
Mach Learn (2006) 65:389–409

DOI 10.1007/s10994-006-8415-3

Aligning music audio with symbolic scores using a hybrid
graphical model∗

Christopher Raphael

Received: 20 September 2005 / Revised: 17 February 2006 / Accepted: 9 March 2006 / Published online:

8 May 2006

Springer Science + Business Media, LLC 2006

Abstract We present a new method for establishing an alignment between a polyphonic

musical score and a corresponding sampled audio performance. The method uses a graphical

model containing both latent discrete variables, corresponding to score position, as well as a

latent continuous tempo process. We use a simple data model based only on the pitch content

of the audio signal. The data interpretation is defined to be the most likely configuration of

the hidden variables, given the data, and we develop computational methodology to iden-

tify or approximate this configuration using a variant of dynamic programming involving

parametrically represented continuous variables. Experiments are presented on a 55-minute

hand-marked orchestral test set.

Keywords Graphical models . Score matching . Music . Score following

1. Introduction

We address an audio recognition problem in which a correspondence is established between a

polyphonic musical score and an audio performance of that score, known as score alignment

or score matching. There are two versions of this problem, often called “on-line” and “off-

line” recognition.

Off-line parsing uses the complete performance to estimate the onset time for each score

note, thus the off-line problem allows one to “look into the future” while establishing the

match. Part of our interest in off-line parsing problem stems from a collaboration with the

Variations2 Digital Music Library Project at Indiana University. One of the many aims of

this project is to allow listeners, in particular students in the School of Music, new tools

for learning and studying music, interleaving sound, text, music notation, and graphics.

∗This work supported by NSF grants IIS-0113496 and IIS-0534694.

Editor: Gerhard Widmer

C. Raphael (�)

School of Informatics, Indiana University, Bloomington

e-mail: craphael@indiana.edu

Springer

390 Mach Learn (2006) 65:389–409

One specific goal is to give the user “random access” to a recording allowing playback to

begin at any time, expressed in musical units, e.g. the third beat of measure 47. Clearly

this application requires either hand marking of audio or off-line parsing. Another off-line

application is the editing and post-processing of digital audio, in which many tasks require

the location or processing of a specific place in a potentially large audio datafile. Additional

interest in score alignment comes from the desire to study musical expression using audio

data; clearly, score alignment is needed before the relevant information can be extracted from

the data. Our personal interest in off-line parsing is motivated by yet another application:

our work in musical accompaniment systems. In this effort we resynthesize a prerecorded

audio performance at variable rate to accompany a live soloist. The synchronization requires

that we begin with a correspondence between the prerecorded audio and a musical score.

In fact, almost any application requiring the syncronization of a data stream or media with

prerecorded audio requires score alignment.

On-line parsing, sometimes called score-following, processes the data in real-time as the

signal is acquired. Thus, no “look ahead” is possible and the data must be processed in

real-time. The goal of on-line parsing is to identify the musical events depicted in the score

with little latency and high accuracy. Musical accompaniment systems must perform this

task with the live soloist’s input. Other applications include the automatic coordination of

audio-visual equipment with musical performance, such as opera supertitles and real-time

score-based audio enhancement e.g., pitch correction. We will treat the off-line problem in

this work.

Many researchers have treated on-line and off-line musical parsing including (Dannenberg,

1984; Vercoe, 1984; Baird, Blevins and Zahler, 1993; Puckette, 1995; Grubb & Dannenberg,

1997; Raphael, 1999; Loscos, Cano and Bonada, 1999; Cont, Schwarz and Schnell, 2004;

Orio & Dechelle, 2001; Turetsky & Ellis, 2003; Soulez, Rodet and Schwarz, 2003), to

name several. While many variations exist, the predominant approach seeks a best possible

match by “warping” the score to fit the data using some form of dynamic programming. The

measures of match quality are quite varied, including edit-like distances and probabilistic

measures, as in the popular hidden Markov model approaches. Without doubt, these efforts

contain many notable successes, however, the problem still remains open. In our personal

experience with the HMM approach cited above, results degrade, sometimes dramatically, as

we encounter increasingly difficult domains such as complex polyphony, varied instrumental

texture, fast notes, rearticulations (repeated notes with same pitch) and octave leaps, large

tempo changes, unpitched sounds, etc. While the literature contains very little in the way of

formal evaluations, other researchers seem to experience similar problems. The need for a

more robust and widely applicable approach is the motivation for the current work.

We believe the “Achilles’ heel” of all past approaches we know, including our own, is

the modeling of length for the individual notes. If the issue is treated at all, note lengths,

or, more precisely, inter-onset intervals, are either constrained to some range or modeled

as random, with the range or distribution depending on a global tempo or learned from

past examples. Either implicitly or explicitly, the note lengths are regarded as independent

variables. However, note lengths are anything but independent. Our belief, bolstered by

conventional musical wisdom, is that the lion’s share of note length variation can be explained

in terms of a time-varying tempo process. The failure to model time-varying tempo shifts

more burden to the audio data modeling, requiring the method to follow the score almost

exclusively using sound, without regard for one of the most basic aspects of musical timing.

For instance, a model that knows only the global tempo, as opposed to time-varying tempo,

must allow the recognized note lengths to deviate far from what the tempo and printed

note values would predict, since tempo changes will produce significant departures from the

Springer

Mach Learn (2006) 65:389–409 391

note lengths implied by the global tempo. On the other hand, a model that simultaneously

tracks tempo will make reasonable predictions of note onset times, even when the audio data

is ambiguous, as in repeated chords. This work explicitly models tempo as a real-valued

process, hoping that the more powerful model will guide the recognition through regions

of ambiguity, as well as imposing some rhythmic regularity on the recognition results. Our

data model, introduced in Section 2, is indeed simple-minded, focusing exclusively on pitch

content. While we expect that improvements to our system will be achieved by strengthening

this model, the results presented in Section 4 argue that our focus on the tempo model is

well-placed.

The most straightforward approach to tempo modeling would represent the “state” of

the performance as a score position and tempo pair—both discrete variables for the sake

of simplicity. From frame to frame the position would be updated using the current tempo

while the tempo would be allowed to gradually vary. We have attempted such an approach

using a HMM framework, but found that the discretization of position and tempo needed to

be extremely fine before useful results were achieved. This earlier effort is, by no means,

a “straw man” created only to motivate the current approach. Rather, our current approach

stems from a deeper understanding of the computational issues learned from this previous

effort.

While addressing a different musical problem, this work has a natural connection with

several AI approaches to music recognition (Cemgil & Kappen, 2003; Lang & de Freitas,

2004; Cemgil, 2004; Kapanci & Pfeffer, 2005). The first two of these efforts examine the

problem of beat-tracking—following the pulse of piece of music over time. Both use gener-

ative graphical models that treat tempo as a continuous latent Gaussian process, as we do.

The second two efforts treat additionally the problem of musical transcription also using a

graphical model with continuous latent tempo variables. A significant point of departure be-

tween our work and these is in the choice of optimization techniques. These approaches use a

combination of Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo techniques

(Doucet, de Freitas and Gordon, 2001). In contrast, we have used a dynamic programming

technique which, in small examples, computes the globally most likely data interpretation.

In more realistic cases, we approximate this global optimum with pruning.

We first present in Section 2 a mathematical model that combines a note-level model for

rhythmic interpretation with a frame-by-frame data model. The note-level model explicitly

represents tempo variation and note-by-note deviations. The data model is based completely

on the pitch content of the audio. Section 3 introduces a dynamic-programming-like method

that identifies the globally most likely configuration of the discrete note onset times and con-

tinuous tempo variables. The method is only feasible for small scores and pruning techniques

for larger scores are discussed. Section 4 presents results on a 55-minute widely varied test set

of short orchestral movements containing examples from Mozart to Shostakovich. These are,

to our knowledge, the first systematic experiments of score matching in a realistic ensemble

context. The results demonstrate the accuracy of our note onset estimates and show that the

algorithm rarely becomes irrecoverably lost. Our dataset has been made publicly available to

facilitate comparisons. This section also compares with results derived from an HMM-based

method for score alignment that does not model time-varying tempo.

While the remaining discussion is directed entirely toward our particular application, we

believe that the basic technique we introduce is more generally applicable. Perhaps the idea

of most general interest is our framework which combines a “frame-based” model of audio,

or other one-dimensional data stream, with an event-based model whose state-change times

follow linear dynamics.

Springer

392 Mach Learn (2006) 65:389–409

Fig. 1 Left: The original score. Right: The score viewed as a sequence of chords

2. The model

In the case of monophonic (single voice) music, a musical score can be represented as a

sequence of score positions, expressed in beats, with associated pitches. We do not assume

that score positions are equally spaced. Polyphonic music can be viewed, similarly, as a

sequence of score positions with associated chords (pitch collections). In the polyphonic

case, the score positions would be created by sorting the union of score positions over

all musical parts, and discarding duplicate positions. Each score position would then be

associated with the collection of pitches that sound until the next musical event as depicted in

Fig. 1. In this figure, the left measure is the original score, while the right measure shows our

“homophonic” view of this score. Thus our score does not represent which notes come from

which instruments, or which notes are newly entering (“attacking”). We notate this score by

(m1, c1), (m2, c2), . . . , (mK , cK) (1)

where the kth event begins at mk beats and contains pitches ck = (c1
k , . . . , cLk

k). By convention,

m1 = 0 and c1 and cK are 0-note “chords” corresponding to the silence and the beginning

and end of the audio.

Let t1, . . . , tK be the sequence of times, in seconds, at which the chord onsets occur.

For illustration, Fig. 2 depicts the {tk} as vertical lines in a “spectrogram.” If the music

were performed strictly in time, then tk = smk + t1 and the score matching problem would

reduce to estimating the two parameters, s, and t1 where s is the global tempo and t1 is

the time of the first musical event. However, such robotic precision is seldom desired and

never achieved in actual human performance. More typically the onset times are the product

of numerous interpretative issues as well as the inevitable inaccuracies of human perfor-

mance. We model here what we believe to be the most important factors governing musical

timing: time-varying tempo as well as note-by-note deviations from what the local tempo and

printed note length would predict. More precisely, we define random variables T1, . . . , TK

and S1, . . . , SK through

Sk = Sk−1 + σk

Tk = Tk−1 + lk Sk + τk

for k = 2, . . . , K where lk = mk − mk−1 is the length, in beats, of the kth chord, and

{S1, T1} ∪ {σk, τk}K
k=2 are independent normal random variables with the {σk, τk}K

k=2 vari-

ables further assumed to be 0-mean. S1, . . . , SK is our tempo process, modeled as a random

walk, where Sk is the local beat length (secs. per beat) at the kth chord. The T1, . . . , TK are the

actual note onset times which depend on the tempo process as well as the deviations {τk}K
k=2.

We view the actual times t1, . . . , tK as a realization of the random variables T1, . . . , TK . The

dependency structure of these variables is expressed as a directed acyclic graph in the top of

Fig. 3.

Springer

Mach Learn (2006) 65:389–409 393

Fig. 2 A spectrogram of the opening of the 2nd movement of the Mozart Oboe Concerto. The chord onset

times {tk} are depicted as vertical lines in the figure

Fig. 3 Top: The dependency structure of the tempo and note onset time process. Bottom: The model connecting

the spectrogram data to the frame labels. Circles denote continuous variables, while squares denote discrete

variables. The darkened squares represent observed variables—the spectrogram frames

Letting s = (s1, . . . , sK) and t = (t1, . . . , tK), this model leads to a simple factorization

of the joint probability density, p(s, t), as

p(s, t) = p(s1)p(t1)

K∏
k=2

p(sk |sk−1)p(tk |tk−1, sk) (2)

Springer

394 Mach Learn (2006) 65:389–409

Fig. 4 The data is segmented

into a sequence of frames. The

spectrogram is formed by taking

a windowed finite Fourier

transform of each frame

The factors in this equation are, more explicitly,

p(s1) = N
(
s1; μs1

, σ 2
s1

)
(3)

p(t1) = N
(
t1; μt1 , σ

2
t1

)
(4)

p(sk |sk−1) = N
(
sk ; sk−1, σ

2
sk

)
(5)

p(tk |tk−1, sk) = N
(
tk ; tk−1 + lksk, σ

2
tk

)
(6)

k = 2 . . . , K , where N (·, μ, σ 2) denotes the univariate normal density function with mean

μ and variance σ 2. The model parameters μs1
, σ 2

s1
, μt1 , σ

2
t1 and {σ 2

sk
, σ 2

tk }K
k=2 are assumed

known.

Our data come from a sampled audio signal which we partition into a sequence of frames,

y0, y1, . . . yN−1, each corresponding to � seconds of sound (� ≈ 30 ms. in our experiments).

See Fig. 4. For each frame, n = 0, . . . , N − 1, we let xn denote the index of the chord that is

sounding for the frame. For example, the sequence of values:

x0, x1, x2 . . . = 00 . . . 0︸ ︷︷ ︸
I0

11 . . . 1︸ ︷︷ ︸
I1

22 . . . 2︸ ︷︷ ︸
I2

. . . (7)

would signify that the first chord begins at I0� seconds, the second chord begins at (I0 + I1)�

seconds, etc. We model both x = (x0, . . . , xN−1) and y = (y0, . . . , yN−1) as realizations

of random processes X and Y . In particular, given X = x , Y0, . . . , YN−1 are conditionally

independent random vectors with local dependence on the X process. That is, the conditional

density for Y given X = x is

p(y | x) =
N−1∏
n=0

p(yn|xn)

Springer

Mach Learn (2006) 65:389–409 395

The X and Y processes are depicted in the bottom of Fig. 3.

We are interested in specifying a joint model on the vectors S, T, X, Y . The key obser-

vation here is that T and X contain essentially identical information: the partitioning of the

audio signal into chords. More explicitly, if the definitions of p(t1) and p(tk | tk−1, sk) are

modified to be Gaussian, conditioned on the assumptions that Tk−1 < Tk and that Tk = n�

for n ∈ {1, 2, 3 . . .}, then T and X are equivalent in the sense that either can represented as a

function of the other. Thus, regarding t as increasing and discrete, we can eliminate t from

the model and write p(s, t, x, y) = p(s, x, y) where

p(s, x, y) = p(s1)p(t1)

K∏
k=2

p(sk | sk−1)p(tk | tk−1, sk)

N−1∏
n=0

p(yn | xn) (8)

While the right hand side of Eq. (8) appears to depend on t , we interpret t = t(x), i.e.

tk(x) = min{n : xn = k}� (9)

As before, the {tk} are simply the chord onset times, in seconds, which can be directly read

off the label process, x .

2.1. The data model

Our data model gives p(yn | xn) where yn is the nth frame of audio data and xn is an index

into the score. Suppose first that xn indexes a single-note chord, whose frequency is c. Since

the audio signals of musical pitches are nearly periodic, we would expect the power spectrum

of yn to concentrate energy primarily at the integral multiples c, 2c, 3c, Thus we build a

probability density on frequency by

g(f ; c) =
J∑

j=1

w j N
(

f ; jc, ρ2
j

)
where f indexes frequency and

∑J
j=1 w j = 1. The number of harmonics considered, J , their

widths, {ρ2
j }J

j=1, and the way in which they decrease as frequency increaes, w1, . . . , wJ , are

parameters of our model. The left panel of Fig. 5 shows such a density. This idea can be

extended to an arbitrary chord, c = (c1, . . . , cL), by mixing the one-note distributions (and

adding a background noise term)

g(f ; c) = q01(0, fmax) + q1

L

L∑
l=1

g(f, cl)

where q0, q1 are weights with q0 + q1 = 1, as shown in the right panel of Fig. 5.

Suppose our observed power spectrum is e = e(yn) = (e1, . . . , eF). Imagining for a mo-

ment that the values of e are integral, we can view e as the histogram of a random sample of

size r = ∑
f e f from our model distribution g = (g1, . . . , gF) where g is a discretization of

g(f ; c). Thus

p(e | c, r) = r !∏
f e f !

F∏
f =1

g
e f

f (10)

Springer

396 Mach Learn (2006) 65:389–409

0 2 4 6 8 10

0 0
1

0
2

0
3

0
4

0

5
1

0
1

5
2

0
2

5

freq

s
p

e
c
tr

a
l
e

n
e

rg
y

0 2 4 6 8 10

x

y
1

 +
 y

2

Fig. 5 Left: An idealized spectrum for a single note. Right: An analogous spectrum for two simultaneous

notes created as a superposition of two single-note spectra

To complete the data model we would need a marginal distribution on r , p(r). However, since

the data, e, will be fixed in our computations, p(r), or any other factor not depending on g,

amounts to a multiplicative constant in the data model as the chord hypothesis, c, varies.

Thus or model is

p(yn | xn) = p(e | c) = C(e, α)

F∏
f =1

g
e f /α

f

where we have dropped the requirement that e be integral and added a scaling parameter α.

While suppressed in the notation, our data model is parametric with parameters

J, {w j , ρ
2
j }J

j=1, α, q0, q1. The data model could easily be improved by adding features mea-

suring other attributes such as local energy and “burstiness” of the signal, however, the simpler

model described above was used in our experiments.

3. Computing the MAP estimate

Our goal is now phrased as follows: Given the observed data, y, we seek the most likely

configuration of the unobserved variables, s and x :

(ŝ, x̂) = arg max
s,x

p(s, x, y) (11)

If all variables were discrete, this problem would be solvable through traditional dynamic

programming techniques, however, note that the s process is continuous. We describe here a

method for approximating, and in some cases computing, the global solution to Eq. (11).

Springer

Mach Learn (2006) 65:389–409 397

Table 1 Table of symbols

Symbol Meaning

mk position in beats of kth chord

ck the kth chord

ci
k the i th member of kth chord

tk time in seconds of kth chord onset

sk local tempo in seconds per beat at the kth chord

lk length of kth chord in beats

� the length of a frame of audio in secs.

xn label of nth frame of audio (xn = k means nth frame in kth note)

yn the nth frame of data (a vector)

g f the energy for freq. f in a modeled spectrum

e f the observed energy at freq. f .

Fig. 6 The search tree associated with optimization. The label of a tree node is the score index describing the

current chord

Consider the tree of Fig. 6, which describes an enumeration of all possible realizations

of the labeling process x . First, the root of the tree is labeled 0. Then, any node in the tree

with label k < K will have two children labeled by k and k + 1, while a node labeled K will

have a single child labeled K . The labels 0 and K correspond to the silence at the beginning

and end of the audio data. Note that any path from the root of the tree to a node at depth

n traverses a sequence of labels corresponding to a possible realization of the x0, . . . , xn ;

clearly all possible realizations are contained in the tree.

Traversing a partial path through the tree (fixing x0, . . . , xn) implicitly determines the first

several onset variables t1, . . . , tk through Eq. (9). (Here k also depends on the path x0 . . . , xn

although we suppress this in our notation). For this partial path, the probability density for

the variables Xn
0 = (X0, . . . , Xn), Y n

0 = (Y0, . . . , Yn), Sk
1 = (S1, . . . , Sk) is

p
(
sk

1 , xn
0 , yn

0

) = p(s1)p(t1)

×
k∏

κ=2

p(sκ | sκ−1)p(tκ | tκ−1, sκ)

×
n∏

ν=0

p(yν | xν) (12)

Springer

398 Mach Learn (2006) 65:389–409

In interpreting this equation, if k = 0 then the lines numbered 12 and 12 are unity while if

k = 1 only the line numbered 12 is unity.

For each partial path xn
0 define

p̂xn
0
(sk−1) = max

s1...,sk−1

p
(
sk

1 , xn
0 , yn

0

)
(13)

In right side of Eq. (13), all variables are fixed except s1, . . . , sk . Due to the Gaussian assump-

tions, p(sk
1 , xn

0 , yn
0) is clearly the exponential of a quadratic function of the s1, . . . , sk . Thus,

after maximizing over sk . . . , sk−1, we can represent p̂xn
0
(sk) as a function of the parametric

form

K (sk ; h, m, v) = he− 1
2

(sk−m)2/v (14)

for some (h, m, v).

It is a simple matter to compute the parameters of this representation recursively. Suppose

xn−1
0 = (x0, . . . , xn−1) is such that xn−1 = k − 1 and p̂xn−1

0
(sk−1) = K (sk−1; h, m, v). There

are two cases. First, if xn−1 = xn then

p̂xn
0
(sk−1) = p̂xn−1

0
(sk−1)p(yn | xn)

= K (sk−1; hp(yn | xn), m, v)

Otherwise, a straightforward but somewhat lengthy calculation gives

p̂xn
0
(sk) = max

sk−1

p̂xn−1
0

(sk−1)p(sk | sk−1)p(tk | tk−1, sk)p(yn | xn)(15)

= K (sk ; h′, m ′, v′)

where

h′ = hp(yn | xn)

2πσ 2
sk
σ 2

tk

e
− 1

2

(tk −tk−1−lk m)2

l2k (v+σ2
sk

)+σ2
tk

m ′ = mσ 2
tk + lk(tk − tk−1)

(
v + σ 2

sk

)
l2
k

(
v + σ 2

sk

) + σ 2
tk

v′ =
(
v + σ 2

sk

)
σ 2

tk

l2
k

(
v + σ 2

sk

) + σ 2
tk

In the sequel we will use the notation p̂xn
0
(sk) = K (sk ; h(xn

0), m(xn
0), v(xn

0)). Thus for any

complete path x = x N−1
0 with xN−1 = K , we can compute

max
s

p(s, x, y) = max
sK

p̂x N−1
0

(sK) = h
(
x N−1

0

)
The preceding shows how to maximize p(s, x, y) over s when x is held fixed. We now

discuss maximizing p(s, x, y) over x as well as s.

Springer

Mach Learn (2006) 65:389–409 399

3.1. Controlling the search tree’s growth

Clearly the number of tree nodes grows exponentially with the tree’s depth, making it im-

possible to explore the tree thoroughly without additional insight. The key observation here

is that the tree can be pruned without sacrificing the search for the optimal path, using a

dynamic programming technique.

Examination of Eq. (8) reveals that our joint probability model has a Markov structure

and can hence be factored into “past” and “future” probabilities. That is, if xn = k we have

p(s, x, y) = p
(
sk

1 , xn
0 , yn

0

)
p
(
sK

k+1, x N−1
n+1 , yN−1

n+1

∣∣ sk, tk
(
xn

0

))
where (sk, tk) plays the role of the “state.” In other words, given the past, the future only

depends on (sk, tk).

The basic idea of dynamic programming observes that if (s̃k
1 , x̃ n

0) is such that x̃n = k and

p
(
s̃k

1 , x̃ n
0 , yn

0

)
< max

sk
1

:sk =s̃k
xn

0 :tk (xn
0)=tk (x̃ n

0)

p
(
sk

1 , xn
0 , yn

0

)
(16)

then (s̃k
1 , x̃ n

0) cannot be the prefix of an optimal path. Similarly, if x̃ n
0 satisfies Eq. (16) for all

s̃k
1 , then x̃ n

0 cannot be a prefix for the optimal x . In this case, x̃ n
0 corresponds to a partial path

in the tree of Fig. 6 that we could prune without any loss of optimality.

We show here how to identify such suboptimal branches. Let

Jn,k = {
xn

0 : xn = k, xn−1 = k − 1
}

= {
xn

0 : tk
(
xn

0

) = n�
}

Define

p̂n,k(s̃k) = max
sk
1

:sk =s̃k
xn

0 ∈Jn,k

p
(
sk

1 , xn
0 , yn

0

)
= max

xn
0 ∈Jn,k

p̂xn
0
(s̃k)

= max
xn

0 ∈In,k

p̂xn
0
(s̃k)

where In,k is defined as the smallest subset of Jn,k such that the above equation holds.

A computationally feasible algorithm for the “thinning” operation which computes In,k is

discussed in detail in Raphael (2002). The thinning operation is depicted in Fig. 7. Intuitively,

any Gaussian kernel that does not “touch the skyline” is beaten by some other kernel for every

possible tempo value. Thus, such a kernel can be pruned without loss. In this way we “thin”

the collection of possible paths we need to consider in search of the optimal path.

Springer

400 Mach Learn (2006) 65:389–409

Fig. 7 Top: The set of functions { p̂xn
0

(sk) = K (sk ; h(xn
0), m(xn

0), v(xn
0)) : xn

0 ∈ Jn,k} (i.e. before thinning).

Bottom: The functions { p̂xn
0

(sk) : xn
0 ∈ Thin(In,k)} (after thinning). The dark maximizing line is the func-

tion p̂n,k

If x̃ n
0 ∈ Jn,k \ In,k , then for any s̃k

p
(
s̃k

1 , x̃ n
0 , yn

0

) ≤ p̂x̃n
0
(s̃k)

< max
xn

0 ∈In,k

p̂xn
0
(s̃k)

= max
xn

0 ∈Jn,k

p̂xn
0
(s̃k)

= max
sk
1

:sk =s̃k
xn

0 :tk (xn
0)=tk (x̃ n

0)

p
(
sk

1 , xn
0 , yn

0

)

and can thus be pruned without loss.

Of course the algorithm does not need to perform the thinning operation over the entire

set Jn,k . In fact, since |Jn,k | grows exponentially and the thinning algorithm is quadratic in

Springer

Mach Learn (2006) 65:389–409 401

the size of |Jn,k |, thinning would be infeasible in this case. However, once a branch has been

identified as suboptimal, no extension of the branch can become optimal at a later stage.

Thus our algorithm needs only to propagate branches that have not yet been shown to be

suboptimal and to, for each iteration n, perform thinning among the intersection between

these surviving branches and Jn,k for each k. It is easy to show that after the surviving subset

of Jn,k has been thinned, no further thinning is possible on children of these branches until

some branches begin new chords (enter Jn′,k+1 for some n′). For this reason, the thinning

operations described above are the only ones that we perform.

Suppose IN−1 is the set of branches, x = x N−1
0 , surviving through the final iteration N − 1

and having xN−1 = K . Then

max
s,x

p(s, x, y) = max
x N−1

0 ∈IN−1

max
sK

p̂x N−1
0

(sK)

= max
x N−1

0 ∈IN−1

h
(
x N−1

0

)
Thus the maximizing path is x̂ = arg maxx N−1

0 ∈IN−1
h(x N−1

0) and the maximizing sequence

of tempos can be found by letting ŝK = m(x̂) and tracing the optimal tempos ŝK−1 . . . , ŝ1

backward by recursively substituting arg max for max in Eq. (15).

3.2. Computational complexity and pruning

We examine here the computational complexity of computing a global optimum.

Suppose that

1. The thinning algorithm reduces any set of branches to at most T branches.

2. The number of chords in the score is K .

3. Each note can last no longer than F frames.

Then at the beginning of each iteration, n, the number of surviving branches is at most

KTF since each chord could have begun at frames n − 1, . . . n − F with each (chord, onset

position) pair associated with at most T branches. The basic iteration extends the surviving

branches and thins each subset of children that begin chord k, k = 1, . . . , K . Thus the cost

of an iteration is KTF + K(TF)2 since the thinning operation is quadratic in the number

of branches to be thinned. Thus the overall computational complexity of the algorithm is

NK(TF).2

As a coarse approximation the first assumption seems justifiable in practice. Figure 8 shows

a scatter plot where each point is the number of hypotheses both before and after thinning.

The “after” numbers seem to be independent of the “before” numbers and very rarely does

thinning result in more than 50 branches. In fact, the number would be less at coarser frame

discretization. However, as the algorithm progresses, the number of (chord, onset position)

hypotheses entertained in any frame increases monotonically since thinning happens only

within a (chord, onset position) collection. Eventually this creates an overwhelming number

of hypotheses, so global optimization is only possible for short scores containing 30 or so

chords.

While global optimization may not be possible, we strongly doubt that it is necessary.

Human listeners certainly lose sight of the distant past while following musical scores,

yet have no trouble maintaining an accurate correspondence between score and sound. We

proceed analogously by pruning our search tree.

Springer

402 Mach Learn (2006) 65:389–409

Fig. 8 Each point in figure represents the number of hypotheses, both before and after the thinning operation.

The resulting number of branches (y) seems independent of the number thinned (x)

A simple approach would be to sort the current (surviving) hypotheses on h(xn
0) =

maxsk p̂xn
0
(sk) and prune the smallest of these. We have found this technique works rea-

sonably well. However, in experimenting with this pruning method, we have observed that

branches already exceeding a reasonable amount of time for the current chord avoid being

pruned by delaying the chord change, thereby delaying incurring the associated note length

factor p(tk+1 | tk, sk). This phenomenon is analogous to the “horizon effect” of computer

Springer

Mach Learn (2006) 65:389–409 403

chess in which hypotheses receive falsely inflated scores by postponing an inevitable end

beyond the search horizon. A second problem is that, at any particular analysis frame, n, the

various partial paths, x = (x0, . . . , xn), will represent different positions in the musical score.

Suppose that a particular path is currently in the kth note in the score. Then the likelihood

of this partial path will contain a factor for each of the t1, . . . , tk as in Eq. (2). Since k varies

over the partial paths, the h-scores are composed of different numbers of factors and direct

comparison is suspect.

We address these problems by sorting the partial paths over S(xn
0) = D(xn

0) + K n
N

M(xn
0)

k
and pruning the paths having the lowest S(xn

0) scores, where

D
(
xn

0

) =
n∑

ν=0

log p(yν | xν)

M
(
xn

0

) = max
sk+1

1 ,tk+1>n
log

{
p(s1)p(t1)

k+1∏
κ=2

p(sκ | sκ−1)p(tκ | tκ−1, sκ)

}

In the above equation, D(xn
0) is simply the data log likelihood of the partial path. M(xn

0) is the

optimal model log likelihood for the first k + 1 tempo and position variables with tk+1 taking

some value in the future. Since a partial path, xn
0 , implicitly fixes the first k position variables

t1, . . . , tk , we only maximize over the remaining variables. While we omit the calculation,

one can easily compute M(xn
0) recursively as n increases. At any fixed iteration, then we

are sorting over the data log likelihood plus a constant times the average per note model

log likelihood, therefore not penalizing the paths with more notes. However, as n → N and

k → K this gradually reduces to the original log likelihood D(xn
0) + M(xn

0) as in Eq. (13).

4. Experiments

To evaluate our algorithm we constructed a test set of short orchestral movements (and

one opera selection), representing a variety of musical styles. The restriction to the orchestral

domain does not reflect a known limitation of our methods—to the contrary, orchestral music

is quite heterogeneous and contains many of the data types we believe to be most problematic

for score matching, such as tempo changes, rubato, fast notes, and varied instrumental texture.

The choice of data was influenced by personal taste.

Recall that our musical score is represented as a sequence of (musical time, chord) pairs as

in Eq. (1). In many cases, this representation can be constructed automatically from a MIDI

file. To this end, we collected around 20 MIDI files from the Classical Midi Archives. In

creating our scores we replaced note sequences within a single voice that appeared to be trills

or tremolos by sustained notes. In addition, two notes very nearly sharing the same onset time

are both assumed to begin at the “simpler” musical time (the one with the smaller denomi-

nator, when expressed in beats). Aside from these special cases, the processing consists of a

straightforward extraction of data from the MIDI files. In particular, our algorithm creates, for

each MIDI file, a note list containing the musical onset times with the corresponding MIDI

note commands, a list of tempo changes, and list of meter changes. The tempo changes,

discussed later, will be used for setting approximate tempi.

About half of these files were rejected for various reasons, either before or after this

preprocessing stage: some files were piano reductions, some had suspiciously complex re-

constructed rhythm suggesting expressive timing, some contained other assorted anomalies.

There is no reason to assume that our matching algorithm would fail on the MIDI files we

Springer

404 Mach Learn (2006) 65:389–409

Table 2 The test set for the score matching experiments

Work Orchestra Conductor Year Mins.

Mahler

Symphony 4 Mvmt. 1 Boston Ozawa 1987 5.23

Holst

The Planets Mercury Toronto Davis 1986 4.03

The Planets Mars Toronto Davis 1986 6.88

Mozart

Symph. 41 Mvmt 2 Berlin von Karajan 1978 7.78

Symph. 41 Mvmt 4 (1) Berlin von Karajan 1978 2.20

Symph. 41 Mvmt 4 (2) Berlin von Karajan 1978 3.84

Cosi Fan Tutte Overture London Haitink 1987 4.54

ibid. “Soave Sia il Vento” London Haitink 1987 3.02

Debussy

Trois Nocturnes Fêtes Cleveland Boulez 1995 6.52

Dvorak

Symphony 8 Allegretto London Leppard 1997 6.05

Shostakovich

Symphony 1 Mvmt 2 Chicago Bernstein 1989 4.88

rejected. In fact, a previous experiment showed excellent results with a piano transcription

of the Sacrificial Dance from Stravinsky’s Le Sacre du Printemps applied to a full orchestral

performance. However, our goal here was to keep the experimental conditions as constant as

possible over the test set. Despite this goal, the accepted MIDI files were not of uniform qual-

ity. Some contain many wrong notes, some contain numerous tempo changes while others

only mark sudden and significant tempo changes, and other sources of variability probably

exist. Nonetheless, we resisted the urge to “tweak” the scores by hand.

For each of the surviving files we then took corresponding audio data from a CD, down-

sampled to mono 8 KHz. Table 2 gives the test set totaling nearly 55 minutes of music. The

Mahler example is only the first five or so minutes of the movement. The last movement of

the Mozart symphony was broken into two sections due to a repeat that appeared in the MIDI

file (and hence our score) but not the performance—a common problem.

For each of these examples we created ground truth by playing the audio file from the

computer and tapping along on the keyboard while recording the times of each key press.

Each section of constant meter was given a fixed number of taps per measure. These files

were then hand-corrected using an interactive program that allows the user to see, hear, and

adjust the taps which are superimposed visually over the audio spectrogram and aurally (as

clicks) over the sound file. The tap files are not particularly accurate in identifying individual

beat locations, but also do not accumulate error over time. That is, they never “get lost.”

Our model is completely specified once we describe the model parameters of Eqs. (3)–(6).

Of these, the critical parameters are {σ 2
sk
, σ 2

tk } since the others only describe the behavior of the

initial state and don’t seem to have significant effect on the results. We model these variances

as parametric functions of the expected note durations, computed using the note lengths {lk}
and the local tempo prescribed in the scores derived from the MIDI files. In particular, we

Springer

Mach Learn (2006) 65:389–409 405

Table 3 Percentages of errors under various conditions. Here HGM refers

to the Hybrid Graphical Model presented in this paper. HMM refers to a

Hidden Markov Model approach, also of our own design. The first column

describes performance on the “Full” data set (5038 beats) of Table 2. The

next two columns describe the “Restricted” data set (1135 beats) consisting

of both examples from Cosi Fan Tutte as well as the Shostakovich 1st

Symphony Scherzo

Errors Full (HGM) Restricted (HGM) Restricted (HMM)

<1 secs. .983 .964 .930

<.5 secs. .979 .953 .865

<.25 secs. .951 .916 .607

<.125 secs. .721 .664 .344

model these variances as linear functions of the expected note duration. It would also be

possible to model the variances as parametric functions of the expected duration, derived

from the expected tempo associated with each branch of the search tree. While we believe

these two approaches would give nearly identical results, the latter introduces a modeling

complication, since our model assumes the variances are known a priori, rather than functions

of unknown tempo variables. However, the latter method also uses a more accurate expected

duration in the computation of the model variances and might benefit from this. The linear

parameters were chosen by trial and error on a training set admittedly not completely distinct

from our test set. However, given that we were optimizing only 4 parameters and our data

set consists of nearly an hour of music, we expect our results will generalize. While we have

made preliminary attempts to learn these parameters from actual data, we have not, as yet,

encountered any improvement in performance through this effort.

We then processed each of our audio files according to our alignment method, as described

in the preceding sections. Every time a branch of the search tree began a note corresponding

to a tempo change (as given by the MIDI file), we reset the tempo distribution to have the

mean indicated by the MIDI file with a rather large and fixed variance. The result of the

process is a collection of estimated onset times, one for each note of the score, written out

to a file. For each note that falls on a beat, we compute the “error” as the difference between

the estimated onset time and the corresponding tap time. Of the entire collection of 5038 of

error estimates (left column Table 3) 95% of the errors were less than .25 sec. in magnitude,

while 72% were less than .125 secs. In interpreting these results, one should keep in mind

that the tapping ground truth is not especially accurate; thus the measured performance of

the algorithm really represents a worse case bound. In fact, our listening of the “click”

files for both the recognized data and the ground truth suggests that the recognized results

are sometimes more accurate than the ground truth. Since displaying all errors in the same

histogram renders the rarer large errors invisible, Fig. 9 gives two histograms: the left panel

shows the distribution of the errors that are less than 1 sec., while the right histogram gives

the remaining errors. Note the 50-fold difference in scale between the two histograms. We

suspect that the left histogram really says more about the ground truth than our recognition

accuracy.

The left histogram of Fig. 9 describes the accuracy of our system when the algorithm is

not lost. Figure 10 shows a different aspect of the algorithm’s performance by giving the

errors, plotted against beat times, for each piece in the collection. In Fig. 10 the individual

traces are stacked vertically for the sake of comparison, so the errors should be interpreted as

deviations from the “baseline,” thus we see occasional bursts of errors on the order of several

Springer

406 Mach Learn (2006) 65:389–409

Histogram of error[abs(error) < 1]

secs

F
re

q
u
e
n
c
y

–1.0 –0.5 0.0 0.5

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Histogram of error[abs(error) >= 1]

secs

F
re

q
u
e
n
c
y

0 5 10 15 20

0
5

1
0

1
5

2
0

Fig. 9 Left: Histogram of errors less than 1 sec. in absolute value. Right: The remaining errors. Note that

similar bar heights represent about 50 times as many counts on the left panel

seconds. Figure 10 demonstrates the rather surprising ability of our algorithm to recover after

significant errors. In fact, the only places in which our system does not recover from being

lost are near the very ends of the excerpts.

The predominant cause of the significant errors appearing in Fig. 10 is sections of music

with little or no pitch variation. Recall that our data model is based solely on pitch content

so the data model contributes essentially no information when the pitch content is static.

Not surprisingly, our algorithm experienced difficulty with such sections, as in the repeated

ffff tritone-laden chords in the brass and strings ending Mars; the pianissimo open fifths

in the strings ending the Shostakovich movement; the harp, string, and timpani ostinato
that precedes the trumpet trio in Fêtes; the long cadence into G Major at the end Mahler

excerpt (bar 102); and the final chords of the Mozart overture. This suggests that rather

simple improvements to our data model, such as modeling note attacks, might produce better

performance in such cases.

The graphs and analyses provide a sense of our algorithm’s performance on this difficult

test set, however, they are no substitute for an audio demonstration. To this end, we have put

“click files” of each piece on the web at

http://xavier.informatics.indiana.edu/˜craphael/ismir04

These audio (.wav) files contain the original performance with clicks superimposed at every

detected note onset. We encourage the interested reader to listen to some of these examples.

In addition, to facilitate comparisons, the above directory also contains the original MIDI

files, the tap files, the estimates produced by our algorithm, as well as the original 8 KHz

audio files.

Springer

Mach Learn (2006) 65:389–409 407

0 2 4 6

0
5

1
0

1
5

2
0

minutes

s
e
c
o
n
d
s

soave

shostakovich

fete

dvorak

mars

mercury

mahler

cosi_overture

jupiter_andante

jupiter_mvmt4.0

jupiter_mvmt4.1

Fig. 10 Error vs. beat time for each piece in the data set. The various examples are stacked vertically for ease

of comparison, so errors are seen as deviations from the “baseline” rather than actual heights

4.1. Comparison to HMM approach

As discussed in the introduction, the predominant approach to score alignment has been

dynamic-programming-type methods with no simultaneous estimation of tempo. We com-

pared the the method treated here with a method of this type—our HMM system described in

Raphael (1999). This latter system has been developed with musical accompaniment systems

Springer

408 Mach Learn (2006) 65:389–409

in mind, usually involving a “close-miked” monophonic instrument. While the HMM ap-

proach also works for polyphonic instruments such as the piano or guitar, these scenarios

represent a significantly different challenge than that of orchestral audio. The most important

difference between the HMM approach and the approach of this paper is the treatment of

tempo. In the HMM approach, note lengths (really inter-onset intervals) are modeled as inde-

pdent random variables whose parameters are computed from the global tempo and printed

note length.

We ran our off-line HMM method on a subset of the data described in Table 2. Our HMM

method derives its note onset estimates from the posterior distribution of the hidden state

variable using the usual forward-backward algorithm. In three of our test examples, Mercury
from The Planets, Fêtes from the Debussy Nocturnes, and the Mahler 4th Symphony excerpt,

our system failed to find the terminal state in the forward pass. Since this is a relatively

rare occurance in usual applications of our HMM system, we have not accounted for this,

though there are straightforward ways to salvage such a situation. In the remaining three

test examples, the Overture and Terzettino from Cosi Fan Tutte and the Shostakovich 1st

Symphony Scherzo, the forward pass of the HMM approach worked as expected and we

computed our usual collection of note onset times. We refer to these last three examples as

the “Restricted” test set in Table 3. The last two columns of the table compare the performance

of the “hybrid” algorithm of this paper and the HMM approach. These results demonstrate a

rather clear superiority of our hybrid approach on this data.

5. Conclusions and observations

Our motivation for this problem stems from our interest in musical accompaniment systems.

One version of our accompaniment system plays back a prerecorded audio file at variable

rate (without changing pitch) so as to provide a flexible accompaniment that follows a live

soloist. In order to acheive synchronization with the soloist we must know where the various

audio events occur in both the prerecorded audio and the live audio from the soloist. We have

used the algorithm presented herein to generate the match between the prerecorded (usually

orchestral) audio and the symbolic score. At present we have performed this operation on

around 50 different orchestral movements.

One of the greatest strengths of the proposed method is that it rarely gets “lost.” In

fact, the experiments presented herein show examples in which the system recovers from

interpretations that are locally incorrect, often during regions in which the pitch content

alone is insuffiencient to match the score and audio. This ability stems from the our explicit

modeling of tempo, allowing the system to have prior expectations which guide our system

toward reasonable interpretations, much like a language model in speech. In contrast, the

HMM approach proved more brittle in these orchestral experiments.

While the tempo model has clear benefits, it is not without its downside. Situations in

which large deviations from the overall tempo occur are often recognized with an overly

smoothly varying tempo, sacrificing the precise location of some of the note onsets in the

process. Careful review of the results presented on the web will demonstrate this tendency.

Many inaccuracies of the method can be traced to an incorrect balance of the timing model

and data model—a subject deserving further attention.

In contrast to the score matching method presented here, we have considerable experience

using an off-line hidden Markov model that does not model tempo, discussed above in Section

4.1. In our HMM system, note lengths are considered as independent variables—an idea

criticized in Section 1. This assumption allows the much greater freedom in the position of

Springer

Mach Learn (2006) 65:389–409 409

note onset times and, in practice, puts more weight on the data model. We normally employ

our HMM approach with single monophonic instruments or with polyphonic instruments

such as piano or guitar. In this environment the HMM system has certain advantages. First of

all, it is easy to adapt the HMM to on-line recognition in which the audio data is processed in

real-time: in essense, we use the forward probabilities to determine when a note is in the past

and then estimate its onset time using the forward-backward algorithm on the available data

Raphael (1999). Secondly, with the “close-miked” audio data of our accompaniment system,

the audio data has more definition and is generally less ambiguous. Thus accurate score

matching can be achieved by deemphasizing the timing model and concentrating primarily

on finding a match consistent with the audio signal. We still prefer the HMM system for this

type of data, though the hybrid model of this paper is suitable for a much wider range of

musical scenarios.

Acknowledgments This work supported by NSF grants IIS-0113496 and IIS-0534694. Thanks to the Varia-

tions2 Digital Music Library Project at Indiana University for discussions regarding practical aspects of this

work.

References

Baird, B., Blevins, D., & Zahler, N. (1993). Artificial intelligence and music: Implementing an interactive

computer performer. Computer Music Journal, 17(2).

Cemgil, A. T., & Kappen, B. (2003). Monte Carlo methods for tempo tracking and rhythm quantization.

Journal of Artificial Intelligence, 18.

Cemgil, A. T. (2004). Bayesian music transcription. PhD. Thesis University of Nijmegen.

Cont A., Schwarz, D., & Schnell, N. (2004). Training IRCAM’s score follower. AAAI Fall Symposium Series

on Style and Meaning in Language, Art, Music and Design Proceedings, Washington, DC.

Dannenberg, R. (1984). An on-line algorithm for real-time accompaniment. In: Proceedings of the Interna-
tional Computer Music Conference, 1984 ICMA, Paris, France.

Doucet, A., de Freitas, N., & Gordon, N. J. (Eds.). (2001). Sequential Monte Carlo methods in practice.

Springer-Verlag, New York.

Grubb, L., & Dannenberg, R. (1997). A stochastic method of tracking a vocal performer. In: Proceedings of
the International Computer Music Conference, 1997 ICMA.

Kapanci, E., & Pfeffer, A. (2005). Signal-to-score music transcription using graphical models. In: Proceedings
of the 19th International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, UK.

Lang, D., & de Freitas, N. (2004) Beat tracking the graphical model way. Advances in Neural Information
Processing Systems 16, Cambridge, MA: MIT Press.

Loscos, A., Cano, P., & Bonada, J. (1999). Score-performance matching using HMMs. In: Proceedings of the
International Computer Music Conference, 1999 ICMA.

Orio, N., & Dechelle, F. (2001). Score following using spectral analysis and hidden markov models. In:

Proceedings of the International Computer Music Conference, 2001 ICMA.

Puckette, M. (1995). Score following using the sung voice. In: Proceedings of the International Computer
Music Conference, 1995 ICMA.

Raphael, C. (1999). Automatic segmentation of acoustic musical signals using hidden Markov models. IEEE
Trans. on PAMI, 21(4).

Raphael, C. (2002). A hybrid graphical model for rhythmic parsing. Artificial Intelligence, 137(1).

Soulez, F., Rodet, X., & Schwarz, D. (2003). Improving polyphonic and poly-instrumental music to score

alignment. In: Proc. Int. Symp. Music Info. Retrieval, 2003 Baltimore MD.

Turetsky, R., & Ellis, D. (2003). Ground-truth transcriptions of real music from force-aligned MIDI syntheses.

In: Proc. Int. Symp. Music Info. Retrieval, 2003 Baltimore MD.

Vercoe, B. (1984). The synthetic performer in the context of live performance. In: Proceedings of the Inter-
national Computer Music Conference, 1984 ICMA, Paris, France.

Springer

