
Received May 29, 2020, accepted June 17, 2020, date of publication June 26, 2020, date of current version July 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3005286

ALigN: A Highly Accurate Adaptive Layerwise
Log_2_Lead Quantization of Pre-Trained
Neural Networks

SIDDHARTH GUPTA 1, SALIM ULLAH 2, KAPIL AHUJA 1, ARUNA TIWARI1, (Member, IEEE),

AND AKASH KUMAR 2, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India
2Department of Computer Science, Technische Universität Dresden, 01062 Dresden, Germany

Corresponding authors: Salim Ullah (salim.ullah@tu-dresden.de) and Akash Kumar (akash.kumar@tu-dresden.de)

This work is supported by the German Research Foundation (DFG) funded Project ReAp under Grant 380524764.

ABSTRACT Deep Neural Networks are one of the machine learning techniques which are increasingly

used in a variety of applications. However, the significantly high memory and computation demands of deep

neural networks often limit their deployment on embedded systems. Many recent works have considered this

problem by proposing different types of data quantization schemes. However, most of these techniques either

require post-quantization retraining of deep neural networks or bear a significant loss in output accuracy. In

this paper, we propose a novel and scalable technique with two different modes for the quantization of

the parameters of pre-trained neural networks. In the first mode, referred to as log_2_lead, we use a single

template for the quantization of all parameters. In the secondmode, denoted as ALigN, we analyze the trained

parameters of each layer and adaptively adjust the quantization template to achieve even higher accuracy.

Our technique significantly maintains the accuracy of the parameters and does not require retraining of

the networks. Moreover, it supports quantization to an arbitrary bit-size. For example, compared to the

single-precision floating-point numbers-based implementation, our proposed 8-bit quantization technique

generates only∼ 0.2% and∼ 0.1%, loss in the Top-1 and Top-5 accuracies respectively for VGG-16 network

using ImageNet dataset. We have observed similar minimal losses in the Top-1 and Top-5 accuracies

for AlexNet and Resnet-18 using the proposed quantization scheme for the 8-bit range. Our proposed

quantization technique also provides a higher mean intersection over union for semantic segmentation when

compared with state-of-the-art quantization techniques. The proposed technique represents parameters in

powers of 2, thereby eliminating the need for resource-computationally intensive multiplier units for the

hardware accelerators of the neural networks. We also present a design for implementing the multiplication

operation using bit-shifts and addition for the proposed quantization technique.

INDEX TERMS Machine learning, deep neural networks, quantization, multipliers.

I. INTRODUCTION

Deep neural networks (DNNs) are the machine learning mod-

els which have achieved promising classification accuracies

on different recognition problems such as images, speech,

and natural language processing [1]–[3]. However, the DNNs

are computationally expensive and have very high mem-

ory footprints. For these reasons, high-performance paral-

lel architectures, such as graphics processing units (GPUs),

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa Rahimi Azghadi .

are typically used for the training of DNNs [4]. Further,

to provide high computational accuracies, these systems typ-

ically use single-precision floating-point numbers. However,

the high power consumption and memory requirements of

these CPUs and GPUs-based DNN models make them an

infeasible choice for embedded devices on edge. For these

embedded devices, the DNN accelerators are supposed to

provide low-power and real-time inferences. A plethora of

recent works has proposed different types of data representa-

tion techniques and hardware accelerators to reduce themem-

ory and power budgets of training the DNN models and then

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 118899

https://orcid.org/0000-0001-5836-2125
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-9640-4437
https://orcid.org/0000-0001-7125-1737
https://orcid.org/0000-0001-7975-3985

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

using them as inference engines. For example, the Google

cloud tensor processing units (TPUs) utilize the Brain Float-

ing Point Format (BFloat16) for providing high-performance

operations. The BFloat16, a subset of the single-precision

Float32, utilizes only 7 bits for storing the fraction (signif-

icand) [31]. However, most of these techniques represent the

parameters of a trained network in low precision fixed-point

number systems by utilizing different types of quantization

schemes. Decreasing the precision of parameters helps in

reducing the memory footprint, interconnect bandwidths for

transferring the intermediate results, and the required com-

putational complexity. However, the overall output accu-

racy of a quantized DNN model is degraded due to the

errors induced by quantization. For some quantized DNNs,

the final output accuracy can be slightly improved by retrain-

ing the network with quantized parameters and adjusting the

quantized parameters accordingly. However, the retraining

of a quantized DNN is a time, energy, and computational

resource-consuming operation. Therefore, there is always the

need for defining quantization methods which can produce

high-quality results without retraining the networks. This

paper extends our previous work presented in [29]. To this

end, the overall contributions of this manuscript are:

• Identification of the Most Significant Fractional Bits:

We present an analysis to identify the locations of

the leading 1 and the following most significant

bits in a fraction to represent a quantized number.

These bits mainly define the precision of a quantized

number.

• log_2_lead Quantization Scheme: Based on our analy-

sis, we present a novel and highly accurate quantization

technique, log_2_lead (L2L), to quantize the parameters

of pre-trained DNNs. Our technique uses a unique tem-

plate to store the most significant fractional bits.

• ALigN Quantization Scheme: We propose an adaptive

layerwise variation, referred to as ALigN, of our L2L

quantization scheme for pre-trained DNNs. In this tech-

nique, we align the available quantization bit-width

according to the occurrences of the leading 1’s in the

trained parameters of each layer. Compared to the L2L

quantization scheme, the ALigN technique achieves

higher output accuracy for image classification and

semantic segmentation tasks.

• No Retraining of the Quantized Network: Our proposed

quantization techniques are highly accurate and signifi-

cantly retain the precision of the parameters. Therefore,

retraining of the quantized network is not required to

recover from the quantization errors.

• Multiplier Design: Utilizing our proposed quantization

templates, we propose a novel resource-efficient multi-

plier design using bit-shifts and add operations.

The rest of the paper is organized as follows: Section II

presents a summary of the state-of-the-art quantization tech-

niques for DNNs. Section III describes the preliminaries

of DNN along with some observation of data distribution

of parameters of in trained DNN. Section IV presents our

proposed quantization techniques followed by its utiliza-

tion results in Section V. Finally, Section VI concludes the

paper.

II. RELATED WORK

Quantization of neural networks can be achieved either

by training the networks with quantized parameters or

applying different quantization schemes on the trained

network parameters. For example, the works in [5]–[11]

utilize specialized methods to train networks with different

fixed-point low-precision parameters. The techniques pro-

posed in [7]–[10] have even reduced the precision of trained

parameters to only 1-2 bits. The authors of [11] have used

dynamic fixed point technique for quantization along with

retraining. As the training of a network is a learning process,

the in-training quantization can heal many of the quanti-

zation induced errors in the final output of the network.

However, this technique cannot be utilized for the networks

already trained with floating-point numbers. To quantize the

parameters of a pre-trained network, the works in [12]–[19]

have proposed different quantization schemes. The technique

proposed in [13] utilizes different bit-widths for each layer

to reduce the errors in final output accuracy. To replace

the computationally costly multiply-operation with bit-shifts,

the works in [12], [14]–[18] have used the power of 2 quanti-

zations for pre-trained networks’ parameters. However, most

of these techniques require a fine-tuning (retraining) step to

reduce the errors induced due to quantization. The authors

of [17] have avoided the post-quantization fine-tuning step

by computing the quantization step size using an iterative

approach. In their proposed technique, the optimal quanti-

zation step sizes for features and parameters are computed

by iteratively adjusting the step size for each data structure

in each layer and recording the generated errors in the layer

under consideration. However, their iterative process of com-

puting and reducing the quantization generated errors, for

each layer, ignores the criticality of neurons in that layer.

Further, each data structure is quantized independently in

their proposed technique, which may result in attaining some

locally optimal quantization for the network. The indepen-

dent quantization of each data structure and the iterative

approach for finding the quantization step size may take a

significantly long time for the quantization of very deep neu-

ral networks. The work presented in [18] also uses an iterative

approach to find the distribution details of the trained param-

eters. This technique identifies an optimal number of bits

for quantization of individual layer parameters, hence trained

parameters are quantized in more accurate way. Moreover,

it does not quantize all layers to retain the output accuracy

of the DNNs. However, the usage of different bit-widths

for different layers increases the computational complexity

and overall resource utilization of the implementation. The

technique described in [19] has used theMonte CarloMethod

for sampling the pre-trained weights of a network, and iden-

tification of the number of bits to represent the quantized

weights with low precision.

118900 VOLUME 8, 2020

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

The quantization techniques proposed in this paper,

referred to as log_2_lead and ALigN, can substantially main-

tain the precision of pre-trained network parameters and

therefore, do not require retraining of the quantized network.

The proposed techniques are also independent of neurons’

criticalities and do not require any time consuming iterative

process for computing the quantized parameters.

III. QUANTIZED DNNs

In this section, we present a brief overview of DNNs followed

by a description of the usually employed techniques for the

quantization of pre-trained DNNs.

A. OVERVIEW OF DNNs

A typical DNN consists of multiple stacked layers of primary

computational units called Neurons. The commonly used

layers in a DNN are convolution, pooling, and optionally a

few fully connected layers. Each neuron in each layer receives

multiple inputs (features and parameters) and generates a

single output (feature). The pooling layers in a DNN are used

to subsample and reduce the size of feature maps. The fre-

quently employed pooling function for this purpose is Max-

pooling which computes the maximum feature ‘f’ according

to the window size of the neurons in the layer. For an n
2
× n

2
window size, the output of a neuron in Max-pooling layer is

computed as described in Eq. 1.

fout = max(f1, f2, f3, . . . , fn) (1)

Each neuron of the convolutional and fully-connected lay-

ers performs a weighted sum of the features and parameters

(weights ‘w’). A bias ‘b’ is added with the weighted sum

to introduce non-linearity followed by an activation function

ϕ to produce the output of a neuron. Eq. 2 describes this

computation. The commonly used activation functions for

this purpose are the ReLU and Sigmoid functions.

y = ϕ

(

n
∑

i=1

fiwi + b

)

(2)

A DNN is trained using these layers with floating-point num-

bers. For example, Fig. 1 shows the distribution of weights

and biases of a layer for a trained VGG-16 [20] network.

As mentioned previously, the memory map of a DNN must

be reduced to implement it on resource-constrained and

FIGURE 1. Distribution of weights and biases for pre-trained VGG-16 [20]
Conv1_2 layer.

low-power embedded systems. Next, we describe the com-

monly used quantization schemes to reduce the memory map

of a trained DNN.

B. COMMONLY USED QUANTIZATION TECHNIQUES

1) LINEAR QUANTIZATION

The linear quantization of a data tensor x from floating-point

precision to N-bit fixed-point precision is described

by Eq. 3–5. The step size 1 in the Eq. 3 represents the

minimum possible increment in the quantized value xquant .

Eq. 4 is used to align 1 with the maximum and minimum

allowed value in N-bit precision.1 Finally, the 1 is used in

Eq. 5 for computing the quantized value xquant . The utilized

clip function, defined in Eq. 6, ensures that a parameter does

not violate the allowed range of values. As the computation

of the 1 is based on the maximum absolute value of x, this

method creates robust quantization errors for far outliers

in x. Fig. 2(a) and Fig. 3(a) show the linear quantization

of the weights and biases presented earlier in Fig. 1. The

linear quantization provides a limited number of uniformly

separated discrete fixed-point values for representing the

Float32 values. Most of the quantized numbers have values

close to 0.

1 = clip

(

max (| x |)

2N−1
, 2N−1, 2−(N−1)

)

(3)

1 = 2 ** clip (round(log2(1)),N − 1,−N + 1) (4)

xquant = clip
(

round
(x

1

)

,−2N−1, 2N−1 − 1
)

1 (5)

clip(x,Max,Min) =











x, Min < x < Max

Max, x ≥ Max

Min, otherwise

(6)

2) POWER OF 2 QUANTIZATION (log2 QUANTIZATION)

The power of 2 quantization (also referred to as log2 quantiza-

tion) has been used by many state-of-the-art works to replace

the multiplication operations in DNNs with bit-shifts. Eq. 7

and Eq. 8 represent an elementary scheme of power of 2

quantization for mapping a floating-point value x to a power

of 2 value xquant . Fig. 2(b) and Fig. 3(b) show the power of 2

quantization of the Conv1_2weights and biases of pre-trained

VGG-16 network. The elemental power of 2 quantization

scheme has a fewer number of discrete fixed-point levels than

the linear quantization. Compared to the linear quantization,

the power of 2 quantization have many repeatedly occurring

values which are not close to 0.

ˆxquant = clip (round (log2(| x |)) , 0,N) (7)

xquant = sign(x)2 ˆxquant (8)

3) DYNAMIC FIXED POINT QUANTIZATION

The dynamic fixed-point quantization technique, used in [11]

and [18], is a variation of the fixed-point format. In this

12** shows power of 2.

VOLUME 8, 2020 118901

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 2. Quantization of pre-trained weights of Conv1_2 layer of VGG-16 [20].

FIGURE 3. Quantization of pre-trained biases of Conv1_2 layer of VGG-16 [20].

method, the range of trained parameters is analyzed to

decide the fractional length (FL) for data representation.

An ‘FL’ value is determined for each layer such that the

trained parameters can be expressed with high precision.

For quantization word-width ‘W’ and mantissa value ‘m’,

Eq. 9 describes the number representation for the dynamic

fixed-point quantization scheme.

Quantized value = (−1)sign.2−FL
W−2
∑

i=0

2i.mi (9)

IV. PROPOSED TECHNIQUES

A. L2L: log_2_lead QUANTIZATION

The proposed fixed-point quantization technique attempts

to minimize the quantization induced errors by identifying

and storing the most significant 1’s in the parameters of a

pre-trained DNN. As the trained parameters are represented

in single-precision floating-point scheme (32 bits), the identi-

fication of the 1’s which have higher significance can notably

reduce the quantization generated errors. To identify the

significant 1’s in float32-based parameters, Fig. 4 and Fig. 5

give histograms of the leading 1’s in all the weights and

biases of two different layers of VGG-16 network. As shown,

the leading 1 for most of the trained parameters (weights and

biases) occurs at some distinct bit positions; for example, for

the weights of Conv1_2 and Conv4_1 layers, the leading 1

FIGURE 4. Histogram of leading 1’s for all weights and biases for
pre-trained VGG-16 [20] Conv1_2 layer.

frequently occurs at bit position −6 and −8 respectively.

However, there are also some weights with very low-values

and having the leading 1 occurring at bit position -15. In our

proposed log_2_lead technique, we utilize log2 to detect the

position of the leading 1 in a fraction. However, to limit the

quantization errors, log_2_lead also observes the following

bits locations after the leading 1 location. For N-bit quantiza-

tion, Fig. 6 shows the template of our proposed log_2_lead

quantization scheme. The first bit is reserved for showing

the sign of the quantized parameter. Following
⌈

N−1
2

⌉

bits

are reserved for storing the location of the leading 1 in the

original non-quantized parameter. The remaining bits are

used to store the values of the following
⌊

N−1
2

⌋

bits after the

leading 1. For example, for the leading 1 histograms in Fig. 4,

the leading 1 at bit position −12 would be represented as a

118902 VOLUME 8, 2020

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 5. Histogram of leading 1’s for all weights and biases for
pre-trained VGG-16 [20] Conv4_1 layer.

FIGURE 6. Template for proposed quantization technique.

binary number ‘1100’ by the ‘leading one location’ field in

the template shown in Fig. 6. Moreover, to increase the pre-

cision of the quantized value, we always analyze
⌊

N−1
2

⌋

+ 1

bits after the leading 1 and round the values (round towards

+∞) to
⌊

N−1
2

⌋

bits. The rounding of
⌊

N−1
2

⌋

+ 1 bits further

helps in retaining the precision of a rounded number. For

example, Fig. 7 shows an example of quantizing a fractional

number 0.217884 using the proposed log_2_lead technique.

The leading 1 is found at bit location −3 which is stored

in our template as a binary number 0011. After the lead-

ing 1, following four bits are analyzed and rounded to binary

pattern 110. The corresponding quantized value is 0.21875.

FIGURE 7. log_2_lead quantization example.

Compared to our proposed technique, a typical log2 quan-

tization as described in Eq. 7 and Eq. 8 would only find

a single leading 1 for each weight and discard all other

bit locations. Due to ignoring of all other bit locations for

computing the quantized value, the log2 quantization can

introduce substantial quantization errors. The quantization

technique proposed in [17] divides the float32 parameter

into two segments i.e., MSBs and LSBs. It then performs

the log2 quantization of the MSBs and LSBs separately and

then adds the MSBs-quantized and LSBs-quantized values to

achieve the final quantized value. This technique can recover

some quantization induced errors; however, it also ignores

all the significant bits after the leading 1 in both segments

(MSBs and LSBs).

Through our testing on the trained parameters of different

benchmarkDNNs, we have found that quantization errors can

be healed significantly in the final output of a DNN by utiliz-

ing 8 bits for log_2_lead quantization (see Table 6). Fig. 2(c)

and Fig. 3(c) shows the quantization of weights and biases of

two different layers of VGG-16 (already presented in Fig. 1).

It can be observed that the proposed log_2_lead technique

provides more discrete fixed-point values and better coverage

for quantizing float32-based parameters than the linear and

power of 2 quantization schemes.

B. ALigN: ADAPTIVE log_2_lead QUANTIZATION

The quantization induced errors can be minimized by

utilizing the available quantization bit-width intelligently.

The proposed L2L technique, though minimizes the quan-

tization induced errors, has a fixed template for represent-

ing the quantized parameters of all layers in a pre-trained

DNN. For example, as shown in Fig. 6, it always uti-

lizes
⌈

N−1
2

⌉

-bits for storing the position of leading 1 in an

N -bit quantization. We have observed during our analysis

of the parameters’ distributions for various layers in dif-

ferent pre-trained DNNs that for some layers, the fixed
⌈

N−1
2

⌉

-bits for storing the leading 1 position are not used

efficiently. For example, Fig. 8 presents the leading 1 his-

togram of the weights and biases of the Conv1_1 layer of a

pre-trained VGG-16. It can be observed that the leading 1 for

these parameters mostly occurs at bit position−3. To resolve

this problem, we propose ‘ALigN ’, an adaptive log_2_lead

quantization technique. In this technique, we analyze the

parameters of each layer to identify a suitable number of

bits for storing the leading 1 in the original non-quantized

parameters of each layer to reduce the corresponding quanti-

zation induced errors. Fig. 9 and Fig. 10 show the average

FIGURE 8. Histogram of leading 1’s for all weights and biases for
pre-trained VGG-16 [20] Conv1_1 layer.

FIGURE 9. Average error for different number of bits for leading one
position for weights and biases for pre-trained VGG-16 [20] Conv1_1 layer.

VOLUME 8, 2020 118903

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 10. Average error for different number of bits for leading one
position all weights and biases for pre-trained VGG-16 [20] Conv1_2 layer.

quantization induced errors by varying the number of bits

reserved for storing the leading 1 location in L2L scheme

for the parameters of two different layers of a pre-trained

VGG-16 network. For the weights of the Conv1 layer, assign-

ing a single bit for storing the leading 1 location produces

minimum quantization errors. However, the quantization of

the parameters of the Conv2 layer requires 3-bits for gen-

erating the smallest error. Therefore, it is advantageous to

align the L2L scheme according to the distribution of the

parameters of each layer of a pre-trained network. Eq. 10 and

Eq. 11 show our technique for finding the optimal number of

bits Lw and Lb for storing the leading 1 locations of weights

and biases, respectively, for each layer. After determining Lw
and Lb adaptively for each layer, we quantize the parameters

of each layer by storing leading 1 in L-bits and utilizing the

remaining locations for storing N − L − 1 following bits.

Fig. 11 shows the updated template of our proposed quan-

tization scheme, ALigN, to represent the quantized values.

As shown, for an N-bit ALigN quantization, there is no fixed

boundary for storing the leading 1 location.

Lw = argminLw (Average{|wquant − w|}) (10)

Lb = argminLb (Average{|bquant − b|}) (11)

FIGURE 11. ALigN template for N-bit quantization.

C. QUANTITATIVE ANALYSIS OF THE PROPOSED

QUANTIZATION SCHEMES

To evaluate the efficacy of our proposed quantization

schemes, L2L and ALigN are applied along with vari-

ous quantization schemes for different layers of pre-trained

VGG-16 and AlexNet networks respectively, then average

errors are reported in Fig. 12 and Fig. 13. The original

weights, in single-precision float32, are quantized to 8-bits.

For both networks, our proposed techniques always bear a

minimal amount of quantization error in each layer. Further,

FIGURE 12. Comparison of average quantization induced errors for
quantized weights of convolution layers of VGG-16 [20] between ALigN,
log_2_lead, linear and power of 2 quantization schemes.

FIGURE 13. Comparison of average quantization induced errors for
quantized weights of convolution layers of AlexNet [28] between ALigN,
log_2_lead, linear and power of 2 quantization schemes.

ALigN always generates lesser errors than the L2L quantiza-

tion scheme. This behavior reflects the efficient utilization of

the available quantization bit-width by the ALigN technique.

The traditional power of 2 quantization suffers the most from

quantization produced errors. An analysis of Fig. 12 shows

that the parameters of the conv1_1 layer have a comparatively

higher magnitude than the parameters of the other layers. The

allocation of fixed four bits for storing the leading 1 location

of the conv1_1 layer has resulted in the underutilization

of these bits. This behavior is also evident from Fig. 12,

where linear quantization performs better than L2L for the

first layer. These parameters do not require more bits for

recording the leading 1 location, as also shown in Fig. 9.

However, ALigN adaptively selects the number of bits for

storing the position of the leading 1 for each layer, and it

always performs better than the linear quantization. To further

investigate the distribution of quantization induced errors,

Fig. 16 and Fig. 17 show the relative error distribution of

quantized weights for two different layers of VGG-16 and

AlexNet networks using different quantization schemes. For

both networks, most of the quantization generated errors for

L2L are limited to a narrow band of values (0— 0.1), whereas

the relative errors generated by linear quantization are spread

over a broader spectrum (0 — 0.8). The ALigN further

reduces these errors and limits them to even a narrower band

than L2L.

118904 VOLUME 8, 2020

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 14. Decimal accuracy of different quantization schemes for the
active range of values of pre-trained parameters (−1 to +1). ALigN-x_y
shows x bits reserved for storing the leading 1 location and y bits
allocated to store the following values2.

FIGURE 15. Average decimal accuracy of the weights of Conv1_2 layer of
VGG-16 [20] network using different quantization schemes. ALigN-x_y
shows x bits reserved for storing the leading 1 location and y bits
allocated to store the following values.

Our proposed quantization schemes efficiently utilize

the available bit-width to comprehensively incorporate the

dynamic range (−1 to +1) of trained parameters. To show

the efficacy of our proposed quantization scheme for the

2ALigN-14_1 and ALigN-6_1 schemes have overlapping lines.

parameters of pre-trained DNNs, we compare its decimal

accuracy in the range of −1 to +1 with bfloat16 and mini-

float. These results are presented in Fig. 14. The decimal

accuracy [21], defined in Eqn. 12, represents the capability

of a number system to represent Float32-based numbers.

As shown by the results in Fig. 14, the ALigN-1_14 scheme

(1 bit reserved for storing the leading one location and 14 bits

allocated to store the following bits) provides the highest

decimal accuracy. The ALigN-7_8 scheme provides slightly

better performance than the bfloat16. Similarly, for 8-bit

quantization, the ALigN-1_6 provides the best results among

all other 8-bit variations. Finally, Fig. 15 shows the aver-

age decimal accuracy of the pre-trained weights of a single

layer, Conv1_2, of VGG-16 network using different quan-

tization schemes. The ALigN-3_12 configuration represents

the quantized weights with the highest accuracy. Similarly,

for 8-bit quantization, the ALigN-3_4 scheme produces bet-

ter results than other corresponding 8-bit schemes. These

results are in line with the observations of Fig. 10, where the

allocation of 3 bits for the storage of the leading 1 location

was producing the minimum quantization-induced average

error. We have shown the results only for the Conv-1_2 layer;

however, similar results can be generated for other layers of

the network. Nonetheless, for other layers of the network,

a different configuration of the ALigN can offer higher dec-

imal accuracy than the ALigN-3_12 configuration. These

statistics reiterate our contribution of considerably maintain-

ing the precision of a float32-based fraction.

Decimal Accuracy = −log10

∣

∣

∣

∣

− log10

(

Xquant.

Xfloat

)∣

∣

∣

∣

(12)

D. PROPOSED QUANTIZATION TECHNIQUE-BASED

MULTIPLIER

Our proposed technique replaces the computationally expen-

sive multiply operation with bit-shifts and add operations.

Since the quantized weights for a neuron do not repre-

sent a single constant number, there is no fixed-amount of

shift-operations to realize the multipliers, which can increase

overall resource utilization. To answer this challenge,

Algorithm 1 describes a novel resource-efficient

FIGURE 16. Relative error distribution of quantized weights of Conv1 layer AlexNet [28] using different quantization schemes.

VOLUME 8, 2020 118905

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 17. Relative error distribution of quantized weights of Conv1_2 layer VGG-16 [20] using different quantization schemes.

Algorithm 1Multiplication Using L2Land ALigN

Input: Feature: x, Weight: w encoded in L2L or

ALigN format

Output: y

1 y← x

2 for i← 1 to
⌊

N−1
2

⌋

do

3 if w
[

⌊

N−1
2

⌋

− i
]

6= 0 then

4 y← y+ (x ≫ i)

5 for j← 0 to
⌈

N−1
2

⌉

− 1 do

6 if w
[

⌊

N−1
2

⌋

+ j
]

6= 0 then

7 y← y≫ 2j

8 return y

implementation of the multiplication of an N -bit fixed-point

featurewith anN -bit L2L- or ALigN -based quantized weight.

Initially, it analyzes and evaluates the least significant
⌊

N−1
2

⌋

bits (lines 2-4). For each bit value equal to 1, it performs

the required shifting of the feature and adds the result to

the output. Lines 5-7 perform the final shifting of the output

according to the value stored for ‘leading one location’. For

ALigN -based quantization, each layer can have different con-

figurations for storing the leading 1 location and the following

bit values. Our generic implementation of Algorithm 1 allows

us to adapt the multiplier for each layer independently.

V. EXPERIMENTAL SETUP AND RESULTS

For the application-level evaluation of log_2_lead, ALigN,

linear quantization, and power of 2 quantization, we have

used TensorFlow framework [24]. Using the framework,

we have implemented a variety of networks with different

datasets to test the efficacy of our proposed quantization tech-

niques for image classification and semantic segmentation

accuracies of quantized netwroks. These results are discussed

in SectionsV-A andV-B. The proposed log_2_lead technique

replaces the resource-demanding multiply operation with

bit-shifts and add operations. An algorithm for

log_2_lead-based multiplication is presented in Algorithm 1.

As a test case, we have implemented a Processing Ele-

ment (PE) for Algorithm 1 in VHDL for Xilinx Virtex-

7 xc7v585tffg1157-3 FPGA using Xilinx-Vivado-17.4. The

resource utilization of our proposed PE is compared with

Vivado standard multiplier IPs. The implementation results

are presented in Section V-C.

A. IMAGE CLASSIFICATION

For the MNIST dataset [25], we have trained a lightweight

neural network consisting of convolution layers (Conv),Max-

pool layer,3 and fully connected layers4 (FC), as described

in Table 1. The MNIST dataset contains 60, 000 and

10, 000 greyscale training and testing images, respectively,

at a resolution of 28 × 28 pixels. After training the net-

work on 60, 000 images, we have applied different 8-bit

(N= 8) quantization schemes on the trained parameters. The

application-level accuracy results are reported in Table 2. The

adaptive log_2_lead (ALigN) quantization technique offers

the same classification accuracy as produced by the baseline

float32-based implementation. The log_2_lead and linear

quantization have nearly similar output accuracy compared

to the single-precision float32 representation. The power of 2

quantization considers only the most significant 1 in the

fraction; therefore, it has produced comparatively reduced

output accuracy.

We have also used CIFAR-10 dataset [23] for the

lightweight neural network described in Table 1 to assess

the accuracy of our proposed quantization schemes.

CIFAR-10 dataset contains 50,000 training and 10,000 32×

32 RGB images. These images are classified into 10 labeled

classes. Lightweight neural network classification accuracy

results for 10,000 images using different 8-bit quanitza-

tion schemes are reported in Table 2. The ALigN and

log_2_lead quantization have produced comparable results

to the single-precision float32-based results. The power of

2 quantization has shown significant accuracy drop due to

3Maxpool layer is only after the second Conv layer.
4Size and number of kernels are applied to Conv layers only.

118906 VOLUME 8, 2020

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

TABLE 1. Description of networks used for classification of MNIST and
CIFAR-10 datasets.

TABLE 2. Classification accuracy of lightweight neural networks on
MNIST and CIFAR-10 dataset with 8-bit quantized weights and
biases for different quantization schemes.

limited coverage of the dynamic range of fractional numbers

under consideration.

To evaluate the efficacy of our proposed techniques on

a more challenging classification task, we have also tested

it on ImageNet dataset [22]. The ImageNet dataset hosts

1.2 million and 50, 000 RGB images for training and val-

idation, respectively. These images are classified into 1000

different categories. For our experimentation, we have taken

pre-trained AlexNet [28], VGG-16 [17] and ResNet-18

networks [30]. To improve the inference accuracy of

power of 2 quantization scheme, we have also utilized the

post-quantization retraining for it tominimize its quantization

induced errors. AlexNet network contains 5 convolutional

layers followed by 3 fully connected layers. For the Ima-

geNet validation set, the pre-trained AlexNet has 53.89%

and 77.62% Top-1 and Top-5 accuracies, respectively, using

the baseline single-precision float32 weights, biases, and

activations. We have quantized the weights and biases of

this network with log_2_lead, ALigN, linear, power of 2,

and dynamic fixed-point quantization schemes. Except for

the dynamic fixed-point scheme, all quantization schemes

have an 8-bit width. The dynamic fixed-point quantization

employs different bit-widths for different layers. For exam-

ple, for weights and biases of the conv1, conv2, conv3, and

conv4 layers, it applies twelve bits, whereas, for the param-

eters of the conv5 layer, it utilizes ten bits. Similarly, for

the parameters of FC6, FC7, and FC8 layers, it uses sixteen,

twelve, and six bits, respectively. The Top-1 and Top-5 clas-

sification accuracies are shown in Table 3. The log_2_lead

quantization scheme provides better output accuracies than

the linear, power of 2, and dynamic fixed-point quanti-

zation schemes. The drop in Top-1 and Top-5 percentage

classification accuracies are only 0.01 and 0.12 respectively

TABLE 3. Classification accuracy of AlexNet network [28] on ImageNet
dataset [22] with quantization of weights and biases using different
schemes.

TABLE 4. Classification accuracy of VGG-16 network [20] on ImageNet
dataset [22] with quantization of weights and biases using different
schemes.

for the log_2_lead scheme. Based on the adaptive layerwise

analysis of the network, Table 5 shows the number of bits

(Lx) delimited to store the leading 1 location for parameters

of each layer for an 8-bit ALigN quantization scheme. The

remaining 8 − Lx − 1 bits are assigned for storing the bit

values following the leading 1. Compared to the baseline

float32 accuracy, the ALigN scheme produces the same out-

put accuracy.

The VGG-16 network mainly consists of 13 convolution

layers with kernel size 3 × 3 and 3 fully connected layers.

For the 50, 000 validation images, the pre-trained network

has 64.72% and 85.74% Top-1 and Top-5 classification accu-

racies using the single-precision float32-based parameters

and activations. We have applied various 8-bit quantization

schemes on the pre-trained parameters and evaluated for

classification accuracy. These results are presented in Table 4.

In this experiment with VGG-16 network, the activations

have float32 precision, and the weights and biases are quan-

tized to 8-bit precision. Compared to the linear quantization,

power of 2 quantization, and dynamic fixed-point quantiza-

tion, our proposed techniques log_2_lead and ALigN pro-

duce better Top-1 and Top-5 classification accuracies. The

log_2_lead scheme reduces the Top-1 and Top-5 percentage

classification accuracies only by 0.21 and 0.1, respectively.

For the dynamic fixed-point quantization scheme, except

for the FC6 layer, which is quantized to 8 bits, all other

layers have Float32 precision. The ALigN scheme produces

better results than others and reduces the Top-1 and Top-5

percentage classification accuracies only by 0.1 and 0.03,

respectively. The corresponding number of bits to store the

VOLUME 8, 2020 118907

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

TABLE 5. No. of bits selected for storing the leading 1 location of parameters of AlexNet [28] and VGG-16 [20] networks using 8-bit ALigN technique.

leading 1 location of the trained parameters of each layer are

shown in Table 5.

We have also evaluated our proposed quantization schemes

on residual network ResNet-18 with the ImageNet valida-

tion set. Table 7 shows the corresponding Top-5 and Top-1

accuracies of the quantized pre-trained network with 8-bit

linear, power of 2, log_2_lead, and ALigN schemes. Our

proposed quantization schemes again outperform other quan-

tization techniques in the respective classification accura-

cies. For example, compared to the baseline float32-based

classification accuracies, the log_2_lead has only 0.8 and

0.38 drops in the Top-1 and Top-5 percentage classification

accuracies, respectively. The ALigN scheme improves the

Top-1 percentage classification accuracy by 0.12 when com-

pared with the corresponding baseline accuracy. However,

the Top-5 percentage accuracy is dropped by 0.1, which is

still better than those achieved with the other quantization

schemes.

The adaptive nature of the ALigN scheme and the ensu-

ing efficient utilization of quantization bit-widths show

that the 8-bit ALigN technique can significantly reduce

quantization-induced errors in various DNNs. To further

show the efficacy of the ALigN scheme, Table 6 presents the

classification accuracies of VGG-16 and ResNet-18 networks

for ImageNet dataset using different bit-widths for the ALigN

scheme. As shown by the results, the classification accuracy

improves for both networks by increasing the quantization

bit-width. However, increasing quantization bit-width beyond

8 bits does not have a significant and definite effect on

classification accuracy. Therefore, we have selected the 8-bit

ALigN for thorough exploration using different applications

and DNNs.5

B. SEMANTIC SEGMENTATION

To further evaluate the efficacy of our proposed quantization

techniques, we have also considered the semantic segmen-

tation task. For this purpose, we have utilized the Fully

Convolutional Network (FCN) [26] and PASCAL Visual

Object Classes (VOC) 2012 validation set [27]. The FCN

utilizes the thirteen convolutional layers of VGG-16 [20]

for performing semantic segmentation. The PASCAL VOC

2012 validation dataset contains 1449 images in 20 different

classes. Further, we have used the intersection over union (IU)

metric for measuring the efficiency of presented quantization

techniques for the semantic segmentation task. Table 8 shows

the results of applying 8-bit log_2_lead, ALigN, linear, power

5Utilizing 8 bits (a single byte) for storing the quantized parameters
(weights and biases) also provides compact storage in the memory.

TABLE 6. ALigN-based quantization of two state-of-the-art DNNs using
different bit-widths.

TABLE 7. Classification accuracy of ResNet-18 network [30] on ImageNet
dataset [22] with quantization of weights and biases using different
schemes.

of 2, and dynamic fixed-point quantization schemes on the

pre-trained FCN. For the dynamic fixed-point quantization

scheme, except for the FC6 layer, which is linearly quantized

to 8 bits, all other layers have Float32 precision. As shown

by the results, the pre-trained FCN has a mean IU of 61.8%

using single-precision float32-based parameters. Compared

to this baseline result, the 8-bit linear quantization displays a

loss of 1% in the mean IU, whereas the log_2_lead scheme

has only a 0.5% loss in the mean IU. The ALigN and

dynamic fixed-point quantization schemes produce no loss

in the mean IU. Fig. 18 shows the visual results of applying

different quantization schemes on the pre-trained FCN for

one single image from the PASCAL VOC 2012 validation

dataset. As shown by the images, the ALigN produces mini-

mal differences in the pixel values when compared with the

float32-based representation.

C. HARDWARE IMPLEMENTATION RESULTS

Xilinx state-of-the-art FPGAs provide 6-input lookup

tables (LUTs) for implementing various types of combina-

tional and sequential logic. Utilizing these LUTs, we have

implemented a processing element (PE) for the multiplica-

tion algorithm defined in Algorithm 1. Table 9 compares

the implementation results of our proposed 8-bit PE with

Xilinx Vivado area-optimized multiplier IP for various sizes.

For simplicity of results, we have presented implementa-

tion results for only one configuration i.e., L2L (4 bits for

118908 VOLUME 8, 2020

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

FIGURE 18. Object detection comparison with different quantization schemes using FCN8 [26] network on PASCAL VOC 2012 validation set [27].

leading 1 location and 3 bits for the following bits) of

our proposed quantization schemes. However, the proposed

implementation is generic and can be adapted to support

different configurations using the ALigN scheme to quantize

different layers. It also shows the corresponding classification

accuracies of quantized VGG-16 for ImageNet dataset using

log_2_lead and linear quantization with different data sizes

for weights. The baseline float32-based Top-1 and Top-5

classification accuracies are 64.72% and 85.74%, respec-

tively. The log_2_lead scheme provides better classification

accuracy with a fewer number of utilized LUTs for its PE

than the linear quantization with 8×8 multipliers. To achieve

classification accuracy that is comparable to log_2_lead,

we increased the number of bits for weight quantization.

Since the maximum precision of 8-bit log_2_lead scheme

weights is 18 bits (15 for the leading one location and 3 bits

for the following bits), we experimented with a maximum

of 18 bits of precision in linear quantization. As expected,

while the accuracy roughly increases with an increasing

number of bits, so does the total number of utilized LUTs

for the Vivado multiplier IP. Even with 18 bits of precision,

the accuracy of linearly quantized weights design is only

marginally better than log_2_lead , despite consuming more

than twice the area of log_2_lead design.

Our proposed quantization schemes assume inputs and

outputs of a neuron to have the same data types. Therefore,

the output data type of our proposed multiplier is decided by

the nature of the inputs (feature map). For example, the inputs

to VGG-16 in Table 9 are linearly quantized 8-bit fixed-point

numbers; therefore, the multiplier output is also a fixed-point

VOLUME 8, 2020 118909

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

TABLE 8. Mean IU of FCN8 [26] network on PASCAL VOC 2012 validation
set [27] with quantization of weights and biases using different schemes.

TABLE 9. Comparison of resource utilization of proposed PE and Vivado
multiplier IPs along with corresponding classification accuracies for
VGG-16 [20] network on ImageNet dataset [22].

number. To accumulate the linearly quantized fixed-point

numbers, we can use the conventional integer-based adder

trees.

VI. CONCLUSION

In this paper, we have proposed two quantization schemes,

log_2_lead and ALigN, for the quantization of pre-trained

deep neural networks. Our proposed schemes analyze the

Float32-based parameters of a trained deep neural network

and record the bit positions of the most important bits. These

bits mainly define the precision of a parameter. In the first

proposed technique, L2L, we always store the
⌊

N−1
2

⌋

+ 1

most essential bits for an N-bit quantization. However, for

the second technique, ALigN, we have used an adaptive

layerwise analysis to find the number of significant bits to

be examined for the quantization of pre-trained parameters.

This analysis has reduced the quantization induced errors

significantly. Our proposed techniques are highly accurate

and do not require the traditional accuracy-recovery retrain-

ing of the quantized network. We have presented the effi-

cacy of our quantization schemes for different applications

and on various state-of-the-art DNNs. For example, for the

ImageNet dataset classification using VGG-16 and ResNet-

18 networks, we have achieved around 0.24 and 0.065 drops

in Top-5 percentage accuracies using the proposed L2L and

ALigN techniques, respectively, when compared with the

Float32-based accuracy. Utilizing our proposed quantization

techniques, we have also proposed a multiplier design using

bit-shifts and add operations. For similar classification accu-

racy of the ImageNet dataset using the VGG-16 network, our

proposedmultiplier implementation has offered a 39% reduc-

tion in resource utilization when compared with the Vivado

area-optimized multiplier IP. For future work, we intend to

use our proposed quantization schemes for other machine

learning tasks such as Natural language processing and text

generation.

ACKNOWLEDGMENT

(Siddharth Gupta and Salim Ullah contributed equally to this

work.)

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:

Surpassing human-level performance on ImageNet classification,’’ in

Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015,

pp. 1026–1034, doi: 10.1109/ICCV.2015.123.

[2] L. Deng, G. Hinton, and B. Kingsbury, ‘‘New types of deep neural network

learning for speech recognition and related applications: An overview,’’ in

Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Vancouver, BC,

Canada, May 2013, pp. 8599–8603.

[3] T. Young, D. Hazarika, S. Poria, and E. Cambria, ‘‘Recent trends in

deep learning based natural language processing [review article],’’ IEEE

Comput. Intell. Mag., vol. 13, no. 3, pp. 55–75, Aug. 2018.

[4] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural

Netw., vol. 61, pp. 85–117, Jan. 2015.

[5] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, ‘‘Neural networks

with few multiplications,’’ 2015, arXiv:1510.03009. [Online]. Available:

http://arxiv.org/abs/1510.03009

[6] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, ‘‘DoReFa-net:

Training low bitwidth convolutional neural networks with low bitwidth

gradients,’’ 2016, arXiv:1606.06160. [Online]. Available: http://

arxiv.org/abs/1606.06160

[7] M. Courbariaux, Y. Bengio, and J. P. David, ‘‘Binaryconnect: Training

deep neural networks with binary weights during propagations,’’ in Proc.

Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘Xnor-net:

ImageNet classification using binary convolutional neural networks,’’

in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2016,

pp. 525–542.

[9] F. Li, B. Zhang, and B. Liu, ‘‘Ternary weight networks,’’ 2016,

arXiv:1605.04711. [Online]. Available: http://arxiv.org/abs/1605.04711

[10] C. Zhu, S. Han, H. Mao, and W. J. Dally, ‘‘Trained ternary

quantization,’’ 2016, arXiv:1612.01064. [Online]. Available: http://

arxiv.org/abs/1612.01064

[11] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, ‘‘Ristretto: A frame-

work for empirical study of resource-efficient inference in convolutional

neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,

pp. 5784–5789, Nov. 2018.

[12] H. Tann, S. Hashemi, R. I. Bahar, and S. Reda, ‘‘Hardware-software

codesign of accurate, multiplier-free deep neural networks,’’ in Proc. 54th

Annu. Design Autom. Conf., Austin, TX, USA, Jun. 2017, pp. 1–6.

[13] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, ‘‘Fixed point quantization

of deep convolutional networks,’’ in Proc. Int. Conf. Mach. Learn., 2016,

pp. 2849–2858.

[14] S. Vogel, M. Liang, A. Guntoro, W. Stechele, and G. Ascheid, ‘‘Efficient

hardware acceleration of CNNs using logarithmic data representation with

arbitrary log-base,’’ in Proc. Int. Conf. Comput.-Aided Design. New York,

NY, USA: ACM, Nov. 2018, p. 9.

[15] D.Miyashita, E. H. Lee, and B.Murmann, ‘‘Convolutional neural networks

using logarithmic data representation,’’ 2016, arXiv:1603.01025. [Online].

Available: http://arxiv.org/abs/1603.01025

[16] S. Shakib Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,

‘‘Multiplier-less artificial neurons exploiting error resiliency for energy-

efficient neural computing,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.

(DATE), Dresden, Germany, 2016, pp. 145–150.

[17] S. Vogel, J. Springer, A. Guntoro, and G. Ascheid, ‘‘Self-supervised quan-

tization of pre-trained neural networks for multiplierless acceleration,’’

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Florence, Italy,

Mar. 2019, pp. 1094–1099.

[18] M. de Prado, M. Denna, L. Benini, and N. Pazos, ‘‘QUENN: QUantization

engine for low-power neural networks,’’ in Proc. 15th ACM Int. Conf.

Comput. Frontiers. New York, NY, USA: ACM, May 2018, pp. 36–44.

118910 VOLUME 8, 2020

http://dx.doi.org/10.1109/ICCV.2015.123

S. Gupta et al.: ALigN: A Highly Accurate Adaptive Layerwise Log_2_Lead Quantization of Pre-Trained Neural Networks

[19] G. Mordido, M. Van Keirsbilck, and A. Keller, ‘‘Instant quantization of

neural networks using Monte Carlo methods,’’ 2019, arXiv:1905.12253.

[Online]. Available: http://arxiv.org/abs/1905.12253

[20] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-

able: http://arxiv.org/abs/1409.1556

[21] J. L. Gustafson and I. T. Yonemoto, ‘‘Beating floating point at its own

game: Posit arithmetic,’’ Supercomput. Frontiers Innov., vol. 4, no. 2,

pp. 71–86, 2017.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-

geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,

vol. 115, no. 3, pp. 211–252, Dec. 2015.

[23] A. Krizhevsky, V. Nair, and G. Hinton. (2009). CIFAR-10 (Canadian

Institute for Advanced Research). Accessed: 2009. [Online]. Available:

http://www.cs.toronto.edu/~kriz/cifar.html

[24] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/

[25] Y. LeCun, C. Cortes, and C. J. Burges. (2010). MNIST Handwritten

Digit Database. 2010. Accessed: Sep. 2, 2019. [Online]. Available:

http://yann.lecun.com/exdb/mnist

[26] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks

for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[27] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman, ‘‘The Pascal visual object classes challenge: A retro-

spective,’’ Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, Jan. 2015.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst., 2012, pp. 1097–1105.

[29] S. Ullah, S. Gupta, K. Ahuja, A. Tiwari, and A. Kumar, ‘‘L2L:

A highly accurate Log_2_Lead quantization of pre-trained neural net-

works,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2020,

pp. 979–982.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.

[31] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,

S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen,

J. Yang, J. Park, A. Heinecke, E. Georganas, S. Srinivasan, A. Kundu,

M. Smelyanskiy, B. Kaul, and P. Dubey, ‘‘A study of BFLOAT16 for

deep learning training,’’ 2019, arXiv:1905.12322. [Online]. Available:

http://arxiv.org/abs/1905.12322

SIDDHARTH GUPTA received the B.Tech. degree

in computer science and engineering from

G. L. B. I. T. M., Greater Noida, India, in 2015.

He is currently pursuing the M.S. degree in com-

puter science and engineering from IIT Indore,

Indore, India. His current research interests

include deep learning, approximation techniques

in machine learning, and hardware realization

of DNNs.

SALIM ULLAH received the B.Sc. and M.Sc.

degrees in computer systems engineering from

the University of Engineering and Technology

at Peshawar, Pakistan. He is currently pursu-

ing the Ph.D. degree with the Chair of Pro-

cessor Design, Technische Universität Dresden.

His current research interests include the design

of approximate arithmetic units, approximate

caches, and hardware accelerators for deep neural

networks.

KAPIL AHUJA received the B.Tech. degree from

IIT (BHU), India, and the M.S. and Ph.D. degrees

from Virginia Tech, USA. He was a Postdoctoral

Research Fellow with the Max Planck Institute,

Germany. He is currently an Associate Professor in

Computer Science and Engineering at IIT Indore,

India. In the past, he has been a Visiting Professor

with TU Braunschweig, Germany, TU Dresden,

Germany, and Sandia National Labs, USA. He has

a varied background, including degrees in com-

puter science, mathematics, and mechanical engineering. He is working

on the mathematics of data science and computational science, specifically

machine learning, numerical linear algebra, and optimization.

ARUNA TIWARI (Member IEEE) received the

B.E./M.E. degrees in computer science and engi-

neering from SGSITS Indore, India, and the Ph.D.

degree in computer science and engineering from

RGPV Bhopal, India. She has a background in

computer science and engineering. She has more

than 20 years of teaching and research experience.

She is with IIT Indore, India, since 2012. She

is currently an Associate Professor of computer

science and engineering. Her research interests

include soft-computing learning algorithms, especially with neural networks,

fuzzy clustering, and evolutionary computation for different problems for

handling big data mainly for disease diagnosis and genomics.

AKASH KUMAR (Senior Member, IEEE)

received the joint Ph.D. degree in electrical

engineering and embedded systems from the

Eindhoven University of Technology, Eindhoven,

The Netherlands, and the National University

of Singapore (NUS), Singapore, in 2009. From

2009 to 2015, he was with NUS. He is currently

a Professor with Technische Universität Dresden,

Dresden, Germany, where he is directing the chair

of processor design. His current research interests

include the design, analysis, and resource management of low-power and

fault-tolerant embedded multiprocessor systems.

VOLUME 8, 2020 118911

