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Abstract

Summary: Quantifying pairwise sequence similarities is a key step in metagenomics studies. Alignment-free meth-
ods provide a computationally efficient alternative to alignment-based methods for large-scale sequence analysis.
Several neural network-based methods have recently been developed for this purpose. However, existing methods
do not perform well on sequences of varying lengths and are sensitive to the presence of insertions and deletions. In
this article, we describe the development of a new method, referred to as AsMac that addresses the aforementioned
issues. We proposed a novel neural network structure for approximate string matching for the extraction of pertin-
ent information from biological sequences and developed an efficient gradient computation algorithm for training
the constructed neural network. We performed a large-scale benchmark study using real-world data that demon-
strated the effectiveness and potential utility of the proposed method.

Availability and implementation: The open-source software for the proposed method and trained neural-network
models for some commonly used metagenomics marker genes were developed and are freely available at www.
acsu.buffalo.edu/~yijunsun/lab/AsMac.html.

Contact: yijunsun@buffalo.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbes play an essential role in processes as diverse as those
related to human health and biogeochemical activities critical to life
in all environments on earth. However, due to the inability of trad-
itional techniques to cultivate most microbes, our understanding of
complex microbial communities is limited. The advent of next-
generation sequencing technology allows researchers to study
genetic materials recovered directly from natural environments and
thereby opens a new window to extensively probe the hidden micro-
bial world (Wooley et al., 2010). Consequently, metagenomics,
where the amplicon sequencing of prokaryotic marker genes (e.g.
16S and 23S rRNA genes) serves as a major probing tool, has recent-
ly become an exploding research area (Gilbert et al., 2016) and was
selected as one of the 10 technical breakthroughs in 2013 by the
Science magazine (The Science Website, 2013).

A key step in metagenomics analyses is to quantify pairwise se-
quence similarities, which plays a fundamental role in various

bioinformatics methods for database search, sequence annotation
and sequence binning (Cai and Sun, 2011; Cai et al., 2017;
Caporaso et al., 2010; Edgar, 2010; Zheng et al., 2019a). Alignment
distances are generally considered the gold standard; however, due
to the high computational complexity, alignment-based methods
can only be applied to small sequence datasets. In a metagenomics
study, tens of millions or even hundreds of millions of sequences are
typically generated. In this case, alignment-free methods (Bonham-
Carter et al., 2014; Song et al., 2014; Zielezinski et al., 2017; 2019)
are perhaps the only computationally viable approach to estimating
pairwise sequence similarities. Commonly used alignment-free meth-
ods can be broadly classified into two categories: (i) methods based
on word frequency [e.g. k-mer (Karlin and Burge, 1995), FFP (Sims
et al., 2009) and CV (Gao and Qi, 2007)], and (ii) methods based on
substrings [e.g. ACS (Ulitsky et al., 2006), Kr (Haubold et al., 2009)
and kmacs (Leimeister and Morgenstern, 2014)]. There also exist
some methods based on information theory [e.g. IC-PIC (Gao and
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Luo, 2012)], but they are less commonly used. By transforming
sequences into numerical vectors, alignment-free methods can be
viewed as defining an implicit mapping function that projects
sequences into an embedding space where pairwise sequence similar-
ities are calculated. The methods in the first category are based on
the statistics of fixed-length word frequency or on the information
content of word frequency distributions, while the methods in the
second category employ the similarities or differences of substrings
in a pair of sequences. For substring-based methods, it is not neces-
sary to specify a word length, and thus in general they can achieve
better performance than those relying on a fixed word length.
However, substring-based methods introduce new parameters [e.g.
the number of mismatches in kmacs (Leimeister and Morgenstern,
2014)] that cannot be easily estimated. Moreover, computing fea-
tures of variable word lengths usually requires more complex data
structures and thus is computationally more expensive (Leimeister
and Morgenstern, 2014). A major limitation of the above methods
is that they are all data-independent approaches, where distance
measures are predefined based on various heuristics and thus can
only provide rough approximations to alignment distances.

Recently, several attempts have been made to use neural net-
works to develop data-dependent approaches for alignment-free se-
quence comparison [e.g. SENSE (Zheng et al., 2019b) and
NeuroSEED (Corso et al., 2021)]. The basic idea is to use a neural
network to learn an explicit mapping function through training and
map sequences onto an embedding space so that the mean square
error between alignment distances and pairwise distances defined in
the embedding space is minimized. Since the mapping function is
learned through training, it has been demonstrated that data-
dependent methods can offer much more accurate solutions than
data-independent counterparts (Corso et al., 2021; Zheng et al.,
2019b). Moreover, neural network-based approaches are computa-
tionally very efficient, and run even faster than the k-mer method
(Zheng et al., 2019b). However, existing methods suffer from sev-
eral major limitations. First, biological sequences under comparison
usually have varying lengths, however, SENSE can only be applied
to sequences of equal length, and NeuroSEED uses zero padding to
make sequences have the same length, which is not biologically
meaningful and can lead to poor performance. Second, early
attempts used the convolutional neural network (CNN) for sequence
comparison. CNN was designed mainly for image analysis (LeCun
et al., 2015) and cannot effectively model insertions and deletions—
collectively called indels—due to the use of dot product to measure
the similarity between a filter and a sequence. Although gated recur-
rent units and attention transformers have achieved great success for
natural language data analysis (Sundermeyer et al., 2010; Wang
et al., 2019), it was found that they were inferior to CNN for bio-
logical sequence comparisons (Corso et al., 2021).

In this article, we describe the development of a novel neural
network-based method, referred to as AsMac, that addresses the afore-
mentioned issues. Specifically, we used approximate string matching
(ASM) to transform sequences into numeric vectors. Since ASM uses
the edit distance to measure the similarity between a pattern and a sub-
sequence, it is well suited for extracting pertinent information from bio-
logical sequences. To learn patterns from data automatically, we pro-
posed a novel neural-network structure for the implementation of
approximate string matching and an efficient gradient computation al-
gorithm for training the constructed neural network. We performed a
large-scale experiment on prokaryotic rRNA sequence datasets that
demonstrated the effectiveness and utility of the proposed method. We
also provided trained neural-network models for some commonly used
prokaryotic marker genes in an accompanying website that researchers
can use directly to process their own datasets.

2 Methods

2.1 Overview
We propose a novel method that uses a Siamese neural network and
approximate string matching for alignment-free sequence comparison.
Figure 1 depicts the overview of the proposed method. The basic idea

is to use a neural network to project sequences into embedding vectors
so that the difference between alignment distances and pairwise dissim-
ilarities calculated in the embedding space is minimized. Since inputs
and outputs are from the sequence and numerical domains, respective-
ly, and are not directly comparable, we use a twin neural network—
also called Siamese neural network (Bromley et al., 1993)—to learn a
mapping function. Specifically, given a pair of sequences ðS1;S2Þ, each
network takes one sequence as input and outputs f ðS1jHÞ and f ðS2jHÞ
as the embedding vectors of the two sequences, respectively. Here, f is
the mapping function, and H is the parameters of the network to be
optimized. To form the twin network, we propose a novel neural net-
work for approximate string matching (detailed below). To train the
network, we compute the alignment distance daðS1;S2Þ by using the
Needleman-Wunsch (NW) algorithm and the cosine distance of the
embedding vectors as the embedding distance deðf ðS1jHÞ; f ðS2jHÞÞ,
and optimize the neural network by using backpropagation to minim-
ize the mean square error given by

CðHÞ ¼
X

i;j

�
deðf ðSijHÞ; f ðSjjHÞÞ � daðSi;SjÞ

�2

: (1)

In the training process, the twin networks are forced to share the
same parameters, including both initialization and gradient descent
updates. Once Siamese neural network is optimized, one of the net-
works is used to project sequences into embedding vectors.

2.2 Approximate string matching
We start by giving a brief description of the approximate string
matching (ASM) algorithm. Let S ¼ s1 . . . sL be a sequence and P ¼
p1 . . . pM be a pattern. We aim to identify a sub-sequence in S that
has the minimum edit distance to pattern P among all subsequences
of S. Dynamic programming provides the optimal solution for this
purpose (Peter and Sellers, 1980). Specifically, we first construct a
scoring matrix F of size ðMþ 1Þ � ðLþ 1Þ, where the ðm; ‘Þth entry
Fm;‘ is the negative minimum edit distance between the first m char-
acters of P and any sub-sequence S‘0 ;‘ ¼ s‘0 . . . s‘ of S that ends at
position ‘. The scoring matrix can be constructed recursively:

Fm;‘ ¼

0 if m ¼ 0
�m if ‘ ¼ 0

max
Fm�1;‘�1 � c
Fm�1;‘ � 1
Fm;‘�1 � 1

0
@

1
A otherwise;

8>>>><
>>>>:

(2)

where c is the substitution cost that takes a value of 0 if pm ¼ s‘ and 1
otherwise. Once F is computed, the maximum value in the last row is
the optimal score, and the best-matched sub-sequence can be identified
through backtracking. The computational complexity is on the order
of OðMLÞ. Since pattern P is usually much shorter than sequence S,
the scoring matrix can be computed efficiently. Moreover, unlike
CNN, approximate string matching uses the edit distance to measure
the similarity between a pattern and a sub-sequence, allowing for dele-
tions and insertions. Thus, it is well suited for extracting pertinent in-
formation from biological sequences.

2.3 Novel neural network for approximate string

matching
A major issue with approximate string matching for our application is
that patterns of interest are generally unknown and can only be pre-
determined heuristically. To address the issue, we propose a novel
neural network for approximate string matching that enables the learn-
ing of patterns from data automatically. To cast the problem into a
continuous optimization problem so that the constructed neural net-
work can be trained through gradient descent, some modifications are
merited. First, we use one-hot coding (Zheng et al., 2019b) to trans-
form an input sequence S into an L� 4 matrix S ¼ ½sT

1 ; . . . ; sT
L �

T , and
pattern P into an M� 4 matrix P ¼ ½pT

1 ; . . . ; pT
M�

T . Here, each element
in P can be learned through training (detailed below). Second, we re-
place the substitution cost c with�pmsT

‘ to measure the cost of the mis-
match between the mth vector of the pattern and the ‘th vector of the
input sequence. Third, while in the original algorithm the gap penalty
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is set to 1, in order to make the constructed neural network more gen-
erally applicable, following the work of (Koide et al., 2018), we set it
to be a learnable parameter. Finally, in order for the constructed map-
ping function to be differentiable, we replace the max function in Eq.
(2) with a generalized maximization operator (Cuturi and Blondel,
2017), given by

maxcða1; . . . ; aJÞ ¼ c log
XJ

j¼1
exp ðaj=cÞ; (3)

where c > 0 is a smoothing parameter. With the above modifica-
tions, Eq. (2) can be re-formulated as:

Fm;l ¼

0 if m ¼ 0
�mg if ‘ ¼ 0

maxc
Fm�1;‘�1 þ pmsT

‘

Fm�1;‘ � g
Fm;‘�1 � g

0
B@

1
CA otherwise;

8>>>>><
>>>>>:

(4)

where g is the gap penalty. Using the above-modified approximate
string matching, we construct a neural network to map input
sequences into embedding vectors. Specifically, given an input se-
quence S and N patterns P1; . . . ;PN, we generate N scoring matri-
ces F1; . . . ; FN. We extract the maximum value vn from the last row
of each scoring matrix Fn, and concatenate them into vector v to
compute an embedding vector

u ¼ ReLUðvþ bÞ ; (5)

where ReLU is the rectifier activation function (Nair and Hinton,
2010) and b is a bias term.

2.4 Learning parameters through backpropagation
Finally, we discuss how to estimate the parameters of the proposed
method, specifically the patterns used in approximate string match-
ing and the gap penalty, efficiently through backpropagation by
minimizing the mean squared error calculated by comparing embed-
ding distances and alignment distances (see Eq. 1). While backpro-
pagation can be easily implemented by using PyTorch (Paszke et al.,
2019), the computation of the gradient of the mean squared error
with respect to the patterns is not trivial. Since the patterns are inde-
pendent of each other, we only need to consider one pattern.

Specifically, given pattern matrix P, we need to calculate the partial
derivative of the mean squared error with respect to each row vector
of the pattern matrix

@CðHÞ
@pm

¼ @CðHÞ
@v

@v

@pm

;8m 2 1; . . . ;Mf g ; (6)

where v is the maximum value of the last row of scoring matrix
F. We note that while the computation of F depends on an input
sequence, only the best-matched sub-sequence of the input se-
quence is involved in the computation of v. We utilize this fact to
develop an efficient scheme for the computation of gradients. By
definition, v is the score of the global alignment between the pat-
tern and its best-matched sub-sequence, and thus can be computed
by using the NW algorithm (Needleman and Wunsch, 1970). An
issue with the NW method is that its output is not differentiable.
To address the issue, we resort to the differentiable NW algorithm
(Koide et al., 2018) to approximate the value of v and compute
the partial derivatives with respect to the pattern and the gap pen-
alty. Let ~S be the best-matched sub-sequence, and
~S ¼ ½~sT

1 ; . . . ;~sT
~L
�T . We construct an ðMþ 1Þ � ð ~L þ 1Þ scoring ma-

trix ~F for the differentiable NW algorithm:

~Fm;‘ ¼

�‘g if m ¼ 0
�mg if ‘ ¼ 0

maxc

~Fm�1;‘�1 þ pm~sT
‘

~Fm�1;‘ � g
~Fm;‘�1 � g

0
B@

1
CA otherwise:

8>>>>><
>>>>>:

(7)

By construction, ~FM; ~L � v. Thus, the approximation of the partial
derivative of v with respect to each row of pattern P can be com-
puted as:

@v

@pm

�
@ ~FM; ~L

@pm

¼
X~L

‘¼1

@ ~FM; ~L

@ ~Fm;‘

@ ~Fm;‘

@pm

;8m 2 1; . . . ;Mf g : (8)

It can be shown that @ ~Fm;‘=@pm ¼ expðð~Fm�1;‘�1 þ pm~sT
‘ �

~Fm;‘Þ=cÞ~s‘. Note that ~Fm;‘ is involved in the calculation of its three
neighbors ~Fmþ1;‘; ~Fm;‘þ1 and ~Fmþ1;‘þ1. Hence, @ ~FM; ~L=@

~Fm;‘ can be
computed recursively. Specifically, when m 6¼M and ‘ 6¼ ~L,

@ ~FM; ~L

@ ~Fm;‘

¼
@ ~FM; ~L

@ ~Fmþ1;‘

@ ~Fmþ1;‘

@ ~Fm;‘

þ
@ ~FM; ~L

@ ~Fm;‘þ1

@ ~Fm;‘þ1

@ ~Fm;‘

þ
@ ~FM; ~L

@ ~Fmþ1;‘þ1

@ ~Fmþ1;‘þ1

@ ~Fm;‘

:

(9)

Likewise, the partial derivative @v=@g can be approximated as
@ ~FM; ~L=@g, which can be calculated recursively by taking the partial
derivative of Eq. (7) with respect to g. Specifically, when m 6¼ 0 and
‘ 6¼ 0,

@ ~Fm;‘

@g
¼ @ ~Fm;‘

@ ~Fm�1;‘

@ ~Fm�1;‘

@g
� 1

 !
þ @ ~Fm;‘

@ ~Fm;‘�1

@ ~Fm;‘�1

@g
� 1

 !

þ @ ~Fm;‘

@ ~Fm�1;‘�1

@ ~Fm�1;‘�1

@g
:

Fig. 1. Overview of the proposed method that combines a Siamese neural network

and approximate string matching for alignment-free sequence comparison and its

training process

Table 1. Summary of the six sequence datasets used in the study

Dataset No. of

samples

No. of

reads

Sequence

length

Sequence

type

Qiita 66 6 734 572 151 16S V4

RT988 90 4 119 942 464–465 16S V3–V4

Greengenes N/A 925 718 1325–1500 16S full

Zymo N/A 69 367 1187–1518 16S full

Labonte lake 16 41 647 385–410 23S V5

Silva-23S N/A 39 176 2750–3150 23S full
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3 Experiments

We performed a large-scale benchmark study to demonstrate the ef-
fectiveness and potential utility of the proposed method.

3.1 Sequence datasets
Table 1 describes the six sequence datasets used in the study. The
Qiita dataset was generated from 66 skin, saliva and fecal samples
collected from the Amerindian Yanomami people (Jose et al., 2015).
It contains 6 734 572 sequences of 151 bps in length, covering the
V4 hyper-variable region of the prokaryotic 16S rRNA gene. The
RT988 dataset contains 4 119 942 sequences from 90 oral plaque
microbiome samples (Genco et al., 2019). The sequences have a
length of 464–465 bps, covering the V3–V4 hyper-variable region of
the 16S rRNA gene. Both datasets were generated by Illumina
MiSeq, and before analysis, pre-processing comprised of pair-end
joining, quality filtering and length filtering was performed. The
Labonte lake dataset was generated from water samples collected
from a eutrophic lake (Steven et al., 2012), which contains 41 647
sequences with a length ranging from 385 to 410 bps and covering
the V5 region of the 23S rRNA gene. The Greengenes dataset was
extracted from the Greengenes database (McDonald et al., 2012)
and contains 925 718 unique full-length 16S rRNA gene sequences
with a length ranging from 1325 to 1500 bps. The Silva-23S dataset
was downloaded from the Silva database (Pruesse et al., 2007),

containing 39 176 full-length 23S rRNA gene sequences with a
length ranging from 2750 to 3150 bps. The Zymo dataset was gen-
erated from a Zymo mock community sequenced by PacBio circular
consensus sequencing technology (Callahan et al., 2019). We used
the removePrimers function from the DADA2 R package (Callahan
et al., 2016) to remove primers and orient all the sequences in the
forward direction. After pre-processing, the Zymo dataset contained
69 367 sequences with a length ranging from 1187 to 1518 bps.

3.2 Experimental setting
We compared our method with seven other alignment-free methods,
namely, k-mer (Karlin and Burge, 1995), ACS (Ulitsky et al., 2006),
Kr (Domazet-Loso and Haubold, 2009), FFP (Sims et al., 2009),
kmacs (Leimeister and Morgenstern, 2014), SENSE (Zheng et al.,
2019b) and NeuroSEED (Corso et al., 2021). When evaluating an
alignment-free method, estimation accuracy and computational effi-
ciency are the two major considerations. Thus, we calculated the
mean relative error (MRE) between alignment distances and distan-
ces estimated by an alignment-free method and recorded its compu-
tational time. By definition, MRE can be interpreted as the
percentage of estimated distances that deviate from alignment dis-
tances. Since it is computationally infeasible to align all sequence
pairs in a dataset, we randomly sampled 1000 sequences without re-
placement and calculated the alignment distances of all 499 500

Table 2. CPU time (seconds) and MRE (%) of eight methods tested on Qiita and RT988 datasets

Qiita RT988

Method Parameter CPU time MRE P-value CPU time MRE P-value

AsMac Default 16.1 (0.3) 4.5 (0.1) – 21.6 (0.7) 2.8 (0.1) –

SENSE Default 9.7 (0.3) 5.2 (0.1) 5.2e–21 18.6 (0.1) 3.9 (0.2) 8.0e–12

NeuroSEED Default 6.2 (0.4) 7.3 (0.1) 4.5e–23 10.8 (0.5) 8.7 (0.1) 3.4e–30

ACS Default 14.7 (0.2) 51.4 (0.6) 5.9e–33 44.1 (1.3) 69.5 (0.7) 4.7e–34

Kr Default 61.6 (4.3) 189.1 (8.1) 3.0e–23 113.8 (1.6) 22.4 (0.4) 9.6e–30

kmacs k¼ 1 22.1 (0.6) 21.2 (0.3) 62.7 (1.5) 27.2 (0.2)

k¼ 2 24.2 (0.5) 10.2 (0.1) 5.8e–27 69.8 (1.2) 16.4 (0.1) 1.8e–34

k¼ 3 25.8 (0.2) 14.4 (0.2) 76.5 (1.6) 21.6 (0.4)

k¼ 4 27.6 (0.2) 23.7 (0.2) 82.5 (1.7) 31.2 (0.5)

k¼ 5 29.5 (0.4) 31.2 (0.2) 88.2 (2.5) 39.0 (0.6)

k¼ 6 31.6 (0.4) 37.0 (0.2) 93.4 (2.7) 45.0 (0.5)

k¼ 7 33.1 (0.9) 41.7 (0.2) 96.5 (1.7) 50.1 (0.5)

k¼ 8 34.5 (0.8) 45.7 (0.2) 100.0 (1.3) 54.1 (0.5)

k¼ 9 35.9 (1.0) 49.2 (0.2) 104.4 (2.2) 57.1 (0.4)

k¼ 10 37.0 (0.8) 52.2 (0.2) 108.1 (2.9) 59.6 (0.4)

k-mer k¼ 3 3.1 (0.1) 14.9 (0.3) 3.1e–26 3.3 (0.1) 36.8 (0.6) 2.6e–27

k¼ 4 5.3 (0.2) 65.8 (0.6) 8.3 (0.3) 62.7 (1.6)

k¼ 5 6.4 (0.3) 129.5 (1.1) 14.0 (0.1) 147.8 (1.5)

k¼ 6 6.7 (0.3) 167.3 (1.4) 16.9 (0.1) 219.1 (1.8)

k¼ 7 6.6 (0.2) 188.4 (1.7) 17.9 (0.2) 267.6 (2.2)

k¼ 8 6.5 (0.2) 200.7 (1.9) 18.0 (0.1) 301.4 (2.7)

k¼ 9 6.5 (0.2) 201.2 (2.0) 18.0 (0.1) 302.1 (2.7)

k¼ 10 6.5 (0.2) 201.4 (2.0) 17.9 (0.1) 301.0 (2.6)

k¼ 11 6.5 (0.2) 201.4 (2.0) 17.9 (0.1) 300.0 (2.6)

k¼ 12 6.4 (0.2) 201.4 (2.0) 17.9 (0.1) 299.0 (2.5)

FFP l¼ 6 2.9 (0.1) 87.9 (0.2) 2.9 (0.0) 93.0 (0.1)

l¼ 7 5.0 (0.1) 90.0 (0.1) 4.9 (0.1) 85.4 (0.1)

l¼ 8 9.8 (0.2) 38.7 (0.3) 9.9 (0.0) 83.2 (0.1)

l¼ 9 17.4 (0.7) 38.5 (0.5) 4.3e–32 18.0 (0.1) 78.0 (0.2)

l¼ 10 33.2 (1.1) 97.4 (1.0) 35.5 (0.0) 18.4 (0.5) 3.1e–25

l¼ 11 61.2 (2.4) 137.5 (1.4) 64.9 (0.1) 95.6 (1.1)

l¼ 12 121.6 (4.5) 162.8 (1.8) 123.7 (0.4) 169.8 (1.7)

l¼ 13 233.1 (6.4) 178.9 (2.0) 219.8 (1.0) 220.1 (2.2)

l¼ 14 428.3 (5.9) 189.4 (2.1) 353.4 (3.4) 251.0 (2.6)

l¼ 15 692.5 (12.0) 196.4 (2.2) 493.4 (7.0) 274.2 (3.0)

Note: The numbers in parentheses are standard deviations. When different parameters were used for a given method, the best result is boldfaced. A P-value

was computed by comparing the MRE result of AsMac with the best result of the other method.
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Table 3. CPU time (seconds) and MRE (%) of seven methods tested on Greengenes, Silva-23S, Labonte lake and Zymo datasets

Greengenes (16S full) Silva-23S (23S full) Labonte lake (23S V5) Zymo (16S full)

Method Parameter CPU time MRE P-value CPU time MRE P-value CPU time MRE P-value CPU time MRE P-value

AsMac Default 54.0 (0.9) 3.6 (0.2) – 97.8 (2.3) 4.0 (0.1) – 16.7 (0.5) 2.8 (0.1) – 57.3 (1.0) 10.6 (0.3) –

NeuroSEED Default 22.2 (1.2) 17.0 (0.2) 1.8e–29 65.2 (1.1) 21.2 (0.3) 1.1e–29 19.0 (0.3) 12.8 (0.8) 4.5e–23 23.1 (0.9) 134.0 (3.4) 1.1e–26

ACS Default 129.0 (3.8) 43.1 (0.5) 2.8e–32 277.0 (5.0) 58.5 (0.4) 3.3e–36 28.2 (0.3) 75.5 (0.7) 5.9e–33 133.1 (4.6) 86.9 (0.9) 2.8e–33

Kr Default 140.2 (8.3) 41.7 (0.4) 8.7e–33 162.3 (4.3) 41.9 (2.1) 2.1e–21 107.5 (3.0) 21.3 (0.3) 3.0e–23 173.5 (12.3) 42.0 (0.3) 3.2e–32

kmacs k¼ 1 189.1 (0.9) 16.8 (0.3) 419.5 (13.1) 30.7 (0.3) 57.7 (2.1) 35.2 (0.5) 191.3 (0.8) 36.4 (0.7)

k¼ 2 210.1 (1.7) 12.7 (0.2) 1.6e–29 464.2 (7.4) 18.2 (0.3) 63.2 (2.0) 18.0 (0.3) 214.7 (1.0) 24.4 (0.4) 6.5e–27

k¼ 3 229.7 (1.0) 18.0 (0.3) 510.7 (11.7) 13.0 (0.4) 2.0e–22 69.3 (2.7) 14.5 (0.3) 1.2e–27 231.9 (0.8) 28.3 (0.3)

k¼ 4 249.1 (2.8) 25.4 (0.3) 553.5 (9.6) 14.0 (0.4) 74.1 (1.9) 18.7 (0.4) 248.2 (0.3) 37.6 (0.4)

k¼ 5 269.7 (4.7) 31.8 (0.3) 594.7 (10.8) 19.8 (0.4) 80.2 (3.2) 25.0 (0.4) 263.6 (0.3) 44.1 (0.4)

k¼ 6 294.3 (9.6) 36.8 (0.3) 642.5 (6.0) 25.5 (0.4) 85.1 (3.2) 30.6 (0.4) 280.7 (0.8) 48.3 (0.4)

k¼ 7 303.2 (1.9) 41.0 (0.3) 676.2 (8.5) 30.3 (0.4) 89.6 (3.8) 35.4 (0.4) 293.0 (0.5) 51.9 (0.4)

k¼ 8 317.3 (2.1) 44.3 (0.3) 708.5 (10.8) 34.5 (0.4) 92.2 (3.3) 42.1 (0.4) 304.4 (0.2) 55.0 (0.4)

k¼ 9 342.6 (16.0) 47.2 (0.3) 749.7 (20.8) 38.2 (0.4) 94.2 (3.3) 43.9 (0.4) 316.8 (0.6) 57.6 (0.4)

k¼ 10 362.6 (25.1) 49.6 (0.2) 773.2 (9.6) 41.3 (0.4) 96.6 (3.3) 45.8 (0.4) 327.4 (0.3) 59.7 (0.4)

k-mer k¼ 3 3.4 (0.01) 67.7 (0.3) 5.84 (0.1) 78.9 (0.4) 3.9 (0.4) 25.9 (0.4) 1.7e–29 3.5 (0.0) 53.7 (0.4)

k¼ 4 9.9 (0.1) 35.7 (0.3) 14.1 (0.2) 66.6 (0.4) 9.0 (0.6) 64.0 (1.1) 10.0 (0.4) 40.1 (0.4) 2.9e–39

k¼ 5 26.7 (0.2) 30.1 (0.5) 8.5e–29 32.2 (0.4) 49.3 (0.4) 14.2 (0.8) 154.4 (1.3) 26.8 (0.3) 107.0 (1.4)

k¼ 6 44.0 (0.1) 103.5 (0.7) 46.4 (0.8) 25.7 (0.5) 2.5e–28 16.3 (0.9) 222.3 (1.6) 43.3 (0.1) 200.7 (1.7)

k¼ 7 51.2 (0.7) 154.2 (0.8) 62.8 (0.9) 41.4 (1.1) 16.8 (0.5) 265.4 (2.1) 51.0 (0.1) 271.7 (1.9)

k¼ 8 52.6 (0.5) 181.0 (0.8) 85.3 (3.0) 101.9 (1.4) 16.8 (0.7) 296.7 (2.5) 53.0 (0.2) 318.9 (2.4)

k¼ 9 52.3 (0.3) 181.1 (0.8) 85.5 (1.9) 101.9 (1.4) 16.7 (0.6) 297.6 (2.5) 53.0 (0.2) 318.7 (2.4)

k¼ 10 52.1 (0.1) 181.1 (0.8) 85.5 (3.1) 101.9 (1.4) 16.6 (0.6) 298.4 (2.5) 53.0 (0.2) 318.7 (2.4)

k¼ 11 52.0 (0.0) 181.1 (0.8) 84.7 (2.0) 102.0 (1.4) 16.9 (0.9) 299.3 (2.5) 53.1 (0.3) 318.6 (2.4)

k¼ 12 52.1 (0.1) 181.2 (0.8) 84.9 (3.7) 102.0 (1.4) 17.0 (0.9) 300.1 (2.5) 53.1 (0.3) 318.8 (2.4)

FFP l¼ 6 3.2 (0.0) 98.1 (0.05) 3.6 (0.8) 98.3 (0.7) 3.3 (0.2) 90.9 (0.2) 3.1 (0.3) 98.0 (0.0)

l¼ 7 5.2 (0.2) 96.0 (0.05) 5.9 (0.8) 97.0 (0.7) 5.6 (0.3) 87.2 (0.2) 5.1 (0.4) 95.6 (0.0)

l¼ 8 11.0 (0.3) 91.6 (0.1) 12.2 (0.8) 94.6 (0.7) 11.3 (0.3) 93.0 (0.1) 10.4 (0.8) 90.3 (0.0)

l¼ 9 19.9 (0.7) 84.7 (0.1) 21.7 (0.8) 90.3 (0.7) 20.9 (0.8) 66.7 (0.3) 19.2 (1.6) 80.9 (0.1)

l¼ 10 40.7 (1.0) 93.9 (0.1) 44.0 (0.8) 84.4 (0.7) 40.8 (0.8) 21.8 (0.3) 1.1e–30 39.1 (3.0) 86.9 (0.1)

l¼ 11 76.1 (0.7) 56.4 (0.2) 84.8 (0.8) 92.5 (0.7) 75.2 (4.2) 84.0 (0.9) 74.1 (6.4) 57.0 (0.3)

l¼ 12 149.2 (0.8) 18.0 (0.3) 2.6e–29 170.8 (0.8) 55.4 (0.7) 141.8 (9.9) 148.0 (1.0) 143.1 (11.8) 42.8 (0.2) 5.1e–31

l¼ 13 274.1 (0.9) 77.3 (0.4) 311.8 (0.8) 24.3 (0.7) 5.3e–27 244.4 (14.2) 197.3 (1.3) 250.0 (12.1) 128.7 (0.7)

l¼ 14 527.2 (2.1) 120.0 (0.5) 590.0 (0.8) 96.1 (0.7) 401.3 (36.2) 234.4 (1.7) 382.4 (2.5) 199.1 (0.6)

l¼ 15 1031.8 (3.5) 147.1 (0.6) 1126.2 (0.8) 147.6 (0.7) 551.6 (40.0) 260.8 (1.9) 548.5 (15.4) 274.2 (3.0)

When different parameters were used for a given method, the best result is boldfaced.
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possible sequence pairs. The NW algorithm (Needleman and
Wunsch, 1970) with the default setting was used for sequence align-
ment (match score¼2, mismatch score¼ –3, gap opening score¼ –
5, gap extension score¼ –2). To minimize random variations, the
above sampling process was repeated ten times. Therefore, we gen-
erated ten test datasets from each sequence dataset to evaluate the
eight competing methods.

For kmacs, FFP (V3.19), Kr (V2.0.2) and NeuroSEED, we used
the source code provided by the associated articles. Since kmacs is
an extension of ACS, we used the kmacs binary by setting k¼0 as
the implementation of the ACS method. For k-mer, we used our
Cþþ implementation, which is optimized for amplicon sequence
data by using a sparse k-mer count representation. For k-mer, kmacs
and FFP, different parameters can be applied. Since there is no prin-
cipal way to estimate the optimal parameter, we tested ten parame-
ters for each method and recorded the best result. For SENSE, we
used the default parameters. For NeuroSEED, we used the settings
reported to achieve the best results in the original article. For
AsMac, we set the number of pattern filters to 300 and the pattern
length to 20. For AsMac, SENSE and NeuroSEED, training of a
model for each sequence dataset is required. Since SENSE can only
be applied to sequences of roughly equal length, it was trained and
tested only on the Qiita and RT988 datasets. To form a training

dataset, we randomly sampled sequences from a dataset without re-
placement and calculated the alignment distances of 5 million se-
quence pairs. To prevent information leakage, we verified that none
of the sequences used for training were included in the test data. The
Adam optimizer (Diederik et al., 2014) was employed to train the
Siamese neural networks in SENSE and AsMac, where the learning
rate was set to 1e–4 and the number of training epochs was set to
200. All experiments were performed on a 3.3 GHz Quad-Core Intel
Core i5 with 16GB memory.

3.3 Benchmark study of accuracy and efficiency
First, we applied the eight methods to the Qiita and RT988 datasets,
in which sequences cover only a sub-region of the 16S rRNA gene
and have similar lengths. Table 2 reports the MREs and CPU time
of the eight methods, obtained by averaging over ten runs, and
Supplementary Figures S1 and S2 present the estimated distances
against the alignment distances for the two datasets, respectively. In
terms of prediction accuracy, AsMac performed slightly better than
SENSE and NeuroSEED and significantly outperformed the best
results of all other methods by a large margin on both datasets. In
terms of running time, while k-mer is the fastest algorithm, its per-
formance is not comparable to our method.

Fig. 3. Visualization of alignment distances versus estimated distances computed by seven methods: (a) AsMac, (b) NeuroSEED, (c) ACS, (d) Kr, (e) kmacs (k¼2), (f) k-mer

(k¼ 5) and (g) FFP (l¼12) performed on the Zymo dataset. For AsMac and NeuroSEED, a model was trained on the Greengenes dataset and applied to the Zymo dataset

Fig. 2. Visualization of alignment distances versus estimated distances computed by seven methods: (a) AsMac, (b) NeuroSEED, (c) ACS, (d) Kr, (e) kmacs (k¼2), (f) k-mer

(k¼ 5) and (g) FFP (l¼12) performed on the Greengenes dataset. Each dot represents a sequence pair, and the color of a hex bin represents the number of sequence pairs in the

bin. The number in a parenthesis is the parameter that achieved the best result for the corresponding method
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Next, we applied the competing methods to the Greengenes,
Silva-23S and Labonte lake datasets, where the sequences are of
variable lengths. Since there is no biologically meaningful way to
trim sequences to an equal length, SENSE cannot be used. Table 3
reports the MREs and CPU time of the seven tested methods.
Figure 2, Supplementary Figures S3 and S4 present the estimated dis-
tances against the alignment distances for the three datasets, respect-
ively. Similar to the results obtained on the Qiita and RT988
datasets, the prediction accuracies of AsMac were significantly bet-
ter than the best results of all other competing methods.

Finally, we tested the generalization capability of AsMac and
NeuroSEED by training a model using the Greengenes dataset and
applying it to the Zymo dataset. The results are reported in Table 3
and Figure 3. Again, AsMac significantly outperformed the other
approaches. We noted that, compared to the result obtained from
the Greengenes dataset, the prediction accuracy of NeuroSEED
declined dramatically. This is likely to be because the Zymo dataset
contains a large number of similar sequences that differ by only a
few indels, and the CNN structure used by NeuroSEED does not ac-
commodate indels well. As shown in Figure 3b, NeuroSEED severely
overestimated the pairwise distances of similar sequences. In con-
trast, by using the ASM structure, our method maintained a high
level of accuracy in predicting alignment distances in this situation.

3.4 Taxonomy assignment
To further evaluate the effectiveness and utility of the proposed
method, we conducted an experiment where we used our approach
to perform taxonomy assignment of a given sequence dataset by
searching against a reference database. For the purpose of this study,
we constructed a query dataset by randomly sampling 3000 sequen-
ces from the Zymo dataset. We used as the reference database the
GG97 dataset, a subset of the Greengenes database (McDonald
et al., 2012). This is the default closed-reference database used by
QIIME (Caporaso et al., 2010) and contains 30 592 sequences with
complete taxonomy annotations at the genus level. We performed a
database search using the NW algorithm and annotated each query
sequence using the genus of the best-matched reference sequence.
We used the result obtained by the NW algorithm as the ground
truth and compared the performance of our method with the six
competing methods used in the Greengenes study. For kmacs, k-mer
and FFP, the parameters were set to be those that achieved the best
performance in the Greengenes study. All methods were performed
in parallel using four threads.

Figure 4 reports the annotation accuracy and CPU time of the
seven methods tested. Our method achieved 98.4% prediction accur-
acy, outperforming FFP and NeuroSEED by �13%, and k-mer, ACS,
Kr and kmacs by �20%. We noticed that kmac did not perform as
well as that in the Greengenes and Zymo studies (see Table 3). This
may be because for sequence alignment we are concerned about the ac-
curacy of distance estimation for all sequence pairs, whereas for se-
quence annotation we are only interested in sequence pairs that are
similar. In terms of computational efficiency, AsMac performed com-
parably with k-mer and NeuroSEED, but ran two orders of magnitude
faster than Kr, ACS, kmacs and FFP. It is worth noting that, compared
to the results reported in Table 2, AsMac, NeuroSEED and k-mer ran
much faster than the other methods. This is because, for the above
three methods, the embedding vectors of the reference sequences can
be pre-computed, while for Kr, ACS and kmacs, the pairwise sequence
comparison can only be performed in the presence of both query and
reference sequences. Although FFP can pre-process the reference
sequences, it is computationally expensive to compute the Kullback–
Leibler distances between the query and reference sequences.

3.5 Parameter sensitivity analysis
The proposed method has two parameters, namely, the pattern
number and the pattern length. We performed a parameter sensitiv-
ity analysis to investigate how the method performs with respect to
the two parameters. We applied the method to the Greengenes and
Zymo datasets and reported in Figure 5 the MRE results obtained
by using various pattern numbers and lengths. We can see that, with

an increase of the number of patterns, the prediction errors dropped
quickly and then flattened when the pattern number was larger than
300. We also observed that our method achieved similar results
once the pattern length was larger than 20. For a balance between
accuracy and efficiency, we set the pattern number to 300 and the
pattern length to 20 as the default parameters.

4 Discussion and conclusion

In this article, we described a new neural network-based method for
alignment-free sequence comparison. To demonstrate the effective-
ness of the proposed method, we conducted a large-scale benchmark
study using prokaryotic rRNA sequence datasets. The study showed
that the new method performs much more accurately than its data-
independent counterparts, and that the method is robust against the
presence of deletions and insertions and can handle sequences of vary-
ing lengths. The taxonomy assignment experiment further demon-
strated the potential utility of our method for practical applications.
Compared to data-independent methods, a major drawback of our
approach is that it requires training. We should emphasize that all
supervised learning-based approaches suffer from this drawback. For
example, the speech-recognition system used in smartphones requires
training, which may take weeks. However, the system installed in
smartphones is a trained model, which can perform speech recogni-
tion in a matter of milliseconds. To address the aforementioned draw-
back, we have published five trained neural-network models for some
commonly used prokaryotic marker genes (16S rRNA gene, 23S
rRNA gene, 16S V3 region, 16S V3–V4 region and 23S V5 region) in
an accompanying website that researchers can use directly to process
their own datasets. We should point out that the models for 16S
rRNA and 23S rRNA genes were trained on the sequences obtained
from databases and may have a better generalization capability than
the other models that were built by using the sequences obtained from
specific studies. In future work, we will continue to refine the models
by using sequence data from diverse studies. We also plan to build
models for other marker sequences (e.g. other hyper-variable regions
of 16S rRNA gene, the 18S rRNA gene and internal transcribed spa-
cer sequences of eukaryotes). We will explore the use of ASM for local
sequence comparisons, and the aggregation of the ASM structure to
form a multi-layer structure, which may further improve prediction
accuracy. It will also be of interest to perform in-depth analyses to in-
vestigate what type of information in nucleotide sequences has been
encoded by the patterns in a neural-network model.

Fig. 4. Comparison of taxonomy prediction accuracy and CPU time of seven

methods
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