analysis 

The analysis begins with the four-update PWM, because it 

is the most basic multi-update PWM, and the duty ratio is 

only updated four times within one switching period. 

According to the geometric principle, the amplitude of duty 

ratio determines the intersection position between the 

modulation wave and carrier wave. As shown in Fig. 2, D1 to 

D4 are the four duty ratios within one switching period. The 

critical range for D1 and D4 are (0, 0.5), and the critical range 

for D2 and D3 are (0.5, 1). That is to say, the duty ratio will 

intersect with the carrier if it is within the critical range, 

which can be defined as the effective duty ratio. For example, 

as shown in Fig. 2(a), D1 and D3 are effective duty ratios since 

they are in the critical range. Moreover, there are totally 16 

intersection cases when considering whether all four duty 

ratios are in the critical range. All the cases are illustrated in 

Fig. 2 and Table I.  

It is worth noting that there are five cases where more than 

two intersections happen within one switching period, as 

shown in Fig. 2(l)-(p). Consequently, the switch is triggered 

more than twice for these five cases, and the switching loss 

will increase compared to the double-sampling control. In 

order to avoid these undesired cases, the maximum rate of the 

change of the reference should not equal or exceed that of the 

carrier signal [38-39], which leads to the constraint  
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2dc
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K U f
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where Kp is proportional coefficient in the current controller, 
L1 is the inverter-side inductance, Udc is the dc-link voltage, 
and fs is the switching frequency. In addition, it can also be 
avoided through a ‘‘self-lock’’ logic in the digital signal 
processor [40].  

On the other hand, there is another undesired phenomenon 
called vertical crossing, as shown in Fig. 2(e)-(k), i.e., the 
modulation wave crosses with the carrier wave vertically. In 
Fig. 2(e)-(i), the switch cannot be triggered or only be 
triggered once within one switching period in the real digital 
implementation. It indicates that there is only one effective 
duty ratio or no effective ratio under the vertical crossing 
condition. However, the modulation signal is a sinusoidal 

wave during the steady-state, the vertical crossing only 
happens in the zero crossing points of the modulation wave 
for the four-update PWM. Consequently, the maximum 
frequency of the vertical crossing occurrence is twice higher 
than the grid frequency. For the two cases in Fig. 2(j)-(k), if 
the interval between two switching is short or using a ‘‘self-
lock’’ logic, the switch will be triggered only once. In 

addition, through the detection of vertical crossing, the 

vertical crossing can be avoided by forcing the PWM to 
output pull-up and pull-down [40], hence the above cases 
cannot represent the whole multi-update PWM behavior. 

Although the cases in Fig. 2(a) and (d) are the normal 
cases, they still cannot represent the whole multi-update 
behavior, since both cases only happen in the zero crossing 

points of the modulation wave. Hence, the cases in Fig. 2(b) 

and (c) are the main focuses as they represent the negative half 
cycle and positive half cycle of the modulation wave. 

TABLE I 
ALL KINDS OF INTERSECTIONS AND EFFECTIVE DUTY RATIO 

Case Duty ratio range 
Effective duty 

ratio 

(a) 0<D1<0.5, 0<D2<0.5, 0.5<D3<1, 0.5<D4<1 (D1, D3) 

(b) 0<D1<0.5, 0<D2<0.5, 0<D3<0.5, 0<D4<0.5 (D1, D4) 

(c) 0.5<D1<1, 0.5<D2<1, 0.5<D3<1, 0.5<D4<1 (D2, D3) 

(d) 0.5<D1<1, 0.5<D2<1, 0<D3<0.5, 0<D4<0.5 (D2, D4) 

(e) 0<D1<0.5, 0<D2<0.5, 0<D3<0.5, 0.5<D4<1 (D1) 

(f) 0.5<D1<1, 0.5<D2<1, 0<D3<0.5, 0.5<D4<1 (D2) 

(g) 0.5<D1<1, 0<D2<0.5, 0.5<D3<1, 0.5<D4<1 (D3) 

(h) 0.5<D1<1, 0<D2<0.5, 0<D3<0.5, 0<D4<0.5 (D4) 

(i) 0.5<D1<1, 0<D2<0.5, 0<D3<0.5, 0.5<D4<1 No 

(j) 0<D1<0.5, 0.5<D2<1, 0<D3<0.5, 0.5<D4<1 (D1, D2) 

(k) 0.5<D1<1, 0<D2<0.5, 0.5<D3<1, 0<D4<0.5 (D3, D4) 

(l) 0<D1<0.5, 0.5<D2<1, 0.5<D3<1, 0.5<D4<1 (D1, D2, D3) 

(m) 0<D1<0.5, 0.5<D2<1, 0<D3<0.5, 0<D4<0.5 (D1, D2, D4) 

(n) 0<D1<0.5, 0<D2<0.5, 0.5<D3<1, 0<D4<0.5 (D1, D3, D4) 

(o) 0.5<D1<1, 0.5<D2<1, 0.5<D3<1, 0<D4<0.5 (D2, D3, D4) 

(p) 0.5<D1<1, 0.5<D2<1, 0.5<D3<1, 0<D4<0.5 (D1, D2, D3, D4) 
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Fig. 2. All possible interseption cases between modulation wave and carrier wave in case of four-update PWM. 
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Fig. 3. The relationship between double-update PWM and eight-update PWM. (a) Positive half cycle, (b) Negative half cycle. 

In order to fully exploit the advantage of multisampling, 
the sampling rate can be set from eight to sixteen [38]. 
Therefore, a more general analysis of multi-update PWM 
behavior with a higher sampling rate is necessary. Taking an 
eight-sampling PWM as an example, where the duty ratio is 
updated eight times within one switching period. As shown 
in Fig. 3, there are four critical duty ratio ranges which 
determine the intersection position between the modulation 
wave and carrier wave. The critical duty ratio ranges are (0, 
0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1), respectively. Hence, 
there are totally 48 intersection cases within one switching 
period. Similar to the analysis of the four-update PWM, the 
multiple intersection and vertical crossing are ignored. 
Moreover, since the step size of low frequency modulation 
wave within one sampling period is smaller than 0.25 in 
steady-state, most of intersection cases can be also ignored. 
Hence, only positive half cycle and negative half cycle are 
considered. The effective duty ratios in Fig. 3 are (D3, D6), 
(D4, D5), (D2, D7) and (D1, D8), respectively. The behavior of 
multi-update PWM with a higher sampling rate can also be 
deduced based on the geometric deduction. 

B. Aliasing Analysis 

According to the geometric deduction of multi-update 
PWM, there are only two effective duty ratios within one 
switching period. In order to analyze the aliasing, it is natural 
to transform the multi-update PWM into a double-update 
PWM. Based on the voltage-second balance principle, the 
duration time of the effective duty ratio can be extended to 
half of one switching period. Considering the positive half 
cycle of four-update PWM, as shown in Fig. 4(a), there is no 
computational delay for the duty ratio D2, and the equivalent 

update instant is the same as the sampling instant. Besides, 
there is a 0.25Ts equivalent computational delay for the duty 
ratio D3. As a result, the four-update PWM can be equivalent 
to a double-update PWM in respect to voltage-second balance 
principle, yet, the difference between them lies in the 
equivalent sampling instant. The duty ratio D2 is calculated 
from the sampled value at kTs, and no aliasing happens since 
the average value is sampled. However, the duty ratio D3 is 
calculated from the sampled value at (k+0.25)Ts instead of the 
beginning or at the middle of the switching period, so the non-
average value is sampled and aliased with the low-order 
harmonics [24].  

Moreover, the average computational delay in one 
switching period is (0.25+0)/2=0.125Ts. Considering the 
double-sampled PWM delay of 0.25Ts, the total control delay 
is 0.375Ts, which is consistent with the multisampling delay 
1.5Ts/4 [5] and validates the effectiveness of the proposed 
analytical method. Similarly, the effective duty ratios in the 
negative half cycle of the four-update PWM are D1 and D4, as 
shown in Fig. 4(b). The equivalent sampling instant is at 
(k+0.75)Ts and (k+0.5)Ts, respectively. Consequently, D4 is 
calculated from the average value, and sampling aliasing 
happens again at (k+0.75)Ts for the calculation of D1. The total 
control delay for the negative half cycle is also equal to 1.5Ts/4. 
In other words, within a switching period, one average value 
and another non-average value are sampled when using the 
four-sampling control. Furthermore, low-order aliased 
harmonics are introduced in the control loop during the 
modulation process, leading to grid-side current distortion. 
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Fig. 4. The relationship between double-update PWM and four-update 

PWM. (a) Positive half cycle, (b) Negative half cycle. 

For the eight-update PWM, the duration time of the 

effective duty ratios in Fig. 3 can also be extended to half of 

the switching period, and the eight-sampling control is 

equivalent to the double-sampling control. Taking Fig. 3(a) 

as an example, D3 and D6 are the effective duty ratios when 

the amplitude of modulation wave is from 0.5 to 0.75. The 

duty ratio D3 is calculated from the sampled value at 

(k+0.125)Ts, which is not the average value and aliased low-

order harmonics are introduced. On the other hand, D6 is 

calculated from the sampled value at (k+0.5)Ts, which is the 

average value and no aliasing happens. It is worth noting that 

the equivalent update instant for D3 is at kTs. Hence the 

equivalent computational delay for the duty ratio D3 is equal 

to 0.125Ts/8, which achieves a phase leading behavior. 

Similarly, the equivalent computational delay for the duty 

ratio D6 is equal to 0Ts. Hence, the average computation delay 

within one switching period is (0.125+0)/2=0.0625Ts. 

Considering the double-sampling PWM delay 0.25Ts, the 

total control delay is 0.1875Ts, which is consistent with the 

multisampling delay 1.5Ts/8 [5] and validates again the 

effectiveness of the proposed analytical method. Further 

more, the equivalent sampling instants for effective duty 

ratios (D4, D5), (D2, D7) and (D1, D8) are at ((k+0.25)Ts, 

(k+0.375)Ts), (kTs, (k+0.625)Ts) and ((k+0.875)Ts, 

(k+0.75)Ts), respectively. It can be seen that at least one 

effective duty ratio of eight-update PWM is calculated from 

the sampled non-average value, and low frequency aliased 

harmonics are introduced in the control loop [24]. The control 

delay for the other three cases is also 1.5Ts/8.  

Therefore, based on the geometrical deduction and 

effective duty ratio analysis, multi-update PWM is equal to 

the double-update PWM with a sampling instant shift. The 

advantage of the multi-update PWM is that it can achieve a 

phase leading function for some effective duty ratios, which 

can reduce the control delay effectively. However, the high 

frequency SHs are sampled in the control loop, and the 

aliasing happens when the multisampling control is applied, 

i.e., the double-sampling control with a sampling instant shift. 

It is thus necessary to remove the sampled SHs in order to 

suppress the aliasing. 

III. SAMPLED SWITCHING HARMONICS FILTERING BASED 

ALIASING SUPPRESSION 

A. Improved Repetitive Filter 

In this paper, the single-loop control with inverter-side 

current feedback is used as a case study, and the overall 

control diagram is shown in Fig. 5. In terms of current 

control, there is always a trade-off between the bandwidth 

and overshoot for the proportional integral (PI) controller, 

which weakens the advantage of multisampling [41]. The 

pseudo-derivative-feedback controller is applied to substitute 

the PI controller in order to suppress the overshoot and 

improve the response speed [42]. Table II gives the 

parameters of a down-scale three-phase grid-connected 

inverter. According to the high power LCL filtered converter 

design [43], the inverter-side inductance, filter capacitor and 

grid-side inductance and is 0.11 p.u., 0.16 p.u. and 0.059 p.u. 

respectively. In this paper, the LCL parameters is 0.08 p.u., 

0.26 p.u. and 0.08 p.u., respectively. The value of capacitor 

is relatively larger than the design standard, and the resonant 

frequency can be smaller than the one-sixth of double-

sampling frequency (4000 Hz) in order to achieve the grid-

side currents THD comparison between double-sampling and 

multisampling control.  

+
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Fig. 5. Diagram of a grid-connected single-loop controlled inverter-

side current feedback system (RF: repetitive filter). 

TABLE II 

MAIN PARAMETERS OF GRID-CONNECTED INVERTER 

Symbol Description Value Symbol Description Value 

Ugrms Grid voltage 220 V Po Output power 7 kW 

L1 
Inverter-side 

inductor 
5 mH L2 

Grid-side 

inductor 
5 mH 

C Filter capacitor 40 μF Cdc 
DC-link 

capacitor 
297 μF 

fr 
Reasonance 

frequency 
503 Hz Udc 

DC-link 

voltage 
600 V 

fs 
Switching 
frequency 

2 kHz Tf 
DC-link filter 
time constant 

1 ms 

Kp8 
Proportional 

coefficient 
15.6 Ki8 

Integral 

coefficient 
5050 

Kp2 
Proportional 

coefficient 
6.6 Ki2 

Integral 

coefficient 
600 

Kpdc 
Proportional 
coefficient 

0.03 Kidc 
Integral 

coefficient 
0.4 

 

As shown in Fig. 6, when the reference current is set to 15 

A (the rated current), the eight-sampled inverter-side current 

without filter contains high frequency SHs around odd-order 
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and even-order SHs (2 kHz, 4 kHz and 6 kHz). These 

sampled SHs will cause aliasing, and a simplified repetitive 

filter (SRF) with low phase lag is used in an active power filter 

to remove them [20]. The expression of the SRF in the discrete 

domain is given as 

 / 21
(1 )( )

2

NSRF z z   (2) 

where N is the multisampling rate. When N is eight, it can be 

seen from the bode diagram of SRF in Fig. 7 that SRF can 

remove the SHs around odd-order SHs (2 kHz and 6 kHz), 

where fc is the sampling frequency. However, the SHs around 

even-order SHs (4 kHz) cannot be removed, as shown in Fig. 

8, and the aliasing still exists. Hence SRF is only suitable for 

four-sampling control and only SHs around 2 kHz need to be 

removed. Moreover, the ability of SRF in removing SHs will 

be weaker with the increase of multisampling. For example, 

only the SHs around 2 kHz, 6 kHz and 10 kHz and 14 kHz 

can be removed when the multisampling rate reaches sixteen. 

 

(a) 

 

(b) 

Fig. 6. The eight-sampled inverter-side current without any filter. (a) 

Sampled inverter-side current waveform, (b) Current spectrum. 
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Fig. 7. The bode diagram of the repetitive filters based on eight-sampling (RF: repetitive filter, SRF: simplified repetitive filter, MAF: moving average 

filter, CMAF: compromised moving averaging filter, IRF: improved repetitive filter).  
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(b) 

Fig. 8. The eight-sampled inverter-side current with SRF. (a) Sampled 

inverter-side current waveform, (b) Current spectrum. 

The repetitive filter (RF) uses all the sampled data within 

one switching period based on internal model principle, as 

shown in (3), and it introduces a low phase lag. But it is only 

effective at interger switching frequency such as 2 kHz, 4 kHz 

and 6 kHz, as shown in Fig. 7. Actually, the sampled 

switching harmonics are side-band harmonics, i.e., 1900 Hz, 

2100 Hz, etc, and RF in [20] is not as effective as SRF in AC 

applications. The most effective repetitive filter is moving 

average filter (MAF) with a window equal to one switching 

period, as shown in (4). But moving average filter introduces 

a delay equal to Ts/2, which is fully equivalent to the single-

sampling PWM delay, thus loosing any possible advantages 

of the multisampling solution in terms of phase boost [35]. 

Therefore, a compromised moving average filter (CMAF) is 

proposed, and the size of the window reduces from one to half 

of switching period, as shown in (5). It can be seen from Fig. 

7 that there is still a delay from CMAF compared with SRF, 

hence a linear delay compensation block [44] is inserted after 

CMAF, i.e., improved repetitive filter (IRF), as shown in (6). 

Consequently, IRF can not only remove the sampled even 

order and odd order switching harmonics, but it also has a 

similar phase lag with SRF.  
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 (6) 

Taking eight-sampling as an example, SRF and CMAF in low 

frequency range can approximately be 

 
2 4 6 3

8

1
()

4
( 1 )NCMAF z z z z z 



       (7) 

 
2

8

41
(1 )

2
( )NSRF z z z 

     (8) 

The linear delay compensation block is 

 1( 1) d d

com

c c

T T
G z z

T T

    (9) 

It can be seen that one-step control delay needs to be 

compensated in the eight-sampling control, and Td can be set 

as Tc, and the expression of IRF is given as  

 
2 4 1

8

61
(1 )(2 )

4
( )NIRF z z z z z

         (10) 

Hence, the general IRF can be deduced in terms of control 

delay and sampling rate, as shown in (6). According to Fig. 7 

and Fig. 9, IRF can remove all the SHs around 2 kHz, 4 kHz 

and 6 kHz. Moreover, IRF shows almost same frequency 

characteristic with SRF below half of the switching frequency 

(1000 Hz), which is usually the main frequency range of 

concern in terms of current control bandwidth [45].  
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(b) 

Fig. 9. The eight-sampled inverter-side current with IRF. (a) Sampled 

inverter-side current waveform, (b) Current spectrum. 

B. Current Controller Design 

According to Fig. 10, the open-loop transfer function of 

the inner loop of the current loop is 

 
1( ) ( ) ( ) ( )oin p d i vT s K IRF s G s G s  (11) 

where 
8

2

1 1 1
( )

41
( )

2

c

c

c

sT
sT

sT

e
e

e
IRF s










 , 

1.5
( ) csT

dG s e


 ,

2

2

2

1 3

1 1 2

(
1

( )
)i v

L Cs

L L Cs L L s
G s



 
 . It is worth noting that the 

stability of the inner loop is the same as the PI based single-

loop control, and the bandwidth of the whole current loop is 

determined by the inner loop bandwidth and integral 

coefficient Ki. According to the bandwidth oriented controller 

design, the open-loop bandwidth of the inner loop can be set 

as 1/10 of the switching frequency (200 Hz) and the value of 

eight-sampling proportional control coefficient Kp8 can be 

determined [45]. Then the eight-sampling integral control 

coefficient Ki8 gradually increases until the overshoot is 

within 5%. On the other hand, due to the large control delay 

(0.75Ts) in the double-sampling control, the open-loop 

bandwidth of the inner loop can only be set as 1/20 of the 

switching frequency (100 Hz). The double-sampling control 

coefficients Kp2 and Ki2 can be seen in Table II: In addition, 

the first-order low pass filter is added to the voltage control 

loop and its time constant is set as 1 ms. The bode diagram of 

the open-loop transfer function of the inner loop is shown in 

Fig. 11. As a result, the phase margin (PM) for the double-

sampling control is 12.8 (PM1), and the PM for other two 

controllers are 36.2 (PM2) and 34.6 (PM3). Therefore, the 

eight-sampling controller with IRF not only achieves larger 

PM and higher bandwidth than the double-sampling 

controller, but also remove all the SHs compared with SRF. 

Moreover, there is only 1.6 decrease in PM of the eight-

sampling controller with IRF than that with SRF. 
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Fig. 10. Block diagram of the single-loop control. 
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Fig. 11. Bode diagram of the inner loop with different repetitive filters 

(SRF: simplified repetitive filter, IRF: improved repetitive filter). 
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IV. SIMULATION RESULTS 

In order to illustrate the effectiveness of aliasing analysis 

and the advantage of the proposed IRF in aliasing suppression, 

the reference current steps from 7.5 A to 15 A (rated current), 

and the multisampling factor is set to eight. The parameters of 

controller are shown in Table II. As shown in Fig. 12(a) and 

Fig. 13(a), the eight-sampling controller without filter show 

better dynamic performance than the double-sampling 

controller. However, high frequency SHs are introduced in the 

control loop, as shown in Fig. 12(b) and Fig. 13(b). As a result, 

the THD of the grid-side current of the eight-sampling 

controller without a filter is 3.16% (see Fig. 13(c)), and there 

are some low-order aliased harmonics compared with the 

double-sampling controller (see Fig. 12(c)).  
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(c) 

Fig. 12. Double-sampling control. (a) Step response, (b) Real-time 

inverter-side and grid-side current, (c) THD of grid-side current. 
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(c) 

Fig. 13. Eight-sampling control without filter. (a) Step response, (b) 

Real-time inverter-side and grid-side current, (c) THD of grid-side 

current. 

When using the SRF and the same eight-sampling control 

parameters, the aliasing still exists because the SHs around 4 

kHz cannot be removed, as shown in Fig. 14(a) and Fig. 8. It 

is worth noting that the aliased low-order harmonics are more 

severe than the eight-sampling control without filter, and the 

THD of grid-side current increases from 3.16% to 4.49% (see 

Fig. 13(c) and Fig. 14(c)). Because IRF can remove all the SHs 

(see Fig. 15(a)), the low-order aliased harmonics are 

suppressed. As shown in Fig. 15(c), the THD of grid-side 

current is 0.78%, which is similar with the double-sampling 

control (see Fig. 12(c)). Therefore, the eight-sampling control 

with IRF not only has better dynamic performance compared 

to the double-sampling control, but also suppresses the 

aliasing and leads to a good grid-side current quality. 
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(c) 

Fig. 14. Eight-sampling control with SRF (SRF: simplifed repetivie 

filter). (a) Step response, (b) Real-time inverter-side and grid-side 

current, (c) THD of grid-side current. 
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(c) 

Fig. 15. Eight-sampling control with IRF (IRF: improved repetitive 

filter). (a) Step response, (b) Real-time inverter-side and grid-side 

currents, (c) THD of grid-side current. 

V. EXPERIMENTAL VALIDATION 

To further verify the theoretical analysis, experiments are 

carried out in a down-scaled three-phase grid-connected 

inverter with an LCL filter, as shown in Fig. 16. The grid is 

emulated with a Chroma Grid Simulator Model 61845. The 

applied half-bridge module and the control platform are a 

PEB-8024 module and a B-BOX RCP control platform from 

Imperix, respectively. The used current sensor is LEM CKSR 

50-P with a bandwidth of 300 kHz. The THD of grid-side 

current is measured through the Newtons-4th PPA5530 

power analyzer. The experimental parameters for the setup 

can be seen in Table II. 

 

 

Fig. 16. Down-scaled three-phase grid-connected inverter. 

The experimental result from double-sampling control is 

shown in Fig. 17, and its THD of grid-side current is 1.01%. 

When using the eight-sampling control without the filter, as 

shown in Fig. 18(a), the step response is faster than the 

double-sampling control. However, high frequency SHs are 
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introduced and low-order aliased harmonics are introduced in 

the grid-side current. It can be seen from Fig. 18(b)-(c) that 

the THD of grid-side current increases from 1.01% to 2.96%, 

which is consistent with the theoretical analysis. 
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Fig. 17. Experimental results with the double-sampling control. (a) Step 
response, (b) Inverter-side and grid-side current, (c) THD of grid-

side current. 
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(c) 

Fig. 18. Experimental results with the eight-sampling control without 
the filter. (a) Step response, (b) Inverter-side and grid-side current, 

(c) THD of grid-side current. 

For the eight-sampling control with the SRF, as shown in 

Fig. 19(a), the switching noise still exists in the control loop. 

The THD of grid-side current is 3.54% (see Fig. 19(c)), which 

is larger than the eight-sampling control without the filter (see 

Fig. 18(c)). Because the proposed IRF can remove all the 

SHs, the aliased low-order harmonics are suppressed and the 

THD of grid-side current is 1.10% (see Fig. 20(c)), which is 

similar with the double-sampling control (see Fig. 17(c)). 

Moreover, the eight-sampling control with the IRF achieves 

a faster step response than the double-sampling control (see 

Fig. 20(a) and Fig. 17(a)). Overall, the eight-sampling 

controller with IRF can not only suppress the aliasing, but 

also keep the advantage of fast dynamic performance. 
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Fig. 19. Experimental results with the eight-sampling control with SRF. 
(a) Step response, (b) Inverter-side and grid-side current, (c) THD 

of grid-side current. 
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Fig. 20. Experimental results under eight-sampling control with the IRF. 
(a) Step response, (b) Inverter-side and grid-side current, (c) THD 

of grid-side current. 

VI. CONCLUSION 

This paper starts with the investigation of the multi-sampled 

high frequency SHs effect on the grid-side current distortion. 

Through the geometric deduction, the multi-update PWM can 

be transformed into a double-update PWM with the sampling 

instant shift. As a result, non-average values are used for the 

calculation of duty ratio within a switching period. Then low-

order aliasing happens in the modulation process, which leads 

to distorted grid-side current. Moreover, an IRF is proposed 

to remove all the SHs and suppress the aliasing, where the 

SRF is also used for comparison. Compared with the double-

sampling control, the multisampling control with the IRF not 

only has better dynamic performance and higher bandwidth, 

but also has low THD for the grid-side current and without 

aliasing. Finally, the theoretical analysis is verified through 

the simulation and experiment. 
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