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ABSTRACT

Motivation: The transcription start site (TSS) has been
located for an increasing number of genes across several
organisms. Statistical tests have shown that some cis-acting
regulatory elements have positional preferences with respect
to the TSS, but few strategies have emerged for locating ele-
ments by their positional preferences. This paper elaborates
such a strategy. First, we align promoter regions without gaps,
anchoring the alignment on each promoter’s TSS. Second, we
apply a novel word-specific mask. Third, we apply a cluster-
ing test related to gapless BLAST statistics. The test examines
whether any specific word is placed unusually consistently with
respect to the TSS. Finally, our program A-GLAM, an exten-
sion of the GLAM program, uses significant word positions
as new ‘anchors’ to realign the sequences. A Gibbs sampling
algorithm then locates putative cis-acting regulatory elements.
Usually, Gibbs sampling requires a preliminary masking step,
to avoid convergence onto a dominant but uninteresting sig-
nal from a DNA repeat. However, since the positional anchors
focus A-GLAM on the motif of interest, masking DNA repeats
during Gibbs sampling becomes unnecessary.

Results: In a set of human DNA sequences with experiment-
ally characterized TSSs, the placement of 791 octonucleotide
words was unusually consistent (multiple test corrected P <
0.05). Alignments anchored on these words sometimes loc-
ated statistically significant motifs inaccessible to GLAM or
AlignACE.

Availability: The A-GLAM program and a list of statistic-
ally significant words are available at ftp://ftp.ncbi.nih.gov/pub/
spouge/papers/archive/AGLAM/.

Contact: spouge@ncbi.nim.nih.gov

1 INTRODUCTION

time. Gene regulation is more complex in mammals than in
yeastandithas been suggested that the expansion of regulation
in higher eukaryotes could be an important factor contributing
to their complexity (Levine and Tjian, 2003).

The identification of individual regulatory elements is the
first step to understanding the complexities of gene regu-
lation. Usually, computational methods for identifyiots-
acting regulatory elements in proximal promoter sequences
fall into two classes, alignment and enumeration (Ohler
and Niemann, 2001). On one hand, alignment methods
identify regulatory motifs by optimizing local alignments of
the corresponding sequences. Several different optimization
methods have proved useful, e.g. Expectation Maximiza-
tion in the MEME program (Bailey and Elkan, 1995) or
Gibbs sampling (Lawrencet al., 1993) in the GLAM pro-
gram (Frithet al, 2004b). On the other hand, enumerative
methods list all possible DNA words of a fixed length and
report motifs as overlaps of the most statistically significant
words (Marino-Ramireet al., 2004; Sinha and Tompa, 2002;
Van Helderet al., 1998). Most enumerative methods rely on
over-representation to identify statistically significant words.
Our strategy is unusual (Fig. 1), because it subordinates word
frequencies to word placement (FitzGeratdl., 2004).

The first suggestion to combine enumeration and alignment
came from Ohler and Niemann (2001). In this paper, we
elaborate on their idea by identifyingjs-acting regulatory
elements in three steps. First, we enumerate all octonuc-
leotide words. Second, we anchor known transcription start
sites (TSSs) in a single column of a gapless multiple align-
ment of human proximal promoter regions (PPRs). After
masking, our local maximum statistic (related to the gap-
less BLAST statistic) then judges whether the unmasked
occurrences of an octonucleotid® form unusual clusters

Transcription is a complex cellular process that involves thdn the alignment columns. Third, we realign the PPRs as fol-
expression of genes in a manner coordinated both in space alvs- Each statistically significant cluster &f corresponds

*To whom correspondence should be addressed.

to certain positions within certain promoter sequences. The
positions are ‘seeds’, and the sequences containing them are

The authors wish it to be known that, in their opinion, the first two authors S€€d sequences’. We realign the seed sequences, by moving

should be regarded as joint First Authors.

the seeds in them into the same alignment column, forming
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Apply the word-specific random
mask, so each sequence contains
at most one unmasked
occurrence of the word, in a
random position.
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Put all sequences into a block
alignment anchored on the TSS,
and cluster all unmasked
occurrences of the word with the
Ruzzo-Tompa algorithm.

the alignment contains theth letter of each sequence £
1,...,1). For brevity, we call this arrangement of sequences
‘a block alignment’. In our case, the PPR dataset contained
n = 4737 sequences oflendth- 3001 and the corresponding
block alignment anchored all TSSs in a single column. Given
a particular wordW, our overall statistical aim is to identify
when unmasked occurrences Wf form unusual clusters in
nearby columns within the TSS-anchored alignment.

2.2 Theword-specific random mask

On one hand, a repeat in a single alignment sequence can
cause the clusters d¥ we seek. On the other hand, if the
repeat could have regulatory functions, vigorous masking of

repeats could obscure biologically interesting motifs. Since

! s our statistical methods are enumerative and examine DNA
— T — one word at a time, we masked only the particular wéfd
— — under scrutiny and no other word. In any particular sequence,
- [ = if W occurred more than once, we masked all occurrences
TSS except one, randomly choosing the unmasked occurrence.

Our random mask reflects a simple rationale. On one hand,
assume thatarepeat has regulatory function and forms clusters
in the alignment columns because of functional constraints.

Determine cluster significances
with the local maximum statistic.

0.01 If the repeat contains a copy 8f, the mask might not com-
pletely obscure it. On the other hand, assume that a repeat
Fig. 1. A flow chart of the enumerative step for each word. has no regulatory function and therefore is not functionally

constrained to cluster in the alignment columns. Since the
another anchored alignment. Other ‘target sequences’ migittnmasked occurrence 8f was chosen randomly, its position
be added to the multiple alignment as desired, to investigati not biased to the front or back of the block alignment, and on
them for motifs related to the seed woid A Gibbs sampler  its own, the random mask cannot cause clusters. Randomiz-
program, A-GLAM (anchored gapless local alignment ofation of a statistical test is theoretically undesirable, because
multiple sequences) then optimizes the multiple alignmenti,t usually reduces the statistical power. Here, however, the
always constraining its gapless local alignment to include th&voidance of false positives from positional bias is paramount.
positions corresponding to the seeds. (In addition, another Our mask applies equally to all words, and in particular,
option in A-GLAM can anchor the alignment on any set of self-overlapping words cause us no unusual difficulties. In

positions thought to contribute to a common regulatory motif.)contrast, enumerative methods based on word frequencies are
sometimes constrained to handle self-overlapping words quite

2 METHODS delicately (Schbath, 1997).

2.1 Datasetsand the TSS-anchored alignment 2.3 Statistical methods

2.1.1 ThePPR datasetA previous study (Marino-Ramirez After masking, we iden_tify unusual clusters wf within the
et al, 2004) assembled 4737 human PPRs of length 3001 SS-anchored block alignment.

(positions—2000 t0+1000 bp, relative to the TSS at 0 bp) 2.3.1  The local maximum statistic to evaluate clusters
from oligocapping experiments that determined the TSS irconsider any block alignment, like the PPR dataset, where
each promoter region. n sequences of lengtthave been arranged asax [ block.

2.1.2 The mock PPR datasets for statistical controfhe ~ ~OF any particular word¥' containingw = 8 letters, if an

same study also assembled 1000 mock PPR datasets, Lfgmiskedr:nst:amce o dhas, |tshf|nal Iette.r mlcqllﬂmﬂ, w(;a
provide random controls for our statistic, as recommended®Y t, gtW as ‘occurred at', wherew < i < I. The wor B
elsewhere (Marino-Ramiregt al, 2004). Each mock PPR specific random mask ensures tiatoccurs at most once in
dataset contained 4737 contiguous DNA sequences of leng ch sequence. We wish to locate occurrencés ohusually

3001 bp, sampled uniformly at random from NCBI build 33 clustered in nearby columns within the block alignment.
of the human genome To develop our clustering statistic, I€fi] countthe number

of sequences whe® has occurred at(i = w,...,/), and
2.1.3 The TSS-anchored block alignme@onsideringn let S[i] = X[w] + - - - + X[i] be the cumulative occurrences
sequences of lengthaligned in am x [ block, columni of  of W up toi. With an arbitrary gap penalty > 0, our word
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clustering statistic is a so-called ‘local maximum’ statistic D[, j] andM[/]. Karlin and Dembo (1992) sugge®t( + 1)
(Spouge, 2001) corresponding to the global sctji¢ — ai. as a statistic for assessing clustering. We calculated statistical
The statistic isV/[/] = maxDli,j]:w <i < j <l},where significances in the absence of jittering, approximating the
Dli, j1= (S[j1—aj)—(Slil—ai) = (S[j1-S[il)—a(j—i) distribution of bothA[/] andM (I + 1) as follows.

forw <i < j <. Intuitively, D[i, j] is large if W occurs a

gﬁ;ﬁ}imbes[]] — Sli] of times in a shortintervaj — i of Karlin and Dembo (1992) give inequalities on tievalue
) P{M( + 1) > y} for the Poisson process described above.

T0 standardize, and to avoid declaring a word’ in the Their inequalities can be generalized to compound Poisson
PPR dataset significant because of its frequency, for each wordj q 9 P

W we seta = pv, wherep > 0 is an adjustable constant processes and sharpened to an exact asymptotic formula. The
(determined belov1v) and = S[I1/( — w + 1) is the average program_COMET incorporates the ger_1era| asymptoti(_: for-
count per column of the word. Thus, p is the factor over mula (Frithet al,, 2002). The formula, given next, describes

the background frequenaythat the word must maintain to taonBec(,irg'rpZ.V2I|uisd(ls|<tgﬁ$1“§2 d(ﬁllf[jsocuhs’l 1?5:3 Cll(;?ﬁl]yail;m
keepDli, j] positive over a column-interva, j]. valu : ul, ’ :

Dembo, 1992).

2.3.2 The random model for the local maximum statistic As in BLAST, P{M( + 1) > y} = e, wherep is an
To determine the approximate distribution &f/] under a  E-value (i.e. the mean of a Poisson distribution). In BLAST,
random model for DNA sequences, assume that ihe theE-valueu = k mn exp(—Ay), wheren andn are sequence
sequences are independent, and that/thetters of each lengths. Here, th&-value is

sequence are chosen independently. Assume also that each

letter is independently drawn at random with fixed frequencies w =kt exp(—1ry), Q)
from the nucleotide alphabéd, C, G, T}. Our random mask

ensures thal’ occurs at most once in each sequence, at a rarwhere the time =/ — w + 1. The relevant scale parameter
dom position. Under the random model, therefore, Xtigs  is the unique positive solution to the equation

are independent and identically distributed with a binomial »

distribution. The number of binomial trials for eadti] is r=—(e' -1, (2)
n, each trial having approximate probability~ S[I]/{n( — 4

w + 1)} of success ifi(l — w + 1) is large. If the average while the relevant location parameter is

numbery = nzr of occurrences in each column is small; ]

2.3.4 The distribution of the local maximum statistic

is usually 0 or 1, like a Bernoulli trial (coin toss).Iif is also (1— (v/a))?

small, S[/] is approximately Poisson distributed, with mean = “m' (3)
lv (Barbouret al., 1992, p. 8). Intuitively, one might expect

that the{X[i]} approximate a Poisson process of intensity In the notation of Equations 6-8 of Fritht al. (2002),

S[1]/(I — w + 1) on the continuous time interval fromto /. Equations (1)—(3) specialize the general compound Poisson
L process solution with the substitutioh = 1. Recent ver-
tzv;/%?c’)c t(-)rrr\]jclltlatiirclir:egwgfr dvga,?grczi gcgzgzgzz?)n;?‘r;: r;atz:)é, sions of BLAST.incIude a statistical correction for edge effects
extremely over-represented in.th.e 4737 PPR sequen;:es occ @_It_schul and Gish, .1996; Spougg, .2001)' .bgtlfe{f 3001 we
. . . ' mitted the correction, because it is negligible in the present
ring >20000 times. Even after maskirag (or t g), most
X . > . context.

columns in the block alignment contain it. At such high
word densities, a continuous-time Poisson process could H23.5 The mock PPR datasets as a negative contfdie
a poor approximation to random word occurrences, whicHollowing criterion was used to determine the one adjustable
must be placed at discrete integer positions correspondingarametep in our local maximum statistic.
to the alignment columns. Any random model of DNA raises immediate concerns

‘Jittering’ (described immediately below) removed the tech-about the practical accuracy of the-values it generates.
nical nuisance of discreteness, improving our Poisson approXAe used the mock PPR datasets to calibrate the theoretical
imation at high word densities, while making little difference P-values of our statistic as follows.
at low word densities. We examined our results both with and First, note that theP-value of a continuous variate is uni-

without jittering. formly distributed on the intervdlD, 1], as is one minus the
Let W occur in positiori. To jitter i, add a random value P-value. [This observation permits, e.g. a Monte Carlo simu-
chosen uniformly from the (continuous) interél, 1] to it. lation to generate any random variate from a standard uniform
Let S(¢) be the cumulative jittered occurrencesd®fup to the  variate (Hammersley and Handscomb, 1964, p. 36).]
(continuous) time, wherew < r <1+ 1. Let D(t,u) = Now, index all possible DNA octonucleotides By =

{S) — au} — {S(t) —at} andM( + 1) = max{D(t,u) :  1,...,m, wherem = 4% = 65536, and led/ {W} be the local
w <t < u <[+ 1} be the continuous time analogs of maximum statistic [denoted b (/+1) above] corresponding
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respondingP-value. As aP-value, eactU[W] is uniformly
distributed on0, 1]. The counts of different word® in the 0.8
block alignment can be expected to correlate only weakly.
Therefore, the following calculation treats th&[W]} as
though they were independent. LBt = min{U[W]:1 <

W < m} be the minimumP-value over allm = 48 words.
Then,

to the wordW. Let U[W] = P(M{W} > y) be the cor- 1 r

transformed p-values

PU " <u)y=1-—(1-uw". 4)

Thus, if the smallesP-valueu for each mock PPR dataset
is transformed according to Equation (4), the result should
also be a uniform variate of0, 1] [the common value in
Equation (4) is, after all, one minus tikevalue P (U* > u)].

For each of the 1000 mock PPR datasets, the corresponding uniform p-values

minimum P-value U* =u was calculated. If the minimum

P-valuesU* = u (the P-values of central interest to us) agree Fig- 2. U*[i] plotted against/1000 fori = 1,.. ., 1000 for various
with the theoretical probability model, their transformed val- Values of the gap penalty = pv, with and without jittering. Solid
ues 1— (1 — u)™ should be uniformly distributed of®, 1]. curves .repres_t_entjnlttered distributions; dotted lines r_epresentdlstrlbu-
We therefore put the 1000 valuesif from the mock PPR tions without jittering. From top to bottom: the red line corresponds

. h . to p = 1.25, greenp = 2.5, brown,p = 5; blue,p = 10. The
datasets |nFo |ncreas.|ng ord&#[l] < --- = U"[1000, and diagonal line in black represents an ideal result, where the smallest
plottedU*[i] againsti /1000 fori = 1,...,21000. If the plot

: g g P-value in every mock PPR dataset agrees the distribution predicted
approximates a straight line frond, 0) to (1, 1), the theor-  py theory.

etical result in Equation (1) agrees withvalues calculated
from the mock PPR datasets (Marino-Ramie¢al., 2004).

We therefore selected our one adjustable parameteb to

produce good agreement between the plot and a straight lind"d T0mMPa, a segment has ‘Property P1" if all subsegments
as follows. For each value gfin the set{1.25, 2.5, 5.0, 10)0 have a lower score. A segment is ‘maximal’, if it has Property

we used the mock PPR datasets as a negative control, plottir?gl' but none of its cpntaiping segments has Property P1. As a
U*[i] againsti /1000 fori = 1,...,1000. Figure 2 displays consequence of their definitions, Ruzzo and Tompa show that

maximal segments are disjoint.
In our set-up, letthe wor? occurk timesinthe block align-
Jnent, at column positiong[1] < --- < T[k] (someT[j]s
might occur many times, if word positions are not jittered).
Associate with?'[ j] the cumulative score[j] = j —aT[j],
since (in the absence of multiple occurrenc@s)occursj
timesuptdl'[j]. The sets[j]} of cumulative scoresis the sub-
set of global scoreS[i] — ai from positions where the word
W has occurred. Other global scores can be ignored, because

differed noticeably for gap penaltigs> 10. The differences they do not contribute to the local maximum statistic. Define
probably occurred because the significant word clusters fofl/] = sL/1=slj — 11 = 1—a{T[j1-TLj — 11}, where

p > 10 are very short, and ouP-value starts to detect the s[0] = T'[0] _Z.O‘. Maximal s_egmenFs ‘?,“1]’ - ’Z[k].} cor-
discreteness of DNA sequences for over-represented word§SPONd to disjoint column-intervals, '] that maximize the

g . . P

like ag andt g. This observation reinforced our decision to fix differencesD[i’, j'l, €.g. moving elth/er.fend-columr.\ bf, j']

the gap penalty in our local maximum statistic so that 5. one position reduces the value bti’, j']. We modified the
Ruzzo—Tompa algorithm to determine all maximal segments

2.3.6 The Ruzzo-Tompa algorithm for maximal segmentsf ;[ j], while maintaining a list of the corresponding positions
Our algorithm for finding clusters of words was a mild modi- and sequences where the wd¥doccurred.
fication of the linear-time Ruzzo—Tompa algorithm for finding
all maximal segments in a set of real numbefd], . . ., z[k]} 2.3.7 TheP-value for a segmentTo calculate statistical
(Ruzzo and Tompa, 1999). Ruzzo and Tompa give a morsignificance of asegmefii+1],...,z[j]}, use Equation (1)
detailed description of their algorithm than space permits herdgo determiney, so thatp = PM(I —w+1) > y}. Ina

In brief, a segment is a subset faf1],...,z[k]} that has blockalignmentofrandom sequences, Bhgaluep is greater
the form{z[i + 1],...,z[j]}. The segment can be assignedthan or equal to the probability that some segmental score
ascored[i, j] = z[i + 1]+ --- + z[j]. According to Ruzzo exceedsy. Since the maximal segments are disjoint, each

0.4 0.6 0.8 1

the results.

For p = 5, the transformedP-values from the mock
PPR datasets agreed remarkably well with theoretical calc
lations. For all wordsW, therefore, we set the gap penalty
a = pv = 5v wherev = S[I]/(I —w+1). Thus, the gap
penaltya permits the difference®|[i, j] to be positive only
over columns where the frequency f is at leasto = 5
timesv, the word’s background frequency per column.

Results with and without jittering were close for< 5 but
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segment with a segmental scaifé, j] > y can be considered sampler should converge on the multiple alignment minimiz-

statistically significant. ing the energy-s. In practice, however, GLAM finds good
alignments reasonably well in either mode.
24 TheA-GLAM computer program GLAM performs several independent runs on its input.

The third step in our analysis is alignment. Each statisticallyf most runs lead to similar best alignments, a user can be
significant cluster, as identified by the local maximum stat-confident of the alignment output.

istic, provides positional seeds to reanchorthe PPRalignmeny.4 2 A-GLAM in seed-oriented moddhe seed-oriented
Our A-GLAM program then optimizes a multiple local align- mode exploits positional information about regulatory ele-
ment to delineate putativeis-regulatory elements, always ments, e.g. the positions in the statistically significant word
constraining the alignment to line up the seeds. clusters derived from the enumerative steps in our analysis.
A-GLAM implements a Gibbs sampling algorithm in C++. | the seed-oriented mode, A-GLAM takes a set of sequences
Itis a generalization of the GLAM program (Frigal, 2002), a5 input, along with either: (1) a word and a subset of the
mode and (2) seed-oriented mode. input sequence and all of equal size. The extra input provides
241 A-GLAM in GLAM modeln its GLAM mode, seeds’ for the A-GLAM alignment. In both cases, although

A-GLAM mimics GLAM. Details of the GLAM algorithm the probability of each permissible move remains proportional

appear elsewhere (Fritt al, 2004b). In brief, the GLAM to expls), the adjustment step is subject to an extra restriction.

algorithm takes a set of sequences as input. The initial ste!c')1 case (1), A-GLAM continues to align one exact copy of the

; . ! . .. 'seed word’ in all ‘'seed sequences’. In case (2), A-GLAM

of GLAM places a single window of arbitrary size within ; ) L ) . ;
X " . continues to align the original list of windows in the seed
every sequence at an arbitrary position, forming a gapless

multiple alignment of the windowed subsequences. GLAM>EAUences. In each case, therefore, A-GLAM uses the seed

then performs fixed number adjustment steps. Each adjusiequences to direct its search in the remaining non-seed ‘tar-

. o ) : . et sequences’. Note that with its seed positions, case (2) can

ment step either repositions or resizes the alignment window : . .
o . . . dccommodate a wide range of searching strategies.

and it is then either accepted or rejected according to prob-
abilities given below. A repositioning adjustment step select®.4.3 The overall score in A-GLAMA-GLAM judges the
one sequence uniformly at random and then repositions itmerits of a multiple alignment with its overall alignment score.
window. A resizing adjustment step resizes all windows byin bits (with all logs to the base 2), the overall score for an
selecting first the right and then the left end of the alignmentalignment of widthw is
If GLAM decides to resize an end, it shifts the correspond- »
ing end of all alignment windows one position to either the o= Z log (a—1)!
right or the left. The resizing step leads automatically to a best — (c+a-1)!
window width and permits GLAM to escape from alignments a

that are optimal but for the positions of their ends. (cij+a; — 1!
In contrast to the OOPS (one occurrence per sequence) + Z {'09 [(a——l)'] — Cij IOng} )
mode just described, GLAM’s ZOOPS (zero or one occur- () / ’

rence per sequenge) option a!so implements a 0-1 adJUSthHEHI]e overall score in Equation (5) is a marginal Bayesian pre-
step, either dropping or adding a sequence to the multlpleﬁ.I|
t

alignment. Thus, the ZOOPS option leads to a final alignmen ctlye _Iog-oqlds score_c_orresp(_)nd_mg _to an alternat_lve hypo-
. . : . esis involving the Dirichlet distribution. In Equation (5),
that might or might not include all input sequences.

| — _ i . _
The repositioning, resizing and 0-1 steps are all probab: - m(m=1)...1 denotes a factorial;, the pseudo

ilistic, with the S-score in Equation (5) below governing zoincfs ];EreTgt(zflc;:lf:j%t:lgui?g?nF()e(;sclﬂor(]).iiti: ncflth—; Zélj;]t
the relevant distributions. To be specific, the probability of 3 da, P POSIHOH,

. . - . of nucleic acid; in positioni; andc = ¢;j1 + ¢;2 + ¢i3 + cia,
each permlssmle adjustment move 1S proportlonal taexp the total number of aligned windows, which is independent of
wheres is the S-score of alignment after adjustment move

has taken place. The probabilistic nature of the samplinthe position. The rationale for the overall scosen GLAM

algorithm permits it to escape from local maximasoéind % explained in detalil el.sewhere (Fr'ﬁalhal., 2004b). In brief,
converge on a global maximum. s canbe computgd rapidly, gdeswable property for Igrge dat'a-
GLAM itself operates in two basic modes. One modese.ts' Moreoyer, its expectation decreases W|tr_1 the increasing
samples the equilibrium Boltzmann distribution éxp the ghgnmentmdtt:j. TE.L‘Sh' the o_vera:_l scme({[nst_rtilnstthg Win-
other simulates an annealing process, lowering atemperatug%}ﬁ:t';ee?]rtgun ahigh-scoring alignment, withoutadyioc
parametekT to pass through states corresponding to quasi- '
equilibrated Boltzmann distributions eg(kT)}. Whenthe 2.4.4 The individual score (deltg&score) A-GLAM also

temperature parametéf finally converges to 0, the Gibbs assigns anE-value to individual sequences in its final
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alignment, much like thef-values for individual protein Tablel. A2 x 2 table of significance and presence in TRANSFAC
sequences in PSI-BLAST (Altschul and Koonin, 1998;
Altschul et al., 1997; Schaffeet al., 2001).

. . ; Octonucleotides Significant Not significant
Consider a window of lengtty that is about to be added to (P < 0.05) (P > 0.05)
A-GLAM’s alignment. Lets[i, j] equal 1 if the window has
nucleic acid; in positioni and O otherwise. The addition of |n TRANSFAC 388 17400
the new window changes the overall score by Not in TRANSFAC 413 47335
w 4 Cii + a;
As = 8[i, jllog| [ L—L 1. (6
=yt es[ () o] @

i=1j=1

_ & TC A A-GLAM
The score change corresponds to evaluating the newwindo | = I \« = o m EEV-N

with a position-specific scoring matrix (PSSM) that assigns ;

the ‘individual score’
Cda TCTC c A GLAM
s[i,j]:lOQ[(u) /p,} 7 LAMIVYWICA ZT

bits

c+a
to nucleic acid;j in positioni. Equation (7) represents a log- %‘-TC CA AlignACE
odds score for an alternative hypothesis that places nuclei =¥ /& A& o=

= SR L B — <R G T s

acid j in positioni with probability (c;; + a;)/(c + a). The

probability corresponds to a frequency derived by adding the . . . ) .

empirical counts;; to the pseudocounts. PSI-BLAST uses Fig. 3. A motif identified using the seedt cgcgag in A-GLAM

Equation (7) to éalculate it€-values: the derivation with overlaps with a recently discovered motif (FitzGeratdal., 2004)

Eguation (6) also confirms the PSSM in Equation (7) as thgresent near the TSS in ribosomal genes and genes involved in
s =TT xidative phosphorylation.

natural choice for evaluating individual sequences.

Consider a particular alignment sequence, andAleft] ] ] . )
denote the quantity in Equation (6) when the final letter inMOSt octonucleotides in TRANSFAC are associated with at
the window falls at position of the alignment sequence. !€astone binding factor, according to literature references. A
Let As* = max{As[i]i =w, ...,l} be the maximum indi- x°-test (P = 4.12x 10~*%) indicates that statistically signi-
vidual score over all sequence positiansiVe assigned an ficant octonucleotides occur more frequently in TRANSFAC
E-value to the actual valuas*, as follows. Let/ andw  than chance alone can explain. _
be the sequence length and window size. In breif, Staden’s Comparison of A-GLAM, GLAM and AlignACEOurtest
method (Staden, 1989) yieldB(AS > As*) for a spe- Seduences setswere constructed from human PPRs containing
cific window, with its bases chosen independently and ranknown transcription factor _binding sites: some were previ-

(I —w+1)P(AS > As*), the expected number of Sequence(Hugheset al, 2000) had computational difficulties when the

positions with an individual score exceeding*. The factor inpu'g sequences were on a genomic scale. _
I —w + 1 is essentially a multiple test correction in the [N its GLAM mode, A-GLAM found essentially the same

E-value. regulatory motifs as GLAM and AlignACE (data not shown).

All sequence logos (Schneider and Stephens, 199¢Pn many sequence sets containing numerous annotated, well-

from http://weblogo.berkeley.edu/logo.cgi (Crooks al,  Was located upstream of an appropriate set of genes and was
2004). consistent with the consensus sequence in the literature.

In seed-oriented mode, however, A-GLAM occasionally
3 RESULTS returned more satisfactory motifs than GLAM or AlignACE.

Figure 3, shows a motif found in ribosomal genes and genes
The presence of significant words in TRANSFAOSf the involved in oxidative phosphorylation. Figure 4 shows a
48 different octonucleotides, only 791 were significant at TRANSFAC motif in NRF-1 that A-GLAM returned from
P < 0.05 after multiplying theiP-value by 4 to correctfor  the seedycgcat gc. Figure 5 shows that the seed-oriented
multiple testing. Table 1 is a22 table whose columns divide mode of A-GLAM identified the TATA box, whereas GLAM
the £ octonucleotides into two groups, those significant atreturned an alignment that could not be identified among
P < 0.05 and those that are not. Its rows divide the octoknown motifs. Finally, Figure 6 shows a YY-1 transcrip-
nucleotides by presence or absence in the vertebrate subsetioin factor binding site that A-GLAM returned from the seed
the TRANSFAC database (version 8.4) (Magtsal, 2003). aagat ggc.
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Fig. 4. Using the seedcgcat gc, A-GLAM identified a motif in TRANSFAC corresponding to the NRF-1 factor (NF-kappaB-repressing
factor). @) Columns of the block alignments near the TSS at column 0 are shown to be enriched with occurrgeggsaofgc. (b) Shows
a sequence logo of the corresponding motif in TRANSFAL Djsplays the motif A-GLAM produced from the segdgcat gc.
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Fig. 5. Using the seetlat aaaaa, A-GLAM identified a motif corresponding to the enriched TATA box. AlignACE was unable to return a
motif from the input, whereas GLAM returned a motif that could not be identified.

(@ (b) = (d)

aagatgge AA_I AT IQ AT = " gecatett

10

Counts
Counts

P (c) HBB793 5

ﬂﬂ[ﬂlli&hlﬂl]ﬂ[llljjmm ni &Jﬂﬂll‘Lﬂm ' C AT$IT:,:

Position

hits

1 2z 3 4 5 8 7 & &8
pozition

Fig. 6. Using the seedagat ggc, A-GLAM identified a motif corresponding to the YY-1 transcription factor binding site near the TSS.

(a) Columns of the block alignments near the TSS at column 0 are shown to be enriched with occurreragatafgc (multiple-test
corrected local-maximun®-value 0.00). lf) Sequence logo returned by the seed-oriented mode of A-GLAMSé€quence logo for the

YY-1 site in TRANSFAC. @) Columns of the block alignments near the TSS at column 0 are shown to be enriched with occurrences of the
seedgccat ctt (multiple-test corrected local-maximufvalue 1.66). The strand-specific difference between these reverse complements
aagat ggc andgccat ctt is apparent.

4 DISCUSSION octonucleotide word. Our local maximum statistic evaluates
We have developed a two-step method for identifygigg ~ €ach word’s tendency to cluster in a block alignment anchored

acting regulatory elements in human promoter regions. FirsQ" the TSS. Ax?-test on a 2« 2 table ¢ = 4.12x 10~%)
an enumerative step determinBsvalues for each possible Shows that the statistic does indeed identify biologically
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relevant DNA words. Second, an alignment step uses eitheBailey,T.L. and Elkan,C. (1995) Unsupervised learning of multiple
words or positions from the first step as ‘seeds’. Our Gibbs motifs in biopolymers using expectation maximizatitdachine
sampler program A-GLAM optimizes a multiple alignment  Learning 21, 51-83.

while constraining it to contain the seeds. The idea of combinBarbour,A.D., Holst.L. and Janson,S. (199&)isson Approxima-
ing enumerative and alignment methods was first put forward e‘:%mgéarerggrcvességfgﬁ'E Rozowsky,1.S., UrbanA.E
by Ohler _and Nleman_n (2001), but ours appears to be its f|r£ Zhu,X,., 'Rinn,J.,L.,’ Tongpraylsit,V;/., Samanta:M., 'Weissmr;m,S.:
practical implementation.

. . Gerstein,M. and Snyder,M. (2004) Global identification of human
Low-complexity regions, such as Alu repeats or tracts of . ribed sequences with genome tiling arr@ence 306,

poly(A), often distract Gibbs samplers from subtle but bio- 2542 _2246.

logically interesting signals (Fritat al, 2004a), because the cawley,S., Bekiranov,S., Ng,H.H., Kapranov,P., Sekinger,E.A.,
regions deviate noticeably from theoretical approximationsto Kampa,D., Piccolboni,A., Sementchenko,V., Cheng,J.,
the true distribution of ‘random DNA'. The standard strategy Williams,A.J. et al (2004) Unbiased mapping of transcrip-
against repeats is to mask them with programs, such as Repeat+ion factor binding sites along human chromosomes 21 and 22
Masker (Smitet al, 1996, http://www.repeatmasker.org).  Points to widespread regulation of noncoding RN&ell, 116,
Unfortunately, masking can obscure regulatory elements asso- 499-509. _

ciated with the low-complexity region. Our word-specific Crooks,G.E., Hon,G., Chandonia,J.M. and Brenner,S.E. (2004)

random mask avoids many problems associated with low- Xﬁ%gﬁi;oa sequence logo generat@enome Res. 14,

Com_pleX'ty reg_lor_18._ As an exz_amplt_e of our methods, the IOC"ﬂliitzGeraId,P.C., Shlyakhtenko,A., Mir,A.A. and Vinson,C. (2004)
maximum statistic is able to identigaaaaaaa as a word Clustering of DNA sequences in human promot&snome Res.
with no specific clustering tendencies (multiple-test corrected 14 1562-1574.
P-value= 6.5e+03 after jittering) despite its over-abundance Frith M.C., Fu,Y., Yu,L., Chen,J.F., Hansen,U. and Weng,Z.
in our human promoter dataset. Because A-GLAM’s seeds (2004a) Detection of functional DNA motifs via statistical over-
automatically focus it on a motif of interest, A-GLAM does  representatioriNucleic Acids Res32, 1372-1381.
not require repetitive elements to be masked during Gibb&rith,M.C., Hansen,U., Spouge,J.L. and Weng,Z. (2004b) Finding
sampling. fuqctional sequence elements by multiple local alignmieatleic
Anchored alignments might speed the investigation of RNA _Ahuds Res.32, 189-200. stical
splicing signals, non-coding RNA processing signals, origind "t"M-C., Spouge,J.L., Hansen,U. and Weng,Z. (2002) Statistica
i significance of clusters of motifs represented by position specific
of replication and 3regulatory elements. Moreover, recent

. . . . . scoring matrices in nucleotide sequendéscleic Acids Res30,
efforts to identify and delineate the transcribed regions of the 321 4_%22 4 q >

human genome (Bertoret al., 2004) and to map transcrip- Hammersley,J.M. and Handscomb,D.C. (196Mjonte Carlo
tion factor binding sites along chromosomes (Cavédéwl., Methods Chapman and Hall, London.
2004) provide potential alignment anchors. Our methods${ughes,J.D., Estep,P.W., Tavazoie,S. and Church,G.M. (2000) Com-
therefore seem well adapted for identifying the corresponding putational identification ofcis-regulatory elements associated
regulatory elements. with groups of functionally related genes Baccharomyces
cerevisiaeJ. Mol. Biol,, 296, 1205-1214.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the stat-

ACKNOWLEDGEMENTS istical significance of molecular sequence features by using

We gratefully acknowledge the many useful conversations 9€neral scoring schemesroc. Natl Acad. Sci. USAS7,

. . . . 2264-2268.
with Drs Martin C. Frith and Zhiping Weng. We also thank Karlin,S. and Dembo,A. (1992) Limit distributions of maximal seg-

the referees for their suggestions which improved the paper mental score among Markov-dependent partial-sutis, Appl.

considerably. Probab, 24, 113-140.
Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F.
and Wootton,J.C. (1993) Detecting subtle sequence signals: a

REFERENCES Gibbs sampling strategy for multiple alignmecience 262,
Aldous,D. (1989) Probability Approximations via the Poisson 208-214.
Clumping Heuristic Springer-Verlag, New York. Levine,M. and Tjian,R. (2003) Transcription regulation and animal
Altschul,S.F. and Gish,W. (1996) Local alignment statistibsthods diversity.Nature 424, 147-151.
Enzymol. 266, 460—480. Marino-Ramirez,L., Spouge,J.L., Kanga,G.C. and Landsman,D.
Altschul,S.F. and Koonin,E.V. (1998) Iterated profile searches with (2004) Statistical analysis of over-represented words
PSI-BLAST—a tool for discovery in protein databas&egends in human promoter sequence®ucleic Acids Res. 32,
Biochem. Scj.23, 444—-447. 949-958.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,Matys,V., Fricke,E., Geffers,R., Gossling,E., Haubrock,M., Hehl,R.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI- Hornischer,K., Karas,D., Kel,A.E., Kel-Margoulis,O.¥t al.
BLAST: a new generation of protein database search programs. (2003) Transfac: transcriptional regulation, from patterns to
Nucleic Acids Res25, 3389-3402. profiles.Nucleic Acids Res31, 374-378.

447


http://www.repeatmasker.org

K.Tharakaraman et al.

Ohler,U. and Niemann,H. (2001) Identification and analysis ofSinha,S. and Tompa,M. (2002) Discovery of novel transcription
eukaryotic promoters: recent computational approachesnds factor binding sites by statistical overrepresentatircleic Acids
Genet, 17, 56-60. Res, 30, 5549-5560.

Ruzzo,W.L. and Tompa,M. (1999) Beventh International Confer- Smit,A., Hubley,R. and Green,P. (1996) Repeatmasker.
ence on Intelligent Systems for Molecular Biolpgieidelberg,  Spouge,J.L. (2001) Finite-size correction to Poisson approxima-
Germany. tions of rare events in renewal processésAppl. Prob, 38,

Schaffer,A.A., Aravind,L., Madden,T.L., Shavirin,S., Spouge,J.L., 554-569.

Wolf,Y.l., Koonin,E.V. and Altschul,S.F. (2001) Improving Staden,R. (1989) Methods for calculating the probabilities of
the accuracy of PSI-BLAST protein database searches with finding patterns in sequence€omput. Appl. Biosci. 5,

composition-based statistics and other refineméhusleic Acids 89-96.

Res, 29, 2994-3005. Van Helden,J., Andre,B. and Collado-Vides,J. (1998) Extracting
Schbath,S. (1997) An efficient statistic to detect over- and under- regulatory sites from the upstream region of yeast genes by com-

represented words in DNA sequences. Comput. Biol. 4, putational analysis of oligonucleotide frequenci&sMol. Biol,

189-192. 281, 827-842.

448



