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Abstract— In this paper we investigate the usage of persistent
point feature histograms for the problem of aligning point cloud
data views into a consistent global model. Given a collection of
noisy point clouds, our algorithm estimates a set of robust 16D
features which describe the geometry of each point locally. By
analyzing the persistence of the features at different scales, we
extract an optimal set which best characterizes a given point
cloud. The resulted persistent features are used in an initial
alignment algorithm to estimate a rigid transformation that ap-
proximately registers the input datasets. The algorithm provides
good starting points for iterative registration algorithms such
as ICP (Iterative Closest Point), by transforming the datasets to
its convergence basin. We show that our approach is invariant
to pose and sampling density, and can cope well with noisy data
coming from both indoor and outdoor laser scans.

I. INTRODUCTION

The problem of consistently aligning various 3D point

cloud data views into a complete model is known as registra-

tion. Its goal is to find the relative positions and orientations

of the separately acquired views in a global coordinate

framework, such that the intersecting areas between them

overlap perfectly. One of the most popular registration meth-

ods to date is the Iterative Closest Point (ICP) algorithm

[1], [2], an iterative descend method which tries to find the

optimal transformation between two datasets by minimizing

a distance error metric. ICP uses pairs of nearest 3D points

in the source and model set as correspondences, and assumes

that every point has a corresponding match.

Since input datasets do not always contain complete point-

to-point correspondences, due to the fact that they might

be only partially overlapping for example, a lot of efforts

have been made into the area of feature selection [3],

as well as including extra information such as colors [4],

intensity values [5], or normals [6] that could improve the

correspondence problem. Their values however, are highly

sensitive to sensor noise.

Robust feature descriptors such as moment invariants

[7], spherical harmonic invariants [8], and integral volume

descriptors [9] have been proposed as point features and

used for registering partial scans of a model [3], [9]. All

of them are invariant to translation and 3D rotations, but are

still sensitive to noise.

Because ICP requires an exhaustive search through the

correspondence space, several variants that address the prob-

lem of its computational complexity have been proposed

[10], [11]. Including additional semantic information (e.g.

walls, floors, ceilings), as presented in [12] seems to decrease

the computation time by up to 30%. To improve the chances

of finding the global minimum, and thus improving ICP’s

narrow convergence basin, several alternative optimization

methods have been proposed [13], [14], though they require

that the individual point cloud data views are already roughly

aligned with each other.

Our work is motivated by finding correct point-to-point

correspondences in real-world noisy data scans, and com-

puting rigid transformations that roughly align them using

geometric constraints. This must serve as a good initial guess

for fine tuning the registration using algorithms such as ICP.

Our algorithm is based upon the previously mentioned work,

but adds several extensions. In the following we will discuss

our reasons and justify the need for these extensions.

Fig. 1. Feature Histograms for corresponding points on different point
cloud datasets.

While feature candidates such as estimated surface cur-

vatures [6] or integral volume descriptors [9] have already

been used as features for finding better matches in the point-

to-point correspondence process, these only represent their

point neighborhoods partially, and are dependent on noise

levels or point cloud density most of the times. We propose

the use of a better system that combines several aspects of the

geometry of a point’s neighborhood [15], [16] for estimating

a multi-value feature set (see Figure 1). We make an in-depth

analysis of the points’ histogram signatures for different

geometric primitives (i.e. plane, sphere, cylinder, and edge),

and reduce the theoretical computational complexity of the

algorithm by a factor of approximately 2.



In general it is not clear how one should select the

optimal k support for a point when computing any of the

above mentioned features. If the data is highly contaminated

with noise, selecting a small k will lead to large errors

in the feature estimation. However, if k is too big, small

details will be suppressed. Recently, work has been done

on automatically computing good k values (i.e. scale) for

normal estimation on 3D point cloud data [17], [18] as well

as principal curvatures [19], [20], [21] on multiple scales.

Unfortunately, the above mentioned methods for computing

an optimal scale require additional thresholds, such as d1 and

d2 which are determined empirically in [17], and estimated

using linear least-squares in [18] when knowledge about

ground truth normal exists. In [19] the neighborhood is

grown incrementally until a jump occurs in the variation-

scale curve, but the method cannot be successfully applied to

noisy point clouds, as the variations in the surface curvature

are not modified smoothly with k. The selection of the

Tc threshold in [20] is not intuitive, and the authors do

not explain properly if the resulted persistent features are

obtained using solely the intersection of features computed

over different radii. The statistical estimation of curvatures

in [21] uses a M-estimation framework to reject noise and

outliers in the data and samples normal variations in an

adaptively reweighted neighborhood, but it is unfortunately

slow for large datasets, requiring approximately 20 minutes

for about 106 points. To select those features which best

characterize the input dataset, we perform a statistical feature

analysis over multiple scales and select a set of unique

features present in more of them. The persistence of a feature

point is analyzed by discretely sampling over an interval

of sphere radii. We statistically analyze different distance

metrics between each point’s histogram signature and the

mean histogram of the cloud (µ-histogram), and select the

points outside the µ ± α · σ interval as unique features (see

Section III).

A system able to compute a rough initial guess for the ICP

algorithm, using Extended Gaussian Images (EGI) and the

rotational Fourier transform is presented in [22]. Extended

Gaussian Images are useful for representing the shapes

of surfaces and can be approximated using the spherical

histogram of surface orientations [23]. While this can provide

good transformations which might align two datasets closely

for watertight objects, it does not produce satisfactory results

for our environmental models, as the normals alone do

not provide enough information about the geometry of the

cloud. Our work is based on the idea that relationships

between persistent features in a scene can lead to potentially

better alignment candidates. Therefore we assemble pairs

of histogram-features in the first point cloud and check

for corresponding pairs (points with similar histograms and

distances) in the second one, similar to [9].

Our key contribution is the application of a feature lan-

guage which describes important points in a dataset with the

advantage that these features are:

• persistent, i.e. similar for corresponding points in differ-

ent scans (acquired from different scanning poses and

Fig. 2. Aligning 2 scans of a kitchen using persistent feature histograms:
corresponding points (top), and computed initial alignment (middle). The
final result after registration for a sequence of 5 scans is shown at the
bottom.

with different densities), and

• expressive enough (because of their higher dimension-

ality) to produce correct correspondences.

Together with a geometrical reasoning method, these form

the basis of a good initial alignment for registration.

As it can be seem in Figure 2, using the identified

point correspondences (based on our persistent point feature

histograms) the initial alignment is able to produce an almost

perfect alignment for the two kitchen scans.

The remainder of this paper is organized as follows.

The next section (Section II) introduces the point feature

histograms and presents the implementation of our algorithm

for computing them. Section III describes the theory behind

the feature persistence analysis and gives an example for

two different datasets. Section IV explains our registration

algorithm using geometrical reasoning for finding good ini-

tial alignments. We discuss experimental results in section V

and conclude in section VI.

II. POINT FEATURE HISTOGRAMS

A problem that arises in point-to-point correspondence

searches, is that the features usually used (e.g. surface nor-

mals and curvature estimates [6], integral volume descriptors

[9], etc) do not fully represent the underlying surface on



which the point’s k-neighborhood is positioned. Moreover,

these kinds of features approximate the neighborhood with a

single scalar value. As a direct consequence, most scenes will

contain many points with the same or very similar feature

values, thus reducing their informative characteristics. Even

if the feature estimation would be able to cope with noisy

datasets, it can still be easily deduced that applications who

rely on these one dimensional features will deal with multiple

and false correspondences and will be prone to failure.

Ideally, for each point in the dataset we would like to

have informative labels as features, such as: point lying on

an edge, point lying on a sphere or a plane, and so on. Using

such features and sets of geometric constraints between them,

the probability of finding the correct correspondences in

other datasets would increase.

In order to efficiently obtain such informative features, we

propose the computation and usage of a histogram of values

[16], [15] which encodes the neighborhood’s geometrical

properties much better, and provides an overall scale and

pose invariant multi-value feature. The histogram generalizes

the mean surface curvature at a point p, and is computed as

follows:

• for each point p, all of p’s neighbors enclosed in

the sphere with a given radius r are selected (k-

neighborhood);

• if the surface normal at point p is missing, approximate

it by the normal of the best fit plane to the neighborhood

surface – usually performed using Principal Component

Analysis:

npi
= V0, λ0 ≤ λ1 ≤ λ2

where V0 is the eigenvector corresponding to the small-

est eigenvalue λ0;

• once all normals are obtained, use the existing viewpoint

information to re-orient them all consistently1:

if
〈v − pi, npi

〉

‖v − pi‖
< 0, then npi

= −npi
(1)

where npi
is the normal of the point pi and, v is the

viewpoint;

• for every pair of points pi and pj (i 6= j, j < i) in

the k-neighborhood of p, and their estimated normals

ni and nj , we select a source ps and target pt point

– the source being the one having the smaller angle

between the associated normal and the line connecting

the points:

if 〈ni, pj − pi〉 ≤ 〈nj , pi − pj〉
then ps = pi, pt = pj

else ps = pj , pt = pi

and then define the Darboux frame (see Figure 3) with

the origin in the source point as:

u = ns, v = (pt − ps) × u, w = u × v. (2)

1see [24] for a general algorithm for consistent normal orientation
propagation for 3D objects

Fig. 3. The computed Darboux frame (vectors u, v and w) placed at the
source point.

In the k-neighborhood around point p, for each pair of

points pi and pj a source is uniquely defined. Thus the com-

putational complexity for each point changes from O(k2)
to O(k·(k−1)/2), because of the above mentioned restrictions

(i.e. i 6= j and j < i).

The four features are categorized using a 16-bin histogram,

where each bin at index idx contains the percentage of the

source points in the neighborhood which have their features

in the interval defined by idx:

f1 = 〈v, nt〉

f2 = ||pt − ps||

f3 = 〈u, pt − ps〉/f2

f4 = atan(〈w, nt〉, 〈u, nt〉)



















idx =

i≤4
∑

i=1

step(si, fi) · 2
i−1

(3)

where step(s, f) is defined as 0 if f < s and 1 otherwise.

This means that by setting si to the center of the definition

interval of fi (i.e. 0 for features f1, f3, f4 and r for f2)

the algorithm classifies each feature of a {pi,pj} pair in p’s

vicinity in two categories, and saves the percentage of pairs

which have the same category for all four features.

The four features are a measure of the angles between

the points’ normals and the distance vector between them.

Because f1 and f3 are dot products between normalized

vectors, they are in fact the cosine of the angles between

the 3D vectors, thus their value is between ±1. Similarly,

f4 is the arctangent of the angle that nt forms with w if

projected on the plane defined by u = nt and w, so its value

is between ±π/2.

The number of histogram bins that can be formed using

these four geometric features is div4, where div is the

number of subdivisions of the features’ value range. In our

implementation, by dividing the feature values in two parts

(fi smaller or greater than si), we obtain a total of 24 = 16
bins as the total number of combinations between the four

features. Because the number of bins increases exponentially



by the power of 4, using more than two subdivisions would

result in a large number of extra dimensions for each point

(e.g. 34 = 81D), which makes the computational problem

intractable.

Figure 4 illustrates the differences using our proposed 16D

feature set between query points located on various geomet-

ric surfaces. The surfaces were synthetically generated to

have similar scales, densities, and noise levels as our input

real-world datasets. For each of the mentioned surfaces, a

point was selected such that it lies: (i) on the middle of an

edge of a cube, (ii) on the lateral surface of a cylinder at

half the height, (iii) on a sphere, and (iv) on a plane. The

16D feature histogram was generated using all its neighbors

inside a sphere with radius r = 2cm. The results show that

the different geometrical properties of each surface produce

unique signatures in the feature histograms space.

Fig. 4. Feature Histograms for query points located on different geometric
surfaces with the color coded Kullback-Leiber distances between them.

Because of their properties, point feature histograms are

promising to be more suitable candidates for problems like

correspondence search while registering multiple scans under

the same model (see Figures 1, 2, 11).

The next section introduces the persistence feature analysis

over multiple scales for a each point feature histogram in the

dataset.

III. PERSISTENCE ANALYSIS

When using point features as characteristics of the entire

point cloud, it’s good to make sure that we find a compact

subset of points Pf that best represents the point cloud.

The lesser the number of feature points and the better they

characterize the data, the more efficient are the subsequent

interpretation process. However, choosing the subset Pf is

not easy, as it relies on a double dependency: both the

number of neighbors k and the point cloud density ϕ.

Our feature persistence analysis computes the subset of

points Pf , that minimizes the number of points considered

for further analysis from the input data set. Corresponding

points in different point cloud views of a scene will be likely

to be found as persistent features in both scans, which helps

in registration but also for segmenting similar points into

regions.

In order to select the best feature points for a given cloud,

we analyze the neighborhood of each point p multiple times,

by enclosing the point on a sphere S with radius ri and the

point p as its center. We vary r over an interval depending

on the point cloud size and density, and compute the local

point feature histograms for every point. We then select

all the points in the cloud, and compute the mean of the

feature distribution (µ-histogram). By comparing the feature

histogram of each point against the µ-histogram using a

distance metric (see below), and building a distribution of

distances (see Figure 8 – note that it can be approximated

with a Gaussian distribution) , we can perform a statistical

analysis of each feature’s persistence over multiple radii.

More specifically, we select the set of points (Pfi
) whose

feature distances are outside the interval µ±α ·σ, as unique

features. We do this for every r and at the end, select the

unique features which are persistent in both ri and ri+1, that

is:

Pf =

n−1
⋃

i=1

[Pfi
∩ Pfi+1

] (4)

As most of the points in the kitchen scene were located

on planes, their histograms were similar (and closer to the

mean shown in Figure 7) thus producing a sharp peak in the

distance distribution. This not that accentuated in the outdoor

scans, where the number of planar regions is significantly

lower.

For our examples we fixed the value of α to 1, as only

around 10−20% of the points are outside the µ±σ interval,

thus selecting them as unique in the respective radius.

For matching the point feature histograms with the µ-

histogram of the cloud, we have performed an in-depth anal-

ysis using various distance metrics from literature, similar

to [15], [25]. Our results confirmed the findings in [25],

where the Kullback-Leibler distance (divergence) gave good

results for computing differences between the histograms. Its

formula is given below:

KL divergence =

16
∑

i=1

(pf
i − µi) · ln

pf
i

µi

(5)

where the symbols pf
i and µi represent the point feature

histogram at bin i and the mean histogram of the entire

dataset at bin i respectively.

Figure 5 and 6 present the results of the persistence feature

analysis for two different datasets: one indoor kitchen envi-

ronment (Figure 5) and one outdoor urban scene (Figure 6).

From top to bottom and left to right: (i) unique features over

multiple radii, color-coded in the same way as the plots;

(ii) global persistent features for the entire scene computed

using Equation 4; (iii) Kullback-Leibler divergence values

between each point histogram and the mean µ-histogram of

the cloud; and (iv) the remaining persistent features after

selection.

The values of the ri radii set are selected based on

dimensionality of the features that need to be detected. As

the point clouds are obtained directly from laser sensors by
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Fig. 5. Analyzing the uniqueness and persistence of feature histograms for
an indoor kitchen scene.

scanning the environment, the scale is known so the radii

rmin,max of a sphere can be chosen intuitively.

Figure 7 presents the the mean µ-histogram of the kitchen

dataset for each separate radius. By comparing the results

with the ones presented in Figure 4, we determined that the

given input scan is mostly composed out of planar regions,

as its most frequent geometric primitive.

IV. ESTIMATING GOOD ALIGNMENTS

The registration problem becomes easily solvable if the

point to point correspondences are perfectly known in both

datasets. However, that is not the case in registration prob-

lems where no artificial markers are used, so it is essential

to robustly estimate good correspondences. Thus, the first

step of our registration module is to compute a good initial

alignment, and return a set of m correspondences that can

be used to directly transform the source point cloud into
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Fig. 6. Analyzing the uniqueness and persistence of feature histograms for
an outdoor urban scene.

the convergence area of the target. The method is similar

to [9], but instead of using Integral Volume Descriptors to

identify interesting feature points, we use our 16D feature

histograms which yield better results for our datasets, as

show in Figure 9. The computed correspondences must

satisfy a geometric contraint based on the intrinsic, rotation

and position invariant properties of the point cloud. Point to

point distances within the point cloud are a good candidate

since they are easy to compute and fulfill this requirement,

so we identify a set of points pi that have the same distances

to each other than their corresponding points qi.
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Fig. 7. Mean feature histograms over different radii for the kitchen (top)
and outdoor (bottom) scenes.

For computing distances in a 16D space, we construct a

kD-tree in the feature histograms space, and for a set of m
persistent feature points in the source dataset we perform a

k-nearest neighbor search in the target. Hence, we look at

the k points with most similar histograms and keep them

as correspondence candidates for pi. We call this set of

correspondence candidates:

C = {ci|ci = 〈pi, qi1, qi2, ..., qik〉, 1 ≤ i ≤ m} (6)

In the second phase of the initial alignment, we hierarchically

merge the best entries ci, cj from C into a set of 2-point

correspondences E2. For every combination of pi and pj ,

we find the qir and qjs that minimize ||pi −pj |− |qir − qjs||
and add it to E2, in increasing order.

We then proceed merging pairs of entries 〈e2,i, e2,j〉 from

E2 if e2,i is the next entry that is not merged yet and e2,j

minimizes dRMS(P,Q), where P is the set of all points

pi ∈ e2,i ∪ e2,j , and Q the set of all points qi ∈ e2,i ∪ e2,j :

dRMS2(P,Q) =
1

n2

n
∑

i=1

n
∑

j=1

(‖pi − pj‖ − ‖qi, qj‖)
2, (7)

analog to the construction of E2. We continue merging

entries from E2k into E2k+1 in this manner, until there are not

enough correspondences left in Ek(k = kmax) to generate

2k-point correspondences. The result is a set of 2kmax points

in the source point cloud, each with a corresponding point

in the source model such that the point-to-point distances
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Fig. 8. Distribution of the feature histograms’ distance from their mean (µ-

histogram) using the Kullback-Leibler metric for the indoor kitchen (top)
and outdoor (bottom) scan (see Figures 5 and 6). The histograms were
computed for r = 0.3cm and r = 1m respectively.

within each of the two sets differ minimally. This 2kmax -

point correspondence can be used to construct a transforma-

tion (translation and rotation) that aligns these points This

transformation is applied to the source point cloud to roughly

align it onto the target.

After an initial alignment has been obtained, in order to

improve convergence speed, the algorithm uses a different

method to estimate the optimal transform than classical ICP.

We are using an alternative error function that instead of

minimizing the sum of squares of distances between corre-

sponding points min
∑n

i=1 dist(pi, qi) , uses an approximate

measure of point-to-surface distances [26].

Using the new distance measure, the classical ICP error

function
n

∑

i=1

‖R · pi + T − qi‖
2 (8)

changes to
n

∑

i=1

‖〈(pi − qi), nqi
〉‖, (9)

where nqi
is the normal to the surface in point qi.

This means we try to minimize the distance between a

point pi and the surface of its corresponding point qi, or

the distance along the normal of qi. Specifically, movement

of the source point cloud tangentially to the target is not

restricted. This means faster convergence when the point



clouds are already close to each other, i.e. in the last iteration

steps (see Figure 10).

V. DISCUSSIONS AND EXPERIMENTAL RESULTS

We conducted several experiments to evaluate our regis-

tration method. Computing the initial alignment using our

feature histograms proved to be far superior to using other

features such as Integral Volume Descriptors (IVD) or sur-

face curvature estimates, since it was able to robustly bring

the point clouds close to the correct position independent of

their original poses (see Figure 9). We could only achieve

this using IVD when we considered at least k = 150 similar

points in the target point cloud for every selected feature

point in the source, and even then there were cases where

it failed. Also, runtime increases exponentially in k, which

also renders the IVD method inferior. We discovered that

increasing the number of correspondent candidates (k) above

10 did not improve the results.

Fig. 9. Two datasets before registration (top). Initial Alignment results us-
ing Feature Histograms (bottom left) and using Integral Volume Descriptors
(bottom right).

In the second stage of registration, our variant of ICP

using instantaneous kinematics, converges faster to the cor-

rect solution than regular ICP. This is mostly due to the

point-to-surface error metric which doesn’t restrict tangential

movement, thus accelerating convergence when the point

clouds are already close to each other. Figure 10 presents the

registration errors for the previous two views of the kitchen

dataset, after each iteration step, using the two ICP variants.

The error units are degrees for the rotational error and

meters for the translational error. Using histogram feature

correspondences, Kinematic ICP was able to converge in 1-

2 steps as opposed to at least 5 steps in Regular ICP, which

also converged to a slightly offset solution.

Figure 11 presents the results of our registration algo-

rithm using the estimated persistent histogram features for

4 outdoor urban point cloud scans. The data was acquired

Fig. 10. Comparison of the registration errors of Kinematic vs. Regular
ICP during each iteration step for the first two scans of the kitchen scene,
both starting after our Initial Alignment.

using a Riegl Z420 3D laser sensor in Ljubljana, Slovenia.

The topmost part of the figure, presents a snapshot of the

correspondence search for two of the scans using geometric

constraints from the initial alignment step. Below, the results

of the alignment are shown after applying the best transfor-

mation found, as well as the final results after using ICP,

followed by a close-up in intensity and curvature domain.

The last picture presents the overall registration result for all

four scans. The same algorithm was applied for registering

5 scans of an indoor kitchen scene, as shown in Figure 2.

The data was acquired using a SICK LMS 400 sensor.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a method for computing persistent

point feature histograms for the problem of correspondence

search in 3D point clouds. By using a higher dimensionality

(16D) for characterizing the local geometry at a point p, the

estimated features are robust in the presence of outliers, and

invariant to the position, orientation, or sampling density of

the cloud. In combination with an initial alignment algorithm

based on geometric constraints, partially overlapping datasets

can successfully be aligned within the convergence basin of

iterative registration methods such as ICP. To show their

effectiveness, we have applied the method to real-world

datasets coming from indoor and outdoor laser scans.

We plan to investigate the usage of feature histograms in

other spaces (e.g. colors) to improve registration in situations

where geometry informations does not suffice. Future work

will also investigate the possibility of using a non-linear op-

timizer to obtain a global registration algorithm which could

align two datasets in one pass, first by transforming them

closely with the initial alignment, and then fine-tuning the

registration with an optimizer such as Levenberg-Marquadt.

Preliminary results show that this is possible, but further tests

still need to be done to test the robustness of the overall

approach.



Fig. 11. From top to bottom: point-to-point correspondences using feature
histograms, results after initial alignment, results after registration with ICP,
closeups in intensity and curvature spaces, and registration of all 4 scans.
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[12] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and
H. Surmann, “3D Mapping with Semantic Knowledge,” in RoboCup,
2005, pp. 335–346.

[13] A. Gruen and D. Akca, “Least squares 3D surface and curve match-
ing,” International Journal of Photogrammetry and Remote Sensing,
vol. 59, pp. 151–174, May 2005.

[14] A. W. Fitzgibbon, “Robust Registration of 2D and 3D Point Sets,”
in Proceedings of the British Machine Vision Conference, 2001, pp.
662–670.

[15] E. Wahl, U. Hillenbrand, and G. Hirzinger, “Surflet-Pair-Relation
Histograms: A Statistical 3D-Shape Representation for Rapid Clas-
sification,” in 3DIM03, 2003, pp. 474–481.

[16] R. B. Rusu, N. Blodow, Z. Marton, A. Soos, and M. Beetz, “Towards
3D Object Maps for Autonomous Household Robots,” in Proceedings

of the 20th IEEE International Conference on Intelligent Robots and

Systems (IROS), San Diego, CA, USA, Oct 29 - 2 Nov., 2007.
[17] N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy

point cloud data,” in SCG ’03: Proceedings of the nineteenth annual

symposium on Computational geometry, 2003, pp. 322–328.
[18] J.-F. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert, “Scale

Selection for Classification of Point-sampled 3-D Surfaces,” in Fifth

International Conference on 3-D Digital Imaging and Modeling

(3DIM 2005), June 2005, pp. 285 – 292.
[19] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on

point-sampled surfaces,” pp. 281–289, 2003.
[20] Y.-L. Yang, Y.-K. Lai, S.-M. Hu, and H. Pottmann, “Robust principal

curvatures on multiple scales,” in SGP ’06: Proceedings of the fourth

Eurographics symposium on Geometry processing, 2006, pp. 223–226.
[21] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and K. Singh, “Robust

statistical estimation of curvature on discretized surfaces,” in SGP

’07: Proceedings of the fifth Eurographics symposium on Geometry

processing, 2007, pp. 13–22.
[22] A. Makadia, A. I. Patterson, and K. Daniilidis, “Fully Automatic

Registration of 3D Point Clouds,” in CVPR ’06: Proceedings of the

2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2006, pp. 1297–1304.
[23] B. K. P. Horn, “Extended Gaussian Images,” Proceedings of the IEEE,

vol. 72, pp. 1671–1686, 1984.
[24] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,

“Surface reconstruction from unorganized points,” in SIGGRAPH ’92:

Proceedings of the 19th annual conference on Computer graphics and

interactive techniques, 1992, pp. 71–78.
[25] G. Hetzel, B. Leibe, P. Levi, and B. Schiele, “3D Object Recognition

from Range Images using Local Feature Histograms,” in IEEE In-

ternational Conference on Computer Vision and Pattern Recognition

(CVPR’01), vol. 2, 2001, pp. 394–399.
[26] H. Pottmann, S. Leopoldseder, and M. Hofer, “Registration without

ICP,” Computer Vision and Image Understanding, vol. 95, no. 1, pp.
54–71, 2004.


