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Johan Aberg, and Nahid Shahmehri

Department of Computer and Information Science,
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Abstract. In recent years many biomedical ontologies have been de-
veloped and many of these ontologies contain overlapping information.
To be able to use multiple ontologies they have to be aligned. In this
paper we propose strategies for aligning ontologies based on life science
literature. We propose a basic algorithm as well as extensions that take
the structure of the ontologies into account. We evaluate the strategies
and compare them with strategies implemented in the alignment system
SAMBO. We also evaluate the combination of the proposed strategies
and the SAMBO strategies.

1 Introduction

Ontologies (e.g. [Lam04,Gom99]) can be seen as defining the basic terms and re-
lations of a domain of interest, as well as the rules for combining these terms and
relations. They are considered to be an important technology for the Semantic
Web. Ontologies are used for communication between people and organizations
by providing a common terminology over a domain. They provide the basis for
interoperability between systems. They can be used for making the content in
information sources explicit and serve as an index to a repository of information.
Further, they can be used as a basis for integration of information sources and as
a query model for information sources. They also support clearly separating do-
main knowledge from application-based knowledge as well as validation of data
sources. The benefits of using ontologies include reuse, sharing and portability
of knowledge across platforms, and improved maintainability, documentation,
maintenance, and reliability. Overall, ontologies lead to a better understanding
of a field and to more effective and efficient handling of information in that field.
In the field of bioinformatics the work on biomedical ontologies is recognized
as essential in some of the grand challenges of genomics research [CGGG03]
and there is much international research cooperation for the development of on-
tologies (e.g. the Gene Ontology (GO) [GO00] and Open Biomedical Ontologies
(OBO) [OBO] efforts) and the use of ontologies for the Semantic Web (e.g. the
EU Network of Excellence REWERSE [REWERSE], [Lam05]).

Many ontologies have already been developed and many of these ontologies
contain overlapping information. Often we would therefore want to be able to
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use multiple ontologies. For instance, companies may want to use community
standard ontologies and use them together with company-specific ontologies.
Applications may need to use ontologies from different areas or from different
views on one area. Ontology builders may want to use already existing ontologies
as the basis for the creation of new ontologies by extending the existing ontologies
or by combining knowledge from different smaller ontologies. In each of these
cases it is important to know the relationships between the terms (concepts and
relations) in the different ontologies. These relationships can also be used in
information integration [JL05]. It has been realized that ontology alignment, i.e.
finding relationships between terms in the different ontologies, is a major issue
and some organizations (e.g. the organization for Standards and Ontologies for
Functional Genomics (SOFG)) have started to deal with it.

In this paper we present instance-based strategies for aligning biomedical
ontologies. We focus on equivalence and is-a relationships. In section 3 we present
an algorithm based on naive Bayes classifiers as well as extensions that take the
structure of the ontologies into account. The strategies use life science literature
and build on the intuition that a similarity measure between concepts can be
computed based on the probability that documents about one concept are also
about the other concept. Section 4 describes different experiments regarding the
quality and performance of the proposed strategies and the combination of these
strategies with other existing strategies. We describe related work in section 5
and conclude the paper in section 6. In the next section we provide background
information on biomedical ontologies and ontology alignment systems.

2 Background

2.1 Biomedical Ontologies

In recent years many biomedical ontologies have been developed and the field
has matured enough to develop standardization efforts. An example of this is the
organization of the first SOFG conference in 2002 and the development of the
SOFG resource on ontologies. Further, there exist ontologies that have reached
the status of de facto standard and are being used extensively for annotation of
databases. Also, OBO was started as an umbrella web address for ontologies for
use within the genomics and proteomics domains. Many biomedical ontologies
are available via OBO and there are many overlapping ontologies in the field.

The ontologies that we use in this paper are GO ontologies, Signal-Ontology
(SigO), Medical Subject Headings (MeSH) and the Anatomical Dictionary for
the Adult Mouse (MA). The GO Consortium is a joint project which goal is to
produce a structured, precisely defined, common and dynamic controlled vocab-
ulary that describes the roles of genes and proteins in all organisms. Currently,
there are three independent ontologies publicly available over the Internet: bio-
logical process, molecular function and cellular component. The GO ontologies
are a de facto standard and many different bio-data sources are today annotated
with GO terms. The terms in GO are arranged as nodes in a directed acyclic
graph, where multiple inheritance is allowed. The purpose of the SigO project
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is to extract common features of cell signaling in the model organisms, try to
understand what cell signaling is and how cell signaling systems can be modeled.
SigO is a publicly available controlled vocabulary of the cell signaling system. It
is based on the knowledge of the Cell Signaling Networks data source [TNK98]
and treats complex knowledge of living cells such as pathways, networks and
causal relationships among molecules. The ontology consists of a flow diagram
of signal transduction and a conceptual hierarchy of biochemical attributes of
signaling molecules. MeSH is a controlled vocabulary produced by the American
National Library of Medicine and used for indexing, cataloging, and searching
for biomedical and health-related information and documents. It consists of sets
of terms naming descriptors in a hierarchical structure. These descriptors are
organized in 15 categories, such as the category for anatomic terms, which is
the category we use in the evaluation. MA is cooperating with the Anatomical
Dictionary for Mouse Development to generate an anatomy ontology (controlled
vocabulary) covering the lifespan of the laboratory mouse. It organizes anatom-
ical structures spatially and functionally, using is-a and part-of relationships.

2.2 Ontology Alignment Systems

There exist a number of ontology alignment systems that support the user to
find inter-ontology relationships. Some of these systems are also ontology merge
systems, i.e. they can create a new ontology based on the source ontologies
and the alignment relationships. Many ontology alignment systems can be de-
scribed as instantiations of the general framework defined in [LT05b] (figure 1).
An alignment algorithm receives as input two source ontologies. The algorithm
can include several matchers. These matchers calculate similarities between the
terms from the different source ontologies. The matchers can implement strate-
gies based on linguistic matching, structure-based strategies, constraint-based
approaches, instance-based strategies, strategies that use auxiliary information
or a combination of these.

Alignment suggestions are then determined by combining and filtering the
results generated by one or more matchers. The pairs of terms with a similarity
value above a certain threshold are retained as alignment suggestions. By using
different matchers and combining them and filtering in different ways we obtain
different alignment strategies. The suggestions are then presented to the user who
accepts or rejects them. The acceptance and rejection of a suggestion may influ-
ence further suggestions. Further, a conflict checker is used to avoid conflicts in-
troduced by the alignment relationships. The output of the alignment algorithm
is a set of alignment relationships between terms from the source ontologies.

To date comparative evaluations of ontology alignment and merge systems
have been performed by few groups ([OntoWeb] and [LE03, LT05a, LT05b,
LT06]) and only the latter has focused on the quality of the alignment. Further,
an ontology alignment contest was held at EON-2004 [Euz04]. The main goal
of the contest was to show how ontology alignment tools can be evaluated and
a follow-up was planned. An overview of alignment systems and a comparison
between different alignment strategies can be found in [LT05a, LT05b, LT06].
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Fig. 1. A general alignment strategy [LT05b]

2.3 SAMBO

SAMBO1 (System for Aligning and Merging Biomedical Ontologies) is an
alignment and merge system for biomedical ontologies developed using the
general framework defined in [LT05b]. The current implementation supports
ontologies in OWL and DAML+OIL formats. Several kinds of matchers are used
[LT05a, LT05b, LT06], including the basic algorithm described in this paper.
These matchers can be combined using different weights and a threshold for fil-
tering can be set. For each alignment suggestion the user can decide whether the
terms are equivalent, there is an is-a relation between the terms, or the sugges-
tion is rejected (figure 2). At each point in time during the alignment process the
user can view the ontologies represented in trees with the information on which
actions have been performed, and she can check how many suggestions still need
to be processed. In addition to the suggestion mode, the system has a manual
mode in which the user can view the ontologies and manually align terms.

3 Alignment Algorithms

In this paper we present algorithms for suggesting alignments between two
biomedical ontologies which focus on relationships between concepts. The al-
gorithms make use of life science literature that is related to these concepts.
They build on the intuition that a similarity measure between concepts in differ-
ent ontologies can be computed based on the probability that documents about
one concept are also about the other concept and vice versa. We propose a basic
algorithm as well as two extensions that take the structure of the ontologies into
account.
1 The home page for SAMBO is http://www.ida.liu.se/∼iislab/projects/SAMBO/
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Fig. 2. Alignment suggestion

The algorithms contain the following basic steps.

1. Generate corpora. For each ontology that we want to align we generate a
corpus of PubMed abstracts. PubMed [PubMed] is a service of the National
Library of Medicine that includes over 15 millions citations from MEDLINE
[MEDLINE] and other biomedical journals.

2. Generating the classifiers. For each ontology a document classifier is gen-
erated. This classifier returns for a given document the concept that is most
closely related. To generate a classifier the corpus of abstracts associated to
the classifier’s ontology is used.

3. Classification. Documents of one ontology are classified by the document
classifier of the other ontology and visa versa.

4. Calculate similarities. A similarity measure between concepts in the dif-
ferent ontologies is computed.

In the steps 2 and 3 of our algorithms we use (variants of) the naive Bayes
classification algorithm. In the remainder of this section we describe the intuition
behind a naive Bayes classifier for classifying text documents with respect to
ontological concepts and present the different algorithms in more detail.

3.1 Text Classification Based on Naive Bayes Classifier

A naive Bayes classifier classifies a document d as related to a concept C in an
ontology if the highest value for the posterior probability of a concept given the
document d is obtained for the concept C. The posterior probability of concept
C given document d is estimated using Bayes’ rule [Mit97]:

P (C|d) =
P (C)P (d|C)

P (d)

As P (d) is independent of the concepts, it can be ignored. Also, the logarithm of
the probability is often computed instead of the actual probability. This gives:

logP (C|d) ≈ logP (C)P (d|C) = logP (C) + logP (d|C)
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To evaluate the probabilities, the previously learned knowledge about the train-
ing documents originally associated to the ontological concepts is used. P (C) is
estimated by the ratio of the number of documents originally associated with
C (nD(C)) and the total number of documents related to the concepts in the
ontology.

P (C) =
nD(C) + λ

∑
i nD(Ci) + λ|O|

where 0 < λ ≤ 1 is the Laplace smoothing parameter2, and |O| is the total
number of concepts in the ontology. The term P (d|C) is estimated by the prob-
ability that words w in the document d occur in documents originally related
to C. Assuming that word occurrences are independent of occurrences of other
words, we have

P (d|C) =
∏

w∈d

P (w|C)

Let nW (C, w) be the number of occurrences of word w in documents associated
with C, and nW (C) =

∑
w nW (C, w) be the total number of occurrences of

words in documents associated with C. Then P (w|C) is estimated by

P (w|C) =
nW (C, w) + λ

nW (C) + λ|V |

where λ is the earlier defined Laplace smoothing parameter, and |V | is the size of
the vocabulary, i.e. the number of distinct words in all of the training documents.

3.2 Basic Algorithm

We now describe the different steps in the basic algorithm in more detail.

1. Generate corpora. For each ontology we generate a corpus based on docu-
ments that are related to the concepts in the ontology. For each concept we use
the concept name as a query term for PubMed and retrieve abstracts of docu-
ments that contain the query term in their title or abstract using the program-
ming utilities [SW] provided by the retrieval system Entrez [Entrez]. A maxi-
mum number of retrieved abstracts per concept needs to be set beforehand.

2. Generating the classifiers. For each ontology a naive Bayes classifier3 is
generated. During the classifier generation P (C) and P (w|C) are calculated
for every concept based on the corpus of abstracts associated to the ontology.

3. Classification. The naive Bayes classifier for one ontology is applied to
every abstract in the abstract corpus of the other ontology and vice versa.
For every abstract the classifier calculates logP (C|d) with respect to every
concept and classifies the abstract to the concept with the highest value
for the posterior probability. The classifier keeps track of how the abstracts
associated to concepts in one ontology are distributed over concepts in the
other ontology.

2 In the implementation λ = 1.
3 The implementation of the naive Bayes classifier is based on the code available at

http://www.cs.utexas.edu/users/mooney/ir-course/
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4. Calculate similarities. As the last step we compute a similarity between
concepts in different ontologies. We define the similarity between a concept
C1 from the first ontology and a concept C2 from the second ontology as:

sim(C1, C2) =
nNBC2(C1, C2) + nNBC1(C2, C1)

nD(C1) + nD(C2)

where nD(C) is the number of abstracts originally associated with C, and
nNBCx(Cp, Cq) is the number of abstracts associated with Cp that are also
related to Cq as found by classifier NBCx related to ontology x.

The pairs of concepts with a similarity measure greater or equal than a pre-
defined threshold are then presented to the user as candidate alignments.

3.3 Structure-Based Extensions of the Basic Algorithm

Most biomedical ontologies are organized using is-a relations. Therefore, the on-
tologies have inherent information about concepts and sub-concepts and this
information could be used during the alignment process. In this section we pro-
pose extensions of the basic algorithm that take the structure (is-a relations) of
the original ontologies into account by assuming that abstracts that are related
to the sub-concepts of a concept C are also related to concept C. The first ex-
tension takes the structure into account during the generation of the classifiers.
In the second extension we use a different similarity measure.

Structure-based classifier. This algorithm extends the classifier generation
step (step 2) of the basic algorithm. To calculate the posterior probability of
concept C given document d while taking into account the structure of the
classifier’s ontology, P (C) and P (w|C) are defined as follows (with nD(C), |O|,
λ, nW (C, w) and nW (C) as defined before).

P (C) =

∑
Cj⊆C nD(Cj) + λ

∑
i nD(Ci) + λ|O| , P (w|C) =

∑
Ci⊆C nW (Ci, w) + λ

∑
Ci⊆C nW (Ci) + λ|V |

This is equivalent to extending the corpus of documents for each concept C
in the ontology by including the documents related to the sub-concepts of the
concept C, and then calculating the posterior probabilities using the previously
defined naive Bayes classifier.

Structure-based similarity measure. A structure-based similarity between
a concept C1 from the first ontology and a concept C2 from the second ontology
can be defined as (with nD(C) and nNBCx(Cp, Cq) as defined before):

simstruct(C1, C2) =

�
Ci⊆C1,Cj⊆C2

nNBC2(Ci, Cj) +
�

Ci⊆C1,Cj⊆C2
nNBC1(Cj , Ci)

�
Ci⊆C1

nD(Ci) +
�

Cj⊆C2
nD(Cj)

In this definition the similarity between concepts is computed based on the naive
Bayes classifiers applied to the concepts and their sub-concepts.
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4 Evaluation

In our evaluation we have focused on several aspects. First, we investigated the
influence of the number of PubMed abstracts on the quality of the suggestions.
Further, we compare the proposed algorithms with respect to the quality of the
suggestions they generate and the time they take to generate the suggestions.
We also compare them to other matchers implemented in SAMBO with respect
to the quality of the suggestions and investigate the combination of the proposed
algorithms and the other SAMBO matchers.

4.1 Set-Up

Test cases. In the evaluation we create five cases from several well-known
biomedical ontologies. For the first two cases we use a part of a GO ontology
[GO00] together with a part of SigO [TNK98]. Each case was chosen in such a
way that there is an overlap between the GO part and the SigO part. The first
case, B (behavior), contains 57 terms from GO and 10 terms from SigO. The
second case, ID (immune defense), contains 73 terms from GO and 17 terms
from SigO. We used more terms from GO than from SigO because the granular-
ity of GO is higher than the granularity of SigO for these topics. The other cases
are taken from two biomedical ontologies that are available from OBO [OBO]:
MeSH (anatomy category) and MA. The two ontologies cover a similar subject
domain, anatomy, and are developed independently. The three cases used in our
test are: nose (containing 15 terms from MeSH and 18 terms from MA), ear
(containing 39 terms from MeSH and 77 terms from MA), and eye (containing
45 terms from MeSH and 112 terms from MA). We translated the ontologies
from the GO flat file format to OWL retaining identifiers, names, synonyms,
definitions and is-a and part-of relations. The synonyms were transformed into
equivalence statements. Domain experts were asked to analyze the cases and
provide alignment relationships based on equivalence and is-a relations. In our
evaluations we have used the ontologies and the alignment relationships from
the experts as they were provided to us.

Table 1. Number of abstracts

Ontology concepts 100 90-99 80-89 70-79 60-69 50-59 40-49 30-39 20-29 10-19 1-9 0
B-GO 57 37 0 2 2 2 0 0 0 1 3 4 6
B-SigO 10 10 0 0 0 0 0 0 0 0 0 0 0
ID-GO 73 44 1 2 0 3 0 1 0 3 4 1 14
ID-SigO 17 17 0 0 0 0 0 0 0 0 0 0 0
nose-MA 18 13 0 0 0 1 0 1 0 0 0 3 0
nose-MeSH 15 15 0 0 0 0 0 0 0 0 0 0 0
ear-MA 77 48 1 0 1 3 0 1 2 2 5 9 5
ear-MeSH 39 34 0 1 0 0 0 0 0 1 1 1 1
eye-MA 112 84 2 1 1 3 3 0 1 2 7 8 0
eye-MeSH 45 37 0 0 0 0 2 0 1 1 1 1 2
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PubMed.For the generation of the corporawe used PubMed as itwas available on
October 23, 2005. (All corpora generated between 11.42 and 13.15CEST.)We gen-
erated different corpora for each ontology by assigning a maximum of 20, 40, 60, 80
and 100 PubMed abstracts, respectively, for each concept in the source ontologies.
The corpus generated using a maximum of 20 abstracts is a sub-set of the corpus
generated using a maximum of 40 abstracts, and similarly for 60, 80 and 100. The
retrieval system for PubMed did not always find the allowed number of abstracts
for all concepts. Table 1 shows for how many concepts the system retrieved 100,
between 90 and 99, ... , between 1-9 and no abstracts. When more abstracts than
allowed were found, we retrieved the most recent abstracts, otherwise all abstracts
wereretrieved.Weobservethatwhentheallowednumberofabstracts is100, insome
cases only for 60% of the concepts 100 abstracts were retrieved. Even when 20 ab-
stracts were allowed, not for all concepts this number of abstracts was retrieved. In
this experiment there is no apparent relationship between the location of a concept
in the is-a hierarchy and how many abstracts are retrieved for that concept.

4.2 Evaluation Results

Influence of the number of PubMed abstracts on the quality of the
suggestions. In table 2 we present the quality of suggestions generated by
the basic algorithm with different numbers of abstracts. The cases are given in
the first column. The second column represents the number of expected sugges-
tions provided by domain experts. In our evaluation we consider only expected
suggestions related to equivalence of terms or is-a relations between terms. For
instance, in the ear case, there are 27 alignments that are specified by domain
experts. This is the minimal set of suggestions that matchers are expected to
generate for a perfect recall. This set does not include the inferred suggestions.
Inferred suggestions are counted neither as correct nor as wrong suggestions. An
example of an inferred suggestion is that incus is a kind of ear ossicle. In this case
we know that auditory bone (MA) is equivalent to ear ossicle (MeSH), and incus
is a kind of auditory bone in MA. Then the system should derive that incus is a
kind of ear ossicle. The third column represents the threshold value. Pairs with
a similarity value higher than the threshold are suggestions. The other columns
present the results. The four numbers in the cells represent the number of sugges-
tions provided by the algorithm, the number of correct suggestions, the number
of wrong suggestions and the number of inferred suggestions, respectively. For
instance, for the case B with a maximum of 100 PubMed abstracts per concept
and threshold 0.4 the algorithm generates 4 suggestions of which 2 suggestions
are correct, 1 suggestion is wrong and 1 suggestion is inferred.

For the threshold 0.4 the precision4 usually becomes higher when the max-
imum number of abstracts increases, e.g. in the case eye the precision goes up
4 We use precision as it is usually defined in information retrieval, i.e. the number of

correct suggestions divided by the number of suggestions. As noted before, inferred
suggestions are counted neither correct nor wrong. Similarly, recall is defined as the
number of correct suggestions divided by the total number of correct suggestions, in
this case the expected suggestions.
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Table 2. Influence of number of abstracts. (The cells a/b/c/d represent the number of
a) suggestions, b) correct suggestions, c) wrong suggestions and d) inferred suggestions).

Case ES Th 20 40 60 80 100
B 4 0.4 3/2/0/1 3/2/1/0 6/2/1/3 4/2/0/2 4/2/1/1

0.5 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0
0.6 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0
0.7 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0
0.8 2/2/0/0 2/2/0/0 2/2/0/0 2/2/0/0 1/1/0/0

ID 8 0.4 11/4/4/3 9/5/3/1 10/6/3/1 9/6/3/0 9/6/3/0
0.5 7/4/0/3 6/5/0/1 7/5/1/1 5/5/0/0 5/5/0/0
0.6 5/4/0/1 4/3/0/1 2/2/0/0 2/2/0/0 2/2/0/0
0.7 2/2/0/0 1/1/0/0 1/1/0/0 1/1/0/0 1/1/0/0
0.8 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

nose 7 0.4 7/5/2/0 6/5/1/0 6/5/1/0 6/5/1/0 6/5/1/0
0.5 6/5/1/0 5/5/0/0 6/5/1/0 6/5/1/0 6/5/1/0
0.6 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0
0.7 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0
0.8 4/4/0/0 5/5/0/0 3/3/0/0 3/3/0/0 3/3/0/0

ear 27 0.4 20/16/4/0 19/16/3/0 19/16/3/0 18/16/2/0 18/16/2/0
0.5 18/16/2/0 17/15/2/0 15/14/1/0 15/14/1/0 15/14/1/0
0.6 14/14/0/0 15/14/1/0 11/10/1/0 12/11/1/0 12/11/1/0
0.7 11/11/0/0 11/10/1/0 11/10/1/0 11/10/1/0 11/10/1/0
0.8 5/5/0/0 5/5/0/0 4/4/0/0 3/3/0/0 3/3/0/0

eye 27 0.4 33/19/13/1 32/18/13/1 27/18/9/0 27/19/8/0 25/18/7/0
0.5 20/17/3/0 20/18/2/0 20/17/3/0 18/16/2/0 18/17/1/0
0.6 16/16/0/0 17/16/1/0 15/14/1/0 14/14/0/0 14/14/0/0
0.7 12/12/0/0 11/11/0/0 13/13/0/0 11/11/0/0 10/10/0/0
0.8 5/5/0/0 5/5/0/0 5/5/0/0 5/5/0/0 3/3/0/0

from 0.575 to 0.72. The exception is the case B where we obtain the best re-
sult when the maximum number of abstracts is 20 or 40. As the maximum
number of abstracts increases, no more correct suggestions are found, except
in the ID case where two more correct is-a relationships are found when the
maximum number of abstracts is higher than 40. For higher threshold values
the number of suggestions diminishes, e.g. in the ID case where the number
of suggestions goes down to 0 and both correct and wrong suggestions are fil-
tered out. When the maximum number of abstracts increases, the number of
correct suggestions goes down even faster when the threshold becomes higher.
The results of this experiment suggest that the quality of the suggestions does
not necessarily become better when we have larger corpora of abstracts. The
experiment also shows that the corpora have an impact on the quality of the
suggestions.

Quality of the suggestions. In table 3 we compare the quality of the sug-
gestions generated by our basic (Basic) algorithm, the extension that takes the
structure into account during the generation of the classifier (StrucCl), the ex-
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Table 3. Comparison of matchers: quality of the suggestions

Case ES Th Basic StrucCl StrucSim StrucClSim
B 4 0.4 4/2/1/1 5/2/0/3 20/3/6/11 7/1/0/6

0.5 2/2/0/0 3/2/0/1 7/1/2/4 5/1/0/4
0.6 2/2/0/0 2/2/0/0 5/1/0/4 4/0/0/4
0.7 2/2/0/0 1/1/0/0 3/1/0/2 2/0/0/2
0.8 1/1/0/0 0/0/0/0 2/0/0/2 1/0/0/1

ID 8 0.4 9/6/3/0 4/3/0/1 14/6/4/4 5/2/1/2
0.5 5/5/0/0 2/2/0/0 9/5/2/2 4/1/1/2
0.6 2/2/0/0 0/0/0/0 5/2/1/2 4/1/1/2
0.7 1/1/0/0 0/0/0/0 4/1/1/2 4/1/1/2
0.8 0/0/0/0 0/0/0/0 4/1/1/2 3/0/1/2

nose 7 0.4 6/5/1/0 7/5/2/0 9/5/2/2 8/5/2/1
0.5 6/5/1/0 5/5/0/0 6/4/1/1 4/3/0/1
0.6 5/5/0/0 5/5/0/0 4/3/0/1 3/3/0/0
0.7 5/5/0/0 2/2/0/0 3/3/0/0 1/1/0/0
0.8 3/3/0/0 2/2/0/0 1/1/0/0 1/1/0/0

ear 27 0.4 18/16/2/0 15/11/2/2 24/12/4/8 14/8/3/3
0.5 15/14/1/0 6/5/0/1 16/11/1/4 5/4/0/1
0.6 12/11/1/0 3/3/0/0 12/10/1/1 1/1/0/0
0.7 11/10/1/0 1/1/0/0 10/9/1/0 0/0/0/0
0.8 3/3/0/0 1/1/0/0 2/2/0/0 0/0/0/0

eye 27 0.4 25/18/7/0 25/11/11/3 34/14/15/5 16/8/6/2
0.5 18/17/1/0 8/7/1/0 21/12/6/3 10/4/4/2
0.6 14/14/0/0 3/3/0/0 14/9/4/1 1/0/1/0
0.7 10/10/0/0 1/1/0/0 9/7/2/0 1/0/1/0
0.8 3/3/0/0 1/1/0/0 3/3/0/0 0/0/0/0

tension that uses the structure-based similarity measure (StrucSim) and an al-
gorithm using both extensions (StrucClSim). In the evaluation we generated
corpora for each ontology by assigning a maximum of 100 PubMed abstracts for
each concept in the source ontologies.

In most of the cases Basic outperforms the structure-based algorithms. Only
in very few cases the structure-based algorithms showed higher precision and
recall. For the B, ID, and some settings of the nose, ear and eye cases, StrucSim
returns the largest number of suggestions. A large part of these suggestions
are inferred or wrong. The lowest number of suggestions is returned by StrucCl
and StrucClSim. Among the structure-based algorithms, StrucSim generates
the largest number of correct suggestions for the ID, ear and eye cases. In
some cases of B and nose, StrucSim is outperformed by StrucCl. The only new
correct suggestion is found by StrucSim and StrClSim for the ear case with the
threshold 0.5 - (auditory bone, ear ossicle). The concepts in the suggestion have
common sub-concepts. For the structure-based algorithms we noted that the
similarity value for a pair of concepts depends to a large degree on the content
of the abstracts related to the sub-concepts of the concepts in the suggestion
(StrucCl, StrucClSim) and on how the abstracts of one ontology are classified
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by the classifier of the other ontology (StrucSim, StrucClSim). This dependency
is the source of improved results in some of the test cases, but it may also result
in the decreased quality of the results.

The results of StrucCl illustrated that the use of the abstracts of sub-concepts
may cause both positive and negative results. Some of the wrong suggestions
were removed based on the fact that abstracts related to sub-concepts dealt
with unrelated topics. For instance, (circadian rhythm, sleep response) in B gets a
lower similarity value in StrucCl than in Basic. However, at the same time new
wrong suggestions were introduced. For instance, (reproductive behavior, feeding
behavior) is a wrong suggestion for B. In this case abstracts related to their sub-
concepts are about behavior. Also, some of the correct suggestions were removed
by the algorithm. In some of these cases the abstracts of the sub-concepts
included many more non-relevant concepts or very little relevant concepts, which
caused a decrease in probabilities for the important terms in the abstracts. Some
of the correct suggestions were removed because a number of abstracts classified
to certain concepts by Basic were classified to other concepts by StrucCl.

Many of the suggestions generated by StrucSim are inferred suggestions, which
illustrates the fact that sub-concepts may give strong support for the analyzed
concepts. However, they may also be the cause of wrong suggestions.

For instance, (defense response, body level function) is a wrong suggestion in
the ID case and both concepts have immune response as their sub-concept. In our
algorithms we did not propagate the abstracts via part-of. This caused several
wrong suggestions in the MA-MeSH cases as part-of and is-a are used differently
in the two ontologies.

StrucSimCl combines the StrucCl and StrucSim approaches. In none of the
cases StrucSimCl returned higher similarity values for the correct suggestions
than the other two structure-based algorithms. We observed that low similarity
values of StrucCl or StrucSim have a large influence on the final similarity. In a
number of cases StrucClSim returns low similarity values even though StrucCl
and StrucSim return high similarities when executed separately. The poor per-
formance of the algorithm could be explained by the fact that an abstract can be
classified to only one concept. In some cases this results in abstracts previously
classified to a concept to be classified to a super-concept.

Some expected suggestions were not found by any of our instance-based al-
gorithms. One reason could be the low number of abstracts in the generated
corpora for some concepts. For instance, in the eye case, (macula, macula lutea)
is not returned, where macula lutea has only 26 related abstracts. Also, the ab-
stracts in the corpora may cover different domains.

Performance of the algorithms. We also evaluated the time it takes for the
discussed algorithms to compute the suggestions. For all of the algorithms we
generated the PubMed corpora beforehand. The time for loading the ontologies
ranges from 0.9 to 3.2 seconds. In most of the cases the time is around 1.5
seconds. In table 4 we present the time to generate suggestions. This covers
the time for learning the classifier and the time for computing the similarity
values. In the nose case, where a small number of abstracts is classified and the
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Table 4. Comparison of matchers: time for computation of the suggestions (in seconds)

Case Basic StrucCl StrucSim StrucClSim
B 421.2 567.3 497.8 570.4
ID 354.1 824.2 603.0 1001.0
nose 216.1 219.1 213.1 223.3
ear 667.5 1097.1 904.5 1032.5
eye 1848.1 2012.5 1982.5 2024.8

ontologies contain only few is-a relations, there is no significant difference in the
performance of the algorithms. For larger cases there is a tendency that there is
an increase of time from Basic to StrucSim to StrucCl to StrucClSim. We used
a SUN Ultra 5 10 Sparc workstation for these tests.

Quality of the suggestions compared to other algorithms. In table 5
we show the quality of the suggestions of other matchers that were presented
in [LT06] (preliminary results in [LT05b]): a terminological matcher (Term), a
terminological matcher using WordNet (TermWN), and a matcher (Dom) using

Table 5. Other matchers: quality of the suggestions [LT06]

Case ES Th Term TermWN Dom
B 4 0.4 58/4/22/32 58/4/22/32 4/4/0/0

0.5 35/4/13/18 35/4/13/18 4/4/0/0
0.6 13/4/4/5 13/4/4/5 4/4/0/0
0.7 6/4/0/2 6/4/0/2 4/4/0/0
0.8 4/4/0/0 4/4/0/0 4/4/0/0

ID 8 0.4 96/7/66/23 96/7/66/23 4/4/0/0
0.5 49/7/25/17 49/7/25/17 4/4/0/0
0.6 15/5/4/6 16/5/5/6 4/4/0/0
0.7 7/5/2/0 7/5/2/0 4/4/0/0
0.8 6/4/0/2 6/4/0/2 4/4/0/0

nose 7 0.4 47/7/36/4 48/7/37/4 7/7/0/0
0.5 27/7/17/3 28/7/18/3 7/7/0/0
0.6 7/6/1/0 8/6/2/0 7/7/0/0
0.7 6/6/0/0 6/6/0/0 6/6/0/0
0.8 6/6/0/0 6/6/0/0 6/6/0/0

ear 27 0.4 147/26/104/17 155/26/110/19 26/23/2/1
0.5 92/26/58/8 99/26/65/8 26/23/2/1
0.6 47/26/19/2 47/26/19/2 26/23/2/1
0.7 33/25/8/0 34/26/8/0 24/22/2/0
0.8 26/24/2/0 28/25/3/0 24/22/2/0

eye 27 0.4 130/26/95/9 135/26/100/9 22/21/1/0
0.5 72/23/42/7 74/23/44/7 22/21/1/0
0.6 33/22/10/1 33/22/10/1 22/21/1/0
0.7 24/21/3/0 24/21/3/0 19/18/1/0
0.8 19/18/1/0 22/20/2/0 19/18/1/0
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domain knowledge in the form of the Unified Medical Language System (UMLS)
of the U.S. National Library of Medicine [UMLS]. The terminological matcher
contains matching algorithms based on the names and synonyms of concepts
and relations. The matcher is a combination matcher based on two approximate
string matching algorithms (n-gram and edit distance) and a linguistic algorithm.
In TermWN a general thesaurus, WordNet [WordNet], is used to enhance the
similarity measure by using the hypernym relationships in WordNet. Dom uses
the Metathesaurus in the UMLS which contains more than 100 biomedical and
health-related vocabularies. The Metathesaurus is organized using concepts. The
concepts may have synonyms which are the terms in the different vocabularies
in the Metathesaurus that have the same intended meaning. The similarity of
two terms in the source ontologies is determined by their relationship in UMLS.
For more detailed information about these matchers we refer to [LT06].

We compare these matchers with Basic. The quality of the suggestions for
Basic varies in the different ontologies in this evaluation. In the ID case it pro-
duces the best result among the matchers. It avoids the wrong suggestions with
slightly different names, such as (B cell activation, T Cell Activation). It also finds
the suggestion (natural killer cell activation, Natural Killer Cell Response), which
is not found by Dom. However, in the eye case it produces the worst result. In
this case all its correct suggestions are also found by the other matchers. We
also note that the other matchers take synonyms into account and as our test
ontologies contain many synonyms, their results improve considerably.

Combination with other matchers. Table 6 presents the quality of the sugges-
tions considering the combination of the different matchers. The suggestions are
determined based on the combination of the similarity values measured by individ-
ual matchers using weights, sim(C1, C2) = (

∑n
k=1 wk ∗ simk(C1, C2))/

∑n
k=1 wk,

where simk and wk represent the similarity values and weights, respectively, for
the different matchers. In the experiment we used 1 as the weight for each matcher
and 0.5 as the threshold value. The combination of our instance-based algorithms
with Dom and TermWN leads to higher quality results. For the B, nose and ear
cases, the instance-based algorithms combined with Dom return the same num-

Table 6. Combination of matchers

Case ES Matcher Basic StrucCl StrucSim StrucClSim
B 4 TermWN 6/4/0/2 5/4/0/1 10/4/2/4 6/4/0/2

Dom 4/4/0/0 4/4/0/0 4/4/0/0 4/4/0/0
ID 8 TermWN 8/7/1/0 5/4/0/1 12/7/2/3 7/5/1/1

Dom 4/4/0/0 4/4/0/0 4/4/0/0 4/4/0/0
nose 7 TermWN 8/7/1/0 8/7/1/0 10/7/2/1 8/7/1/0

Dom 7/7/0/0 7/7/0/0 7/7/0/0 7/7/0/0
ear 27 TermWN 27/22/5/0 26/22/4/0 28/22/5/1 28/22/5/1

Dom 24/22/2/0 24/22/2/0 24/22/2/0 24/22/2/0
eye 27 TermWN 24/21/3/0 23/19/4/0 30/21/8/1 21/19/2/0

Dom 20/19/1/0 19/18/1/0 20/19/1/0 19/18/1/0
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ber of correct suggestions as in the combination with TermWN. For the ID and eye
cases the combination with TermWN gives better recall but lower precision. Dom
tends to remove suggestions for which it finds no relationship in its domain knowl-
edge. As could be expected from the results in table 3, StrucSim combined with
TermWN returns more correct suggestions than StrucCl combined with TermWN
at the expense of a larger number of wrong suggestions. All correct suggestions
that are found by the combinations of matchers were also found by TermWN. The
combinations of TermWN and Dom with the instance-based algorithms remove
some of the wrong and inferred suggestions. In particular, for TermWN a large
number of redundant suggestions were eliminated in the combination. However,
at the same time some correct suggestions returned by TermWN and Dom were
removed in the combination.

5 Related Work

Some ontology alignment and merging systems provide alignment strategies us-
ing literature, such as ArtGen [MW02], FCA-Merge [SM01] and OntoMapper
[SYT02]. The basic alignment algorithm in ArtGen calculates the similarity be-
tween concepts based on their names which are seen as lists of words. One
method to compute the similarity between a pair of words is based on the sim-
ilarity between the contexts (1000-character neighborhoods) of all occurrences
of the words in a set of domain-specific Web pages. In FCA-Merge the user
constructs a merged ontology based on a concept lattice. The concept lattice
is derived using formal concept analysis based on how documents from a given
domain-specific corpus are classified to the concepts in the ontologies using natu-
ral language processing techniques. OntoMapper provides an ontology alignment
algorithm using Bayesian learning. A set of documents (abstracts of technical
papers taken from ACM’s digital library and Citeseer) is assigned to each con-
cept in the ontologies. Two raw similarity scores matrices for the ontologies are
computed by the Rainbow text classifier. The similarity between the concepts is
calculated based on these two matrices using the Bayesian method.

There are systems that implement alignment algorithms based on the struc-
ture of the ontologies. Most systems rely on the existence of previously aligned
concepts. For instance, Anchor-PROMPT [NM01] determines the similarity of
concepts by the frequency of their appearance along the paths between previ-
ously aligned concepts. The paths may be composed of any kind of relations. Also
SAMBO as described in [LT05b] provides such a component where the similarity
between concepts is augmented based on their location in the is-a hierarchy rela-
tive to already aligned concepts. However, for our test ontologies, these methods
often did not perform well. In this paper we proposed methods that do not re-
quire previously aligned concepts. Also OntoMapper does not require previously
aligned concepts and takes the documents from the sub-concepts into account
when computing the similarity between two concepts. However, as this is hard-
coded in the method, it is not clear how the structure of the ontologies influences
the result of the computation.
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6 Conclusion

In this paper we proposed and experimented with instance-based alignment
strategies that use life science literature for aligning biomedical ontologies. We
proposed a basic algorithm as well as extensions that take the structure of the
ontologies into account. We evaluated the influence of the size of the literature
corpus, the quality and performance of the strategies and their combination with
other strategies. The basic algorithm outperforms the structure-based strategies
in most cases, although compared to the other matchers in SAMBO the quality
of the suggestions varies for the different cases. In some cases it produces the best
result, in some cases the worst. An advantage of our structure-based strategies
is that they can be used without information about previously aligned concepts,
as many other systems require. However, the best results are obtained when the
instance-based strategies are combined with other strategies. The other strate-
gies usually provide new correct suggestions while the instance-based algorithms
usually have the effect of removing wrong suggestions.

There are a number of issues that we still want to investigate. A limitation
of our algorithms is that abstracts are only classified to one concept. We want
to extend our strategies by allowing abstracts to be classified to 0, 1 or more
concepts. We are also interested in looking at other classification algorithms. Re-
garding the structure the ontologies in the current experiments are reasonably
simple taxonomies. We want to investigate whether the structure-based strate-
gies lead to similar results for other types of ontologies. Further, our matchers
could be enhanced to use synonyms and domain knowledge.

References

[CGGG03] Collins F, Green E, Guttmacher A, Guyer M (2003) A vision for the
future of genomics research. Nature, 422: 835-847.

[Entrez] Entrez. http://www.ncbi.nlm.nih.gov/Database/index.html
[Euz04] Euzenat J (2004) Introduction to the EON ontology alignment context.

3rd Int. Workshop on the Evaluation of Ontology-based Tools.
[GO00] The Gene Ontology Consortium (2000) Gene Ontology: tool

for the unification of biology. Nature Genetics, 25(1):25-29.
http://www.geneontology.org/.
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