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Multiple sequence alignments (MSAs) are a prerequisite for a wide variety of evolutionary analyses. Published assessments and

benchmark data sets for protein and, to a lesser extent, global nucleotide MSAs are available, but less effort has been made to

establish benchmarks in the more general problem of whole-genome alignment (WGA). Using the same model as the successful

Assemblathon competitions, we organized a competitive evaluation in which teams submitted their alignments and then as-

sessments were performed collectively after all the submissions were received. Three data sets were used: Two were simulated and

based on primate and mammalian phylogenies, and one was comprised of 20 real fly genomes. In total, 35 submissions were

assessed, submitted by 10 teams using 12 different alignment pipelines. We found agreement between independent simulation-

based and statistical assessments, indicating that there are substantial accuracy differences between contemporary alignment

tools. We saw considerable differences in the alignment quality of differently annotated regions and found that few tools aligned

the duplications analyzed. We found that many tools worked well at shorter evolutionary distances, but fewer performed

competitively at longer distances. We provide all data sets, submissions, and assessment programs for further study and provide,

as a resource for future benchmarking, a convenient repository of code and data for reproducing the simulation assessments.

[Supplemental material is available for this article.]

Given a set of sequences, a multiple sequence alignment (MSA) is

a partitioning of the residues in the sequences, be they amino acids

or nucleotides, into related sets. Here, we are interested in the re-

lationship of evolutionary homology. In other contexts, residues

may be aligned with a different aim, as in structural alignments,

where residues are aligned if located at the same point in a shared

crystal structure (Kolodny et al. 2005). MSA is a fundamental

problem in biological sequence analysis because it is a prerequisite

for most phylogenetic and evolutionary analyses (Felsenstein

2003; Wallace et al. 2005; Edgar and Batzoglou 2006; Notredame

2007).MostMSAs are termed ‘‘global,’’made of sequences assumed

to be related through the mutational processes of residue sub-

stitution, subsequence insertion, and subsequence deletion (col-

lectively, insertions and deletions are termed indels) (for review,

see Notredame 2007). The availability of whole-genome sequences

has led to an interest in MSAs for complete genomes, including

all sequences: genes, promoters, repetitive regions, etc. Termed
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whole-genome alignment (WGA), this requires the aligner to ad-

ditionally consider genome rearrangements, such as inversions,

translocations, chromosome fusions, chromosome fissions, and

reciprocal translocations. Some tools for WGA are also capable of

modeling unbalanced rearrangements that lead to copy number

change, such as tandem and segmental duplications (Blanchette

et al. 2004; Miller et al. 2007; Paten et al. 2008, 2011; Angiuoli and

Salzberg 2011).WGAmethods have been critical to understanding

the selective forces acting across genomes, allowing evolutionary

analysis of many potential functional elements (The ENCODE

Project Consortium 2012), and in particular, the identification

of conserved noncoding functional elements (Drosophila 12

Genomes Consortium 2007; Lindblad-Toh et al. 2011), including

cis-regulatory elements (Kellis et al. 2003), enhancers, and non-

coding RNAs.

The lack of accepted gold standard reference alignments has

made it hard to objectively assess the relative merits of WGA

methods. Previous evaluations of MSAs can be split into roughly

four types: those using simulation, those using expert information,

those using direct statistical assessments, and finally those that

assess howwell an alignment functions for a downstream analysis.

We briefly describe and review these approaches (for a more

comprehensive review, see Iantorno et al. 2014).

In simulation evaluations, a set of sequences and an align-

ment is generated using a model of evolution. Alignments are

created from the simulated sequences and the resulting predictions

are compared to the ‘‘true’’ simulated alignment. There are two

basic types of simulators for DNA sequence evolution: coalescent

simulators and noncoalescent forward-time simulators (Carvajal-

Rodr�ıguez 2010). Although useful for modeling populations, co-

alescent simulators cannot yet efficiently model general sequence

evolution, and as a result MSA simulators currently use forward-

time approaches. There are numerous forward-time simulators

useful for assessing global MSA tools (Stoye et al. 1997; Blanchette

et al. 2004; Cartwright 2005; Varadarajan et al. 2008). However, the

simulation options for assessing WGA have until recently been

absent, essentially because to do so requires modeling both low-

level sequence evolution andhigher-level genome rearrangements—

a formidable challenge given the large and complex parameter

space that potentially encompasses all aspects of genome evolu-

tion. The sgEvolver simulator (Darling et al. 2004, 2010) is used to

generate simulated genome alignments, although it lacks an ex-

plicit model for sequence translocation or mobile element evolu-

tion. EvolSimulator is a genome simulator, but it has a somewhat

simple model of evolution and a focus on ecological parameters

(Beiko and Charlebois 2007). Another option, the ALF simulator

(Dalquen et al. 2012), models gene and neutral DNA evolution. For

this studywe used the EVOLVER software, which can simulate full-

sized,multichromosome genome evolution in forward time (Edgar

et al. 2009). EVOLVER models an explicitly haploid genome and

lacks a population model; its framework and expert-curated ex-

tensive parameter set are intended to produce ‘‘reference-like’’ ge-

nomes, i.e., haploid genomes. EVOLVER models DNA sequence

evolution with sequence annotations; a gene model; a base-level

evolutionary constraint model; chromosome evolution, including

inter- and intrachromosomal rearrangements; tandem and seg-

mental duplications; and mobile element insertions, movements,

and evolution.

An alternative approach to assessing MSA is to use expert

biological information not available to the aligner. Although

interpreting the results of simulations is made difficult by the

uncertainty to which they approximate reality, the clear advantage

of using expert information is that it can be used to assess align-

ments of actual biological sequences. For protein and RNA align-

ment there are several popular benchmarks that provide either

reference structural alignments or expertly curated alignments

(Blackshields et al. 2006; Wilm et al. 2006; Kemena et al. 2013).

Nontranscribed DNA alignments are, however, much harder to

assess since one lacks an external criterion to assemble objective

gold standard references (Kemena and Notredame 2009). This ex-

plains why untranslated DNA alignments are usually evaluated

usingmore ad hoc expert information (Margulies et al. 2007; Paten

et al. 2008). The main strength of these procedures is that they

provide an objective evolutionary context when evaluating the

alignment. The difficulty with relying upon such expert in-

formation is that it may address only a small fraction of the

alignment (e.g., in the referenced papers, coding exons, and an-

cient repeats), may itself rely on other forms of inference (e.g.,

ancient repeat analyses have an explicit dependence on the se-

quence alignment procedures used to determine ancestral repeat

relationships), and have unknown variance, generality, and dis-

criminative power.

The third approach addresses alignments by statistical measures.

For global MSA there are several options, e.g., the T-Coffee CORE/TCS

index (NotredameandAbergel 2003;Changet al. 2014),HeadsorTails

(HoT) (Landan and Graur 2008), GUIDANCE (Penn et al. 2010a,b),

and StatSigMA-w (Chen and Tompa 2010). For this work, we expand

on the probabilistic sampling-based alignment reliability (PSAR) (Kim

and Ma 2011) method, which samples pairwise suboptimal align-

ments to assess the reliability of MSAs. Statistical measures are attrac-

tive because they can be used with the complete alignments of real

sequences.However,without a gold standard to compare against, they

are only a proxy to a true assessment of accuracy.

The final category of common assessment methods addresses

how well a program generates alignments for a given computa-

tional task. This is typically the assessment made by a biologist in

choosing an alignment program, i.e., how well does it perform in

practice, according to intuition or analysis? Unfortunately, these

assessments, often being one-offs, rarely make it into the literature

and are difficult if not impossible to generalize from because these

assessments are made for the purposes of a given analysis. Notably

for WGAs, Bradley et al. (2009) assessed how much alignment

methods influenced de novo ncRNA predictions and Margulies

et al. (2007) analyzed the effect of different WGAs on the pre-

diction of conserved elements.

There have been relatively few independent or community

organized assessments of WGA pipelines. Notably, as part of the

ENCODE Pilot Project (Margulies et al. 2007), four pipelines were

assessed across a substantial number of regions, and Chen and

Tompa later compared those alignments using the StatSigMA-w

tool (Chen and Tompa 2010). The Alignathon is an attempt to

perform a larger and more comprehensive evaluation. It is a natu-

ral intellectual successor to the Assemblathon collaborative com-

petitions (Earl et al. 2011; Bradnam et al. 2013). The starting point

of the Alignathon is to assume that the problem of genome as-

sembly is largely a solved problem. Although we admit this is

currently a dubious assumption, it appears that the problem of

genome assembly will shrink in size in the coming years as new

sequencing technologies become available and existing assembly

software is perfected to take advantage of more numerous, longer,

and less error-prone reads (Branton et al. 2008; Schreiber et al.

2013; Laszlo et al. 2014). With this future as a starting point, the

question a biologist faces changes from a proximate one of ‘‘how

do I best assemble the genome of my favorite species?’’ to a higher
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level question of ‘‘how is my favorite species related to the pan-

theon of other sequenced species?’’ Such a question is answered

through aWGA. If organized community efforts to sequence large

numbers of genomes, such as the Genome 10K Project for verte-

brates and 5000 arthropod genomes initiative (i5K) for insects, are

to maximally fulfill their promise by revealing and refining the

evolutionary history of all of their species, then it is vital that we

have the best possible methods for WGA (Genome 10K Commu-

nity of Scientists 2009; i5K Consortium 2013).

Results

Of the four discussed strategies to assess alignments we pursue

two: simulations and statistical assessment. We now describe the

Alignathon data sets, the submissions we received, how the sub-

missions were processed, and the evaluations that were performed.

Data sets

The Alignathon used three test sets. Two of the test sets were cre-

ated by way of forward-time simulation, using the EVOLVER tool,

starting from a ;1/20th scale mammalian genome, a genome size

of 120 megabases (Mb), based upon a subset of hg19/GRCh37

(chromosomes 20, 21, and 22) (see Methods). The first simulated

data set models a great ape phylogeny consisting of genomes with

the same evolutionary relationships as humans, chimpanzees,

gorillas, and orangutans (Fig. 1). The second simulated data set is

based upon a mammalian phylogeny consisting of genomes with

the same evolutionary relationships as humans, mice, rats, cows,

and dogs (Fig. 1). On a gross level, the summary statistics of the two

simulated data sets are shown in Table 1 and Supplemental Table

S1. After an initial burn-in phase to shuffle the original input

sequences and ensure the simulation had reached stationarity (see

Methods), the primate phylogeny contained, among other

changes, one chromosomal fusion and more than three million

substitutions in the lineage from the most recent common an-

cestor (MRCA) to the simulated human. The mammal phylogeny

contained, among other changes, two chromosomal splits, one

fusion, andmore than 27million substitutions in the lineage from

the MRCA to the simulated human.

Recognizing the limitations of simulations, our third test set

consisted of 20 real fly genomes (Fig. 1). The fly genomes were

available in various states of completion from near-finished in the

case of Drosophila melanogaster (dm3 assembly, chromosome se-

quences) to fragmentary in the case of D. rhopaloa (droRho as-

sembly, 34,000 contigs) (Table 2).

Competition organization and submissions

The initial data sets were released in December 2011 and teams

were given until February 2012 to submit their entries. The initial

simulated data sets included the truths and information on where

to obtain (and optionally contribute to) the analysis software. As in

the Assemblathons, none of the teams had access to the data sets

until their initial release. The Alignathon received 35 submissions,

13 for the primate simulation, 13 for the mammal simulation, and

nine for the fly data set (Table 3; Supplemental Tables S2, S3, and

S4). The pipelines that were used to generate the alignments rep-

resent those used by genome browsers to generate their WGAs:

VISTA-LAGAN for the VISTA Browser (Frazer et al. 2004; Dubchak

et al. 2009); MULTIZ for the UCSC Genome Browser (Miller et al.

2007; Meyer et al. 2013), and Pecan and EPO for the Ensembl

Browser (Paten et al. 2008, 2009; Flicek et al. 2013). In addition, we

tested a fairly broad set of standalone WGA tools, including

progressiveMauve (Darling et al. 2010); TBA (Blanchette et al. 2004);

Cactus (Paten et al. 2011); Mugsy (Angiuoli and Salzberg 2011),

whichwas designed for closely related genomes; ameta-WGA tool,

Robusta (Notredame 2012), which combines results frommultiple

standalone tools; and a realignment tool, PSAR-Align (Kim andMa

2014), which was used to realignMULTIZ based alignments in this

competition but can in principle refine alignments from any

multiple alignment tool. We also tested pairwise WGAs from the

GenomeMatch team. As might be expected, not all algorithms/

pipelines were run for all test sets. Participants cited limitations of

the methods applied (e.g., inability to handle the scale of the fly

data set) and of resources (time, person-hours, funding, etc.) as

reasons for not participating in all data sets. Descriptions generated

Figure 1. The phylogenies of the three test sets: primate simulation,
mammal simulation, and real fly data set. Branch lengths are in units of
neutral substitutions per site.
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by the teams of the computation of each submission are given in

the Supplemental Material, as are details on runtimes and com-

putational resources used.

Genome-wide comparison to simulated genome alignments

All submissions were received inmultiple alignment format (MAF)

(http://genome.ucsc.edu/FAQ/FAQformat.html#format5). A suite

of MAF comparison tools was developed for the project (mafTools)

(see Methods), including a comparator tool, so-called because it

compares two alignment files. We call the set of aligned pairs of

residueswithin an alignment its alignment relation. The comparator

tool works by taking two input MAF files, A and B, and comparing

their alignment relations. For the simulated data sets, if A is the

predicted alignment created by a tool and B is the simulated truth,

then the ratio of the number of pairs in the intersection of A and B

to the number of pairs in A is the precision of the prediction.

Conversely, the ratio of the number of pairs in the intersection of A

and B to the number of pairs in B is the recall of the prediction. One

standard method for combining precision and recall into a single

value is the balanced F-score, which is simply the harmonic mean

of precision and recall (Beitzel 2006):

F-score=2 �

precision � recall

precision+ recall

The cardinality of the alignment relation of the considered

WGAs is exceedingly large, e.g.,;1.7 billion pairs for the simulated

mammalian alignment. This made complete comparison imprac-

tical. Instead, for each pair of MAFs compared, we sampled (see

Methods) a subset of the alignment relation of one and checked if

any or all elements of the subset were present in the alignment

relation of the other. Ten million pairs were sampled for each

Table 1. Summary statistics for the simulated genomes

Simulation Genome # Chrs Max Min Mean Median GC% Length (Mb) Dist to ref

Primate simChimp 4 85,778,862 10,574,168 46,284,070 44,391,624.5 41.3 185.1 0.016637
simGorilla 4 85,848,133 10,570,608 46,298,606 44.387,841.0 41.3 185.2 0.017775
simHuman 4 85,835,872 10,572,275 46,286,362 44368649.50 41.3 185.1 0
simOrang 5 85,903,762 10,564,720 370,67,732 35,683,973.0 41.3 185.3 0.036948

Mammal simCow 5 86,443,571 6,172,747 38,605,187 33,408,597.0 41.1 193.0 0.386589
simDog 6 64,906,724 5,551,284 5,551,284 30,919,174.0 41.1 192.2 0.360539
simHuman 6 88,398,963 2,880,482 2,880,482 22,095,903.5 41.1 190.8 0
simMouse 7 71,158,916 3,949899 3,949899 16,897,397.0 41.1 198.9 0.500501
simRat 5 88,137,694 4,060,565 4,060,565 45,269,609.0 41.1 198.7 0.507581

Rows are leaf genomes generated by simulation. Columns are different metrics: (# Chrs) number of chromosomes; (Max) longest chromosome; (Min)
shortest chromosome; (Mean) average length of a chromosome; (median) median chromosome length; (GC%) percent GC composition of the genome;
(Length) total length of the genome in megabases (Mb); (Dist to ref) phylogenetic distance from the leaf to the reference species (named simHuman in
both simulations).

Table 2. Summary statistics for the fly genomes

Genome #Seqs Max Min Mean Median GC% Est. length (Mb) NG50 Dist to dm3

Drosophila melanogaster dm3 15 29,004,656 19,517 12,027,821 6,668,899 41.7 176 a 23,011,544 0
D. pseudoobscura dp4 4896 30,794,189 101 31,202 1734 45.2 161 a 11,692,001 0.439806
D. ananassae droAna3 13,749 23,697,760 55 16,801 1517 42.0 190 a 5,790,199 0.334455
D. biarmipes droBia 7864 2,773,931 109 21,437 1756 42.0 195 a 354,307 0.176787
D. bipectinata droBip 8681 1,366,469 69 19,169 4348 42.0 195 a 79,801 0.326244
D. elegans droEle 8393 1,324,493 74 20,318 1713 40.3 190 a 166,643 0.183046
D. erecta droEre2 5124 26,641,161 154 29,808 1729 42.2 156 a 18,748,788 0.077882
D. eugracilis droEug 7566 1,857,654 71 20,660 1927 40.9 225 a 61,086 0.194302
D. ficusphila droFic 9164 1,642,143 112 16,484 1649 41.9 180 a 163,015 0.207007
D. grimshawi droGri2 17,440 24,565,398 80 11,494 1702 38.0 231b 6,267,026 0.633146
D. kikkawai droKik 8344 1,394,654 70 19,593 1871 41.4 205 a 133,834 0.248921
D. mojavensis droMoj3 6841 34,148,556 101 28,336 1654 39.5 166 a 26,866,924 0.524505
D. persimilis droper1 12,838 11,822,988 206 14,674 1671 44.9 180 a 1,930,428 0.440971
D. rhopaloa droRho 34,038 561,403 65 5696 1465 40.0 — 19,476c 0.172149
D. sechellia droSec1 14,730 21,120,651 207 11,309 1710 42.1 171a 2,104,621 0.052081
D. simulans droSim1 18 27,517,382 14,972 8,371,773 2,996,586 42.5 152a 19,596,830 0.052382
D. takahashii droTak 9700 1,026,890 96 18,661 3447 40.0 195 a 109,442 0.168407
D. virilis droVir3 13,530 25,233,164 43 15,216 1215 40.0 332 a 510,240 0.542767
D. willistoni droWil1 14,927 16,660,200 868 15,857 1508 37.2 222 b 4,707,319 0.576257
D. yakuba droYak2 21 28,832,112 16,019 8,427,486 2,539,874 42.3 166a 22,324,452 0.074973

For each species provided to participants, the following information is shown: number of sequences that comprise the genome; the maximum length of
a sequence; the minimum length of a sequence; the mean length of all sequences; the median length of all sequences; the percent GC content of the
genome; the estimated size in megabases; the NG50 value of the genome (Earl et al. 2011); and the phylogenetic distance to D. melanogaster (dm3).
aGenome size estimates from Gregory and Johnston (2008).
bGenome size estimates from Bosco et al. (2007).
cN50 instead of NG50 value due to lack of genome size estimate.
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direction of a MAF pair comparison, and variance between sam-

pling runs was negligible (data not shown).

For the simulated data sets we performed analyses both with

respect to the entire genome and to areas of the genome subsetted

by annotation type (genic, neutral, and repetitive) (see Methods).

Results are shown in Figure 2 and Supplemental Tables S5–S8. We

find that many of the submissions were able to align the primate

data set with both relatively high recall and precision, andwith the

exception of the GenomeMatch submissions, which had lower

values in the repetitive regions, the performance was consistently

high across annotation types, e.g., the top eight submissions dif-

fered by only 0.007 in F-score and all had recall and precision

above 0.98.

For themammal simulations we found amuch wider spread

of results, both between aligners and within different annota-

tion classes. The strongest submission, Cactus, had an F-score

0.081 points higher than its nearest competitor. Looking at the

mammal results by annotation type, generally (and predictably)

submissions performed the best in genic regions, where simu-

lated selection, which led to strong conservation, was pre-

sumably highest. Performance was intermediate in neutral

regions and submissions generally performed most poorly in

repetitive regions. Generally, submissions retained their ranking

across annotation regions, that is to say, the submissions ranked

1 and 2 overall were also ranked 1 and 2 in genic regions.

However, this trend did not hold for repetitive regions; and

surprisingly, several submissions performed slightly better in

repetitive regions than in the neutral regions (Mugsy, Pecan,

EPO, Robusta).

As phylogenetic distance between species grows the number

of unobserved mutation events increases, and the alignment

problem naturally becomes more difficult (Holmes and Durbin

1998; Landan and Graur 2008; Wong et al. 2008). To see this, we

stratified the results by phylogenetic distance (path length be-

tween leaves in the simulated phylogenies) between all pairs of

species (see Fig. 3). Longer distances are indeed observed to lead to

lower precision and recall values, and therefore lower F-score

values. For reference-based aligners, which use one species as

a reference (here simHuman), there is a clear dip in performance

for nonreference pairs (pairs not including the reference se-

quence). This is especially prevalent in Figure 3B for the PSAR-

Align submission, which used the MULTIZ program, and for the

MULTIZ and AutoMZ submissions, which also rely upon the

MULTIZ program.

Evaluating genome alignments in the absence of a true

alignment

We used the recently developed PSAR statistical alignment tool

(Kim and Ma 2011) to compare to the simulation results and to

assess the fly data set. PSAR assesses an alignment by removing

a sequence, sampling suboptimal alignments between the re-

moved sequence and the remaining alignment using the forward

algorithm with a pairwise hiddenMarkov model (pair-HMM), and

then checking to see how well the newly sampled alignments

match the original alignment. By repeatedly performing this

samplingwith every possible sequence, PSAR is able to calculate an

alignment reliability score, termed a PSAR pair score, for every pair

of matched residues in the alignment. Each PSAR pair score is

similar to the posterior probability that a given pair of residues in

the input alignment are aligned (Durbin et al. 1998), i.e., it can be

thought of as a proxy to a local measure of accuracy that factors in

the edit matrix surrounding the pair of aligned residues.

To deal with its limited alignment model—which is appro-

priate for global MSA, allowing only substitutions, insertions, and

deletions—and to make it computationally feasible to assess the

alignments, we ran PSAR on subsections of the data sets. For each

of the data sets we ran PSAR on five sampled half-megabase sub-

regions (see Methods). Subregion alignments were converted to

make them appropriate for PSAR (e.g., removing duplications, or-

dering rows, etc.) (see Methods). For a pair of genomes we define

the PSAR-precision as the average of the PSAR pair scores of their

aligned residues. The overall PSAR-precision for the complete

alignment is the average of PSAR-precision for genome pairs in-

cluding the reference. The PSAR-precision scores are analogous to

the precision measures calculated from the simulations, because

they estimate the expected number of pairs in the alignment that

are correctly aligned.

To complement our proxy to precision we used a simple

proxy to recall: coverage. For a pair of genomes A and B, the

proportion of residues in A aligned to a residue from B is the

coverage of B on A. The overall coverage (where we drop the ‘‘over-

all’’ when it is clear from the context) is the average of coverages

for all pairs of distinct species. Hypothesizing that PSAR-precision

Table 3. Submissions to the Alignathon

Submission Tools Submitter(s)
Primate

simulation
Mammal
simulation

Fly data
set (real)

AutoMZ AutoMZ Minmei Hau 1 1 1
Cactus Cactus Benedict Paten, Glenn Hickey 1 1 1
EPO Enredo, Pecan, Ortheus Stephen Fitzgerald, Kathryn Beal, Javier Herrero — 1 —
Pecan Mercator, Pecan Stephen Fitzgerald, Kathryn Beal, Javier Herrero 1 1 —
GenomeMatch Genome Match Igor Seledtsov, Vladimir Molodtsov, PI: Victor Solovyev 3 3 3
Mugsy Mugsy Aaron E. Darling 1 1 —
MULTIZ MULTIZ Brian J. Raney 1 1 1
PSAR-Align PSAR-Align Jaebum Kim, Jian Ma 1 1 —
progressiveMauve progressiveMauve Aaron E. Darling 1 — —
Robusta Robusta Carsten Kemena, Jia-Ming Chang, Ionas Erb, Cedric Notredame 1 1 2
TBA TBA Minmei Hau 1 1 1
VISTA-LAGAN VISTA-LAGAN Alexander Poliakov, Michael Brudno, Inna Dubchak 1 1 —

TOTAL 13 13 9

Each row shows a tool with the name of the submission as used in this paper, the names of the submitters, the number of submissions from the tool for the
primate data set, the number of submissions from the tool for the mammal data set, and the number of submissions from the tool for the fly data set.
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can be used to approximate precision and that coverage can be

used as an estimate of recall, the natural statistical analog to F-score

is the harmonic mean of PSAR-precision and coverage, which we

call the pseudo F-score.

To see how consistent our statistical measures were to the

measures derived from the simulations, we calculated them for the

user-generated simulated primate andmammal alignments (Fig. 4;

Supplemental Tables S5, S6). To check for any bias created by the

use of a set of adjusted regional alignments in calculating the PSAR-

precision and coverages values, we calculated regional precision

and recall values using the regional alignments (see Methods) and

found good correlations between the regional and overall versions

of these numbers (seeMethods; Fig. 4; Supplemental Tables S5, S6).

In the simulated primates all the values were uniformly high,

and hence saturated. However, looking at the simulatedmammals,

we find a very good, linear correlation between recall and coverage

(r2 = 0.984), but no linear correlation between PSAR-precision and

precision. In particular, PSAR reports relatively consistent, high

scores for all the different alignment programs, suggesting that at

a local, residue level, on aggregate the alignments look equivalently

reasonable between alignment programs. Despite the lack of linear

correlation between precision and PSAR-precision, we find that

because of the excellent recall and coverage correlation, the F-score

and pseudo F-score results linearly correlate strongly (r2 = 0.975 in

simulatedmammals). This appears to be because themore limiting

factor in many of the alignments’ performance was not precision,

but rather a lack of relative recall/coverage, something particularly

affecting the GenomeMatch, Mugsy, and to a lesser extent, Pecan,

EPO, and Robusta submissions.

Figure 5 and Supplemental Table S9 show the overall PSAR-

precision, coverage, and pseudo F-score results for the fly data set,

and Supplemental Figure S3 shows the pseudo F-score stratified by

phylogenetic distance for the fly data set. For the teams that sub-

mitted alignments for both data sets, we see good concordance

between the fly and simulated results. Again, the difference be-

tween the aligners is dominated by coverage, with uniformly high

(all greater than 0.97) average PSAR-precision values thatmostly lie

within the regional standard deviations of one another, with the

exception of theGenomeMatch alignments, which have very high

PSAR-precision values but relatively low coverage. Surprisingly,

given their reference assisted nature, we find that, along with

Cactus and TBA, MULTIZ and AutoMZ had high relative coverage

and pseudo F-scores, even when factoring that coverage was cal-

culated over all pairs, not just reference-containing pairs. Plotting

the pairwise coverages between all pairs of species (Fig. 6), we see

that all the programs had higher relative coverage for pairs in-

volving the reference; partially, this is an artifact of the structure of

the phylogeny (Fig. 1). The reference-based aligners (here MULTIZ

Figure 2. Simulated primate and mammal F-score results. Recall as a function of precision is shown for primates (A) andmammals (C ). GenomeMatch-
3 is omitted from plot A because both of its values are low (see its overall F-score in B). (B) The primate F-score results isolated to different annotation types:
overall, genes, neutral and repetitive regions. (D) The mammal version of C. Legends for B and D are ordered as in the overall category and this order is
maintained in the genes and neutral annotations.
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and AutoMZ) indeed did have the highest coverage for reference

pairs, and the strongest nonreference-based aligners by these

metrics, TBA and Cactus, showed a smaller separation between

reference and nonreference species pairs.

Visualizing and analyzing regional accuracy

We have demonstrated that the performance of alignments varied

regionally according to the simulation of annotation types. Having

developed scoringmetrics that can be applied across simulated and

nonsimulated genomes, we corroborated this analysis by visual-

izing how the scores vary across the sampled subregions. To view

a complete subregion at approximately this level of resolution, we

binned the reference sequence into 1-kb nonoverlapping intervals

and calculated the F-score (for the simulated data sets) and pseudo

F-score for each bin, calculating the score for a bin as if it repre-

sented the complete alignment, and for the simulated comparison,

restricting the true alignment to just those pairs involving residues

in the reference interval that defined the bin. Figure 7 and Sup-

plemental Figures S1 and S2 visualize how the scores vary across

example subregions of, respectively, the simulated mammalian,

real fly, and simulated primate alignments. It is clear that the

‘‘best’’ alignments by these measures differ substantially from the

poorest, and that for many submissions there is considerable re-

gional variation. Looking across all the simulated regions, the

F-score and pseudo F-score measures correlate reasonably bin-by-

bin (Supplemental Figs. S4–S6) (r2 = 0.671), indicating that pseudo

F-score can be used as a reasonable proxy to F-score at this regional

level of resolution (e.g., see Supplemental Fig. S7, the equivalent to

Supplemental Fig. S2, but using pseudo F-score instead of F-score).

It should be noted that the correlation is imperfect; in particular, it

appears that the pseudo F-scores saturate at high values, whereas

the corresponding F-scores still discriminate alignment quality,

i.e., pseudo F-scores do not always discriminate between good

and very good alignments.

Comparing the submissions directly

Several of the pipelines used some of the same underlying pro-

grams. To see how these commonalities affected the alignments,

for each data set we calculated the Jaccard distance between the

alignment relations of each of the submissions (Fig. 8). As pre-

dicted by the earlier analyses, the primate submissions are rela-

tively similar to one another, whereas the mammalian and fly

submissions prove much more divergent. The inter-data set com-

monality between some submissions is striking, with the same

patterns being repeated across the three data sets, and fits well with

the programmatic commonalities that the pipelines share. The

results indicate that some of the programmatic commonalities

between the alignment pipelines are perhapsmore important than

others. For example, sharing the same synteny block generator

(Mercator [Dewey 2007] or MULTIZ) appears to have had a

greater effect on the results than sharing the same synteny block

aligner. In particular, the EPO and Pecan submissions both use the

Pecan program (Paten et al. 2008; Paten et al. 2009) to align sets of

Figure 3. Primate (A) and mammal (B) simulation F-score results strat-
ified by phylogenetic distance. For each subplot, the vertical axis shows
the F-score and the horizontal axis shows 13 individual submissions or-
dered from left to right (descending) by average overall F-score. Horizontal
gray lines show the overall F-score of the submission, taking into account
all sequence pairs. Horizontal black lines show the overall F-score of the
submission, taking into account only sequence pairs including the refer-
ence. Submissions are comprised of points connected by a line where the
points are in ascending order of phylogenetic distance (all possible pairs
are shown).

Figure 4. Simulated mammal results comparing simulation values to
statistical values. Shown are precision and PSAR; recall and coverage;
F-score and pseudo F-score. Each column represents the results of one
submission; columns are in descending order of overall (full genome)
F-score value. The horizontal line is, respectively, the overall precision,
recall, or F-score value; the upward triangle with a vertical line is the re-
gional precision, recall, or F-score mean value, 6 the regional standard
deviation; the downward triangle with a vertical line is the PSAR-precision,
coverage, or pseudo F-score mean value, 6 standard deviation for values
that were computed using regional subalignments.
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syntenic sequences, and the Cactus program (Paten et al. 2011)

uses the same pairwise-HMM to generate much of its multiple

alignment as Pecan, but these submissionswere relatively different

from one another.

Assessing similarity versus homology

TheMAF specification allows sequence residues to appear in one or

more columns of the file. This allows a program to report sequence

similarity, which is not a transitive property, but allows in-

consistency if the intention is to report homology. For example, if

a residue x is aligned to a residue y and y is aligned to a residue z,

then x and z should be aligned, because it is not possible for x and y

to share a common ancestor and for y and z to share a common

ancestor, whereas x and z do not share a common ancestor.

Comparing two alignments, one ofwhich is transitively closed and

one of which is not, based only on the aligned pairs contained in

aMAF potentially gives an advantage to the nontransitively closed

submission. This is because the transitively closed submission

must align all residues transitively connected by alignments,

whichmay lower the overall precision of the set of aligned pairs. To

see how different the results would be if we were to have enforced

transitive closure—and therefore a strict homology assumption—

we created a tool (mafTransitiveClosure) that computes the tran-

sitive closure of a MAF (a linear time operation). Supplemental

Figure S8 shows the results for the simulated data sets. We found

that the progressiveMauve, Cactus, Pecan, Robusta, EPO, and

Mugsy programs producedWGAs that were transitively closed and

therefore unaffected by transformation. As predicted, those sub-

missions that were not initially transitively closed, such as the

pairwise and reference-based alignments, all saw their precision

performance decline, in some cases very substantially, and no

submission saw a large boost in recall.

Missing duplications

To find duplications within the alignments, we used a simple

metric, duplicative coverage. For a pair of genomes A and B, the

duplicative coverage of B on A is the proportion of residues in A

aligned to two or more distinct residues in B. This assessment is

complicated by the lack of transitive closure in some submissions,

because a single residue may align to two or more residues in

a genome, but in separate columns of the file. To avoid this com-

plexity, we assessed the submissions after computing the transitive

closure (which also made the computational task significantly

easier). To avoid misrepresenting submissions, we dropped sub-

missions from the assessment for which the transitive closure ad-

versely (>0.05 change) affected the F-score or pseudo F-score.

Supplemental Figure S9 shows the results; in short, we find that

only Cactus had significantly nonzero duplicative coverages, e.g.,

just over 3% of all fly genome bases were found to be duplicated,

on average, when looking at any other genome.

A code and data repository to reproduce the simulation results

To aid future assessment, we have created an easy to evaluate

benchmarking pipeline (available at http://compbio.soe.ucsc.edu/

alignathon/). Unfortunately the PSAR analysis involved using

a compute cluster, making it expensive for outside groups to repeat

this assessment. However, given a MAF file of one of the simulated

data sets, the benchmarking pipeline can be used to make a per-

formance assessment. The user can download the analysis re-

pository, compile the necessary software, download the requisite

data, place their alignment in a specified subdirectory and type

‘‘make’’ in the terminal window to launch the analysis. This ap-

proach will hopefully spur future development and assessment

upon this resource.

Discussion

With the explosion in sequencing delivering ever larger numbers

of near complete genome assemblies, WGA is an essential and

increasingly important task. We have tested a total of 35 sub-

missions from 12 different pipelines across three different data sets

to produce the largest and most comprehensive assessment of

WGA to date. The assessment purposefully chose test genomes in

the 100–200 Mb range. The decision to use data sets at this size

Figure 5. Fly results: values of PSAR-precision; average overall coverage
between all pairs; pseudo F-score. Columns are in descending order of
mean pseudo F-score value. For each metric, each submission is made
up of a downward triangle with a vertical line representing the regional
mean 6 SD.

Figure 6. Overall pairwise coverage values in the fly data set. Sub-
missions are ordered left to right (descending) by overall coverage. Gray
points are nonreference pairs, and black points contain the reference. The
horizontal gray line shows the average coverage of the submission for all
points, and the horizontal black line shows the average coverage of the
submission just for pairs containing the reference. Beneath the pairwise
coverage plot is a barcode plot showing the phylogenetic distances of all
pairs. Shorter gray lines are nonreference pairs and longer black lines are
reference-containing pairs.
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scale, rather than at the scale of larger vertebrate genomes, was

balanced, just as in the first Assemblathon, by the desire to attract

the largest possible number of entrants while still creating a rea-

sonable challenge.

The primate simulations indicated that for closely related

genome sequences, aligners can find the vast majority of homol-

ogies accurately. In contrast, the simulated mammalian align-

ments showed a broader distribution of results. In concordance

with this, we find that accuracies were substantially higher be-

tweenmore closely related genomes and higher inmore conserved

regions, even in alignments also involving more distantly related

genomes—this was apparent both in looking at F-scores in the

simulated mammals (Fig. 3) and pseudo F-scores in the flies (Sup-

plemental Fig. S3). We also find via simulation that more highly

conserved sequence is easier to align, and that duplications are

poorly represented in current WGAs.

Testing using both simulations and real data, we find a clear

concordancebetween the rankings. In addition, using the simulated

data sets wewere able to demonstrate reasonable linear correlations,

both overall and regionally, between F-scores and pseudo F-scores.

This indicates that the high-level aggregate differences we highlight

between the submissions can be found by two entirely independent

means. We did not find a linear correlation between precision and

the statistical measure of precision we used (PSAR-precision, see

below), but we did find a very strong correlation between recall and

coverage. Importantly, for the submissions we received on both flies

and simulated mammals, differences in recall were overall greater

than differences in precision, and therefore more critical in de-

termining the observedperformance differences.We speculate, given

the various overlaps in the tools used between the pipelines and the

resulting similarities between the submissions, that the larger dif-

ferences in recall were largely due to differences in syntenymapping,

and that this is one area where there is clear room for improvement.

Visualizing the data regionally, we were able to observe local differ-

ences in performance that fit well with these overall results.

For simplicity of interpretation in the simulations, homologies

that predated theMRCAof the extant genomeswere not included in

the ‘‘true’’ simulatedalignments; therefore, some ancient homologies

captured by the aligners are considered false by the benchmarking

pipeline. Additionally, EVOLVER does not track the alignments it

generates when creating simulated mobile element (e.g., trans-

poson) insertions; thus two highly similar transposon copies from

separate insertion events are not considered homologous in the

true alignment. For these reasons, the reported simulated precision

valuesmaybe considered a lower bound thatmay, for somepurposes

(detecting ancient and mobile element-mediated alignments), un-

derestimate the accuracy of the alignments. This may partly explain

the lack of correlation between precision and PSAR-precision, be-

cause such repeat regionsmight appear to be reasonably alignable to

PSAR, but false homologies according to the simulation.

There were some dependencies between the assessments and

the assessed programs. EVOLVER simulations were used to bench-

mark the Cactus aligner in its initial publication, although at ;1/

250th the scale used here (Paten et al. 2011), and as part of two

separate simulation assessments in that paper. It is therefore difficult

to know if its substantial increase in relative performance is partially

an artifact of training Cactus to the EVOLVER evolutionary model,

althoughwenote Cactus also performedwell in the independent fly

assessments. Similarly, PSAR uses the same pair-HMM alignment

model as used by the PSAR-Align team in generating their align-

ments. We might expect therefore that the PSAR-Align alignments

would be judgedmost accurate by PSAR, althoughwe actually found

a number of other programs earned equivalently high results.

The use of theMAF format for submissionsmade an apples-to-

apples comparison somewhat difficult because the format does not

force transitivity of homology. However, this permissiveness in

format allowed us to assess a variety of WGAs, some of which are

naturally not transitively closed, such as the reference-based

MULTIZ aligners and the GenomeMatch pairwise submissions. To

make comparisons under a strict homology assumption, we tried

taking the transitive closure of such alignments, but this does not

generally result in a reasonableWGA. In general, when performing

consistent evolutionary analyses the nature of the alignment

relationship—similarity or homology—bears consideration.

Figure 7. Region 2 of D.melanogaster (dm3) with respect toD. grimshawi (droGri2) of the regional analysis of themammal simulation data set. Region 2
is defined as bases 12,450,223–12,950,222 of dm3 chromosome 3R (horizontal axis). Rows are as follows: the relative abundance of genes within the
region; the relative abundance of repetitive sequence in the region; and submissions in descending order of average pseudo F-score. Each submission row
shows the pseudo F-score of the submission in black. The vertical axis of each row uses the same scale as shown in the bottom row. The pseudo F-score value
of the top submission for this region (TBA) is shown in gray in the background.
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In theory, several of the tools should have been able to align

duplicated regions together. Unfortunately, we received submissions

only for the simulation and not fly data sets for some duplication-

aware tools, such as EPO andMugsy, but across the pipelines the lack

of aligned duplications indicates there is likely significant room for

WGA tools to improve in detection of duplicative homologies.

Some individual results of the simulations were surprising. For

example, the EPO results had particularly low coverage on the

simulations—substantially lower than that pipeline achieved in the

genome alignments available from Ensembl (Paten et al. 2008). One

possibility put forward by the investigators of EPO is that the tool’s

reliance on using highly conserved sequences (‘‘anchors’’) for con-

structing a synteny map was not well suited to the simulations,

which although modeled constraint, were likely different from the

vertebrate genomes to which the EPO pipeline is normally applied.

Conclusion

Robust WGA tools are critical for the future of comparative geno-

mics, but tomake objective progress wemust agree on assessments

or risk not knowing when a genuine ad-

vance has been made. As is typical in

bioinformatics, much prior assessment of

WGAs has been made as part of the pub-

lication of a novel tool. Naturally, these

assessments tend to present results that

favor the new tool. The few independent

assessments that have been made of

WGA, although useful, are several years

old and assessed only a fraction of the

available methods (Margulies et al. 2007;

ChenandTompa2010). In comparison, the

Alignathon has been a success; it has lever-

aged a collaborative-competition model

that has had broad community involve-

ment and led to a broader set of WGAs

being compared than in any prior at-

tempt and certainly more than any single

research group would likely have had the

patience or expertise to handle.

Just as in any area where there is no

accepted ground truth, comparingWGAs

is hard, and each of the assessment types

categorized in the introduction has flaws.

Here we put an emphasis on two inde-

pendent methods for assessment and

showed some consistency between them

across data sets. For this reason, and be-

cause many of the results met with our

prior expectation, we have some confi-

dence in the results. Indeed, it is possible

to compare the various F-scores andpseudo

F-scores (Figs. 3–5, 7; Supplemental Figs.

S1–S3, S7) and see some pipelines per-

formed particularly strongly. However,

given the uncertainty about the realism of

the simulations and the apparent limited

resolution of our statistical metrics, we

caution against overinterpretation. There-

fore,more independent lines of assessment

need to be developed: more simulations,

more statistical assessments, and more

assessments at different scales (e.g., fullmammalian genomes), etc.

Assessments like the Alignathon are useful to spur commu-

nity activity. However, these kinds of benchmarking exercises risk

becoming one-offs whose results are not comparable with the next

generation of tools. To avoid this, we have tried to make the sim-

ulation assessments developed here easily reusable so that they

might be included in future publications. There is then a risk that

tools may become overfit to these benchmarks, therefore updating

the benchmarks periodically is essential.

In the Supplemental Material, each of the teams describes

how they computed each submission, which should be useful for

reproducing their results. As the submissions were computed in-

dependently by each team and each team had a different hardware

environment, we cannot fairly compare the computational cost of

the different pipelines. It would be useful for future efforts to assess

this aspect, perhaps by getting groups to run their aligners on

a commonplatform, such asAmazonEC2orMicrosoftAzure,where

a controlled comparison could be made. This may prove to be an

optimistic goal though, because manyWGA pipelines are designed

and implemented at individual institutions by researchers whose

Figure 8. The Jaccard distance (1 � Jaccard similarity coefficient) matrix and accompanying hierar-
chical clustering (UPGMA) of submissions for each of the three test sets. (A) Primate Jaccard distance;
(B) mammal Jaccard distance; (C ) fly Jaccard distance. Higher values indicate that the sets of aligned
pairs of two submissions are more dissimilar, and lower values indicate similarity.
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goal is the sharing of the results of the pipeline but not the pipeline

itself. The computation-environmental peculiarities of individual

institutions can thereby be reflected in their pipelines through

unintentional design.

We have left a number of questions unresolved. For example,

we have not attempted to determine how tools for WGA compare

tomethods for other types ofMSA, such as protein aligners, or how

the quality of the input genome assemblies affects WGAs. In

summary, we very much hope that the Alignathon will help pave

the way for subsequent efforts with more data sets, comparisons,

accurate statistical assessments, and benchmarking exercises with

even broader scope.

Methods

Simulations

As in the Assemblathon 1 project (Earl et al. 2011), simulated ge-

nomes were generated using the EVOLVER suite of tools’ forward-

time whole-genome evolution simulation tools (Edgar et al. 2009,

http://www.drive5.com/evolver/). Specific parameter files used to

create the simulations are available on the project website.

EVOLVER has a model for proteins, genes, and base-level evolu-

tionary constraints. EVOLVER uses a two-step process for simu-

lating a single forward step in a simulation: The first step is an

intrachromosomal evolution step, and the second is an inter-

chromosomal step. The intrachromosomal step allows events such

as substitutions, insertions and deletions, duplications, trans-

locations, and inversions, according to rates distributed according

to the length of the event. The interchromosomal step allows

chromosome fusions, fissions, segment copying, segment move-

ment, reciprocal translocations, and nonreciprocal translocations.

Additionally, EVOLVER keeps a separate mobile element library

that can insert mobile element DNA into the simulated genome;

this library is itself also undergoing simulated evolution. EVOLVER

logs all evolutionary events that take place during a cycle and keeps

track of the relationships between residues in the parent and child

genomes.

EVOLVER as distributed is only capable of performing a single

cycle of evolution. In order to run the arbitrary phylogenies

necessary for this project, we used the evolverSimControl and

evolverInfileGeneration tools available at https://github.com/

dentearl/evolverSimControl and https://github.com/dentearl/

evolverInfileGeneration/, respectively. These extra tools, along

with mafJoin (https://github.com/dentearl/mafJoin/) were used

to construct MAF files containing the entire simulated true evolu-

tionary relationships of all of the genomes: leaves, internal nodes,

and the root.

As in the Assemblathon project, we initiated the simulation

using a subset of thewell-annotatedhumangenome, hg19/GRCh37.

Complete chromosome sequences for chromosomes 20, 21, and

22 along with annotations for those chromosomes from the UCSC

Genome Browser tracks mgcGenes, knownGene, knownGeneOld5,

cpgIslandExt, and ensGene, were obtained from the UCSC Golden

Path download site. The tool suite evolverInfileGenerationwas used

to take the raw data and make it into an EVOLVER infile data set.

This starting data set was then put through the EVOLVER simulator

for a distance of 1.0 neutral substitutions per site, an evolutionary

time of ;500 million years of vertebrate evolution (Hedges et al.

2006; Earl et al. 2011; Fujita et al. 2011). This process, which we

term a burn-in, shuffles the sequences, genes, and chromosomes of

the genome. The resulting genome was termed the most recent

common ancestor (MRCA), because it was used as the starting

point for both the primate and mammalian simulations. It has

been previously ascertained that distributions on the numbers and

lengths of tracked annotation types in EVOLVER simulations stay

stationary over time (Earl et al. 2011), so this burn-in process, from

a simulation point of view, does not adversely affect the nature of

the simulated genomes.

EVOLVER rediscovers the tandem repeat sequence anno-

tation at every step of a simulation by calling tandem repeats

finder (Benson 1999, v4.0). RepeatMasker (Smit and Hubley

2010, v1.25; Smit et al. 2010) and tandem repeats finder were

used to identify and soft-mask repetitive sequence in the final

leaf genomes.

The primate simulation was described by the phylogenetic tree

(innewick format) (Fig. 1): ((simGorilla:0.008825,(simHuman:0.0067,

simChimp:0.006667)sHuman-sChimp:0.00225)sG-sH-sC:0.00968,

simOrang:0.018318). Themammal simulationwas described by the

phylogenetic tree (in newick format) (Fig. 1): ((simCow:0.18908,

simDog:0.16303)sCow-sDog:0.032898,(simHuman:0.144018,

(simMouse:0.084509,simRat:0.091589)sMouse-sRat:0.271974)sH-sM-

sR:0.020593).

We used the EVOLVER produced repetitive element library

from the simHuman genome as an input library for RepeatMasker.

Following each simulation, the EVOLVER mobile element library

from the simHuman leaf node genome was used as an input into

the repetitive sequence finder RepeatMasker. RepeatMasker was

then used to mask simple repeats and repeats from the provided

library in the other nonhuman simulated genomes.

Complete sequence and annotations of the leaf genomes and

the MRCA genome were provided to participants.

Fly data set

The phylogeny was created by merging the phylogeny provided

in the modENCODE (The modENCODE Consortium et al. 2010)

comparative genomics white paper (http://www.genome.gov/

Pages/Research/Sequencing/SeqProposals/modENCODE_Compara

tiveGenomics_WhitePaper.pdf; accessed October 15, 2013)

courtesy of Artyom Kopp (UC Davis) and the phylogeny used by

UCSC for the 15-way insect alignment. The Kopp tree lacked

droSim1 and droSec1 which were added by normalizing the

branch lengths between the dm3 branches on the two trees. Ex-

traneous species were trimmed using tree_doctor from PHAST.

This tree was provided for progressive aligners that need a guide

tree. This phylogeny corresponds to the newick tree (Fig. 1):

((droGri2:0.183954,droVir3:0.093575):0.000000,(droMoj3:0.110563,

((((droBip:0.034265,droAna3:0.042476):0.121927,(droKik:0.097564,

((droFic:0.109823,(((dm3:0.023047,(droSim1:0.015485,droSec1:

0.015184):0.013850):0.016088,(droYak2:0.026909,droEre2:0.029818):

0.008929):0.047596,(droEug:0.102473,(droBia:0.069103,droTak:

0.060723):0.015855):0.005098):0.010453):0.008044,(droEle:0.062413,

droRho:0.051516):0.015405):0.046129):0.018695):0.078585,(droPer1:

0.007065,dp4:0.005900):0.185269):0.068212,droWil1:0.259408):

0.097093):0.035250).

To create the fly sequence data set, we took 12 flies available

from the UCSC golden path server on 14 December 2011

(droAna3, dreEre2, droGri2, droMoj3, dp4, droVir3, droWil1, dm3,

droSim1, droPer1, droSec1, droYak2) and eight flies from NCBI on

January 25, 2012 (droBia, droBip, droEle, droFic, droKik, droTak,

droRho, droEug).

MafTools

Participants submitted their predictions of alignments in MAF files.

To process the submissions, we wrote a suite of open-source tools

calledmafTools (available at https://github.com/dentearl/mafTools/)

to perform the majority of transformations, manipulations, and
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analyses. Scripts to perform the analyses described can be found in

the analysis repository.

MAF comparisons

Exhaustively checking all pairs of aligned residues between align-

ments is computationally impractical, so instead we developed

a method, termed mafComparator, based upon sampling pairs of

aligned residues. Sampling is performed by reading each input

MAF file twice, once to count the total number of pairs present in

the file, such that given a user specified number of pairs to sample

we can calculate the probability of picking a given pair at random.

The MAF file is then read a second time.

During the second pass we iterate over every block in theMAF

and then every column in the block. We calculate the number of

pairs present in the block, call this k, and then make a draw from

a binomial distribution with probability s/m (where s is the num-

ber of samples taken, here 10,000,000, andm is the total number of

pairs present in the MAF) to see howmany (if any) pairs to sample

from that column. If x many pairs are to be sampled, we then

sample x times from a discrete uniform [0, k� 1] decrementing the

range of the distribution with each sample, without replacement,

and then map those integers to pairs using a bijective function.

This allows us to efficiently sample pairs without iterating through

each and every pair.

Regional alignments and PSAR

To accommodate PSAR, which processes global MSAs in which the

alignment is represented as a 2D matrix where the aligned se-

quences, interspersed with gaps, are the rows and the columns

represent the equivalence classes of aligned bases, we constructed

subalignments of sampled regions.

Regions were randomly sampled by picking intervals of

a chosen reference genome (for the flies D. melanogaster, dm3, and

for the simulations, simHuman). For each of the three test sets,

regional intervals were selected by sampling five different starting

values from a discrete uniform distribution (0, g � 1 � 500,000),

where g is the total length of the reference genome and 500,000 is

the length of the interval. Sampled values were then mapped back

to individual chromosomes. All alignments containing any posi-

tions of the reference within these intervals were extracted from

the submitted alignments. Although this model of sampling does

not prevent overlapping regions, no overlapping regions were

sampled. Likewise thismodel of sampling does not prevent regions

that cross between chromosomes, but no such bridged regions

were sampled.

Details of how we adjusted each submission for regional

analysis with PSAR are in the Supplemental Material.

Data access

The project website is available at http://compbio.soe.ucsc.edu/

alignathon/. This website links to all the data sets, submissions,

and benchmarking code.
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