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Abstract
Ascertaining the state of coronavirus outbreaks is crucial for public health decision-making. Absent repeated representative
viral test samples in the population, public health officials and researchers alike have relied on lagging indicators of infection
to make inferences about the direction of the outbreak and attendant policy decisions. Recently researchers have shown
that SARS-CoV-2 RNA can be detected in municipal sewage sludge with measured RNA concentrations rising and falling
suggestively in the shape of an epidemic curve while providing an earlier signal of infection than hospital admissions data.
The present paper presents a SARS-CoV-2 epidemic model to serve as a basis for estimating the incidence of infection, and
shows mathematically how modeled transmission dynamics translate into infection indicators by incorporating probability
distributions for indicator-specific time lags from infection. Hospital admissions and SARS-CoV-2 RNA in municipal
sewage sludge are simultaneously modeled via maximum likelihood scaling to the underlying transmission model. The
results demonstrate that both data series plausibly follow from the transmission model specified and provide a 95%
confidence interval estimate of the reproductive number R0 ≈ 2.4 ±0.2. Sensitivity analysis accounting for alternative lag
distributions from infection until hospitalization and sludge RNA concentration respectively suggests that the detection of
viral RNA in sewage sludge leads hospital admissions by 3 to 5 days on average. The analysis suggests that stay-at-home
restrictions plausibly removed 89% of the population from the risk of infection with the remaining 11% exposed to an
unmitigated outbreak that infected 9.3% of the total population.

Keywords SARS-CoV-2 · COVID-19 · Epidemic indicators · Wastewater epidemiology · Sewage sludge viral RNA
concentration · COVID-19 hospital admissions · Probability model

Highlights

• A maximum likelihood method for aligning observed
lagged epidemic indicators via an underlying transmis-
sion model is derived and illustrated using observed
COVID-19 hospital admissions and SARS-CoV-2 RNA
concentrations measured in sewage sludge to model a
local SARS-CoV-2 outbreak

• The method enables direct estimation of the reproduc-
tive number R0 from the observed indicators along with
the initial prevalence of SARS-CoV-2 infection in the
population at risk

• The analysis suggests tracking SARS-CoV-2 RNA
concentration in sewage sludge provides a 3 to 5 day
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lead time over tracking hospital admissions, consistent
with purely statistical time series analysis previously
reported

• The model enables estimation of the fraction of the
population compliant with government-mandated stay-
at-home restrictions, the size of the exposed population,
and the fraction of the population infected with SARS-
CoV-2 over the outbreak

1 Introduction

Ascertaining the state of coronavirus outbreaks is crucial for
public health decision-making. Absent repeated representa-
tive viral test samples in the population [12], public health
officials and researchers alike have relied on lagging indi-
cators of infection to make inferences about the direction
of the outbreak and attendant policy decisions. How useful
these indicators are depends upon their typical lags behind
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Fig. 1 Model-scale infection
indicators (all units in infections
per person per unit time): SARS-
CoV-2 incidence (solid line),
sludge viral load (dashed line),
hospital admissions (dotted line)
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the incidence of infection. Some indicator lags, such as time
from infection to hospitalization, have been studied empiri-
cally [2, 16, 17]. Other indicators have been proposed with
the hope that they would greatly reduce the lag time from
infection. One such promising indicator is measured SARS-
CoV-2 RNA concentration in municipal wastewater [6, 7,
20]. How much earlier might such a signal inform officials
of changes in the state of the outbreak?

This paper tackles this question by using an epidemic
transmission model to create model-scale versions of
whatever indicator is of interest, and then scales these model
quantities to match observed indicator values in the real
world. This approach clarifies the time lags that should
be expected from SARS-CoV-2 incidence to whichever
indicator is of interest, and by doing so makes it possible
to compare the relative timing of one indicator to another,
providing the model fit to the data is sufficiently close.

Our study takes advantage of recently conducted research
tracking the local SARS-CoV-2 outbreak in the New Haven,
Connecticut, USA metropolitan area. As reported by [20],
daily SARS-CoV-2 RNA concentrations were obtained by
sampling sewage sludge from the local wastewater treatment
plant and conducting PCR tests to determine virus RNA
concentration. Daily COVID-19 admissions to the Yale
New Haven Hospital restricted to residents of the same
four towns served by this wastewater treatment plant were
also recorded over the same time period. An epidemic
model developed by [11] was taken as the basis for cali-
brating these two lagging indicators while simultaneously
estimating the initial condition and reproductive number
R0 of this outbreak. This paper details the methodology
employed and results obtained from doing so.

The next section presents a quick description of the
transmission model reported in [11]. In Section 3, a
simple method is described for linking model-scale lagging
epidemic indicators to SARS-CoV-2 incidence based on

the model and appropriately defined lag probability density
functions, which enables a model-scale comparison of
different indicators to see how they should appear over the
course of an outbreak (Fig. 1). Section 4 presents a simple
statistical approach to analyzing real-world indicator data
by scaling modeled indicators up to observed values based
on maximum likelihood estimation while also estimating
the initial condition and reproductive number of the
epidemic wave from the underlying transmission model.
We simultaneously scale hospital admissions and the RNA
virus concentration observed in the sewage sludge to the
epidemic model (Table 1, Figs. 2 and 3). The results show
that accounting for the inherent noise in the data, both the
virus RNA concentration in the sewage sludge and hospital
admissions match the model expectations reasonably well,
and provides a 95% confidence interval for the reproductive
number R0 ≈ 2.4 ± 0.2. Section 5 reports a sensitivity
analysis to allow for different probability distributions for
the lags from infection to hospital admissions and sludge
RNA concentration respectively. The analysis verifies that
there is a 3 to 5 day separation between the sludge RNA
concentration and hospital admissions curve, consistent
with earlier analysis based on statistical time-series analysis
[20]. Section 6 uses the preceding analysis to provide
epidemic insights suggesting that stay-at-home restrictions
effectively bifurcated the local population by plausibly

Table 1 Parameter estimates and standard errors

Parameter Maximum likelihood estimate Standard error

π(0) 0.0161 0.0032

kH 1006.603 56.847

kV 57.589 4.867

cV 12.890 2.951

R0 2.383 0.100
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Fig. 2 Daily COVID-19
hospital admissions: observed
data (solid line), model-based
expected value (dashed line),
95% prediction interval limits
(dotted line)
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removing 89% of the population from the risk of infection
with the remaining 11% exposed to an unmitigated outbreak
that infected 9.3% of the total population. Section 7 provides
a summary of the key points of the paper.

2 Transmissionmodel

Data detailing person-to-person SARS-CoV-2 transmission
in Wuhan were reported by [18]. These data enabled an
early model-based assessment of prospects for containing
coronavirus via isolation and quarantine [10], while that
analysis was extended to a dynamic transmission model for
SARS-CoV-2 transmission in Connecticut [11]. This latter
model incorporates infection-age-dependent transmission,
and thus falls into the class of renewal equation epidemic
models [4, 9]. The key model element is the age-of-infection
dependent transmission rate λ(a), which can be thought of

as the instantaneous transmission intensity of an individual
who has been infected for a time units. At the beginning
of an outbreak when an infectious person is embedded in
an otherwise susceptible population, the expected number
of infections transmitted per infectious person equals the
reproductive number R0, which is given by

R0 =
∫ ∞

0
λ(a)da (1)

as is well known. Li et al. [18] reported estimates of both
the exponential growth rate r and backwards generation
time probability density function b(a), enabling λ(a) to be
written as [1, 4, 10, 11, 21]

λ(a) = erab(a), a > 0 (2)

which together imply a point estimate of R0 = 2.26 [10],
consistent with values widely reported elsewhere [5, 13, 17,
19].

Fig. 3 SARS-CoV-2 RNA
Copies x 105 / ml Sludge:
observed data (solid line),
model-based expected value
(dashed line), 95% prediction
interval limits (dotted line)
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An alternative representation of λ(a) is

λ(a) = R0f (a) (3)

where f (a) is the forward generation time density that
dictates the timing of transmission [1, 4, 21]. We adopt
this representation in the present analysis, as it enables
estimation of the underlying reproductive number R0

directly from the data at our disposal.
The transmission model developed in [11] that will be

used to anchor our infection indicators analysis follows. Let
ψ(t) ≡ transmission potential (or force of infection) at

chronological time t ;
s(t) ≡ fraction of the population that is susceptible to

infection at chronological time t;
π(a, t) ≡ density of the population that has been infected

for duration a at time t ;
π(0, t) = incidence of infection at time t .
Given the initial condition π(a, 0) which implies s(0) =

1 − ∫ ∞
0 π(a, 0)da, the model equations are:

ψ(t) =
∫ ∞

0
λ(a)π(a, t)da, t > 0 (4)

π(0, t) = s(t)ψ(t), t > 0 (5)

ds(t)

dt
= −π(0, t), t > 0 (6)

π(a, t) =
⎧⎨
⎩

π(a − t, 0) 0 < t ≤ a

π(0, t − a) 0 < a ≤ t

(7)

Equation 4 defines the transmission potential at time
t , which is infection-age-dependent transmission λ(a)

weighted by the infection-age-dependent prevalence of
infection in the population π(a, t); Eq. 5 equates SARS-
CoV-2 incidence to the product of the fraction of the
population that is susceptible and the transmission potential;
Eq. 6 depletes susceptibles with the incidence of infection;
and Eq. 7 aligns the fraction of the population infected for
duration a at time t with the incidence of infection at time
t −a, adjusting for the initial conditions at time zero. There
is no additional accounting for the duration of infectiousness
because the time course of infection is already built into
λ(a).

The final size φ, defined as the fraction of the population
that is infected over the duration of an outbreak described
by this model, follows [11]

φ =
∫ ∞

0
π(0, t)dt = 1 − e−R0φ . (8)

We will make use of this relationship below.
The transmission function employed in our base case

analysis is given by Eq. 3 using the forward generation
time density f (a) implied by [18], which is a gamma

density with mean (standard deviation) equal to 8.86 (4.02)
days (see Fig. 4b). The reproductive number R0 and initial
conditions π(a, 0) and hence s(0) are estimated from the
data as described below.

3Model-scale infection indicators and time
lags

In the absence of repeated representative viral testing in a
population, officials and researchers alike have turned to
lagging indicators of infection such as diagnosed COVID-
19 cases, hospitalizations, and deaths to monitor the state
of the outbreak. How useful such indicators are depends
upon their lag time from infection. Let y(t) be the value
of a model-scale infection indicator that represents a
distributionally lagged signal of the incidence of infection.
Specifically, denote LY as the time lag from infection, and
define fLY

(a) as the probability density function governing
the lag LY . The model-scale infection indicator y(t) is then
defined as

y(t) =
∫ ∞

0
fLY

(a)π(a, t)da

=
∫ ∞

0
fLY

(a)π(0, t − a)da

= ELY
[π(0, t − LY )] (9)

where EX[·] denotes mathematical expectation with respect
to random variable X. A first-order Taylor approximation
yields the approximation

y(t) ≈ π(0, t − E(LY )) (10)

which suggests that the model-scale indicator value can
be approximated by incidence evaluated E(LY ) time units
earlier. The model-scale indicator at time t is just the
expected value of SARS-CoV-2 incidence LY time units
into the past. Note from Eq. 8 that
∫ ∞

0
y(t)dt =

∫ ∞

0
fLY

(a)

(∫ ∞

0
π(0, t−a)dt

)
da=φ, (11)

which shows that the model-scale indicator solely reflects
the timing at which SARS-CoV-2 incidence is experienced
for whatever indicator is of interest while conserving
the total incidence of infection. The units for all model-
scale indicators thus equal infections per person per unit
time, regardless of which real-world indicator is being
considered.

3.1 Example: hospital admissions

Hospital admissions have been used as an indicator for
the coronavirus outbreak under the presumption that the
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fraction of new infections that require hospitalization
remains constant over time. Define LH as the time from
infection to hospitalization for those infected persons that
do require hospital treatment. A review of several published
studies by [16] estimated that the time from infection until
hospitalization averages 13.5 days with 95% probability
coverage ranging from 4.8 to 27.9 days. We approximate
this finding by employing a gamma distribution with α =
4.954 and β = 2.725 to represent the probability density
of LH , fLH

(a). This distribution also has a mean of 13.5
days with 95% probability coverage ranging from 4.4 to
27.7 days (see Fig. 4a). Similar times from infection to
hospitalization are implied by the Centers for Disease
Control COVID-19 pandemic planning scenarios [2] and
also [17]. We employ this density in our base case analysis,
but will consider distributions with shorter and longer times
from infection to hospital admissions in the sensitivity
analyses of Section 5.

Conditional upon the transmission model described in
Eqs. 4–7, the model-scale hospitalization indicator h(t) is,
following Eq. 9, given by

h(t) =
∫ ∞

0
fLH

(a)π(0, t − a)dt

= ELH
[π(0, t − LH )]

≈ π(0, t − E(LH )). (12)

Figure 1 plots both the model-scale SARS-CoV-2 incidence
π(0, t) and hospitalization indicator h(t) assuming λ(a) as
defined in Eq. 3 with R0 = 2.38 as will be estimated
subsequently; the gamma distribution for fLH

(a) described
above; s(0) = 1−0.0161 reflecting the initial prevalence of
infection as estimated below (with time 0 taken as February
19, 2020); and π(a, 0) = 0.0161/30 for 0 < a ≤ 30 as
explained below. The model-scale hospitalization indicator
lags incidence by about two weeks, as one would expect
given that E(LH ) = 13.5 days by design.

3.2 Example: SARS-CoV-2 RNA inmunicipal sewage
sludge

Peccia et al. [20] reported daily SARS-CoV-2 RNA concen-
trations based on sampling sludge from a municipal wastew-
ater treatment plant serving the combined 200,000 popula-
tion of the towns of New Haven, East Haven, Hamden,
and Woodbridge in the state of Connecticut, USA. Virus
RNA concentrations in sludge should reflect the amount of
virus shed in feces by infected persons in the population
served by the treatment plant, resulting in a fecal estimate of
community virus RNA concentration. Though virus RNA
concentrations in feces degrade exponentially with the time
from excretion to sample collection [6, 7], virus RNA con-
centrations obtained from sludge sampled daily should be
discounted by approximately the same degradation factor,
rendering the resulting signal a plausible surrogate tracking
community virus RNA concentration over time.

Referring back to the epidemic model, the appropriate
measure of virus RNA concentration is the transmission
potential ψ(t), as the amount of virus shed in feces
should reflect the average infectiousness of the population.
However, to use the indicator framework developed
above, the age-of-infection transmission rate λ(a) must be
normalized to the scale of a probability density function.
This is easily achieved by defining

fLV
(a) = λ(a)

R0
, a > 0 (13)

which is immediately recognized as the forward generation
time probability density f (a) introduced earlier. This
density enables the definition of the model-scale virus RNA
indicator v(t) as

v(t) =
∫ ∞

0
fLV

(a)π(0, t − a)dt

= ELV
[π(0, t − LV )]

≈ π(0, t − E(LV )). (14)
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For λ(a) as defined in Eq. 3 using the forward generation
time density f (a) corresponding to [18], the expected
lag E(LV ) is given by 8.9 days, or 4.6 days shorter
than the lag from infection to hospitalization (we consider
an alternative generation time distribution in Section 5).
Figure 1 reports the model-scale virus RNA indicator v(t)

under the same epidemic modeling assumptions described
for the hospitalization indicator h(t). Given the transmission
model, the timing of both the virus RNA concentration
and hospitalization indicators is clear, and provides a clue
as to what might be expected when examining the timing
of observed hospital admissions and SARS-CoV-2 data in
sewage sludge. We turn to such an empirical analysis in the
next section.

4 Scaling indicators to transmission: hospital
admissions and SARS-CoV-2 RNA in sewage
sludge

Consider a model-scale infection indicator y(t) as earlier
described, and let Y (t) be the random variable denoting
the real-world-scale observable value of this indicator at
time t . For example, corresponding to the model-scale
hospitalization indicator h(t), the real-world number of
hospital admissions observed on day t is the random
variable H(t). Similarly, random variable V (t) denotes the
actual concentration of RNA observed in sewage sludge
on day t , corresponding with the model-scale virus RNA
concentration indicator v(t).

The observable indicator Y (t) is modeled as a random
variable with mean proportional to y(t), that is,

E(Y (t)) = kY y(t), t > 0 (15)

for some indicator-specific constant kY . We thus scale
observable indicators to their model-scale values in
expectation. Note from Eq. 11 that

Y ≡
∫ ∞

0
E(Y (t))dt = kY

∫ ∞

0
y(t)dt = kY φ, (16)

a result we will exploit in Section 6 below.
We also allow the indicator variance σ 2

Y(t) to depend
upon y(t). Given the transmission model, we treat Y (t)

as conditionally independent of Y (t ′) for all t �= t ′, for
correlation in observed values across time would almost
entirely be due to the underlying epidemic. The specific
probability law presumed for Y (t) given y(t) can differ
by infection indicator, as will become clear by example.
Given observed indicator values at different points in time
and an underlying epidemic model, one can estimate the
scaling constants kY (and variance parameters if needed) via
maximum likelihood or other methods.

The [20] study of sewage sludge obtained daily COVID-
19 admissions data to the Yale New Haven Hospital
restricted to residents of the same four Connecticut towns
served by the local wastewater treatment plant. The data
record the first such admission as occurring on March 14,
2020, 24 days following our February 19 starting date (t =
0). We focus here on daily admissions data recorded through
May 1, 2020 (t = 72).

Daily hospital admissions data ht are modeled as
realizations of a Poisson random variable H(t) with mean
proportional to the model-scale indicator h(t) developed
earlier, that is,

E[H(t)] = kH h(t), t > 0. (17)

The Poisson log likelihood corresponding to the hospital
admissions data covering March 14 (t = 24) to May 1
(t = 72), lnLH , is thus given by

lnLH =
72∑

t=24

{ht ln(kH h(t)) − kH h(t)} . (18)

Also as reported in [20], sludge samples from the local
wastewater treatment plant were tested for SARS-CoV-2
RNA concentrations with two different primers applied to
two sample replications daily. These values were adjusted
to control for day to day variations in treatment plant flow,
sludge solids content, and RNA extraction efficiency [20].
The data we employ here are vt , the day t average of these
four adjusted values with measurement units 105 SARS-
CoV-2 RNA copies / ml sludge. We again focus on data
collected from March 19 through May 1 (t = 29, ..., 72) for
a total of 44 daily observations. We model vt as realizations
of a Normal random variable V (t) with mean E[V (t)] =
kV v(t) and variance σ 2

V (t) = cV v(t) to allow for over-
or under-dispersion relative to the mean.1 The Normal log
likelihood corresponding to the sludge data, lnLV , thus
equals

lnLV = −1

2

72∑
t=29

{
ln(cV v(t)) + (vt − kV v(t))2

cV v(t)

}
. (19)

We estimate five parameters from the hospital admissions
and sludge data via maximum likelihood, conditional upon
the epidemic model (which implies the forward generation
lag density fLV

(a) = f (a) based on [18], and hospital
lag density fLH

(a) based on [16]). Three of the parameters
estimated are the hospitalization scaling constant kH ,
the sludge RNA scaling constant kV , and the sludge
RNA variance scaling constant cV . The fourth parameter
estimated is R0 which scales the strength of the outbreak
and enables direct comparison to SARS-CoV-2 epidemics

1We also considered a model with constant variance but the model did
not fit the data as well.
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elsewhere. The final parameter estimated is π(0), which sets
the initial condition of the model via the relation

π(a, 0) = π(0)/30, 0 < a ≤ 30. (20)

This modeling choice reflects the random arrival of
imported infections to the area of study in the thirty days
preceding the onset of community transmission, in effect
determining the placement of the main epidemic wave with-
out changing its shape. A larger value of π(0) would pull
the epidemic earlier in time, while a smaller value would
push the epidemic later. In this way, the hospital admissions
and sludge virus RNA concentration data jointly deter-
mine the size and the placement of the epidemic wave
while impacting the transmission dynamics via the model
described in Eqs. 4–7. Consequently, population suscepti-
bility at time 0 is given by s(0) = 1 − π(0).

Table 1 reports the maximum likelihood estimates and
standard errors computed by inverting the Hessian matrix
of the log likelihood function [3] following maximization
of lnLH + lnLV , while the fit of the observed data to the
scaled model indicators is illustrated in Figs. 2 and 3, which
plot 95% prediction intervals about the expected indicator
values in addition to the data. The hospital admissions data
are plotted in Fig. 2. Though noisy, the admissions data
correspond to the modeled pace of the epidemic, with most
values falling within the 95% prediction intervals.

Figure 3 reports the observed and modeled SARS-CoV-2
RNA concentrations (in 105 RNA copies / ml sludge) from
the sewage study along with conservative 95% prediction
intervals. While peak RNA virus concentrations are higher
than what would be expected based on the model, the data
again match the estimated pace of the epidemic, suggesting
that community virus RNA concentration in sewage sludge
can indeed be represented by the transmission potential in
an epidemic model. The data rise and fall as expected, albeit
with much random noise to be sure.

Note that the estimated reproductive number is 2.38
with a 95% confidence interval ranging from 2.18 to
2.58. This places the local SARS-CoV-2 outbreak in New
Haven squarely in the middle of reproductive numbers
estimated elsewhere (for examples see [2] and [17]). What is
noteworthy is that this reproductive number was estimated
from a model linking transmission to hospital admissions
and SARS-CoV-2 RNA concentrations measured in sewage
sludge. The data, not the model, determined the magnitude
of R0, supporting the plausibility of the hospitalization and
generation time lag distributions employed to match the
observed data to an underlying transmission model.

Together with the epidemic model, these data help
explain one of the findings in the [20] study, which is
that the SARS-CoV-2 RNA signal from the sewage sludge
led hospital admissions by only 4 days, when many were
expecting a much earlier signal. The model shows that the

natural time lag for virus RNA concentration is governed by
the mean forward generation time, estimated at 8.9 days in
this model. Given an average 13.5 day lag from infection
to hospitalization documented elsewhere [16], tracking the
outbreak by relying on the sewage sludge RNA signal leads
similar tracking by hospital admissions by 4.6 days on
average, which is very close to the purely statistical time
series results reported by [20].

5 Sensitivity analyses

The analysis of Section 4 relies on two particular lag
distributions: the forward generation time based on [18] and
the hospital admissions density based on [16]. Different lag
distributions could generate different results yet also appear
reasonably consistent with the data. In this section we will
summarize maximum likelihood scalings as in the previous
section but using alternative lag density combinations.

Starting with the forward generation time density that
is used to both drive the epidemic model and provide a
model-scale indicator for SARS-CoV-2 RNA in sewage
sludge, we turn to the meta-analysis of several published
studies reported by [19]. The consensus distribution from
that analysis is also a gamma density but with a mean
(standard deviation) of 8.5 (6.1) days. Figure 4a plots both
the [18] and [19] generation time densities, from which
one can see that the timing of transmission is relatively
early under the [19] model relative to our base case of [18].
Regarding the distribution of the time from infection until
hospital admission for those requiring hospitalization, [2]
recommends a mean of 12 days based upon 6 day mean
times from infection until the onset of symptoms, and from
the onset of symptoms until hospitalization. We model this
“short” hospitalization lag as a gamma distribution with
a mean (standard deviation) of 12 (6) days. To explore
the possibility that sludge RNA provides a longer lead
time over COVID-19 hospitalizations, we also consider a
“long” hospitalization gamma-distributed lag with a mean
(standard deviation) of 15 (6.7) days. Figure 4b plots the
short, base case (following [16]), and long hospitalization
lag densities.

Table 2 reports the mean lead time (given by the
difference between the mean hospitalization and forward
generation/sludge RNA lags), log likelihood function,
estimated reproductive number R0 and estimated initial
fraction infected π0 for all six combinations of the
hospitalization and forward generation lags. While all the
maximized log likelihood values are comparable, the late
transmission [18] generation time density fits slightly better
than the early transmission [19] generation time density for
all three hospital lags, while the hospitalization lag densities
fit best from short to [16] to long for both generation
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Table 2 Sensitivity analyses to
generation time and hospital
lag distributions

Generation time Hospital lag Lead time Log likelihood R0 π0

Late Short 3.1 1332.8 2.43 0.013

Early Short 3.5 1332.3 2.26 0.010

Late Base Case 4.6 1331.1 2.38 0.016

Early Base Case 5.0 1330.2 2.22 0.013

Late Long 6.1 1329.5 2.36 0.019

Early Long 6.5 1328.4 2.20 0.015

time densities. The point estimates for R0 range from 2.2
(early transmission and long hospitalization lag) to 2.43
(late transmission and short hospitalization lag), and are all
within the 95% confidence interval provided by our earlier
base case analysis in Section 4. The point estimates for the
initial fraction infected π0 range from 0.010 to 0.019, and
are also all within the 95% confidence interval estimated
in our base case. Examining the log likelihood values,
there is slightly more evidence favoring shorter RNA sludge
lead times. The best fitting model (late transmission and
short hospital lag) estimates that sludge RNA provides an
expected lead time of only 3.1 days over hospital admissions
data, while the worst fitting model (early transmission and
long hospital lag) has an expected lead time of 6.5 days.
Together these results suggest that the sludge RNA signal
provides a 3 to 5 day lead time over hospital admissions,
consistent with what was found based on statistical time
series analysis in [20].

6 Epidemic insights

The epidemic model developed describes an unmitigated
outbreak among a population at risk for SARS-CoV-2
infection, but in Connecticut where this study took place,
social distancing and lockdown-like stay-at-home orders
were imposed on March 22 [14] and extended past the
duration of our study period [15]. An unmitigated outbreak
with R0 = 2.38 would leave 87.5% of the population
infected, but clearly that did not occur in the greater New
Haven urban area.

Nonetheless, the timing of the sludge and hospital admis-
sions data are consistent with an unmitigated outbreak.
Models reflecting the effect of lockdowns and social dis-
tancing applied uniformly to large populations show that
transmission is both delayed and slowed, resulting in the
oft-cited flattening of the epidemic curve [5, 11, 13]. The
epidemic models we have shown to be consistent with the
observed data do not behave this way, suggesting that the
effect of the stay-at-home orders was not experienced uni-
formly. A different possibility is that stay-at-home restric-
tions essentially bifurcated the population into two groups: a
large group of citizens whose compliance with stay-at-home

restrictions removed them from potentially infectious inter-
actions, and a smaller group of essential workers, other
vulnerable persons such as nursing home residents, or non-
compliant individuals that, due to necessity or choice, con-
tinued to experience exposures via interactions with others,
enabling continued transmission. Were that the case, then
members of the “exposed” population could have experi-
enced an unmitigated outbreak while compliant individuals
escaped unscathed. The epidemic model of this paper might
only portray transmission among the exposed population,
yet all infections and hence hospitalizations and SARS-
CoV-2 RNA in the sewage sludge would have emanated
from this group.

To investigate this possibility, we will use our model
results to produce a back-of-the-envelope estimate of
the fraction of the population that was exposed, and
consequentially the fraction of the entire population that
complied with the stay-at-home restrictions. We will also
estimate the implied number of infections that must have
occurred under this bifurcation hypothesis, including the
initial number of infected persons circa February 19, 2020
(which recall is clock time 0).

First, we apply Eq. 16 to the expected total number of
hospital admissions over all time from this outbreak which
yields

H = kH φ. (21)

Next, define N and C as the number of persons in the
exposed population and the total number of diagnosed
COVID-19 cases that occurred in that population respec-
tively over all time. A second equation for H is given by

H = Nφ × C
Nφ

× H
C
. (22)

Equating (21) and (22) yields

N = kH

C
Nφ

× H
C

(23)

as our estimate for the size of the exposed population. Focu-
sing on the denominator, the ratio C/Nφ is the ratio of diag-
nosed COVID-19 cases to infections in the exposed popula-
tion, also known as the case ascertainment ratio. Under the
bifurcation hypothesis, this will be the same as the ratio of
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diagnosed COVID-19 cases to infections in the overall popu-
lation, as infections and cases only accrue in the exposed
group. A direct estimate of the reciprocal of the case ascer-
tainment ratio (that is, the number of infections per diag-
nosed COVID-19 case) was reported by [8] for Connecticut
covering March 23 - May 12 of 2020 via a population-
based seroprevalence survey. Havers et al. [8] estimated an
average of 6.0 infections per case (95% confidence interval
4.3−7.8). The ratio H/C can be estimated directly from
[20] who reported that there were 2,674 diagnosed cases
and 734 hospital admissions emanating from the four towns
served by the local wastewater treatment plant. The con-
stant kH was estimated in our base case analysis of Section 4
to equal 1006.6 (see Table 1).

Substituting the values above into Eq. 23 we obtain

N ≈ 1006.6
1
6 × 734

2,674

= 22, 000. (24)

Recalling that 200,000 persons are served by the
local wastewater treatment plant, we estimate that
22, 000/200, 000 = 11% of the population were exposed to
infection while the stay-at-home restrictions protected the
remaining 89% of the population from infection, indicating
a high level of compliance with the public health regula-
tions. Further insight can be gained using Eq. 8 and our
base case estimate of R0 = 2.38 to estimate that the fraction
of the exposed population infected over all time in this out-
break is given by φ = 0.875. However, as of May 1 (day
72) when this study concluded, the epidemic model suggests
that only

∫ 72
0 π(0, t)dt = 84.7% of the exposed population

had been infected, which means that 22, 000 × 0.847 ≈
18, 600 persons were infected by May 1 in the New Haven
metropolitan area (or 9.3% of the total population). As an
independent check, Havers-et al’s [8] serological estimate
for the ratio of infections to cases suggests that given 2,674
diagnosed cases, a 95% confidence interval estimate for the
number infected runs from 11,500 to 20,900 persons, in
agreement with our model-based result. Finally, given our
estimate that 1.6% of the exposed population was already
infected as of February 19, 2020 (π0; see Table 1), we esti-
mate that 22, 000 × 0.016 ≈ 350 persons were already
infected at that early date.

7 Summary

This paper has focused on modeling lagging epidemic
indicators and how they relate to each other. The approach
has been to utilize an epidemic model as a basis for
scaling indicators like hospital admissions or SARS-CoV-2
RNA observed in sewage sludge. After characterizing how
indicators lag incidence, we showed how one could use an
epidemic model to simultaneously estimate the placement

of an epidemic wave (via estimating the initial condition),
the strength of an outbreak (via estimating R0), and situate
lagging indicators appropriately, allowing one to view the
data in a more epidemiologically meaningful way. Using
data from a recently published study of SARS-CoV-2 RNA
concentrations observed in municipal sewage sludge, we
showed why the RNA data were only able to shorten
the time from infection to signal by 3 to 5 days relative
to hospital admissions. The RNA and hospitalization data
jointly implied an epidemic with R0 of approximately 2.38,
well within the range implied by numerous studies. To
reconcile this finding with the fact that Connecticut was
under strict lockdown-like stay-at-home orders throughout
most of the study period, we postulated that the stay-
at-home restrictions effectively bifurcated the population,
resulting in an unmitigated outbreak among an estimated
11% of the population who remained exposed to infections
while sparing the remaining 89% who complied with the
restrictions. Overall we estimated that about 9.3% of the
total population became infected. To our knowledge, ours
is the first study to develop such population-level findings
based on exploiting the infection signal contained in SARS-
CoV-2 RNA in sewage sludge and COVID-19 hospital
admissions data.
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