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Abstract
Music alignmentis the associationof eventsin a score with
pointsin the time axisof an audio signal. Thesignal is thus
segmentedaccording to theeventsin thescore. We proposea
new methodology for automaticalignmentbasedon dynamic
time warping, where the spectral peak structure is usedto
computethe local distance, enhancedby a modelof attacks
andof silence. Themethodologycancopewith performances
considereddifficult to align, like polyphonicmusic,trills, fast
sequences,or multi-instrumentmusic.An optimisationof the
representationof thealignmentpathmakesthemethodappli-
cableto long soundfiles, so that unit databasescan be fully
automaticallysegmentedand labeled. On 708 sequencesof
synthesisedmusic,weachievedanaverageoffsetof 25msand
an error rateof 2.5%.

1 Intr oduction
Music alignmentis theassociationof eventsin a musical

score(in ourcase,notes)with pointsin thetimeaxisof anau-
dio signal.Thesignalis a digital recordingof thescorebeing
playedby musiciansandis referredto astheperformance.An
alignmentimpliesa segmentationof theperformanceaccord-
ing to theeventsin thescore.

We proposea new methodologyfor automaticalignment
basedon dynamic time warping (DTW). The spectralpeak
structureis usedas the main featurefor computingthe lo-
cal distancebetweenframesof theperformanceandelements
in the score.Additional featuresmodelsilencesandnoteat-
tacks.Themethodologycancopewith polyphonicandmulti-
instrumentperformancesaswell aswith performanceswhere
fastsequencesor trills arepresent.Normally, blind segmenta-
tion methods(Rossignol2000),which only usethe informa-
tion from the audio signal, arenot very accuratewith these
kindsof performances.

1.1 Applications

A greatpartof theresearchin computerscienceis devoted
to theautomationof processescarriedout by humans.Auto-
matic processesareparticularlyuseful in a numberof situa-
tions. For instance,the segmentationof a largecollectionof

recordings,which may lastseveralhours,cannot feasiblybe
donemanuallybecauseof thelargeamountof data.Thesame
situationappliesfor difficult signals(i.e., fast sequencesof
noteswith legato)wheremanualsegmentationmaybetedious
or imprecise.

Automaticalignmentof musicsequenceshasa numberof
applications,themostimportantbeing:

1. Segmentationof a performanceinto notesandlabeling
(tagging)of thenoteswith theinformationfrom thescorefor
building unit databases(Schwarz2000). Along with thenote
pitchandlength,therecanbeadditionalsymbolicinformation
attachedto thescore,suchasdynamics,articulation,or lyrics.

2. Comparisonof differentperformancesfor musicologi-
cal research,for instanceaimedat thestudyof theexpressive
parametersrelatedto timing.

3. Indexing of continuousmedia throughsegmentation
for content-basedretrieval. Thetotal alignmentcostbetween
pairsof documentscanbe consideredasa distancemeasure
(asin earlyworksonspeechrecognition),allowing to find the
bestmatchingdocumentsfrom adatabase.

Alignment is relatedto theproblemof real-timesynchro-
nisation betweenperformersand computers,usually called
scorefollowing, when additionalconstraintsof low-latency
andonly local knowledgeof theperformanceareintroduced.
Off-line alignmentcanbe usedasa bootstrapprocedurefor
thetrainingof real-timestatisticalmodels.

1.2 PreviousWork

Automaticalignmentof sequenceshasbeena popularre-
searchtopic in many fields, suchasstring analysis,molecu-
lar biology, andnotablyspeechrecognition.The literatureis
considerablyvast, andwe only mentiontwo comprehensive
overviews on the differentapproachesin speechrecognition
(RabinerandJuang1993)andin biologicalsequenceanalysis
(Durbin etal. 1998).

An interesting work on music alignment is (Raphael
1999). Alignment is computedthroughthe useof a hidden
Markov model (HMM), and can be performedboth on-line
for scorefollowing, which is the primary goal, and off-line
for segmentation. HMMs can be seenas an appealingal-
ternative to DTW, in particularbecausethey canbe trained.
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However, for pairwisealignmentof sequences,which is our
goal, HMMs and DTW are two completely interchangable
techniques(Durbin et al. 1998). Our choiceof DTW is due
to the possibilty to optimisememoryrequirementsfor large
soundfiles,aspresentedin section2.3. Refer to the parallel
paper(Orio andDéchelle2001)for the useof HMMs in on-
line scorefollowing.

Alignmenthasalsobeenusedin speechsynthesisresearch,
asa usefultool for preparingunit databasesfor concatenative
speechsynthesis.The resultsof the MBROLIGN technique
from the MBROLA project (MalfrèreandDutoit 1997),has
beenthemotivationfor ourmethodology.

2 The Methodology
Alignmentis carriedout usingDTW. This techniquefinds

thebestglobalalignmentof two sequences,basedonlocaldis-
tances.It usesa Viterbi pathfindingalgorithmthatminimizes
theglobaldistancesbetweenthesequences.

Thesequencesto bealignedconsistof framescontaining
features.Thefeaturedatafor theperformanceareextractedby
signalanalysistechniques.The featuredatafor the scoreare
generatedfor eachframeaccordingto a modelof the instru-
ment. In our case,the model is a simpleharmonicspectrum
thatis constantfor eachnote,togetherwith a modelof theat-
tack anda modelfor the silence.The temporalresolutionof
thealignmentis givenby theperformanceframerate.For in-
stance,ahopsizeof theanalysiswindow of pointsgivesa
resolutionof msatasamplingrateof kHz. Thescore
frameratecanbemuchlowerthantheperformanceframerate,
saving computationtime andmemorystorage,becauseDTW
is robustto differencesin thelengthsof thetwo sequences.

2.1 Calculation of Local Distances

Thelocal distancesarecalculatedfor eachpair of a frame
in the performanceanda frame in the score. They are

representedasthe local distancematrix . Only a part
of thematrix needsto becalculated,becauselocal andglobal
pathconstraintsreducethenumberof points thatcan
bepartof theoptimalpath(RabinerandJuang1993).

2.1.1 PeakStructur eDistance(PSD)
The principal featurefor segmentationof musicalsignals

is pitch (asopposedto spectralenvelopefor speech).How-
ever, pitch trackingis still errorprone,evenmoresofor poly-
phonicsignals. This is why we do not usepitch asa feature
directly, but the structureof the peaksin the spectrumgiven
by theharmonicsinusoidalpartials.Thisextendswell to poly-
phonicsignals.

The expectedpeaksaremodeledfrom the pitchesin the
score:For eachnoterunningat a certainscoreframe, har-
monicpeaksaregenerated.After a numberof tests,we chose

but goodresultscanbeobtainedalsowith smallerval-
ues. The peakstake the form of rectangularspectralbands
with an equalamplitudeof in an otherwisezerospectrum.
Figure1 shows a setof filters togetherwith two signals,rep-
resentingsmallandbig distances.Eachbandhasabandwidth
of onehalf-toneto accommodatefor slight tuningdifferences
andvibrato.Thisgeneratedscorespectrum is multipliedby
the Fourier magnitudespectrum of oneframeof the per-
formance.If the peakstructuresof the two framesareclose,
the sum of this productwill be high. We can also seethis
procedureasfiltering.
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Figure 1: The generatedspectral bands with a good (a), and a
bad (b) matching performancespectrum.

Normalizationof theresultsof is necessaryto pre-
vent a loud, noisy framefrom matchingall generatedbands.
To thisaim, its valueis dividedby thesignalenergy in thefre-
quency rangethatcontainsall therectangularspectralbands.

Thedefinitionof thepeakstructuredistanceis thus

PSD (1)

with respectively theframesin theperformanceandin
the score,and the FFT bins. The calculationof the prod-
uct for thePSDcanbeimplementedvery efficiently by
summingthebinsof within thebands.

2.1.2 Delta of PeakStructur eDistance( PSD)

TestsusingthePSDhighlightedthatalignmentmarksare
sometimessettoo late. The two reasonsarethat,first, rever-
berationcausesthe partialsof the last noteto still be present
at the startof the next note,andsecondly, that during the at-
tacksof musicalinstruments,energy is often spreadall over
thespectrum,giving low valuesof thePSD.

However, theenergyatthepeaksof theexpectednoterises
sharplyduringtheattack.Hence,we cangeta moreaccurate
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indicationof the startof a note,usingthe deltaof PSD. The
distance PSDis givenby clipping below a threshold :

PSD
if

if
(2)

with PSD PSD . Clipping is necessary
to preventnegativedistancevalues.

2.1.3 Modeling of Silence

We introducespecialscoreframesat theendof eachnote
to correctlyhandlepossiblesilencecausedby restsin thescore
or by non-legatoplaying styles. For theseframes,a special
distancesPSDmeasuresthematchof thesignallog energy
aboveasilencethreshold .

sPSD
if

if
(3)

with . This allows thealignmentpathto stayin
thesilenceframein thescoreandadvancein theperformance
in orderto “stretchout” thepausesbetweennotes.

2.2 Dynamic Time Warping

DTW is a consolidatedtechniquefor the alignmentof
speechsequences,thereadermayreferto (RabinerandJuang
1993) for a tutorial. Using dynamic programming,DTW
finds thebestalignmentbetweentwo sequencesaccordingto
a numberof constraints.The alignmentis given in the form
of a pathin the local distancematrix. If a pathgoesthrough

, theframe of theperformanceis alignedwith frame
of thescore.

The following constraintshave beenapplied: The end
points are set to be and , where and are
thenumberof framesof theperformanceandof thescore,re-
spectively. Thepathis monotonicin bothdimensions.Among
thedifferentlocalcontinuityconstraints,thesimplestonegave
thebestresults.

Thebestpathis computediteratively, giventheinitial con-
dition :

(4)

where is thecostfor apathupto thepoint . The
localdistance is givenby

PSD if

sPSD if

PSD otherwise

(5)

where and arescalingfactorsto bring thevaluesinto the
rangeof PSD, and and arethefirst andlast framesof all
notes,respectively.

2.3 Implementation Considerations

TheDTW algorithmcanbe implementedefficiently such
that the performanceneednot be presentin memory as a
whole. Equally, the distancematricesare accessedonly in
the neighbourhoodof the currentperformanceframe,so that
only the last two lines of theseneedto be kept in memory.
However, the matrix that storesall possiblepathscannot be
reduced,becausewe only know at the endwhich pathis the
optimalone.

This posesmemoryproblemsfor the fully automatedap-
plicationof DTW on real-world soundfiles. As an example,
thefirst movementof theSonata1 for soloviolin by J.S.Bach
lasts minutesandcontains450 notes. This yields about
24000framesfor theperformanceandthescore,andmatrices
of around elements,takingup at least2 GB of mem-
ory. A global pathconstraint,i.e. consideringonly a central
corridor for the possiblepaths,reducesthe memoryrequire-
mentby only a factorof 2, leaving it still too high for today’s
computers.

However, all we areinterestedin is thealignmentof note
onsettimes. We don’t careabout(andindeeddidn’t model)
theevolution within a note. This meansthatwe only needto
keepin memoryall possibleshortcutpaths, i.e. pathsthatare
reducedto the first andlast scoreframefor eachnote. Their
memoryrequirementis only elements,i.e. 40MB.

3 Results

Theresultsof ourmethodareveryencouraging.Wetested
recordingsof variousmonophonicandpolyphonicacousticin-
strumentswith very goodresults.Evenvery difficult signals,
suchasheldchordswith only onechangingnote,very fastvi-
olin passages(e.g. 16 legatonotesat a rateof 10 notesper
secondwith irregular accents),and performanceswith trills
andvibratowereperfectlyaligned.Preliminarytestsonmulti-
instrumentmusic(a string andoboequartet)showed a good
global alignmentwith an imprecisionof a few framesin the
determinationof thenoteonsets.

Quantitative testshave beencarried out on perfor-
mancesplayedby a samplebasedsynthesizer. The choice
of synthesizedsoundsprovidesa referenceof noteonsetsin
the performance,without requiringa manualalignment. We
used different sounds,playedwith the different levels
of articulationlegato (l), detaché (d), pause(p), andstaccato
(s), with graduallylongersilence. We preparedsix different
scores,threemonophonic,two with two voicesof polyphony,
andonewith threevoicesof polyphony. Among the mono-
phonicscores,oneis asimplerepetitionof thesamenote,and
oneis deliberatelymismatchedwith its performancesby one
octaveto testtherobustnessof thealgorithm.Thescoreswere
playedat 3 differenttranspositions,each2 octavesapart.

Wehadto eliminatetheresultsgivenby oneof thesounds,
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becauseit wasa bell whoseinharmonicspectrumis not mod-
eledby our technique.Theresultsfor theoctave-mismatched
scorewereencouraging,but the robustnesson octave devia-
tions hasstill to be extensively tested. As we expected,our
techniqueis not very suitablefor the performanceswith re-
peatedpitch, becausethe peakstructuredoesnot changebe-
tweennotes. The techniqueneedsto be improved by using
otherfeaturesfor dealingwith this specialcase.

In the following sectionswe presentthequantitative ana-
lyseson theremaining480examples.

3.1 Err or Rate

We consideredan error an alignment mark more than
200 ms off of the expectedperformanceposition. Of all the
files, only 9.4% had erroneousmarksat all (11.9%without
the attack and silencemodeling). For monophonicperfor-
mances,this ratedropsto 2.5%.Thepercentageof alignment
errorsover all marksin all performancesis 2.5%(0.42%for
themonophonic,3.6%for thepolyphonicperformances).

The error rate is lowest for the middle octave, anddrops
with theintroductionof longerpauses.However, for thestac-
catoplayingstyle,wenoticedasmallincreaseof theerrorrate.
Thesameeffectwasnoticedwhenonly thePSDwasused.

3.2 Offset

A moredetailedparameteris the averageoffset (i.e. the
absolutedistancebetweenthe expectedandfound alignment
mark)on nonerroneousmarks.

As canbeseenin table1, thereis a decreaseof theoffset
for higheroctaves,due to the larger window sizeneededto
resolve low frequency spectralpeaks. Moreover, the offset
generallydecreaseswith longerpauses,with theexceptionof
thelowestoctave.

mono low mid high avg
l 44 33 26 34
d 20 16 8 15
p 35 11 8 18
s 37 10 9 19
avg 34 18 13 23

poly low mid high avg
l 58 36 35 43
d 26 18 15 20
p 33 13 7 18
s 35 10 9 18
avg 38 19 16 26

Table 1: Averageoffset in ms dependingon articulation and oc-
tave, for monophonicand polyphonic scores.

Regardingthecomparatively high offsetsfor legatoartic-
ulation, listeningto the found segmentsrevealedthat the al-
gorithm choseto placethe noteonsetwherethe overlapping
partialsof thepreviousnotehadsufficiently dieddown,which
is actuallybettersuitablefor the applicationof building unit
databases.

When the alignmentis computedwithout the attackand
silencemodeling,the averageoffset is 31 ms,which if com-
paredto thetotal averageof thecompletemodelingof 25 ms,
justifiesits highercomplexity.

4 Conclusionsand Futur eWork
Our methodcancopewith difficult signals,suchaspoly-

phonicmusic,multi-instrumentmusic,trills, vibrato,andvery
fastsequences.

Onefundamentalproblemrestrictsthe choiceof features
for alignment: It is difficult to generategood expectedval-
uesfrom thescorethatmatchthefeaturevaluesof theperfor-
mance.This is dueto problemsof scalingandnormalization,
and,moredifficultly, to theneedof a modelof theinstrument
andtheperformer, see(Dannenberg andDerenyi 1998).

High-quality automaticalignmentwill be usedfor con-
catenative soundsynthesisbasedon unit selection(Schwarz
2000). The necessaryunit databasesare preparedby our
alignmentmethodby segmentingandlabelingclassicalmusic
recordingsfor whichscoresin theform of MIDI filesexist.

The accuracy of the alignmentis limited by the hopsize
andsuffers from anincertainitywithin thewindow. For stac-
catoperformances,we cansignificantlyimprovetheoffsetby
reanalysingthefoundframewith asimplebut preciseenergy-
basedonsetdetector. For other performances,the accuracy
will not beaffected.

We arecurrentlyworking on a totally automaticsystem,
which usesMIDI files asreferencescoresanda databaseof
recordings.To this end,we will develop a techniquefor the
automaticscalingof the systemparameters,basedon a pre-
processingof the performances.The preprocessingwill give
informationaboutthegeneralfeaturesof the recordings,like
rangeof amplitudesfor themodelingof silenceandpotential
peakpositionfor thetuningof thefilter banks.
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