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Abstract

This paper describes a hierarchical spectral method for the correspondence

matching of point-sets. Conventional spectral methods for correspondence

matching are notoriously susceptible to differences in the relational structure

of the point-sets under consideration. In this paper we demonstrate how the

method can be rendered robust to structural differences by adopting a hier-

archical approach. We show how the point-clusters associated with the most

significant spectral modes can be used to locate correspondences when sig-

nificant contamination is present.

1 Introduction

Spectral graph theory is a term applied to a family of techniques that aim to characterise

the global structural properties of graphs using the eigenvalues and eigenvectors of the

adjacency matrix [1]. Although the subject has found widespread use in a number of

areas including structural chemistry and routeing theory, there have been relatively few

applications in the computer vision literature. The reason for this is that although elegant,

spectral graph representations are notoriously susceptible to the effect of structural error.

In other words, spectral graph theory can furnish very efficient methods for characterising

exact relational structures, but soon breaks down when there are spurious nodes and edges

in the graphs under study.

There are several concrete examples in the pattern analysis literature. Umeyama has

an eigendecomposition method that recovers the permutation matrix that maximises the

correlation or overlap of the adjacency matrices for graphs of the same size [13]. Ho-

raud and Sossa [5] have adopted a purely structural approach to the recognition of line-

drawings. Their representation is based on the immanantal polynomials for the Laplacian

matrix of the line-connectivity graph. By comparing the coefficients of the polynomials,

they are able to index into a large data-base of line-drawings. Shapiro and Brady [11] have

developed a method which draws on a representation which uses weighted edges. They

commence from a weighted adjacency matrix (or proximity matrix) which is obtained

using a Gaussian function of the distances between pairs of points. The eigen-vectors of

the adjacency matrix can be viewed as the basis vectors of an orthogonal transformation

on the original point identities. In other words, the components of the eigenvectors rep-

resent mixing angles for the transformed points. Matching between different point-sets is

effected by comparing the pattern of eigenvectors in different images. Finally, a number

of authors have used spectral methods to perform pairwise clustering on image data. Shi

and Malik [12] use the second eigenvalue to segment grey-scale images by performing an

eigen-decomposition on a matrix of pairwise attribute differences. Inoue and Urahama [6]

have shown how the sequential extraction of eigen-modes can be used to cluster pairwise
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pixel data. Sengupta and Boyer [9] have used similar ideas to find significant perceptual

arrangements of line-segments.

The focus of this paper is the use of property matrix spectra for correspondence match-

ing. As mentioned above, spectral methods offer an attractive route to correspondence

matching since they provide a compact and easily computed representation that can be

used to characterise graph structure at the global level. If used effectively, the spectral

representation can be used for rapid matching by comparing patterns of eigenvalues or

eigenvectors. However, their shortcoming is their fragility to the addition of noise and

clutter. For instance, although the methods of Umeyama [13], Horaud and Sossa [5] and

Shapiro and Brady [11] work well for graphs that are free of structural contamination,

they do not work well when the graphs are of different size.

Our aim in this paper is to consider how spectral methods can be rendered robust for

the correspondence matching of point-sets which contain significant structural difference.

To do this we adopt a hierarchical approach. We observe that the modes of the proximity

matrix can be viewed as pairwise clusters. Further, we note that although the coefficients

of the modal matrix may be unstable under the structural modification of the proximity

matrix, the physical location of the clusters will be less sensitive. We exploit these two

observations to develop a hierarchical matching method. We commence by identifying the

most significant modes of the proximity matrix, i.e. the largest clusters. We then compute

the physical locations of the cluster-centres and compute the associated proximity matrix.

Finally, we match by performing spectral analysis on the cluster-centre proximity matrix.

2 Point Correspondence
The spectral approach to point correspondence introduced by Shapiro and Brady [11]

commences by enumerating a point proximity matrix. This is a continuous or weighted

counterpart of the graph adjacency matrix. Rather than setting the elements to unity or

zero depending on whether or not there is a connecting edge between a pair of nodes, the

elements of the proximity matrix are weights that reflect the strength of a pairwise adja-

cency relation. The weights of the proximity matrix are computed by taking a Gaussian

function of the interpoint distances, Once the proximity matrix is to hand, then corre-

spondences are located by computing its eigenvectors. The eigenvectors of the proximity

matrix become the columns of a transformation matrix which operates on the original

point identities. The rows of the transformation matrix represent the components of the

original points in the directions of the eigenvectors. We can locate point correspondences

by searching for rows of the transformation matrix which have maximal similarity.

Unfortunately there are two drawbacks with this spectral method of correspondence.

Firstly, there is no clear reason to use Gaussian weighting in favour of possible alterna-

tives. Moreover, the Gaussian weighting may not be the most suitable choice to control

the effects of pattern distortion due to point movement under measurement error or de-

formation under affine or perspective geometry. Secondly, the method proves fragile to

structural differences introduced by the addition of clutter or point drop-out. In a recent

paper we have addressed the first of these problems by using robust error kernels to com-

puter the proximity matrix [2]. Here we focus on the second problem, and develop a

hierarchical method matching point-sets.

2.1 Prerequisites
We are interested in finding the the correspondences between two point-sets, a model

point-set � and a data point-set ✁ . Each point in the image data set is represented by an
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augmented position vector of homogeneous co-ordinates
�✁✄✂✆☎✞✝✠✟✡✂☞☛☞✌✍✂✎☛✑✏✓✒✕✔ where ✖ is the

point index. We will assume that all these points lie on a single plane in the image. In the

interests of brevity we will denote the entire set of image points by ✁ ☎✘✗ �✁ ✂ ☛✎✙ ✖✛✚✢✜✤✣
where ✜ is the point set. The corresponding fiducial points constituting the model are

similarly represented by � ☎✥✗ �✦✑✧★☛✎✙✪✩ ✚✬✫✭✣ where ✫ denotes the index-set for the model

feature-points
�✦✮✧

. We use the binary indicator ✯ ✂✱✰ ✧ to indicate the state of correspondence

between the data-points and the model-points. If ✯ ✂✠✰ ✧ ☎✲✏ , then the data-point with co-

ordinate vector
�✁✳✂ is in correspondence with the model-point with co-ordinate vector

�✦ ✧ .
2.2 Point Proximity matrix
The role of the weighting function used to compute the elements of the proximity matrix

is to model the probability of adjacency relations between points. In Shapiro and Brady’s

original work the weighting function was the Gaussian [11]. However, we have recently

shown that alternative weighting functions suggested by the robust statistics literature

offer significant improvements [2].

According to robust statistics, the effects of outliers can be controlled by weighting

according to the error-residual. Suppose that ✴✶✵ ✝✠✷✸✒ is a weighting function defined on the

error-residual
✷

. The parameter ✯ controls the width of the weighting kernel. Associated

with the weighting function is an error-kernel which is defined to✹ ✵ ✝✱✷✪✒✺☎✼✻✾✽✿❁❀ ✷❃❂ ✴❄✵ ✝✱✷✪❂❅✒✕❆✍✷✪❂ (1)

There are many choice of possible weighting functions described in the literature. How-

ever, they can be classified according to a broad-based taxonomy based on the derivative✹ ❂ ✵ ✝✠✷✸✒ of the error-kernel. If the derivative is monotonically increasing, then the weight-

ing function is said to be increasing. If the derivative is asymptotically constant, then

the weighting function is said to be sigmoidal. Finally, if the derivative asymptotically

approaches zero then the weighting function is said to be re-descending.

The standard way to represent the adjacency relations between points is to use the

Gaussian proximity matrix. If ✖ and ✖ ❂ are two data points, then the corresponding element

of the proximity matrix is given❇❉❈ ✝ ✖ ☛ ✖ ❂❊✒✺☎●❋■❍✪❏▲❑◆▼ ✏❖ ✯✑P❄◗❊◗ �✁ ✂ ▼ �✁ ✂❙❘ ◗❙◗ P■❚ (2)

This weighting function is re-descending. In our previous work [2] we have found that

the sigmoidal weighting function, generated by the hyperbolic tangent function❇ ❈ ✝ ✖ ☛ ✖ ❂❅✒❯☎ ❖❱ ◗❊◗ �✁ ✂ ▼ �✁ ✂ ❘ ◗❙◗❳❲❩❨❭❬✸❪ ❑
❱ ✯ ◗❙◗ �✁❫✂❴▼❵✁❛✂ ❘ ◗❙◗ ❚ (3)

gives better performance under positional jitter.

2.3 Correspondences
The modal structure of the two point-sets is found by solving the eigenvalue equation❆❝❜✑❞■❡ ❇ ▼✾❢❤❣❭✐✶☎❦❥

together with the associated eigenvector equation
❇♠❧♦♥ ☎♣❢ ♥q❧❤♥

, where❢ ♥
is the r✱s✱t eigenvalue of the matrix

❇
and
❧♦♥

is the corresponding eigenvector. We

order the vectors according to the magnitude of the associated eigenvalues. The ordered

column-vectors are used to construct a modal matrix ✉ ☎✈✝ ❧❄✇ ◗ ❧ P ◗ ❧❤① ◗③②❊②❙②❊②❙② ✒ . The col-

umn index of this matrix refers to the magnitude order of the eigenvalues while the row-

index is the index of the original point-set. This modal decomposition is repeated for
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both the data and transformed model point-sets to give a data-point modal matrix ✉ ❈ ☎✝ ❧ ❈ ✇ ◗ ❧ ❈P ◗ ❧ ❈① ◗③②❙②❊② ◗ ❧ ❈ ✁ ✂✄✁ ✒ and a model-point modal matrix ✉✆☎ ☎ ✝ ❧ ☎ ✇ ◗ ❧ ☎P ◗ ❧ ☎① ◗ ②❙②❊② ◗ ❧ ☎ ✁ ✝✞✁ ✒ .
Since the two point-sets are potentially of different size, we truncate the modes of the

larger point-set. This corresponds to removing the last ◗❙◗ ✜ ◗ ▼ ◗ ✫ ◗❊◗ rows and columns of

the larger matrix. The resulting matrix has ✟ ☎✡✠☞☛ ❬ ❡ ✜ ☛ ✫ ✐
rows and columns.

The modal matrices can be viewed as inducing a linear transformation on the original

identities of the point-sets. Each row of the modal matrix represents one of the original

points. The column entries in each row measure how the original point identities are

distributed among the different eigen-modes.

Based on this eigendecomposition Shapiro and Brady [11] find correspondences by

comparing the rows of the model matrices ✉ ☎ and ✉ ❈ . The decision concerning the

correspondences is made on the basis of the similarity of different rows in the modal

matrices for the data and the model. The measure of similarity is the Euclidean distance

between the elements in the corresponding rows. According to Shapiro and Brady the

correspondences are assigned as follows

✯ ✂✠✰ ✧✄☎ ✌ ✏ if ✩ ☎ ❨✎✍✑✏ ✠☞☛ ❬ ✧ ❘✓✒✕✔♥✗✖ ✇ ◗❙◗ ✉ ❈ ✝ ✖ ☛ r ✒✆▼ ✉ ☎ ✝❊✩ ❂ ☛ r ✒ ◗❊◗ P❥ otherwise
(4)

Unfortunately, when the point-sets under study are of different size, i.e. they are subject

to structural corruption, then the co-efficients of the modal matrices become unstable and

can not be used for correspondence matching. Our aim in to this paper is to suggest a way

of overcoming this problem.

3 Hierarchical Correspondence

The coefficients of the modal matrix ✉ can be viewed as providing information concern-

ing pairwise clusters of points. Each mode, i.e. each column of the modal matrix ✉ ,

represents a cluster of points. For a given point ✖ the different modal co-efficients ✉ ✝ ✖ ☛ r ✒ ,r ☎ ✏✍☛ ②❙②❙② ☛ ◗ ✘♠◗ represent the affinity of the point to the different clusters. The larger the

magnitude of the co-efficient, the greater the cluster affinity. In other words, the entries

in the columns of the modal matrix represent the membership affinities for the different

clusters. The row-entries, on the other hand represent the way in which the individual

points are distributed among the different clusters. Here we aim to exploit this property

of the modal matrix to develop a fast and robust matching method.

Our idea is based on the simple observation, that while the modal coefficients, i.e. the

entries in the columns of the modal matrix, may not be stable under the addition of extra

points, the physical centre of the associated cluster will be relatively robust to the addition

of outliers. To this end we compute the position of the centre for each cluster. For the

mode with eigenvalue ❢ ♥ , the position-vector for the cluster centre is�✙ ❈♥ ☎ ✒ ✁ ❈ ✁✂ ✖ ✇ ◗ ✉ ❈ ✝ ✖ ☛ r ✒ ◗ �✁ ✂✒ ✁ ❈ ✁✂ ✖ ✇ ◗ ✉ ❈ ✝ ✖ ☛ r ✒ ◗ (5)

To summarise the arrangement or distribution of the original point-set ✘ , we select the

positions of the cluster-centres for the ✚ largest eigenvalues, i.e. the first ✚ columns of✉ . There are a number of ways of choosing ✚ . Here we set the value of ✚ so that the

co-efficients of the subsequent columns of ✉ are insignificant. If ✛ is a threshold, then

the condition is that ◗ ✉ ✝ ✖ ☛ r ✒ ◗✢✜ ✛ for ✖ ☎✲✏ ☛ ②❙②❊② ☛ ◗ ✜ ◗ and r✤✣✥✚ . The number of modes
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used might also be set so that there are sufficient points to compute the parameters of

the geometric transformation between the two point-sets. In other words 2 modes for the

Euclidean transformation and 3 for an affine transformation.

Next, we compute the proximity matrix for these ✚ cluster centres. The elements of

the cluster-centre proximity matrix are again computed using the robust weighting kernel

and are given by � ❈ ✝ r ☛ r ❂❊✒✺☎ ❖❱ ◗❙◗ �✙ ❈♥ ▼ �✙ ❈♥ ❘ ◗❊◗ ❲ ❨❭❬ ❪ ❑
❱ ✯ ◗❊◗ �✙ ❈♥ ▼ �✙ ❈♥ ❘ ◗❙◗ ❚ (6)

Our idea is to use the modes of the ✚✂✁ ✚ cluster-centre proximity matrix for the purposes

of matching. Accordingly, we solve the equation
❆❝❜✑❞■❡☎✄ ❈ ▼✝✆✺❣✍✐❄☎✥❥

to locate the eigen-

values
✆

of

� ❈
and then compute the associated eigenvectors ✞ ❈✟ by solving the equation

� ❈ ✞ ❈✟✡✠ ☎☛✆ ❈☞ ✞ ❈✟✡✠ . The eigenvectors are used as the columns of the cluster-centre modal

matrix ✄ ❈ ☎ ✝ ✞ ❈✟✍✌ ◗ ✞ ❈✟✏✎ ◗③②❙②❊②❙②❊② ◗ ✞ ❈✟✍✑ ✒ . This procedure is also repeated for the first ✚ modes

of the point-set ✒ . The resulting ✚✓✁ ✚ modal matrix is denoted by ✄ ☎ .

In the next section we will describe an iterative method which locates correspondences

by aligning the cluster centers of the data point-set with those of the model point-set. This

is achieved using an affine transformation. At iteration ✔ of the algorithm, the co-ordinate

vector of the ✖ th cluster-center of the aligned set of points is
�✙✖✕✘✗✚✙✂ . The modal matrix for

these aligned cluster-centres is denoted by ✄ ✕✘✗✛✙❈ .

We use the elements of the two modal matrices to compute the probabilities of cor-

respondence match. This is done by comparing the elements of the two matrices on a

row-by-row basis. A simple way of computing the probabilities is to assume that the

vectors are subject to Gaussian measurement errors. The shortcoming of this method for

computing the correspondence probabilities is the effect of outlier measurement errors on

the individual components of the eigen-vectors. When there is a significant difference be-

tween one or more of the components of the eigenvectors, then these errors dominate the

argument of the exponentials. This will have the tendency to flatten the distribution and

will result in ambiguity and equivocation concerning the pattern of correspondences. One

way to make the computation of correspondences robust to outlier measurement error is

to accumulate probability on a component by component basis over the eigenvectors. To

do this we define the correspondence probability to be

✜ ✕✘✗✛✙✂✠✰ ✧ ☎ ✒✣✢☞ ✖ ✇ ❋■❍✪❏▲❑◆▼✥✤ ◗❊◗ ✄ ✕✘✗✚✙❈ ✝ ✖ ☛✧✦✺✒✆▼★✄ ☎ ✝❙✩✍☛✩✦✺✒ ◗❊◗ P ❚
✒ ✢✧ ✖ ✇ ✒ ✢☞ ✖ ✇ ❋■❍✪❏ ❑ ▼✥✤ ◗❊◗ ✄ ✕✘✗✚✙❈ ✝ ✖ ☛✧✦ ✒✆▼✝✄ ☎ ✝❙✩✍☛✩✦✺✒ ◗❊◗ P ❚ (7)

where ✄ ✕✘✗✛✙❈ is the modal matrix computed from the transformed point positions and ✤
is a constant. In this way large measurement errors contribute insignificantly through

the individual exponentials appearing under the summation over the components of the

eigenvectors.

4 Dual-step EM Algorithm

Once the two cluster-centre modal matrices are to hand, then we can attempt to locate cor-

respondences between the clusters in the two point-sets. Here we use the dual-step EM

algorithm of Cross and Hancock [3] to align the cluster-centres. Cross and Hancock’s

contribution was to present an extension of the standard EM algorithm [4] in which the
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structural consistency of correspondences matches can be used to gate contributions to the

expected log-likelihood function [3]. This idea is closely related to the hierarchical mix-

ture of experts algorithm of Jordan and Jacobs [7]. However, the method uses a dictionary

method for computing the correspondence probabilities which is both localised and time

consuming. The aim here is to replace the dictionary-based method used to compute the

probabilities with a hierarchical spectral method.

4.1 Affine Geometry
Suppose that the matrix � represents the geometric transformation that best aligns the

set of cluster centres in the data and the model. In this paper we confine our attention to

affine transformations. The affine transformation has six free parameters. These model

the two components of translation of the origin on the image plane, the overall rotation of

the co-ordinate system, the overall scale together with the two parameters of shear. These

parameters can be combined succinctly into an augmented matrix that takes the form

� ✕ ✗✛✙ ☎ ✁✂☎✄ ✕✘✗✚✙✇ ✰ ✇ ✄ ✕✘✗✛✙✇ ✰ P ✄ ✕✘✗✛✙✇ ✰ ①✄ ✕✘✗✚✙P ✰ ✇ ✄ ✕✘✗✛✙P ✰ P ✄ ✕✘✗✛✙P ✰ ①❥ ❥ ✏
✆✝

(8)

With this representation, the affine transformation of the data point-set cluster centres is

computed using the matrix multiplication
�✙ ✕✘✗✚✙✂ ☎ � ✕✘✗✛✙ �✙ ✂ . The superscript ✔ indicates

that the parameters are taken from the ✔ s✱t iteration of our algorithm.

4.2 Expected Log-likelihood
According to Cross and Hancock we seek both correspondence matches (i.e. the function✞

) and transformation parameters which maximise the expected log-likelihood

✟ ✝ � ✕✘✗✡✠ ✇ ✙ ◗ � ✕✘✗✚✙ ✒ ☎ ✢☛ ✂ ✖ ✇ ✢☛✧ ✖ ✇✌☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕ ✗✛✙ ✒ ✁ ✜ ✕✘✗✛✙✂✠✰ ✧✎✍ ❬✑✏ ✝
�✙ ❈✂ ◗ �✙ ☎✧ ☛ � ✕✘✗✛✙ ✒ ② (9)

The meaning of this expected log-likelihood function requires further comment. The

measurement densities ✏ ✝
�✙ ❈✂ ◗ �✙ ☎✧ ☛ � ✕✘✗✡✠ ✇ ✙ ✒ model the distribution of error-residuals be-

tween the data point-set cluster centre
�✙ ❈✂ and the the model points-set cluster centre�✙ ☎✧ at iteration ✔ of the algorithm. The log-likelihood contributions at iteration ✔✓✒ ✏

are weighted by the a posteriori measurement probabilities ☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕✘✗✛✙ ✒ computed

at the previous iteration ✔ of the algorithm. The individual contributions to the expected

log-likelihood function are gated by the correspondence matching probabilities
✜ ✕✘✗✛✙✂✠✰ ✧ .

4.3 Expectation
In the expectation step of the EM algorithm the a posteriori measurement probabilities

are updated by substituting the updated cluster centre position vectors into the condi-

tional measurement distribution. Using the Bayes rule, we can re-write the a posteriori

measurement probabilities in terms of the components of the corresponding conditional

measurement densities

☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕✘✗✛✙ ✒❯☎ ✔ ✕✘✗✛✙✧ ✏ ✝
�✙ ❈✂ ◗ �✙ ☎✧ ☛ � ✕ ✗✛✙ ✒

✒ ✢✧ ❘ ✖ ✇ ✔ ✕✘✗✚✙✧☞❘ ✏ ✝
�✙ ❈✂ ◗ �✙ ☎✧☞❘ ☛ � ✕✘✗✛✙ ✒ ② (10)
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The mixing proportions are computed by averaging the a posteriori probabilities over the

set of cluster-centres for the data-points, i.e.

✔ ✕✘✗✡✠ ✇ ✙✧ ☎ ✏
✚

✢☛ ✂ ✖ ✇ ☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕ ✗✛✙ ✒
In order to proceed with the development of a point registration process we require a

model for the conditional measurement densities. Here we assume that the required model

can be specified in terms of a multivariate Gaussian distribution. Accordingly we write

✏ ✝
�✙ ❈✂ ◗ �✙ ☎✧ ☛ � ✕ ✗✛✙ ✒ ☎ ✏❖ ❱ ✁ ◗ ✂✛◗ ❋✮❍✪❏ ❑ ▼ ✏❖ �✄ ✕✘✗✚✙✆☎✂ ✧ ✂

✿ ✇ �✄ ✕✘✗✛✙✂ ✧ ❚ ② (11)

In the above expression ✂ is the variance-covariance matrix for the position errors and�✄ ✕✘✗✛✙✂ ✧ ☎ �✙ ☎✧ ▼ � ✕✘✗✛✙ �✙ ❈✂ .

4.4 Maximisation

The dual step EM algorithm iterates between the two interleaved maximisation steps for

alignment parameter estimation and estimating correspondence assignments.

Point correspondences are sought so as to maximise the a posteriori probability of

structural match. The update formula is

✯ ✗✛✙✂✱✰ ✧ ☎ ✌ ✏ if ✩❉☎ ❨ ✍ ✏
✠ ❨ ❍ ✢✧ ✖ ✇ ☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕ ✗✛✙ ✒ ✜ ✕✘✗✛✙✂✱✰ ✧❥ otherwise

(12)

In the case of affine geometry, the transformation is linear in the parameters. This

allows us to locate the maximum-likelihood parameters directly by solving a system of

saddle-point equations for the independent affine parameters. The solution matrix is given

by

� ✕ ✗✡✠ ✇ ✙ ☎ ❑ ✢☛ ✂ ✖ ✇ ✢☛✧ ✖ ✇ ☞ ✕✘✗✛✙✂✠✰ ✧ ✜ ✕✘✗✛✙✂✠✰ ✧ �✙ ❈✂✞✝ ✔ �✙ ❈ ✔✂ ✂
✿ ✇ ❚ ✿ ✇ ✁ ❑ ✢☛ ✂ ✖ ✇ ✢☛✧ ✖ ✇ ☞ ✕ ✗✛✙✂✱✰ ✧ ✜ ✕✘✗✚✙✂✱✰ ✧ �✙ ☎✧ ✝ ✔ �✙ ❈ ✔✂ ✂

✿ ✇ ❚
(13)

where ✝ ☎ ✁✂ ✏ ✏ ✏✏ ✏ ✏❥ ❥ ❥
✆✝

(14)

is a projection matrix and we use the shorthand ☞ ✕✘✗✛✙✂✱✰ ✧ ☎ ☞ ✝ �✙ ☎✧ ◗ �✙ ❈✂ ☛ � ✕✘✗✚✙ ✒ for the a

posteriori measurement probabilities.

5 Experiments
In this section we investigate the performance of the different methods of spectral corre-

spondence reported in this paper. We investigate the noise sensitivity of the method using

synthetic point sets. The random point-sets used in our experiments have been generated

as follows. In order to synthesise point-sets which have a well defined cluster structure,

we generate seed points at random image locations. We then generate a distribution of

points about each seed whose displacements from the seed-point are sampled from a two

dimensional Gaussian distribution of zero mean and known variance. The simulate the
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effects of noise we have added two types of random error to the pont-sets generated in

this way. Firstly, we have added Gaussian point-position error or jitter to the point loca-

tions. Secondly, we have added contaminating points at random image locations. We use✚ ☎✁�
modes to compute the affine transformation between the point-sets. The recovered

transformation parameters are used to align the two point-sets and the number of closest

matches that are in correct correspondence are counted.
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Figure 1: Experimental results

In Figure 1 we compare our new correspondence method (solid curve) with that of

Shapiro and Brady (dotted curve). Figure 1a investigates the effect of added point con-

tamination. The plot shows the fraction of correct correspondences for a point-set of

size 100 as a function of the number of added points, i.e. the size difference of the two

point-sets. The Shapiro and Brady method fails rapidly as soon as the size difference

becomes greater than 5%. By contrast the hierarchical method maintains much better cor-

respondences. In Figure 1b we investigate the effect of measurement error or positional

jitter. The plot shows the fraction of correct correspondences a function of the ratio of the

standard deviation of the added Gaussian noise to the average inter-point distance. The

hierarchical method consistently outperforms that of Shapiro and Brady by a margin of

some 35%. Next, Figure 1c shows the fraction of correct correspondences as a function

of the size of the point sets. Here the standard deviation of the added Gaussian noise is

kept fixed and the size of the point-sets is increased. The two point sets are of the same

size. There is no addition or deletion of points. The size of the point-sets is increased by

adding new points at random positions. As a result the point-density increases. The main

effects to note are that the Shapiro and Brady method degrades rapidly with point-density

while the performance of our new method is almost unaffected. This is an important ob-

servation since it shows that our method is not sensitive to the dilution or merging of the

cluster structure due to in-fill by additional points. Finally, Figure 1d shows the fraction
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Figure 2: Matches-spectral clusters Figure 3: Matches- Shapiro and Brady

of correct correspondences as a function of the affine skew angle. Again, our new method

performs better under severe affine distortion.

We have experimented with our new correspondence method on a motion sequence.

This shows a hand being gradually clenched to form a fist. Figures 2 and 3 respectively

show the sequence of correspondnece matches obtained with the hierarchical clustering

method reported in this paper and the method of Shapiro and Brady. In each panel the

image on the left-hand side is the initial image in the sequence. The images in the right-

hand panel are those obtained after 1, 10, 15, 20 and 25 frames have elapsed. Here the

sequence is captured at a rate of 10 frames per second. The matches shown are directly

from the left-hand frame to the right-hand frame, i.e. no intermediate frames are used. In

the case of the clustering method, the matches are all correct in each frame. In the case of

the Shapiro and Brady algorithm failure occurs after 10 frames.
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6 Conclusions

This paper has focussed on how to improve the robustness of the Shapiro and Brady

method of modal or spectral correspondence to the effects of clutter and dropout. Our

approach is a hierarchical one. We commence from the proximity matrix for the raw

point-sets. We use the co-eeficients of the modal matrix of the initial proximity matrix

to compute the centrepoints of modal clusters. These cluster centres, themselves, are

used to compute a second proximity matrix. By computing correspondence probabilities

using the modal co-efficients of this second proximity matrix, we are able to estimate

accurate affine transformation parameters. In this way, we can improve the robustness of

spectral correspondence. Although the method reported here has been demonstrated on

point-patterns it can easily be extended to other proximity based representations such as

grey-scale difference [12] or line-attributes [9].
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