Aligning Application Architecture to the
Business Context

R.J. Wieringa, H.M. Blanken, M.M. Fokkinga, and P.W.P.J Grefen

Center for Telematics and Information Technology, University of Twente, the
Netherlands
(roelw|blanken|fokkinga|grefen)@cs.utwente.nl

Abstract. Alignment of application architecture to business architec-
ture is a central problem in the design, acquisition and implementation of
information systems in current large-scale information-processing organi-
zations. Current research in architecture alignment is either too strategic
or too software implementation-oriented to be of use to the practicing
information systems architect. This paper presents a framework to an-
alyze the alignment problem and operationalizes this as an approach to
application architecture design given a business context. We summarize
guidelines for application architecture design and illustrate our approach
and guidelines with an example.

1 Introduction

Alignment of application architecture to business architecture is a central prob-
lem in the design, acquisition and implementation of information systems in cur-
rent large-scale information-processing organizations. Current research in soft-
ware architecture [1-3] focuses on the architecture problem for the software engi-
neer rather than for the architect of large-scale information systems. These large-
scale systems contain components that are bought rather than programmed.
Their architecture problem exists on a higher aggregation level than that stud-
ied in software engineering. At this higher level architects are interested not only
in the extent to which an architecture supports quality attributes, but also the
extent to which the application architecture fits within the business context—the
architecture alignment problem.

The business-IT alignment problem has been studied at a rather strategic
level that is hard to operationalize for the practicing application architect [4].
There is a need for body of operational concepts and guidelines that encom-
passes business architecture as well as application architecture. In this paper we
present such a framework. Its first version was the result of an extensive analysis
of design methods and frameworks in software engineering, product engineering
and systems engineering [5,6]. We tested, simplified and elaborated the frame-
work in a number of standard examples from the literature and then applied
it to a large number of M.Sc. projects. Next, we applied it to real-life projects.
Currently, we are using it in an empirical study to collect and analyze best prac-
tices in architecture alignment in banks, insurance companies and government
organizations.

2 Wieringa, Blanken, Fokkinga, Grefen

One contribution of this paper lies in the definition of an integrated and uni-
fied framework for business process design and application architecture design,
in which both the business and its application software are viewed as reactive
systems, i.e. as systems that respond to events in their environment. Our frame-
work refines and operationalizes a number of other frameworks, such as that of
Henderson and Venkatraman [4] and of Zachman [7]. The second contribution
is that we collected and validated a comprehensive set of guidelines for defining
an application architecture.

In section 2 we present a our view on architecture and in section 3 we present
our framework. Section 4 describes our architecture design approach. Section 5
gives an example and section 6 summarizes the architectural alignment guidelines
we have collected. Section 7 discusses the results achieved so far and presents
some directions for further work.

2 A Systems View on Architectures

The most widely used definition of architecture is that it is the structure, or a
set of structures, of a system, consisting of elements and relations between these
[1]. We add to this the requirement that the collection of elements as a whole
has an added value for its environment, that the elements do not have if taken
separately. So our definition of architecture is as follows.

The architecture of a system is the structure, or a set of structures, of
a system, consisting of elements and relations between these, such that
the relations between the elements create an overall coherent system with
an added value for its environment.

This adds a systems view to the definition, where a “system” is any coherent
collection of elements whose interaction produces an added value for its envi-
ronment. This includes information systems and workflow management systems,
but also businesses and other kinds of organizations.

A systems view of architectures allows us to apply the definition to business
systems as well as software systems. It also makes clear that in order to design a
system architecture, we must study the desired added value for its environment
first

3 The Framework

3.1 System Aspects

An important part of our framework consists of a classification of system prop-
erties or aspects as they are also called. Borrowing from a rich set of frameworks
developed in systems engineering and industrial product design, we propose the
classification of information processing system properties shown in figure 1 [8],

Aligning Application Architecture to the Business Context 3

Information processing system aspects
1
[|

Process Product
1
External properties Internal properties
1
| | |
Functionality Quality Composition
Services For user For developer
Behavior N o
Communication Usg@hty Malntélhablllty
Meaning Efficiency Portability
Security

Fig. 1. Process aspects and product aspects.

[9], [5]. Each of the nodes in the tree represents an aspect of an information pro-
cessing system, in other words a possible point of view from which to consider
the system. The rationale behind this framework is as follows.

We start from the classic distinction between process on the one hand, and
the product that results from this process on the other. The process of devel-
oping and exploiting an information processing system has an architecture, just
as the result of this process, an information processing system, has an architec-
ture. These architectures are related, because for example the composition of
an information system determines the work breakdown structure of the develop-
ment and exploitation process. However, the process architecture and product
architecture are distinct because they are architectures of different things.

Our interest is in product architecture, where the product may be an in-
formation system, a business, or any other information processing system. (An
information processing system is any system that manipulates symbols.)

The top-level distinction of product properties is between external and in-
ternal properties. External properties in turn are classified according another
well-accepted partition, namely between functional properties and quality prop-
erties. Functional properties are services offered to the environment, and quality
properties characterize the value that the system has for stakeholders. For exam-
ple, usability, efficiency and security are aspects of the value that system services
have for for users of the system, and maintainability and portability are aspects
of the value of the system for developers.

The basic aspect of functionality is the service that the system has for its
environment. (The word “function” in this paper is synonymous with “service”.)
The system exists to deliver certain services to its environment. System services
in turn are characterized by three functional properties. The behavior aspect con-
sists of the ordering of services over time. The communication aspect consists of

4 Wieringa, Blanken, Fokkinga, Grefen

the interactions with other entities (people, devices, businesses, software) during
the delivery of the service, and the semantic aspect consists of the meaning of
the symbols exchanged during thew service.

The meaning aspect is the only aspect typical for information processing
systems. Other kinds of systems deliver services by means of physical processes
such as the exchange of heat or electricity, that do not have a meaning. In-
formation processing systems deliver services by exchanging symbols with their
environment, and these have a meaning (usually documented in a dictionary).

Turning now to the internal properties, the composition of the product, we
observe that our classification of external properties repeats itself at lower levels
in the aggregation hierarchy. Figure 2 illustrates this for the case where all
external entities are information processing entities whose interface is symbolic.

Services
Behavior
Communication
Meaning

Quality

Composite
system

External
entity

Services
Behavior
Communication
Meaning

Quality

System

Services
Behavior
Communication
Meaning

Quality

External
entity

Services
Behavior
Communication
Meaning

Quality

‘ Services ‘
Behavior

Communication

Meaning

Quality

Component

Fig. 2. Repetition of aspects at all levels of the aggregation hierarchy.

3.2 Service Levels and Refinement levels

Information system architects must deal with three worlds, namely the physical,
social and linguistic worlds (figure 3). The physical world is the world of entities
that have weight, consume energy and produce heat and noise. The social world is
the world of business processes, needs, added value, needs, money, norms, values
etc. Part of the social world is the linguistic world of symbol manipulation. We
treat this separately because it is the world of software and documents. Note that
software exists only in the linguistic world; computers live only in the physical
world; and people live in all three worlds.

Aligning Application Architecture to the Business Context 5

Social Linguistic
world world

Physical
world

Fig. 3. Three alignment problems.

As suggested by figure 3, there are three alignment problems, not one. For
example, to align software (in the linguistic world) to people (in the social world),
we must ensure that the meaning attached by people to the symbols at the
software interface agree with the manipulations of these symbols by the software,
and that these manipulations have value for the people. To align software to
the physical world, we must allocate it to processing devices with a location in
the physical world, and to align this in turn to the social world we must align
information processing devices to business processes. None of these alignment
problems is trivial.

Business environment
Social Business services
Business processes

Application services

Application systems

(Special-purpose) .
Linguistic - Platform services
Implementation platform

(General-purpose)

Network services

Physical Physical network

Fig. 4. Systems exist at all layers. At each layer, systems have the product aspects listed
in figure 1.

A useful view on these alignment problems is to structure them in layers of
service provision. Different situations will call for different layering structures,
but we found that the one shown in figure 4 is a useful starting point in many
cases. Each particular project may feel a need to add or delete particular service
provision layers. In figure 4, we partitioned the linguistic layer into two, one
of general-purpose software entities, that are usually bought and not built by
a business, and another of special purpose software entities, that typically are

6 Wieringa, Blanken, Fokkinga, Grefen

customized or built from components. The social layer is also partitioned into
two, namely the business and its environment. Each layer consists of entities
that provide services to entities at higher layers. In general, entities at one layer
use services of entities at lower layers and provide services to entities at higher
layers.

Each entity may itself be decomposed in components not accessible to other
entities. We call this encapsulation. The aggregation hierarchy shown in figure 2
represents the decomposition of an entity into components encapsulated by it.
Each of the entities at any layer, and each of its internal components, has the
aspects described earlier.

Each horizontal line in figure 4 between two layers represents service pro-
vision. The diagram represents a service-provision hierarchy, but hides the fact
that the social world also interacts with the physical world directly. At each
layer, entities exist that have all the properties listed in figure 1, except at the
physical layer, where interactions of entities do not have a meaning.

abstract refinement detailed
N
A
Market, . . events,
o Business environment o
distribution channels stimuli
Business . Business
Business processes .
strategy transactions
service System i System
fai . Application systems .
provision mission PP y transactions
Platform Implementation platform Libraries
standard ’ used
Network Physical network Network
standards topology

Fig. 5. At different levels, we can have different levels of detail in which we are interested.

Finally, we add the refinement dimension (figure 5). The refinement dimen-
sion does not classify systems, but it classifies descriptions of systems. Entities
at each service level can be described at a high level of abstraction (few details)
or at a low level of refinement (many details). Figure 5 shows some illustrative
properties at different refinement levels.

To summarize, our architecture framework consists of

1. a structuring of systems into service provision layers (figure 5), where
2. at each layer, entities exist with properties that can be classified as shown
in figure 1, and where

Aligning Application Architecture to the Business Context 7

3. these properties can be described at many different levels of refinement (fig-
ure 5).

3.3 Comparison with other frameworks

Our framework refines the alignment framework of Henderson and Venkatra-
man [4]. They distinguish two dimensions, the service provision dimension (IT
infrastructure level and business level) and a refinement dimension (strategic
and operational levels).

Most frameworks for software system development distinguish three views,
namely the function view, the behavioral view, and the data view of the system
(e.g. [10]). These views correspond to our service, behavior and meaning aspects.
Harel and Pnueli add to this the architecture dimension, which corresponds to
our composition dimension [11]. Zachman distinguishes three kinds of descrip-
tions, the data, process, and network description [12,7], which correspond to
our meaning, behavior and communication aspects. These descriptions can be
used according to Zachman to describe the system from a great number of per-
spectives, namely the scope of the system, the business view, the system model,
the technology model, the component model, people, external business events,
and business goals. This seemingly unrelated and arbirary list of perspectives
can be systematized by placing them at various levels of service provision and
refinement on our framework figure 5. Details of this and other comparisons can
be found elsewhere ([5, pages 329-330], [6]).

4 Our Design Approach

Figure 6 illustrates our design approach. Compared to the layers in figure 4, the
business service interface and the application service interface have both been
expanded to a separate layer in figure 6. The figure lists a number of architec-
ture descriptions typically found in business modeling and information systems
design. We explain these descriptions in section 5. We should point out imme-
diately that we do not claim that all these descriptions must be produced for
all software systems. Rather, each particular project will produce a few of these
descriptions. The diagram is intended to illustrate an apparent contradictory
dependency among design decisions. We give two examples.

— To make a list of business activities (third description along the diagonal),
we need a stimulus-response list of the business first; and to make that list,
we need a list of relevant events in the environment of the business first. So
in order to write a description of a lower-level entity, we need descriptions
of higher-level entities.

— Once we have described the market and distribution channels of the business
at a high level of abstraction by a piece of narrative text supplemented by
a rich picture (top-left description), then it is not useful to add detail to
this environment description by making a business context diagram and a

Environment

Business
services

Business
processes

Application
services

Application
software

Implemen-
tation
platform

Hardware
network

Wieringa, Blanken, Fokkinga, Grefen

Refinement
>
Text, Bus. context Event Entity
Rich pictures|| diagram list model
[[b m
Mission, Stimulus-
service list ||response list
s b
Activity Workflow SW context Actor
list model diagram model
b b c c
Mission, SR list, Quality
service list context attributes
S b
Require- .
d Allocation
ments-level
arch. ¢ d
Module .

Allocation

arch.

c d
Deployment
diagram
c

Service provision

Fig. 6. Overview of some descriptions. s = service view, b = behavior view, ¢ = commu-
nication view, m = semantic view (meaning), d = decomposition view.

Aligning Application Architecture to the Business Context 9

business event list, because at this point, we do not know which part of
the context is relevant and which events are relevant. We know which part
of the context is relevant, after we have a list of business services (second
description along the diagonal) and we know which events are relevant once
we know which stimuli can arrive at the business boundary. So to refine a
description of a higher-level entity, we need descriptions of lower-level entities
first.

The paradox is resolved if (1) we develop descriptions in one column of the table
together and (2) develop a refinement of a description only after we know which
lower-layer service descriptions we need this refinement for.

Business environment

Businessproresses

Application systems

Implementation platform

Physical network

Fig. 7. The design charter. The area in the box is what the designer can change. The box
circumscribes design freedom.

The second element of our design approach is that we start from an iden-
tification of the design charter, which is the circumscription of the area that
the designer is allowed to change. Figure 7 gives an example. Outside the box,
entities are given to the designer as they are, whether she likes it or not. Inside
the box, entities may be changed withing the limits set by the design charter.
Figure 7 illustrates that the design charter may span several service layers but
need not include all entities at any layer. In practice, the situation is not so
neat, because the charter may be spread out over many layers and skip other
layers; indeed, the designer may have difficulty finding a crisp boundary of the
design charter at all, and in addition, during the project, a boundary thought
to be clear may change after all. This makes it all the more important to make
negotiations about the boundaries of the design charter an integrated part of
the system design project.

In passing, we note that the overview of descriptions in figure 6 indicates for
each description which viewpoint is described. For each viewpoint, there are well-
known description techniques available. For example, behavior can be described
by event lists, state transition tables and state transition diagrams; communi-
cation can be described by various box-and-arrow diagrams; and decomposition
can be represented by traceability tables. Notations are not the subject of this
paper. A thorough survey of available techniques and guidelines for their use is
given elsewhere [13].

10 Wieringa, Blanken, Fokkinga, Grefen

5 Example

We illustrate our alignment approach with a case study we did for a small com-
pany, that we will call Global Travel International (GTT). GTI provides database
and web-page hosting services to the travel business in a small country in North-
Western Europe. Our design charter says that we may design an application to
support the primary processes of GTI, but we must not change business pro-
cesses nor can we change the implementation platform or underlying hardware
network. To make application architecture design decisions, we start with a num-
ber of descriptions of the business environment and business processes.

The market of GTT is described in figure 8. This is an example of a top-level
business environment description (top-left box in figure 6).

The market of GTl is database and web page hosting to facilitate on-line renting
of holiday homes.

— Customers are sellers or suppliers.

— Sellers of GTI are private or corporate individuals seeking to rent out holiday
homes. Examples are travel agencies, call centers, travel portals. One seller
can act on behalf of many home owners.

— Suppliers are private or corporate entities that own homes that they offer for
rent by travelers, either directly or through sellers. Examples are private home
owners, tour operators and national tourist bureaus.

— Travelers are private individuals seeking to rent holiday homes.

Current threats are the dip in the travel industry and in Internet business. The
largest opportunity is that GTI has the software to help other companies take the
next large step in e-business.

Fig. 8. Market of GTI.

Descending to the business service layer in figure 6, we give the business
mission of GTT in figure 9. This allows us to focus on the relevant part of the
context. The context diagram in figure 10 adds detail to the market description
of figure 8 and at the same time provides the context in which to interpret the
mission statement. Conversely, the mission statement explains why this part of
the context is relevant.

Having identified the business context, we can go on to identify business
services. Since we are not designing the business but describing it, this is a
knowledge problem. Let us assume that the list of business services is known.
From the list of business services we go to make a coarse activity model of
the business (third box along the diagonal). We identify a business activity by
(1) the business event that triggers it and (2) the service delivered by it. This
requires us to make a list of relevant business events and, if necessary, the list
of stimuli at the business interface that each event may cause. For example, a

Aligning Application Architecture to the Business Context

Mission:

— to host databases and transactional web pages on behalf of customers, so
that travelers can search for houses and perform on-line booking.

Services provided:

— Customer services:
e Initialize web site and database
e Update web site and database
e Provide access and sales statistics
— Traveler services:
e Provide information about holiday homes.
e Offer reservation capability.
e Offer payment capability.
e Offer feedback capability.

The major services acquired from other parties are:

— Payment handling
— Authentication services

Fig. 9. Mission and external functions (services) of GTI.

Traveller
BiBIT
(payment service)
Seller
Verisign
(authentication service)
Supplier

Fig. 10. The business context diagram of GTI.

11

Event

Service

Booking

Payment

Feedback

Initialize
customer
web site

Maintain
web site

Provide
statistics

12 Wieringa, Blanken, Fokkinga, Grefen

Final Time to pro-
Traveller Traveller Traveller New Customer . .
Traveller payment Traveller . vide supplier
requests cancels . provides customer changes .
) pays too) complains)] with occupa-
booking booking experiences acquired products .
late tion data
Compose,
Check, Release Release
Reserve booking. | booking.
booking.
Accept
Send
Accept payment. . .
reminder. | Reimbursg
payment Clear .
Reimburse
payment
Treat Collect
complaint | feedback.
Create
database
and web
site
Update
Derive
data

Fig.11. GTI processes. The upper row lists events in the business environment. The leftmost
column lists GTI services. The entries lists the activities in the business process triggered

by events and delivering services.

Aligning Application Architecture to the Business Context 13

customer’s desire to rent a holiday home may be communicated to the business
by telephone, fax, email or web page, so that one event (the creation of the
wish to rent a holiday home) may be communicated to the business through
four possible stimuli. Due to lack of space we abstract from multichanneling and
restrict ourselves to business events only. Figure 11 summarizes the service list,
event list and activity list of GTI.

So far, we have collected information about the business and summarized
this in a number of descriptions. Now we approach the area within our design
charter and we perform our first design activity, which is to gather activities into
groups that contribute to related business services. We call these groups business
responsibilities. The business responsibilities we identified for GTI are indicated
by the fat rectangles in figure 11. From left to right along the diagonal, these
are Booking, Traveler feedback, Web site maintenance and Information provision to
customers. The business services within one business responsibility are related
because they serve one process in the business environment. As we will see in
the next section, this satisfies several design guidelines and we therefore have
good reason to believe this is a stable structure.

Grouping business activities into business responsibilities does not change
the business processes, but it defines a structure that we can use to define our
application architecture. The general design principle is that we must structure
the system according to those elements in the business that are expected to
remain stable during the life of the system.

Our grouping of business activities into responsibilities leads us to our first
design decision about the application architecture: We decide to define one ap-
plication for each business responsibility. In addition, we decide to introduce
a component that deals with the web interface and some databases to contain
data about the subject domain. The guidelines behind these decompositions are
discussed in section 6. Applying these guidelines, we get the requirements-level
architecture of figure 12. This is called a requirements-level architecture because
it is defined in terms of the functional requirements and business context, but
not in terms of the available implementation platform. This architecture is also
called conceptual architecture [1], [2] and an old term for it is essential systems
model [14].

To transform this into an implementation architecture, we must define mod-
ules and map these to nodes in the hardware network. Both the hardware net-
work and the general-purpose implementation platform are given to us, not
designed by us. They fall outside our design charter. The network consists of
several PCs connected to the Internet behind a firewall that runs on a separate
PC, and the implementation platform consists of a DBMS with a 4GL and a web
server. This allows us to group the requirements-level components as shown in
figure 13 into modules that run on this platform. Balancing PC load against data
traffic, we map these to the network as shown in figure 14. Note that this deci-
sion requires an analysis of desired quality attributes. As indicated in figure 6,
the allocation of requirements-level components to modules, and of modules to
nodes in the network, requires a description of desired quality attributes.

14 Wieringa, Blanken, Fokkinga, Grefen

S QN

Bibit Verisign Traveller Supplier Seller

AN A A A A
v v Y

Web interface

4 v v

GTI software . Collecting Customer
Booking . .
X traveller information
suppor feedback provision
Database Web
maintenance Reservations Holiday homes Feedback maintenance
support support

Fig. 12. Requirements-level application-architecture. Components with double borders have
interfaces to all other components.

Web Web
Web interface mamtenar:ce serdvelr
suppor module
A A A bp
4 4 4
. Collectin Customer L
Booking 9 .) Application
SUPDOIt traveller information module
PP feedback provision
- Database
Refser- ﬂollday Fbeei_ maintenance || Database
vations omes acl support module
Fig. 13. Implementation-level modules.
Firewall Web Application and
server database server

Fig. 14. Allocation of modules to nodes in the deplyment network.

Aligning Application Architecture to the Business Context 15
6 Alignment Guidelines

So far, we have presented an architecture framework that includes both the busi-
ness and the supporting information technology, we defined a design appropach
in terms of this framework, and we illustrated this by means of an example. How
does this help us to improve alignment of application architecture to business
architecture?

Our framework helps solving the alignment problem because it yields us a
number of simple architecture design guidelines. We discuss these guidelines here,
explaining how we used them in our example.

— Functional decomposition. For each service to be delivered, a component
is defined. For GT1I, this would lead to one software component for each of the
business services listed in figure 11. If services can be changed independently
from each other, this leads to a modular structure. Since the services in
one business responsibility of GTI are not independent from each other,
functional decomposition would not lead to a modular architecture.

— Communication-oriented decomposition. For each communication with
external entities, define one component. There are three variants of this
guideline.

e Device-oriented. For each device to be communicated with, define a
component that handles this communication. One uses this guideline to
hide the peculiarities of a device from the rest of the software and to
restrict changes in devices to one component. Since devices often can be
changed independently from each other, this leads to a modular struc-
ture. The identification of a web interface component in our example is
device orientation.

e Actor-oriented. For each actor to be communicated with, define a com-
ponent that handles this communication. For example, one may encap-
sulate the dialog with this actor in a separate component. If dialogs are
independent from each other, this leads to a modular structure. The web
interface in our example may be internally structured by actor.

e FEwvent-oriented. For each event to be responded to, define a sepa-
rate component. This is called event-partitioning by McMenamin and
Palmer [14]. If events can be recognized independently from each other,
this leads to a modular architecture. In the case of GTI, event-orientation
would lead to the definition of one component for each column in fig-
ure 11. Since the events handled in one business responsibility are not
independent from each other, this would not lead to a modular architec-
ture. In a multi-channeling architecture, where one event can be com-
municated to the system in a variety of ways, event-partitioning leads
the idea of a front-office in which stimuli are analyzed to identify the
underlying event.

— Behavior-oriented decomposition. For each process in the environment
to be monitored or controlled, define one system component. If different pro-
cesses are independent from each other, this leads to a modular architecture.

16 Wieringa, Blanken, Fokkinga, Grefen

We used this guideline for GTT because each business responsibility contains
one business process and it is mapped to one application architecture com-
ponent.

— Subject-oriented decomposition. For each part of the world about which
data must be maintained, define one system component. This is the standard
guideline in databases and also an important guideline in object-oriented
architecture design. In GTI, we used this to partition the databases into three
parts, that deal with reservations, holiday homes and feedback, respectively.

As illustrated by the GTI example, we can use several guidelines to design an
architecture. Different parts of an architecture may be identified by different
guidelines.

These guidelines have been known in the literature for some time but they
have not yet been systematized. Our contribution is to expose their underlying
system: FEach of these guidelines corresponds to one of the functional system
aspects of our architecture framework (figure 1). Each of these guidelines map
some aspect of the environment to some part of the system architecture. This
transfers the modularity, or lack of it, of the environment to the system architec-
ture. For example, if functions are independent from each other, then functional
decomposition leads to a modular architecture; but if functions are dependent on
each other, so that a change in one leads to a change in another, then functional
decomposition does not lead to a modular architecture. And so on for the list of
architecture design guidelines.

7 Discussion and Conclusions

Our design approach picks up some ideas of Information Engineering [15] but
replaces data-orientation by event-orientation. We view the business and its sup-
porting software system as reactive systems that respond to signals and changes
in conditions in their environment and to significant moments in time. Where
IE maps business processes to information systems, we map business events to
business services, some of which will be realized as application services.

Our approach refines that of Henderson and Venkatraman [4] by providing
operationalized guidelines for aligning a requirements-level application architec-
ture to the business architecture. We believe that it is the first comprehensive
framework and design approach that links business requirements to application
architecture.

Current work includes the use of the framework to collect and analyze ar-
chitecture design practices in large information-processing organizations such as
banks, insurance companies and government organizations. Our aim is to make
a catalog of guidelines that have proven to be useful in large-scale information
systems. We expect many of these guidelines to be domain-specific (i.e. related
to the finance domain) and will try to codify some of this knowledge in domain-
related reference architectures.

Aligning Application Architecture to the Business Context 17

Acknowledgements

Thanks are due to the company where we performed the GTI case study for
their cooperation. This paper benefitted from comments by Pascal van Eck on
an earlier version.

References

10.

11.

12.

13.

14.

15.

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley (1998)

. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley

(2000)

Shaw, M., Garlan, D.: Software Architecture: Perspective on an Emerging Disci-
pline. Prentice Hall (1996)

Henderson, J., Venkatraman, N.: Strategic alignment: leveraging information tech-
nology for transforming operations. IBM Systems Journal 32 (1993) 4-16
Wieringa, R.: Requirements Engineering: Frameworks for Understanding. Wiley
(1996)

Wieringa, R.: A survey of structured and object-oriented software specification
methods and techniques. ACM Computing Surveys 30 (1998) 459-527

Zachman, J.: A framework for information systems architecture. IBM Systems
Journal (1987) 276-292

Hall, A.: Three-dimensional morphology of systems engineering. IEEE Transac-
tions on System Science and Cybernetics SSC-5 (1969) 156-160

Roozenburg, N., Eekels, J.: Product design: Fundamentals and Methods. Wiley
(1995)

Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol, H., van Assche, F., Verrijn-
Stuart, A.: Information Systems Methodologies: A Framework for Understanding.
Addison-Wesley (1988)

Harel, D., Pnueli, A.: On the development of reactive systems. In Apt, K., ed.:
Logics and Models of Concurrent Systems. Springer (1985) 477-498 NATO ASI
Series.

Sowa, J., Zachman, J.: Extending and formalizing the framework for information
systems architecture. IBM Systems Journal 31 (1992) 590-616

Wieringa, R.: Design Methods for Reactive Systems: Yourdon, Statemate and the
UML. Morgan Kaufmann (2003)

McMenamin, S.M., Palmer, J.F.: Essential Systems Analysis. Yourdon
Press/Prentice Hall (1984)

Martin, J.: Information Engineering. Prentice-Hall (1989) Three volumes.

