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Abstract

We investigate the non-identifiability issues associated with bidirectional adver-
sarial training for joint distribution matching. Within a framework of conditional
entropy, we propose both adversarial and non-adversarial approaches to learn
desirable matched joint distributions for unsupervised and supervised tasks. We
unify a broad family of adversarial models as joint distribution matching problems.
Our approach stabilizes learning of unsupervised bidirectional adversarial learning
methods. Further, we introduce an extension for semi-supervised learning tasks.
Theoretical results are validated in synthetic data and real-world applications.

1 Introduction

Deep directed generative models are a powerful framework for modeling complex data distributions.
Generative Adversarial Networks (GANs) [1] can implicitly learn the data generating distribution;
more specifically, GAN can learn to sample from it. In order to do this, GAN trains a generator to
mimic real samples, by learning a mapping from a latent space (where the samples are easily drawn)
to the data space. Concurrently, a discriminator is trained to distinguish between generated and real
samples. The key idea behind GAN is that if the discriminator finds it difficult to distinguish real from
artificial samples, then the generator is likely to be a good approximation to the true data distribution.

In its standard form, GAN only yields a one-way mapping, i.e., it lacks an inverse mapping mechanism
(from data to latent space), preventing GAN from being able to do inference. The ability to compute
a posterior distribution of the latent variable conditioned on a given observation may be important
for data interpretation and for downstream applications (e.g., classification from the latent variable)
[2, 3, 4, 5, 6, 7]. Efforts have been made to simultaneously learn an efficient bidirectional model
that can produce high-quality samples for both the latent and data spaces [3, 4, 8, 9, 10, 11]. Among
them, the recently proposed Adversarially Learned Inference (ALI) [4, 10] casts the learning of such
a bidirectional model in a GAN-like adversarial framework. Specifically, a discriminator is trained to
distinguish between two joint distributions: that of the real data sample and its inferred latent code,
and that of the real latent code and its generated data sample.

While ALI is an inspiring and elegant approach, it tends to produce reconstructions that are not
necessarily faithful reproductions of the inputs [4]. This is because ALI only seeks to match two
joint distributions, but the dependency structure (correlation) between the two random variables
(conditionals) within each joint is not specified or constrained. In practice, this results in solutions
that satisfy ALI’s objective and that are able to produce real-looking samples, but have difficulties
reconstructing observed data [4]. ALI also has difficulty discovering the correct pairing relationship
in domain transformation tasks [12, 13, 14].

In this paper, (i) we first describe the non-identifiability issue of ALI. To solve this problem, we
propose to regularize ALI using the framework of Conditional Entropy (CE), hence we call the
proposed approach ALICE. (ii) Adversarial learning schemes are proposed to estimate the conditional
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entropy, for both unsupervised and supervised learning paradigms. (iii) We provide a unified view
for a family of recently proposed GAN models from the perspective of joint distribution matching,
including ALI [4, 10], CycleGAN [12, 13, 14] and Conditional GAN [15]. (iv) Extensive experiments
on synthetic and real data demonstrate that ALICE is significantly more stable to train than ALI, in
that it consistently yields more viable solutions (good generation and good reconstruction), without
being too sensitive to perturbations of the model architecture, i.e., hyperparameters. We also show
that ALICE results in more faithful image reconstructions. (v) Further, our framework can leverage
paired data (when available) for semi-supervised tasks. This is empirically demonstrated on the
discovery of relationships for cross domain tasks based on image data.

2 Background

Consider two general marginal distributions q(x) and p(z) over x ∈ X and z ∈ Z . One domain
can be inferred based on the other using conditional distributions, q(z|x) and p(x|z). Further, the
combined structure of both domains is characterized by joint distributions q(x, z) = q(x)q(z|x) and
p(x, z) = p(z)p(x|z).

To generate samples from these random variables, adversarial methods [1] provide a sampling
mechanism that only requires gradient backpropagation, without the need to specify the conditional
densities. Specifically, instead of sampling directly from the desired conditional distribution, the
random variable is generated as a deterministic transformation of two inputs, the variable in the source
domain, and an independent noise, e.g., a Gaussian distribution. Without loss of generality, we use an
universal distribution approximator specification [9], i.e., the sampling procedure for conditionals
x̃ ∼ pθ(x|z) and z̃ ∼ qφ(z|x) is carried out through the following two generating processes:

x̃ = gθ(z, ǫ), z ∼ p(z), ǫ ∼ N (0, I), and z̃ = gφ(x, ζ), x ∼ q(x), ζ ∼ N (0, I), (1)

where gθ(·) and gφ(·) are two generators, specified as neural networks with parameters θ and
φ, respectively. In practice, the inputs of gθ(·) and gφ(·) are simple concatenations, [z ǫ] and
[x ζ], respectively. Note that (1) implies that pθ(x|z) and qφ(z|x) are parameterized by θ and φ
respectively, hence the subscripts.

The goal of GAN [1] is to match the marginal pθ(x) =
∫
pθ(x|z)p(z)dz to q(x). Note that q(x)

denotes the true distribution of the data (from which we have samples) and p(z) is specified as a
simple parametric distribution, e.g., isotropic Gaussian. In order to do the matching, GAN trains
a ω-parameterized adversarial discriminator network, fω(x), to distinguish between samples from
pθ(x) and q(x). Formally, the minimax objective of GAN is given by the following expression:

min
θ

max
ω

LGAN(θ,ω) = Ex∼q(x)[log σ(fω(x))] + Ex̃∼pθ(x|z),z∼p(z)[log(1− σ(fω(x̃)))], (2)

where σ(·) is the sigmoid function. The following lemma characterizes the solutions of (2) in terms
of marginals pθ(x) and q(x).

Lemma 1 ([1]) The optimal decoder and discriminator, parameterized by {θ∗,ω∗}, correspond to
a saddle point of the objective in (2), if and only if pθ∗(x) = q(x).

Alternatively, ALI [4] matches the joint distributions pθ(x, z) = pθ(x|z)p(z) and qφ(x, z) =
q(x)qφ(z|x), using an adversarial discriminator network similar to (2), fω(x, z), parameterized by
ω. The minimax objective of ALI can be then written as

min
θ,φ

max
ω

LALI(θ,φ,ω) = Ex∼q(x),z̃∼qφ(z|x)[log σ(fω(x, z̃))]

+ Ex̃∼pθ(x|z),z∼p(z)[log(1−σ(fω(x̃, z)))].
(3)

Lemma 2 ([4]) The optimum of the two generators and the discriminator with parameters
{θ∗,φ∗,ω∗} form a saddle point of the objective in (3), if and only if pθ∗(x, z) = qφ∗(x, z).

From Lemma 2, if a solution of (3) is achieved, it is guaranteed that all marginals and conditional
distributions of the pair {x, z} match. Note that this implies that qφ(z|x) and pθ(z|x) match;
however, (3) imposes no restrictions on these two conditionals. This is key for the identifiability
issues of ALI described below.

3 Adversarial Learning with Information Measures

The relationship (mapping) between random variables x and z is not specified or constrained by

ALI. As a result, it is possible that the matched distribution π(x, z) , pθ∗(x, z) = qφ∗(x, z) is
undesirable for a given application.
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Figure 1: Illustration of possible solutions to

the ALI objective. The first row shows the map-

pings between two domains, The second row

shows matched joint distribution, π(x, z), as

contingency tables parameterized by δ = [0, 1].

To illustrate this issue, Figure 1 shows all solutions
(saddle points) to the ALI objective on a simple toy
problem. The data and latent random variables can take
two possible values, X = {x1, x2} and Z = {z1, z2},
respectively. In this case, their marginals q(x) and p(z)
are known, i.e., q(x = x1) = 0.5 and p(z = z1) = 0.5.
The matched joint distribution, π(x, z), can be repre-
sented as a 2× 2 contingency table. Figure 1(a) repre-
sents all possible solutions of the ALI objective in (3),
for any δ ∈ [0, 1]. Figures 1(b) and 1(c) represent oppo-
site extreme solutions when δ = 1 and δ = 0, respec-
tively. Note that although we can generate “realistic”
values of x from any sample of p(z), for 0 < δ < 1, we
will have poor reconstruction ability since the sequence
x ∼ q(x), z̃ ∼ qφ(z|x), x̃ ∼ pθ(x|z̃), can easily
result in x̃ 6= x. The two (trivial) exceptions where the model can achieve perfect reconstruction
correspond to δ = {1, 0}, and are illustrated in Figures 1(b) and 1(c), respectively. From this simple
example, we see that due to the flexibility of the joint distribution, π(x, z), it is quite likely to obtain
an undesirable solution to the ALI objective. For instance, i) one with poor reconstruction ability or
ii) one where a single instance of z can potentially map to any possible value in X , e.g., in Figure 1(a)
with δ = 0.5, z1 can generate either x1 or x2 with equal probability.

Many applications require meaningful mappings. Consider two scenarios:

• A1: In unsupervised learning, one desirable property is cycle-consistency [12], meaning that the
inferred z of a corresponding x, can reconstruct x itself with high probability. In Figure 1 this
corresponds to either δ → 1 or δ → 0, as in Figures 1(b) and 1(c).

• A2: In supervised learning, the pre-specified correspondence between samples imposes restrictions
on the mapping between x and z, e.g., in image tagging, x are images and z are tags. In this case,
paired samples from the desired joint distribution are usually available, thus we can leverage this
supervised information to resolve the ambiguity between Figure 1(b) and (c).

From our simple example in Figure 1, we see that in order to alleviate the identifiability issues
associated with the solutions to the ALI objective, we have to impose constraints on the conditionals
qφ(z|x) and pθ(z|x). Furthermore, to fully mitigate the identifiability issues we require supervision,
i.e., paired samples from domains X and Z .

To deal with the problem of undesirable but matched joint distributions, below we propose to use
an information-theoretic measure to regularize ALI. This is done by controlling the “uncertainty”
between pairs of random variables, i.e., x and z, using conditional entropies.

3.1 Conditional Entropy

Conditional Entropy (CE) is an information-theoretic measure that quantifies the uncertainty of
random variable x when conditioned on z (or the other way around), under joint distribution π(x, z):

Hπ(x|z) , −Eπ(x,z)[log π(x|z)], and Hπ(z|x) , −Eπ(x,z)[log π(z|x)]. (4)

The uncertainty of x given z is linked with Hπ(x|z); in fact, Hπ(x|z) = 0 if only if x is a
deterministic mapping of z. Intuitively, by controlling the uncertainty of qφ(z|x) and pθ(z|x), we
can restrict the solutions of the ALI objective to joint distributions whose mappings result in better
reconstruction ability. Therefore, we propose to use the CE in (4), denoted as Lπ

CE(θ,φ) = Hπ(x|z)
or Hπ(z|x) (depending on the task; see below), as a regularization term in our framework, termed
ALI with Conditional Entropy (ALICE), and defined as the following minimax objective:

min
θ,φ

max
ω

LALICE(θ,φ,ω) = LALI(θ,φ,ω) + Lπ
CE(θ,φ). (5)

Lπ
CE(θ,φ) is dependent on the underlying distributions for the random variables, parametrized by

(θ,φ), as made clearer below. Ideally, we could select the desirable solutions of (5) by evaluating
their CE, once all the saddle points of the ALI objective have been identified. However, in practice,
Lπ
CE(θ,φ) is intractable because we do not have access to the saddle points beforehand. Below, we

propose to approximate the CE in (5) during training for both unsupervised and supervised tasks.
Since x and z are symmetric in terms of CE according to (4), we use x to derive our theoretical
results. Similar arguments hold for z, as discussed in the Supplementary Material (SM).
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3.2 Unsupervised Learning

In the absence of explicit probability distributions needed for computing the CE, we can bound
the CE using the criterion of cycle-consistency [12]. We denote the reconstruction of x as x̂, via
generating procedure (cycle) x̂ ∼ pθ(x̂|z), z ∼ qφ(z|x), x ∼ q(x). We desire that pθ(x̂|z) have
high likelihood for x̂ = x, for the x ∼ q(x) that begins the cycle x → z → x̂, and hence that x̂
be similar to the original x. Lemma 3 below shows that cycle-consistency is an upper bound of the
conditional entropy in (4).

Lemma 3 For joint distributions pθ(x, z) or qφ(x, z), we have

Hqφ(x|z) , −Eqφ(x,z)[log qφ(x|z)] = −Eqφ(x,z)[log pθ(x|z)]− Eqφ(z)[KL(qφ(x|z)‖pθ(x|z))]

≤ −Eqφ(x,z)[log pθ(x|z)] , LCycle(θ,φ). (6)

where qφ(z) =
∫
dxqφ(x, z). The proof is in the SM. Note that latent z is implicitly involved

in LCycle(θ,φ) via Eqφ(x,z)[·]. For the unsupervised case we want to leverage (6) to optimize the
following upper bound of (5):

min
θ,φ

max
ω

LALI(θ,φ,ω) + LCycle(θ,φ) . (7)

Note that as ALI reaches its optimum, pθ(x, z) and qφ(x, z) reach saddle point π(x, z), then
LCycle(θ,φ) → Hqφ(x|z) → Hπ(x|z) in (4) accordingly, thus (7) effectively approaches (5)
(ALICE). Unlike Lπ

CE(θ,φ) in (4), its upper bound, LCycle(θ,φ), can be easily approximated via
Monte Carlo simulation. Importantly, (7) can be readily added to ALI’s objective without additional
changes to the original training procedure.

The cycle-consistency property has been previously leveraged in CycleGAN [12], DiscoGAN [13]
and DualGAN [14]. However, in [12, 13, 14], cycle-consistency, LCycle(θ,φ), is implemented via ℓk
losses, for k = 1, 2, and real-valued data such as images. As a consequence of an ℓ2-based pixel-wise
loss, the generated samples tend to be blurry [8]. Recognizing this limitation, we further suggest
to enforce cycle-consistency (for better reconstruction) using fully adversarial training (for better
generation), as an alternative to LCycle(θ,φ) in (7). Specifically, to reconstruct x, we specify an
η-parameterized discriminator fη(x, x̂) to distinguish between x and its reconstruction x̂:

min
θ,φ

max
η

LA
Cycle(θ,φ,η) = Ex∼q(x)[log σ(fη(x,x))]

+ Ex̂∼pθ(x̂|z),z∼qφ(z|x) log(1− σ(fη(x, x̂)))]. (8)

Finally, the fully adversarial training algorithm for unsupervised learning using the ALICE framework
is the result of replacing LCycle(θ,φ) with LA

Cycle(θ,φ,η) in (7); thus, for fixed (θ,φ), we maximize

wrt {ω,η}.

The use of paired samples {x, x̂} in (8) is critical. It encourages the generators to mimic the
reconstruction relationship implied in the first joint; on the contrary, the model may reduce to the
basic GAN discussed in Section 3, and generate any realistic sample in X . The objective in (8)
enjoys many theoretical properties of GAN. Particularly, Proposition 1 guarantees the existence of
the optimal generator and discriminator.

Proposition 1 The optimal generators and discriminator {θ∗,φ∗,η∗} of the objective in (8) is
achieved, if and only if Eqφ∗ (z|x)pθ∗(x̂|z) = δ(x− x̂).

The proof is provided in the SM. Together with Lemma 2 and 3, we can also show that:

Corollary 1 When cycle-consistency is satisfied (the optimum in (8) is achieved), (i) a determin-
istic mapping enforces Eqφ(z)[KL(qφ(x|z)‖pθ(x|z))] = 0, which indicates the conditionals are

matched. (ii) On the contrary, the matched conditionals enforce Hqφ(x|z) = 0, which indicates the
corresponding mapping becomes deterministic.

3.3 Semi-supervised Learning

When the objective in (7) is optimized in an unsupervised way, the identifiability issues associated
with ALI are largely reduced due to the cycle-consistency-enforcing bound in Lemma 3. This
means that samples in the training data have been probabilistically “paired” with high certainty,
by conditionals pθ(x|z) and pφ(z|x), though perhaps not in the desired configuration. In real-
world applications, obtaining correctly paired data samples for the entire dataset is expensive or
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even impossible. However, in some situations obtaining paired data for a very small subset of the
observations may be feasible. In such a case, we can leverage the small set of empirically paired
samples, to further provide guidance on selecting the correct configuration. This suggests that ALICE
is suitable for semi-supervised classification.

For a paired sample drawn from empirical distribution π̃(x, z), its desirable joint distribution is well
specified. Thus, one can directly approximate the CE as

H π̃(x|z) ≈ Eπ̃(x,z)[log pθ(x|z)] , LMap(θ) , (9)

where the approximation (≈) arises from the fact that pθ(x|z) is an approximation to π̃(x|z). For
the supervised case we leverage (9) to approximate (5) using the following minimax objective:

min
θ,φ

max
ω

LALI(θ,φ,ω) + LMap(θ). (10)

Note that as ALI reaches its optimum, pθ(x, z) and qφ(x, z) reach saddle point π(x, z), then

LMap(θ) → H π̃(x|z) → Hπ(x|z) in (4) accordingly, thus (10) approaches (5) (ALICE).

We can employ standard losses for supervised learning objectives to approximate LMap(θ) in (10),
such as cross-entropy or ℓk loss in (9). Alternatively, to also improve generation ability, we propose
an adversarial learning scheme to directly match pθ(x|z) to the paired empirical conditional π̃(x|z),
using conditional GAN [15] as an alternative to LMap(θ) in (10). The χ-parameterized discriminator
fχ is used to distinguish the true pair {x, z} from the artificially generated one {x̂, z} (conditioned
on z), using

min
θ

max
χ

LA
Map(θ,χ) = Ex,z∼π̃(x,z)[log σ(fχ(x, z)) + Ex̂∼pθ(x̂|z) log(1− σ(fχ(x̂, z)))]. (11)

The fully adversarial training algorithm for supervised learning using the ALICE in (11) is the result
of replacing LMap(θ) with LA

Map(θ,χ) in (10), thus for fixed (θ,φ) we maximize wrt {ω,χ}.

Proposition 2 The optimum of generators and discriminator {θ∗,χ∗} form saddle points of objective
in (11), if and only if π̃(x|z) = pθ∗(x|z) and π̃(x, z) = pθ∗(x, z).

The proof is provided in the SM. Proposition 2 enforces that the generator will map to the correctly
paired sample in the other space. Together with the theoretical result for ALI in Lemma 2, we have

Corollary 2 When the optimum in (10) is achieved, π̃(x, z) = pθ∗(x, z) = qφ∗(x, z).

Corollary 2 indicates that ALI’s drawbacks associated with identifiability issues can be alleviated for
the fully supervised learning scenario. Two conditional GANs can be used to boost the perfomance,
each for one direction mapping. When tying the weights of discriminators of two conditional GANs,
ALICE recovers Triangle GAN [16]. In practice, samples from the paired set π̃(x, z) often contain
enough information to readily approximate the sufficient statistics of the entire dataset. In such case,
we may use the following objective for semi-supervised learning:

min
θ,φ

max
ω

LALI(θ,φ,ω) + LCycle(θ,φ) + LMap(θ) . (12)

The first two terms operate on the entire set, while the last term only applies to the paired subset. Note
that we can train (12) fully adversarially by replacing LCycle(θ,φ) and LMap(θ) with LA

Cycle(θ,φ,η)

and LA
Map(θ,χ) in (8) and (11), respectively. In (12) each of the three terms are treated with equal

weighting in the experiments if not specificially mentioned, but of course one may introduce additional
hyperparameters to adjust the relative emphasis of each term.

4 Related Work: A Unified Perspective for Joint Distribution Matching

Connecting ALI and CycleGAN. We provide an information theoretical interpretation for cycle-
consistency, and show that it is equivalent to controlling conditional entropies and matching con-
ditional distributions. When cycle-consistency is satisfied, Corollary 1 shows that the conditionals
are matched in CycleGAN. They also train additional discriminators to guarantee the matching of
marginals for x and z using the original GAN objective in (2). This reveals the equivalence between
ALI and CycleGAN, as the latter can also guarantee the matching of joint distributions pθ(x, z) and
qφ(x, z). In practice, CycleGAN is easier to train, as it decomposes the joint distribution matching
objective (as in ALI) into four subproblems. Our approach leverages a similar idea, and further
improves it with adversarially learned cycle-consistency, when high quality samples are of interest.
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(a) True x (b) True z (c) Inception Score (d) MSE

Figure 2: Quantitative evaluation of generation (c) and reconstruction (d) results on toy data (a,b).

Stochastic Mapping vs. Deterministic Mapping. We propose to enforce the cycle-consistency in
ALI for the case when two stochastic mappings are specified as in (1). When cycle-consistency is
achieved, Corollary 1 shows that the bounded conditional entropy vanishes, and thus the corresponding
mapping reduces to be deterministic. In the literture, one deterministic mapping has been empirically
tested in ALI’s framework [4], without explicitly specifying cycle-consistency. BiGAN [10] uses
two deterministic mappings. In theory, deterministic mappings guarantee cycle-consistency in ALI’s
framework. However, to achieve this, the model has to fit a delta distribution (deterministic mapping)
to another distribution in the sense of KL divergence (see Lemma 3). Due to the asymmetry of
KL, the cost function will pay extremely low cost for generating fake-looking samples [17]. This
explains the underfitting reasoning in [4] behind the subpar reconstruction ability of ALI. Therefore,
in ALICE, we explicitly add a cycle-consistency regularization to accelerate and stabilize training.

Conditional GANs as Joint Distribution Matching. Conditional GAN and its variants [15, 18, 19,
20] have been widely used in supervised tasks. Our scheme to learn conditional entropy borrows the
formulation of conditional GAN [15]. To the authors’ knowledge, this is the first attempt to study the
conditional GAN formulation as joint distribution matching problem. Moreover, we add the potential
to leverage the well-defined distribution implied by paired data, to resolve the ambiguity issues of
unsupervised ALI variants [4, 10, 12, 13, 14].

5 Experimental Results

The code to reproduce these experiments is at https://github.com/ChunyuanLI/ALICE

5.1 Effectiveness and Stability of Cycle-Consistency

To highlight the role of the CE regularization for unsupervised learning, we perform an experiment
on a toy dataset. q(x) is a 2D Gaussian Mixture Model (GMM) with 5 mixture components, and
p(z) is chosen as a standard Gaussian, N (0, I). Following [4], the covariance matrices and centroids
are chosen such that the distribution exhibits severely separated modes, which makes it a relatively
hard task despite its 2D nature. Following [21], to study stability, we run an exhaustive grid search
over a set of architectural choices and hyper-parameters, 576 experiments for each method. We report
Mean Squared Error (MSE) and inception score (denoted as ICP) [22] to quantitatively evaluate the
performance of generative models. MSE is a proxy for reconstruction quality, while ICP reflects the
plausibility and variety of sample generation. Lower MSE and higher ICP indicate better results. See
SM for the details of the grid search and the calculation of ICP.

We train on 2048 samples, and test on 1024 samples. The ground-truth test samples for x and z are
shown in Figure 2(a) and (b), respectively. We compare ALICE, ALI and Denoising Auto-Encoders
(DAEs) [23], and report the distribution of ICP and MSE values, for all (576) experiments in Figure 2
(c) and (d), respectively. For reference, samples drawn from the “oracle” (ground-truth) GMM yield
ICP=4.977±0.016. ALICE yields an ICP larger than 4.5 in 77% of experiments, while ALI’s ICP
wildly varies across different runs. These results demonstrate that ALICE is more consistent and
quantitatively reliable than ALI. The DAE yields the lowest MSE, as expected, but it also results in
the weakest generation ability. The comparatively low MSE of ALICE demonstrates its acceptable
reconstruction ability compared to DAE, though a very significantly improvement over ALI.

Figure 3 shows the qualitative results on the test set. Since ALI’s results vary largely from trial to
trial, we present the one with highest ICP. In the figure, we color samples from different mixture
components to highlight their correspondance between the ground truth, in Figure 2(a), and their
reconstructions, in Figure 3 (first row, columns 2, 4 and 6, for ALICE, ALI and DAE, respectively).
Importantly, though the reconstruction of ALI can recover the shape of manifold in x (Gaussian
mixture), each individual reconstructed sample can be substantially far away from its “original”
mixture component (note the highly mixed coloring), hence the poor MSE. This occurs because the
adversarial training in ALI only requires that the generated samples look realistic, i.e., to be located
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(a) ALICE (b) ALI (c) DAEs

Figure 3: Qualitative results on toy data. Two-column blocks represent the results of each method, with left for

z and right for x. For the first row, left is sampling of z, and right is reconstruction of x. Colors indicate mixture

component membership. The second row shows reconstructions, x, from linearly interpolated samples in z.

near true samples in X , but the mapping between observed and latent spaces (x → z and z → x) is
not specified. In the SM we also consider ALI with various combinations of stochastic/deterministic
mappings, and conclude that models with deterministic mappings tend to have lower reconstruction
ability but higher generation ability. In terms of the estimated latent space, z, in Figure 3 (first row,
columns 1, 3 and 5, for ALICE, ALI and DAE, respectively), we see that ALICE results in a better
latent representation, in the sense of mapping consistency (samples from different mixture components
remain clustered) and distribution consistency (samples approximate a Gaussian distribution). The
results for reconstruction of z and sampling of x are shown in the SM.

In Figure 3 (second row), we also investigate latent space interpolation between a pair of test set
examples. We use x1 = [−2.2,−2.2] and x9 = [2.2, 2.2], map them into z1 and z9, linearly
interpolate between z1 and z9 to get intermediate points z2, . . . , z8, and then map them back to the
original space as x2, . . . ,x8. We only show the index of the samples for better visualization. Figure 3
shows that ALICE’s interpolation is smooth and consistent with the ground-truth distributions.
Interpolation using ALI results in realistic samples (within mixture components), but the transition is
not order-wise consistent. DAEs provides smooth transitions, but the samples in the original space
look unrealistic as some of them are located in low probability density regions of the true model.

We investigate the impact of different amount of regularization on three datasets, including the toy
dataset, MNIST and CIFAR-10 in SM Section D. The results show that our regularizer can improve
image generation and reconstruction of ALI for a large range of weighting hyperparameter values.

5.2 Reconstruction and Cross-Domain Transformation on Real Datasets

Two image-to-image translation tasks are considered. (i) Car-to-Car [24]: each domain (x and z)
includes car images in 11 different angles, on which we seek to demonstrate the power of adversarially
learned reconstruction and weak supervision. (ii) Edge-to-Shoe [25]: x domain consists of shoe
photos and z domain consists of edge images, on which we report extensive quantitative comparisons.
Cycle-consistency is applied on both domains. The goal is to discover the cross-domain relationship
(i.e., cross-domain prediction), while maintaining reconstruction ability on each domain.

Adversarially learned reconstruction To demonstrate the effectiveness of our fully adversarial
scheme in (8) (Joint A.) on real datasets, we use it in place of the ℓ2 losses in DiscoGAN [13]. In
practice, feature matching [22] is used to help the adversarial objective in (8) to reach its optimum.
We also compared with a baseline scheme (Marginal A.) in [12], which adversarially discriminates
between x and its reconstruction x̂.
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Figure 4: Results on Car-to-Car task.

The results are shown in Figure 4 (a). From
top to bottom, each row shows ground-truth
images, DiscoGAN (with Joint A., ℓ2 loss
and Marginal A. schemes, respectively) and
BiGAN [10]. Note that BiGAN is the best
ALI variant in our grid search compasion.
The proposed Joint A. scheme can retain the
same crispness characteristic to adversarially-
trained models, while ℓ2 tends to be blurry.
Marginal A. provides realistic car images, but not faithful reproductions of the inputs. This explains
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Figure 5: SSIM and generated images on Edge-to-Shoe dataset.

the observations in [12] in terms of no performance gain. The BiGAN learns the shapes of cars, but
misses the textures. This is a sign of underfitting, thus indicating BiGAN is not easy to train.

Weak supervision The DiscoGAN and BiGAN are unsupervised methods, and exhibit very different
cross-domain pairing configurations during different training epochs, which is indicative of non-
identifiability issues. We leverage very weak supervision to help with convergence and guide the
pairing. The results on shown in Figure 4 (b). We run each methods 5 times, the width of the
colored lines reflect the standard deviation. We start with 1% true pairs for supervision, which yields
significantly higher accuracy than DiscoGAN/BiGAN. We then provided 10% supervison in only 2
or 6 angles (of 11 total angles), which yields comparable angle prediction accuracy with full angle
supervison in testing. This shows ALICE’s ability in terms of zero-shot learning, i.e., predicting
unseen pairs. In the SM, we show that enforcing different weak supervision strategies affects the final
pairing configurations, i.e., we can leverage supervision to obtain the desirable joint distribution.

Quantitative comparison To quantitatively assess the generated images, we use structural similarity
(SSIM) [26], which is an established image quality metric that correlates well with human visual
perception. SSIM values are between [0, 1]; higher is better. The SSIM of ALICE on prediction and
reconstruction is shown in Figure 5 (a)(b) for the edge-to-shoe task. As a baseline, we set DiscoGAN
with ℓ2-based supervision (ℓ2-sup). BiGAN/ALI, highlighted with a circle is outperformed by
ALICE in two aspects: (i) In the unpaired setting (0% supervision), cycle-consistency regularization
(LCycle) shows significant performance gains, particularly on reconstruction. (ii) When supervision
is leveraged (10%), SSIM is significantly increased on prediction. The adversarial-based supervision
(ℓA-sup) shows higher prediction than ℓ2-sup. ALICE achieves very similar performance with the
50% and full supervision setup, indicating its advantage of in semi-supervised learning. Several
generated edge images (with 50% supervision) are shown in Figure 5(c), ℓA-sup tends to provide
more details than ℓ2-sup. Both methods generate correct paired edges, and quality is higher than
BiGAN and DiscoGAN. In the SM, we also report MSE metrics, and results on edge domain only,
which are consistent with the results presented here.

One-side cycle-consistency When uncertainty in one domain is desirable, we consider one-side
cycle-consistency. This is demonstrated on the CelebA face dataset [27]. Each face is associated
with a 40-dimensional attribute vector. The results are in the Figure 8 of SM. In the first task, we
consider the images x are generated from a 128-dimensional Gaussian latent space z, and apply
LCycle on x. We compare ALICE and ALI on reconstruction in Figure 8 (a)(b). ALICE shows more
faithful reproduction of the input subjects. In the second task, we consider z as the attribute space,
from which the images x are generated. The mapping from x to z is then attribute classification. We
only apply LCycle on the attribute domain, and LA

Map on both domains. When 10% paired samples
are considered, the predicted attributes still reach 86% accuracy, which is comparable with the fully
supervised case. To test the diversity on x, we first predict the attributes of a true face image, and
then generated multiple images conditioned on the predicted attributes. Four examples are shown in
Figure 8 (c).

6 Conclusion
We have studied the problem of non-identifiability in bidirectional adversarial networks. A unified
perspective of understanding various GAN models as joint matching is provided to tackle this problem.
This insight enables us to propose ALICE (with both adversarial and non-adversarial solutions) to
reduce the ambiguity and control the conditionals in unsupervised and semi-supervised learning. For
future work, the proposed view can provide opportunities to leverage the advantages of each model,
to advance joint-distribution modeling.
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