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Alignments of RNA structures
Guillaume Blin, Alain Denise, Serge Dulucq, Claire Herrbach, and H́elène Touzet

Abstract— We describe a theoretical unifying framework to
express comparison of RNA structures, which we callalignment
hierarchy. This framework relies on the definition of common
supersequences for arc-annotated sequences, and encompasses
main existing models for RNA structure comparison based
on trees and arc-annotated sequences with a variety of edit
operations. It also gives rise to edit models that have not
been studied yet. We provide a thorough analysis of the align-
ment hierarchy, including a new polynomial time algorithm
and an NP-completeness proof. The polynomial time algorithm
involves biologically relevant evolutionary operations, such as
pairing or unpairing nucleotides. It has been implemented in
a software, called gardenia that is available at the web server
http://bioinfo.lifl.fr/RNA/gardenia.

Index Terms— Computational biology, RNA structures, arc-
annotated sequences, NP-hardness, edit distance, algorithm

I. I NTRODUCTION

Non-coding RNA genes are now known to play essential
roles in the cell, and comparison of RNA molecules has
attracted a lot of interest recently. Broadly, one can distinguish
two combinatorial models for RNA structures: macroscopic
representations, with two-interval graphs [8], [28], and micro-
scopic representations with arc-annotated sequences [11]. We
focus here on arc-annotated sequences. In this formalism, an
RNA molecule is represented as a raw sequence of nucleotides
provided with related additional information in the form of
arcs connecting pairs of positions. The set of arcs constitutes
the secondary and the tertiary structures of the molecule. It de-
termines the way the sequence folds into a three-dimensional
space.

When it comes to compare arc-annotated sequences, four
main paradigms have been proposed so far: tree edit dis-
tance [9], [10], [21], [27], [29], tree alignment [18], longest
common arc-preserving subsequence [11], [17], [22], and
general edit distance [5], [16]. In this paper, we introducea
unifying framework to address the problem of arc-annotated
sequence comparison that is based on the definition of the
common arc-annotated supersequence. This framework has
several instances depending on the definition of the embedding
involved in the notion of supersequence, and the type of the
supersequence (NESTED, CROSSINGor UNLIMITED ). It gives
rise to a hierarchy of problems, that we call thealignment
hierarchy in reference to the tree alignment of [18]. We
show that this hierarchy brings together all four previously
mentioned comparison models for arc-annotated sequences.It
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also leads to the introduction of new comparison models. In
particular, we propose in Sections IV-B and V a polynomial
time algorithm for the problem of comparing two NESTED

arc-annotated sequences with a full set of edit operations
(including arc-altering and arc-breaking), whereas theseedit
operations yield a non polynomial time algorithm in the edit
distance scheme. We provide a full analysis of the complexity
of this algorithm in the worst case and in average in paragraphs
V-C and V-D, and demonstrate its applicability on RNA se-
quences in paragraph V-E. We also present aNP-completeness
result that gives some new insight on the hardness of the
comparison of NESTED arc-annotated sequences with arc-
altering and arc-breaking operations (Section IV-C), refining
previous results of [5], [22]. This leads to an almost exhaustive
study of the alignment hierarchy.

II. EDITION MODELS FOR ARC-ANNOTATED SEQUENCES

Given a finite alphabetΣ, an arc-annotated sequence is
defined by a pair(S, P ), whereS is a string ofΣ∗ andP is a
set of arcs connecting pairs of characters ofS. Arcs correspond
to hydrogen interactions between bases. In reference to RNA
structures, characters are calledbases. Bases with no incident
arc are calledsingle bases. As usually done in the study
of arc-annotated sequences, we distinguish four levels of arc
structure, originally proposed by Evans in [11]:

• UNLIMITED (UNLIM ) – no restriction at all,
• CROSSING (CROS) – there is no base incident to more

than one arc,
• NESTED (NEST) – there is no base incident to more than

one arc and no arcs are crossing,
• PLAIN – there is no arc.

Since we focus here on structure comparison, we do not
consider PLAIN sequences, which do not carry any structural
information. In the remaining of this paper, we shall only deal
with sequences of type NESTED, CROSSINGand UNLIMITED .

In order to compare two arc-annotated sequences, we con-
sider the set of edit operations and their associated costs
introduced in [23], and classify it into two groups:
• Substitution operations, inducing renaming of bases in the
arc-annotated sequence:base-match(wm : Σ2 → R), base-
mismatch(wm : Σ2 → R), arc-match (wam : Σ4 → R),
arc-mismatch(wam : Σ4 → R).
• Deletion operations, inducing deletion of bases and/or of
arcs:

base-deletion (wd : Σ → R) →

arc-breaking (wb : Σ4 → R) →

arc-removing (wr : Σ2 → R) →

arc-altering (wa : Σ3 → R) →
or
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Although this is not explicit in the notation, the cost of any
deletion operation depends on the values of the affected bases.
The definition in [23] is slightly different: deletion operations
are defined in such a way that they cannot change the value of
the remaining bases. For example, changing aG−C base pair
into two single basesG andA needs two operations: at first
an arc-breaking, then a base-mismatch fromC to A. Here, we
choose to allow them to change the bases incident to the arc.
Hence, in the above example, only one arc-breaking has to be
done. It can be easily seen the two models are equivalent, by
changing the costs of the operations.

This set of operations allows us to define three edit models:
I : all substitution operations, base-deletions and

arc-removings are allowed,
II : the operations of model I and arc-alterings

are allowed,
III : the operations of model II and arc-breakings are

allowed.

Given two arc-annotated sequencesu andv, andK in {I,II,III }
a K-edit script from u to v refers to a series of non-oriented
operations of the modelK transformingu into v. The cost
of a K-edit script from u to v, denotedcost(u, v,K), is
the sum of the costs of each operation involved in theK-edit
script. We define theK-edit distancebetweenu andv as the
minimum cost of aK-edit script fromu to v. Finding thisK-
edit distance is called the EDIT(u, v,K) problem. For each
modelK ∈ {I, II , III }, we also define theordering relation
�K : if u can be obtained fromv by a series of deletion
and substitution operations of the modelK, then u EK v.
Provided with these notations, we propose to extend the notion
of subsequence on plain sequences to arc-annotated sequences
as follows.

Definition 1 (K-subsequence)Given two arc-annotated se-
quencesu and v, and an edit modelK ∈ {I, II , III }, u is said
to be aK-subsequence ofv if, and only if,u EK v.

Given three arc-annotated sequencesu, v and w such that
w EK u and w EK v, w is said to be acommonK-
subsequenceof u and v. We define the cost of a common
K-subsequencew of u and v as the minimum sum of
operation costs needed to transformu into w and v into w:
cost(u,w,K) + cost(v, w,K).

When dealing with plain sequences, it is well-known that
each edit script can be associated with a common subsequence
of the same cost. This property is still valid withK-edit scripts
on arc-annotated sequences.

Lemma 1 Given two arc-annotated sequencesu and v, and
an edit modelK ∈ {I, II , III }, solving the EDIT(u, v,K)
problem is equivalent to finding a commonK-subsequence
w of u and v of minimal cost.

Proof: (⇒) Let w be a commonK-subsequence of
u and v. By definition, we havew EK u and w EK v.
Therefore, there exist two series of operations of the model
K that respectively transformu into w and v into w. It is
straightforward to verify that these operations induce an edit

script whose cost equalscost(u,w,K) + cost(v, w,K).
Thus the edit distance is lower than or equal to the cost of
w.
(⇐) Conversely, letM be aK-edit script fromu to v of cost
α. We show that there exists a commonK-subsequence whose
cost is lower than or equal toα. According to the parsimony
principle, each position ofu or v is affected by at most one
deletion operation inM . If not, M is not optimal and can be
simplified so as to eliminate redundant operations. Now, since
each position ofu or v is concerned by at most one operation,
we are ensured that there are no conflicting pairs,i.e. pairs that
share a common base which is concerned by two operations
on its adjacent arcs. It follows that the script may be modified
in such a way that all deletion rules onu apply before any
deletion rule onv. A commonK-subsequencew of u andv
can then be obtained by applying tou all the operations of
the reorderedK-edit script appearing before the first deletion
rule onv. The cost ofw is lower than or equal toα.
We now turn to a novel paradigm to compare arc-annotated
sequences, simply consideringK-supersequences instead of
K-subsequences. We shall see that this alternative point of
view is a fruitful perspective and that it brings new insights
on arc-annotated sequence comparison.

Definition 2 (K-supersequence)Given two arc-annotated
sequencesu and v, and an edit modelK ∈ {I, II , III }, u is
said to be aK-supersequence ofv if, and only if,v EK u.

In a similar way as for common subsequences, given three
arc-annotated sequencesu, v and w, w is a commonK-
supersequenceof u and v if u EK w and v EK w. The
cost ofw is defined ascost(w, u,K) + cost(w, v,K).

We saw in Lemma 1 that EDIT problems amount to finding
optimal subsequences. We prove that each EDIT problem can
also reduce to finding an optimal supersequence.

Lemma 2 Given two arc-annotated sequencesu and v, and
an edit modelK ∈ {I, II , III }, there exists a commonK-
subsequence ofu and v of costα iff there exists a common
K-supersequence ofu and v of the same cost.

Proof: (⇒) Let u = (S, P ), v = (T,Q) andw = (R,U)
be three arc-annotated sequences such thatw is a commonK-
subsequence ofu andv. For each positioni of R, letφ(i, R, S)
(resp.φ(i, R, T )) denote the position of the character inS
(resp.T ) from which the characterR[i] is obtained. We build
a K-supersequencex = (V,W ) of u andv as follows:

V= S1 T1 R[1] S2 T2 R[2] . . . Sn Tn R[n] Sn+1 Tn+1

W= {(ψu(i), ψu(j)); (i, j) ∈ P}
∪ {(ψv(i), ψv(j)); (i, j) ∈ Q}

where n is the length ofR and Si (resp. Ti) denotes
S[φ(i− 1, R, S)+1..φ(i, R, S)− 1] (resp.T [φ(i− 1, R, T )+
1..φ(i, R, T ) − 1]). By convention, we haveφ(0, R, S) =
φ(0, R, T ) = 0 andφ(n+1, R, S) (resp.φ(n+1, R, T )) is the
last position ofS (resp.T ). ψu (resp.ψv) is an application that
associates to each base ofS (resp.T ) the corresponding base
in V . By construction,x is indeed a common supersequence of
u andv. We now turn to prove that its cost isα. First, note that
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Fig. 1. Comparison of the optimal common subsequence and the optimal
common supersequences for a pair of arc-annotated sequences,u = abbccadd
and v = bbeccdde. The optimal common subsequence (first picture) is
derived fromu and v with two arc-removing operations. The optimal com-
mon NESTED supersequence requires four arc-removing operations (second
picture). In this example, it is necessary to allow crossing arcs in the
supersequence to get the same cost as for the subsequence (third picture).

cost(x, u,K) = cost(v, w,K). Indeed, in order to obtain
u from x, orw from v, one just has to delete all bases and arcs
originated fromv without being inw. By a similar reasoning,
we can show thatcost(x, v,K) = cost(u,w,K). It follows
that cost(x, u,K) + cost(x, v,K) = α.
(⇐) The reverse direction is similar. The common subse-
quence is obtained as the intersection ofu and v, instead of
considering the union as in the previous case. Letu = (S, P ),
v = (T,Q) andx = (V,W ) be three arc-annotated sequences
such thatx is a commonK-supersequence ofu and v.
The subsequencew = (R,U) is defined as follows:R is
the common subsequence composed of conserved positions
betweenS andT in the mapping induced byx and

U = {(φ(i, R, S), φ(j, R, S)); (i, j) ∈ P}
∩ {(φ(k,R, T ), φ(l, R, T )); (k, l) ∈ Q}

We have cost(x, u,K) = cost(v, w,K) and
cost(x, v,K) = cost(u,w,K). Hencecost(u,w,K) +
cost(v, w,K) = α.

In Lemma 2, it is worth to notice that the type of the
common supersequence is not guaranteed to be the same as
the type of the common subsequence. Figure 1 illustrates
such an example. The edit script associated with the optimal
subsequence (which is of NESTED type) has a smaller cost
than the edit script associated with the optimal NESTED

supersequence. Indeed, when constructing the set of arcs of
the commonK-supersequence ofu (above) andv (below),
it is likely to create crossing or multiple arcs that are absent
from the initial sequences. In general, when considering arc-
annotated sequences of NESTED types, searching for a com-
mon NESTEDsupersequence is more restrictive than searching
for a common subsequence. In example of Figure 1, it is
necessary to authorize crossing arcs in the supersequence to
get the same cost as for the EDIT problem. This observation
gives rise to a family of new problems, which we call the
alignment hierarchy.

Definition 3 (Alignment hierarchy) Given three types of se-
quenceA, B and C of {NEST,CROS,UNLIM } and an edit
modelK ∈ {I, II , III }, the ALIGN(A,B,K) → C problem is
defined as:

INPUT: two arc-annotated sequencesu and v of typeA and
B respectively.

OUTPUT: a commonK-supersequencew of typeC of mini-
mum cost.

The purpose of this paper is to study exhaustively the align-
ment hierarchy and confront it to known results for existing
comparison models for arc-annotated sequences.

What is the number of different instances in the hie-
rarchy? Since ALIGN(A,B,K) → C is equivalent to
ALIGN(B,A,K) → C, we can always assume thatB ⊆ A.
Moreover, in order for the problem to be meaningful, we
impose A ⊆ C. Therefore, the hierarchy contains thirty
distinct entries, ten for each edit model, when consideringall
relevant possibilities forA, B, C andK.

The first noticeable result is that the ALIGN hierarchy
includes all instances of the edit distance problem, as stated in
Theorem 1. This is a straightforward consequence of Lemma
1 and Lemma 2.

Theorem 1 Given two typesA, B in {NEST,CROS,UNLIM }
and an edit modelK ∈ {I, II , III }, the EDIT(A,B,K) and
ALIGN(A,B,K) → UNLIM problems are equivalent.

The three next sections are devoted to the study of the
alignment hierarchy for each edit modelK in {I,II,III }.

III. O RDERED TREES AND EDIT MODELI

Comparing arc-annotated sequences of NESTED types when
considering the edit model I amounts to comparing ordered
trees. Each pair of connected bases corresponds to an internal
node, and each single base corresponds to a leaf. In this model,
considering supersequence of UNLIMITED type is meaningless
as stated in Lemmas 3 and 4.

Lemma 3 Given two typesA, B in {NEST,CROS}, the
ALIGN(A,B, I) → UNLIM and ALIGN(A,B, I) → CROS

problems are equivalent.

Proof: Only arc-altering and arc-breaking operations
(which are prohibited in this edit model) can create multiple
arcs incident to a single character – which is the only property
that arc-annotated sequences of CROSSING and UNLIMITED

types do not have in common.

Lemma 4 Given a type B in {NEST,CROS}, the
ALIGN(UNLIM , B, I) → UNLIM problem has the same
complexity asALIGN(CROS, B, I) → CROS.

Proof: Since this edit model does not allow for arc-
altering or arc-breaking operations, all multiple incident arcs
should be deleted with an arc-removing operation, which can
be done in linear time. So the UNLIMITED arc-annotated se-
quence is rewritten into a CROSSINGarc-annotated sequence.
Conclusion stems from Lemma 3.
Together with Theorem 1, these two lemmas imply that nine
out of ten entries of the model I are equivalent or reduce to
EDIT problems. The only problem that does not reduce to an
edit problem is ALIGN(NEST, NEST, I) → NEST, which fully
corresponds to the ordered tree alignment, introduced by Jiang
et al. in [18]. Therefore, the ALIGN hierarchy is completely
solved for the edit model I, as summed up in Table I.



JOURNAL OF LATEX CLASS FILES, JANUARY 2007 4

A × B → C EDIT model I

NEST × NEST → NEST O(n4) – Jiang [18]

NEST × NEST → CROS
× O(n3 log(n)) – Klein [21]NEST × NEST → UNLIM

CROS× NEST → CROS
× O(n3 log(n)) – Ma [24]CROS× NEST → UNLIM

CROS× CROS → CROS
× NP-complete – Ma [24]CROS× CROS → UNLIM

UNLIM× NEST → UNLIM × O(n3 log(n)) – Lemma 4

UNLIM× CROS → UNLIM × NP-complete – Ma [24]

UNLIM×UNLIM → UNLIM × NP-complete – Ma [24]

TABLE I

ALIGNMENT HIERARCHY FOR THE EDIT MODEL I.

According to Lemma 3, the ten problems of the hierarchy reduce toseven
distinct instances. We indicate entries that can also be formulated as edit
problems with× in the second column (see Theorem 1). Complexity results
are indicated for two arc-annotated sequencesu andv s.t.max(|u|, |v|) = n.

IV. T HE EDIT MODEL II

A. Some correspondences with theLAPCS problem

As introduced by Evans in [11], the LONGEST ARC-
PRESERVINGCOMMON SUBSEQUENCEproblem (LAPCS for
short) is defined as follows: given two arc-annotated sequences
u and v, find the longest – in terms of sequence length –
common arc-annotated subsequencew of u and v such that
an arc(i, j) in w can only be obtained from both an arc in
u and an arc inv (i.e. arc-preserving). We prove hereafter
that the LAPCS problem is a specific case of the common
subsequence problem when considering the edit model II,
namely the EDIT(A,B, II) problem, provided that the score
system for edit operations is correctly chosen. The cost of a
base-deletion or of an arc-altering is1, the cost of an arc-
removing is2, and substitutions are prohibited, with arbitrary
high costs.

Theorem 2 Letu, v,w be three arc-annotated sequences. The
sequencew is a longest arc-preserving common subsequence
of u and v iff w �II v andw �II u.

Proof: The proof relies on the following property:
Let u′ = (S, P ) and v′ = (T,Q) be two arc-annotated
sequences. We haveu′�II v

′ iff S is a common arc-preserving
subsequence ofT considering the implicit mapping – denoted
M – from u′ to v′ induced byu′ �II v

′.
(⇒) The proof is by induction on the number of edit rules
necessary to reducev into u. All deletion rules of the edit
model II (base-deletion, arc-removing and arc-altering) clearly
have the arc-preservation property.
(⇐) The proof is by induction on the difference of lengths
betweenS andT . If S andT have the same length, we have
S = T and the condition on arc preservation yieldsP = Q.
If T is longer thanS, then leti be the first position inT such
that for any positionj in S the pair (i, j) does not belong
to M . It is enough to show that there exists an arc-annotated
sequencew = (U,R) such thatu�II w on the one hand,U is
longer thanS, U is a subsequence ofT with arc-preservation
property on the other hand. Then the induction hypothesis will

allow us to conclude thatw �II v, which impliesu �II v by
transitivity of �II .

We have to consider several cases according to the status
of T [i] for the construction ofw. We noteS′ (resp.S”) the
image ofT [1..i− 1] in S (resp.T [i+ 1..|T |]) in the mapping
M . By construction, we haveS′S” = S.
– T [i] is a single base:w is defined byU = T [1..i−1]◦T [i+
1..|T |] andR = Q. We havew�II v sincew is derived from
v by a base-deletion ofT [i]. The arc-preservation property
betweenu and w still holds. So the induction hypothesis
implies u�II w.

In the other cases,T [i] is a paired base. Letk be the position
of its partner (i.e.(i, k) ∈ Q).
– If there exists a positionl in S such that(k, l) belongs toM :
According to the arc preservation property foru and v, S[l]
is a single base. We defineU = T [1..i− 1] ◦T [i+1..|T |] and
R = Q−{(i, k)}. We havew�II v sincew is derived fromv by
an arc-altering onT [i] andT [k]. The arc-preservation property
betweenu and w still holds. So the recurrence hypothesis
implies u�II w.
– k is not mapped to any position inS with M : We definew
as the arc-annotated sequence obtained fromv by application
of an arc-removing operation on(i, k). The arc-preservation
property betweenu and w still holds. So the recurrence
hypothesis impliesu�II w.
This theorem combined with Theorem 1 allows us to derive
several cases of the alignment hierarchy for the edit model
II from results of the LAPCS literature. All known results
are summed up in Table II. LAPCS(NESTED,NESTED), that
corresponds to ALIGN(NEST,NEST, II) → UNLIM , is known
to be NP-complete, and so do LAPCS(CROSSING,NESTED),
LAPCS(CROSSING,CROSSING), LAPCS(UNLIM ,NESTED),
LAPCS(UNLIM ,CROSSING) and LAPCS(UNLIM ,UNLIM ).
It remains four problems: ALIGN(NEST,NEST, II) →
{NEST,CROS} and ALIGN(CROS, {NEST, CROS}, II) →
CROS. The first two problems can be seen as refinements
of LAPCS(NESTED,NESTED). We solve them in the
next two sections, and show that the first one is
polynomial, whereas the second one isNP-complete.
It follows that ALIGN(CROS,NEST, II) → CROS and
ALIGN(CROS,CROS, II) → CROS are alsoNP-complete.

B. ALIGN(NEST,NEST, II) → NESTED is polynomial

The first result that we present for the edit model II is
concerned with the alignment of two NESTED sequences.
This is indeed a consequence of the more general algorithm
proposed for model III in Theorem 6 and Table IV (Section
V).

Theorem 3 ALIGN(NESTED,NESTED, II) → NESTED is
polynomial.

This result is somehow unexpected since the associate
edit problem EDIT(NESTED,NESTED, II) is NP-complete. It
shows that prohibiting crossing arcs in the superstructureis
sufficient to make the problem polynomial.
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A × B → C EDIT model II

NEST × NEST → NEST O(n4) – Theorem 3

NEST × NEST → CROS NP-complete – Theorem 4

NEST × NEST → UNLIM × NP-complete – Lin [22]

CROS× NEST → CROS NP-complete – Theorem 4

CROS× NEST → UNLIM ×
NP-complete – Evans [11]

UNLIM× NEST → UNLIM ×

CROS× CROS → CROS NP-complete– Theorem 4

CROS× CROS → UNLIM ×

NP-complete – Evans [11]CROS×UNLIM → UNLIM ×

UNLIM×UNLIM → UNLIM ×

TABLE II

ALIGNMENT HIERARCHY FOR EDIT MODEL II.

We indicate problems that can be formulated as edit distance problems in the
second column. In these cases, known results stem from the LAPCS problem
(Theorems 1 and 2). Other problems are specific to the ALIGN hierarchy
and are introduced in this paper. Complexity results are indicated for two
arc-annotated sequencesu andv s.t. max(|u|, |v|) = n.

A × B → C EDIT model III

NEST × NEST → NEST O(n4) – Theorem 6

NEST × NEST → CROS

NEST × NEST → UNLIM × NP-complete – Blin [5]

CROS× NEST → CROS

CROS× NEST → UNLIM ×
Max SNP-hard – Jiang [16]

UNLIM× NEST → UNLIM ×

CROS× CROS → CROS

CROS× CROS → UNLIM ×

Max SNP-hard – Jiang [16]CROS×UNLIM → UNLIM ×

UNLIM×UNLIM → UNLIM ×

TABLE III

ALIGNMENT HIERARCHY FOR EDIT MODEL III.

We indicate problems that can be formulated as edit distance problems in
the second column. In these cases, known results stem from thegeneral edit
distance for the model III (Theorem 1). Other problems are specific to the
ALIGN hierarchy and are introduced in this paper. Blank cells are for problems
that are still open. Complexity results are indicated for twoarc-annotated
sequencesu andv s.t. max(|u|, |v|) = n.

C. ALIGN(NESTED,NESTED, II) → CROSSING is NP-hard

We show in this section that relaxing the constraint on cross-
ing arcs in the common supersequence makes the problem
difficult, even if we do not allow multiple incidents arcs in
the supersequence as in LAPCS(NESTED,NESTED).

Theorem 4 ALIGN(NESTED,NESTED, II) → CROSSING is
NP-complete.

The decision problem is defined formally as follows.

INPUT: Two arc-annotated sequencesu andv of NESTED type
and an integerℓ.
QUESTION: Can one find an arc-annotated sequencew of
CROSSING type which is a common II-supersequence ofu
andv of cost lower than or equal toℓ ?

We initially notice that this problem is inNP since given
three arc-annotated sequencesu, v and w one can check

polynomially if (1) w is of CROSSING type, (2) w is a
common II-supersequence ofu and v, and (3) the cost ofw
is lower than or equal toℓ. In order to prove that it isNP-
complete, we propose a polynomial reduction from theNP-
complete problemMIS-3P [4]. The MIS-3P problem is also
used in the polynomial reduction of theNP-complete proof of
LAPCS(NESTED,NESTED) [22].

INPUT:A cubic planar bridgeless connected graphG = (V,E)
and an integerk.

QUESTION : Is there an independent set of vertices ofG – i.e.
a setV ′ ⊆ V such that no two vertices ofV ′ are connected
by an edge inE – of cardinality greater than or equal tok ?

A graphG = (V,E) is said to be acubic planar bridgeless
connectedgraph if any vertex ofV is of degree three (cubic),
G can be drawn in the plane in such a way that no two edges
of E cross (planar), and there are a least two paths – with
no edge in common – connecting any pair of vertices ofV
(bridgeless connected).

The idea of the proof is to encode a cubic planar bridgeless
connected graph by two arc-annotated sequences. The con-
struction uses first a two-page book embedding.

Theorem 5 (Bernhart and al. [3]) One can always find, in
polynomial time, a two-page book embedding of a cubic planar
bridgeless connected graph with the following additional
property: on each page, any vertex has a non-null degree.

A two-page book embeddingof a graphG is a linear ordering
of the vertices ofG along a line and an assignment of the
edges ofG to the two half-planes delimited by the line –
called thepages– so that no two edges assigned to the same
page cross. For convenience, we will refer to the page above
(resp. below) the line as thetop-page(resp.bottom-page).

Given a two-page book embedding, we construct two arc-
annotated sequences of NESTED type u = (S, P ) and v =
(T,Q) on the three-letters alphabet{a, b,#}. The underlying
raw sequencesS andT are defined as follows:

S = #n S1 #n S2 . . . #n Sn

T = #n T1 #n T2 . . . #n Tn

wheren is the number of vertices of the initial graph, and for
each1 ≤ i ≤ n, Si (resp.Ti) is a segmentbaaa if the degree
of the vertexvi ∈ V in the top-page (resp. bottom-page) equals
two, a segmentaaab otherwise.

Now that the sequencesS and T are defined, we have
to copy the arc configuration of the top-page (resp. bottom-
page) onS (resp.T ). Each edge(vi, vj) of the top-page is
represented by an arc inP . More precisely, this arc connects
a basea of Si and a basea of Sj . We proceed in a similar
way for each edge of the bottom-page by adding, for each
one, an arc inQ. Moreover, we impose that when a vertexvi

is of degree two on the top-page (resp. bottom-page), the two
corresponding arcs inP (resp.Q) are incident to the rightmost
two basesa of the segmentSi (resp.Ti). And, consequently,
we impose that, when a vertexvi is of degree one on the top-
page (resp. bottom-page), the corresponding arc inP (resp.Q)
is incident to the leftmost basea of the segmentSi (resp.Ti).
It is easy to check that it is always possible to reproduce on
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v2 v5

v1

v3 v4

v6

v1 v2 v3 v4 v5 v6

a a b

a a a#n

#n

b

a a a a

a a b

b

a#n

#n a a a

a a b

b

a#n

#n a a b

a a a#n

#n

b

a a a a

a a b

b

a#n

#na a a

a a b

b

a#n

#n

(c)

(a) (b)

Fig. 2. Example of an align-construction for the proof of Theorem 4. The
graph (a) is a cubic planar bridgeless connected graph of6 vertices. The
graph (b) is a two-page book embedding of the graph (a) such that, on each
page, any vertex has a non-null degree. (c) The two arc-annotated sequences
of NESTED type obtained from the graph (a) by an align-construction.

u andv the non-crossing edge configuration of each page. An
example of such a construction is given in Figure 2. The size
of u andv is quadratic inn: the length ofS andT is n(n+4)
and the total number of arcs is3n

2 . In the following, we will
refer to any such construction as analign-construction.

It remains to define parameter values for edit operations.
We set the score system as follows:wd(b) = 2, wd(#) = 6,
wd(a) = 1, wa(a, a, a) = 1.5, wr(a, a) = 2. As a matter of
fact, the proofs of Lemmas 5, 6, 7, 8 are still valid with any
combination of parameters that fullfils these two inequalities:
3wa(a, a, a) + 2wd(b) < 3wr(a, a) + 3wd(a) andwr(a, a) +
3wd(a) < wa(a, a, a) + 2wd(b).

We first show that for any such pair of arc-annotated se-
quences with the given score system, there exists a ”canonical”
optimal common II-supersequence whose form is easy to
characterize. This is the purpose of the two following Lemmas.

Lemma 5 Let u and v be two arc-annotated sequences of
NESTED type obtained by an align-construction for an initial
graph of n vertices. There exists an optimal commonII -
supersequencew = (U,R) such that U is of the form
#nU1 . . .#

nUn where for eachi ∈ 1..n, Ui = aaabaaa or
Ui = baaab.

Proof: It is easy to verify that(#naaabaaa)n is
a common II-supersequence whose cost is lower than or
equal to n( 3

2wr(a, a) + 3wd(a)) = 6n. This observation
ensures that any optimal supersequence is of the formU =
#nU1 . . .#

nUn, whereUi ∈ {a, b}∗. Indeed, assume that an
optimal supersequence contains more thann2 occurrences of
the # symbol. This implies that the supersequence contains
one extra stretch ofn occurrences of#, which will give rise
to n base deletions of#. Therefore the associated cost is at
leastnwd(#) = 6n.

By construction, eachUi is a supersequence ofaaab
and baaa. There are five candidate strings:aaabaaa, baaab,
baaaab, baaaaab and baaaaaab (all other sequences are
equivalent). We show that any optimal supersequence cannot
contain anyUi of the three last kinds.

Assume there existsi ∈ 1..n such thatUi = baaaab.
We suppose w.l.o.g. thatSi = aaab and Ti = baaa. The

Case 1:U [j] does not appear inT , andU [k], U [l] do not appear inS

Case 2:U [j] does not appear inT , and one ofU [k] or U [l] appears inS

Case 3:U [j] appears inT , andU [k], U [l] do not appear inS

Case 4:U [j] appears inT , and one ofU [k] or U [l] appears inS

Fig. 3. Four first cases for the replacement ofUi whenUi = baaaab in Proof
of Lemma 5

construction ofu and v ensures that there is noj such that
there exists an arc connecting bothSi andSj in u, andTi and
Tj in v. Therefore three arcs are incident fromUi. Let j (resp.
k and l) be the position of the pairing partner of the firsta of
Si in U (resp. of the second and thirda of Ti in U ). There
are five cases to consider (see Figure 3). The main argument
that is common to all cases is that replacingUi with aaabaaa
does not increase the cost of the alignment.
1. U [j] does not appear inT , andU [k], U [l] do not appear in
S. On the one hand,Si is derived fromUi by an arc-altering,
an arc-removing and a base deletion ofb, Ti is derived from
Ui by an arc-removing and a base deletion ofb. The associated
cost iswa(a, a, a) + 2wr(a, a) + 2wd(b) = 9.5. On the other
hand,Si is derived fromaaabaaa by two arc-removings and
one base deletion ofa, whereasTi is derived fromaaabaaa
by one arc-removing and two base-deletions ofa. The total
cost is3wr(a, a) + 3wd(a) = 9.

2. U [j] does not appear inT , and one ofU [k] or U [l] appears
in S. On the one hand,Si is derived fromUi by two arc-
alterings and a base-deletion ofb, Ti is derived fromUi by an
arc-removing and a base-deletion ofb. The associated cost is
2wa(a, a, a) + wr(a, a) + 2wd(b) = 9. On the other hand,Si

is derived fromaaabaaa by an arc-altering, an arc-removing
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and a base-deletion ofa, whereasTi is derived fromaaabaaa
by an arc-removing and two base-deletions ofa. The total cost
is 2wr(a, a) + wa(a, a, a) + 3wd(a) = 8.5.

3. U [j] appears inT , andU [k], U [l] do not appear inS. On
the one hand,Si is derived fromUi by an arc-altering, an arc-
removing and a base-deletion ofb, andTi is derived fromUi

by an arc-altering and a base-deletion ofb. The corresponding
cost iswr(a, a) + 2wa(a, a, a) + 2wd(b) = 9. On the other
hand,Si is derived fromaaabaaa by two arc-removings and
a base-deletion ofa, whereasTi is derived fromaaabaaa by
an arc-altering and two base-deletions ofa. The total cost is
2wr(a, a) + wa(a, a, a) + 3wd(a) = 8.5.

4. U [j] appears inT , and one ofU [k] or U [l] appears inS.
On the one hand,Si is derived fromUi by two arc-alterings,
and a base-deletion ofb, whereasTi is derived fromUi by
an arc-altering and a base-deletion ofb. The corresponding
cost is3wa(a, a, a) + 2wd(b) = 8.5. On the other hand,Si

is derived fromaaabaaa by an arc-altering, an arc-removing
and a base-deletion ofa, andTi is derived fromUi by an arc-
altering and two base deletions ofa. The cost iswr(a, a) +
2wa(a, a, a) + 3wd(a) = 8.

5. U [k] andU [l] both appear inS: this last case is impossible,
since it would imply thataaab is derived frombaaaab without
any operation of arc-altering.

The reasoning is similar forbaaaaab andbaaaaaab.

Lemma 6 Let u and v be two arc-annotated sequences of
NESTED type obtained by an align-construction. In any op-
timal commonII -supersequencew = (U,R) of u and v, if
there is an arc inR connecting a base of the segmentUi and
a base of the segmentUj , thenUi andUj cannot be both of
the formbaaab.

Proof: By contradiction, let us assume that there exists
such an arc for a given1 ≤ i ≤ n and a given1 ≤ j ≤ n. Ui

andUj being both of typebaaab, this arc will induce either
an arc-breaking betweenw andu, or an arc-breaking between
w and v. Since we are considering the edit model II, this
operation is forbidden. This leads to a contradiction.
These lemmas allow us to express the cost of an optimal
NESTED supersequence between two arc-annotated sequences
obtained with the align-construction.

Lemma 7 Let u and v be two arc-annotated sequences of
NESTED type obtained by an align-construction. The cost of
any optimal commonII -supersequencew is 3pwa(a, a, a) +
3(n

2 − p)wr(a, a) + 3(n− p)wd(a) + 2pwd(b), wherep is the
number of segments ofw of typebaaab.

Proof: By construction, the supersequencew contains3n
2

arcs, three arcs being incident to a base from each segmentUi.
Lemma 6 ensures that there is no arc between two segments
of type baaab. So there are3p arcs connecting a segment
of type baaab with a segment of typeaaabaaa, and3n

2 − 3p
arcs connecting two segmentsaaabaaa. As mentioned before,
each arc of the supersequence is present only in one of the
two sequencesu and v. So each arc ofw is affected by a
deletion operation. Moreover, an arc between two segments

of type aaabaaa gives rise to an arc-removing, whereas an
arc between a segmentbaaab and a segmentaaabaaa gives
rise to an arc-altering. It follows that the total cost of deletion
operations on arcs is3pwa(a, a, a) + 3(n

2 − p)wr(a, a).
As for the single bases, each segmentaaabaaa produces

three base-deletions ofa, and each segmentbaaab produces
two base-deletions ofb. It follows that the global cost is
3pwa(a, a, a)+3(n

2 −p)wr(a, a)+3(n−p)wd(a)+2pwd(b).

The following Lemma concludes the proof of Theorem 4.

Lemma 8 A cubic planar bridgeless connected graphG =
(V,E) admits an independent set of vertices of cardinality
greater than or equal tok if, and only if, there exists an arc-
annotated sequencew of CROSSING type that is a common
II -supersequence ofu andv of cost lower than or equal toℓ =
3kwa(a, a, a)+3(n

2 −k)wr(a, a)+3(n−k)wd(a)+2kwd(b),
whereu and v are arc-annotated sequences ofNESTED type
resulting from an align-construction ofG and n = |V |.

Proof: (⇒) Let V ′ ⊆ V such that|V ′| ≥ k and V ′

is an independent set. Letw = (U,R) be the arc-annotated
sequence of CROSSINGtype defined byU = #nU1 . . .#

nUn,
where ∀vi ∈ V ′, Ui = baaab and ∀vi ∈ V − V ′, Ui =
aaabaaa. By Lemma 7, the cost of the alignment induced byw
is 3|V ′|wa(a, a, a)+3(n

2 −|V ′|)wr(a, a)+3(n−|V ′|)wd(a)+
2|V ′|wd(b). Since by hypothesis|V ′| ≥ k, this cost is majored
by 3kwa(a, a, a) + 3(n

2 − k)wr(a, a) + 3(n − k)wd(a) +
2kwd(b), which equalsℓ.

(⇐) By Lemma 5, there exists an optimal supersequence
w = (U,R) of cost lower than or equal toℓ that is composed
of n stretches of#n and of segmentsaaabaaa and baaab.
Let V ′ be the set of vertices ofG defined by{vi ∈ V ;Ui =
baaab}. By Lemma 7, the cost of the initial alignment is
3|V ′|wa(a, a, a) + 3(n

2 − |V ′|)wr(a, a) + 3(n− |V ′|)wd(a) +
2|V ′|wd(b). Since by hypothesis this score is lower than or
equal toℓ andwr > wa, we obtaink ≤ |V ′|.

One can remark that the arc-annoted sequences of theNP-
completeness proof are not conform to the representation of
an RNA molecule. One can modify the encoding of the two-
page book embedding in order to get sequences that are more
realistic: the alphabet is{A,U,C,G} and all arcs correspond
to Watson-Crick pairings (A is paired withU , andC with G).
To achieve this goal, we modify the definition ofu and v in
the following way: replace# with twelve occurrences ofC, b
with GGGGGG anda with AU (AU is self-complementary).
Each edge in the two-page book embedding now corresponds
to two arcs betweenAU andAU . Figure 4 shows this new
representation for the example of Figure 2.

V. GENERAL EDIT DISTANCE AND EDIT MODEL III

The edit model III contains all edit operations introduced
by Jianget al. in the general edit distanceproblem [16]. So
we can derive several complexity results for the alignment
hierachy from known results on thegeneral edit distance
[5], [16] with Theorem 1. As illustrated in Table III, the
complexity of ALIGN(NEST, NEST, III ) → {NEST,CROS}
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and of ALIGN(CROS, {NEST,CROS}, III ) → CROS only is
still to elucidate. We solve ALIGN(NEST, NEST, III ) → NEST.

Theorem 6 ALIGN(NESTED,NESTED, III ) → NESTED is
polynomial.

The proof of the Theorem follows from Theorem 7 in
paragraph V-B and Theorem 8 of paragraph V-C. We first
need some notations for the representation of NESTED arc-
annotated sequences.

A. Notations

We writeα(f) a NESTEDarc-annotated sequence, or equiv-
alently a tree, that is composed of a rootα and a subforestf .
A NESTED arc-annotated sequence is defined recursively by
concatenating a tree and an arc-annotated sequence. Let◦ be a
binary operator that concatenates two arc-annotated sequences.
α(u) ◦ v denotes the arc-annotated sequence composed by an
arc α spanning the arc-annotated sequenceu, concatenated
to the arc-annotated sequencev. Let b in Σ. b ◦ u denotes
the arc-annotated sequence composed by the single baseb
concatenated to the arc-annotated sequenceu.

B. Algorithm

We saw in Section III that the ALIGN(NEST,NEST, I) →
NEST problem is polynomial, since it is equivalent to ordered
tree alignment such as proposed in [18]. We show here that
the construction scheme for the edit model I can be extended
to edit models II and III by adding supplementary rules for the
arc-altering and arc-breaking operations. All rules concerning
substitutions, base-deletions and arc-removings are identical.

In Table IV, we state the recurrences which enable to
compute the alignment score of two sequences, denotedAl.
The common supersequence is built from right to left. Each
step of the algorithm adds a component in the supersequence
– one single base or two bases connected by an arc – that
is selected so as to minimize the cost of the alignment.
Several particular cases are needed for the arc-breaking and
arc-altering operations. We consider five cases depending on
the form of the pair of arc-annotated sequences to align, that
determines which edition rules to apply. Arc-altering operation
creates an arc in the common supersequence. So it only should
be considered when at least one of the two sequences begins
with a base incident to an arc. Arc-breaking operation requires
that one sequence begins with an arc, and the other one begins
with a single base. The implementation uses on dynamic
programming. An optimal supersequence is recovered from
Al by trace back.

Theorem 7 The algorithm of Table IV solves the
ALIGN(NEST,NEST, III ) → NEST problem.

Proof: We show that at each step of the algorithm,
Al(f, g) is the cost of an optimal NESTED supersequence of
f and g, for any pair of subforestsf and g. The algorithm
contains five possible cases. Case 1 is a subcase of case2,
case4 is a symmetric case of case3, and case5 is obvious.

So we examine cases 2 and 3 in full details. Throughout the
proof, S(f, g) denotes an optimal common supersequence of
f andg.

Case 2.Let S = S(α(u) ◦ v, β(w) ◦ x), and let(i, j) be the
positions ofα in S (i < j), (k, l) be the positions ofβ in S
(k < l).

- If i = k: This configuration corresponds to an arc-
match or an arc-mismatch betweenα andβ. Indeed, since the
supersequenceS does not allow for multiple incident arcs,
we necessarily havej = l. So the arcα is transformed
into β by an arc-match or an arc-mismatch operation.S
is obtained asβ(S(u,w)) ◦ S(v, x). The resulting cost is
wam(α, β) + Al(u,w) + Al(v, x).
If i < k, then eitherj < k, or l < j. Other values forj are
prohibited because it would induce crossing or multiple arcs
in the supersequenceS.

- If i < k and j < k: This configuration corresponds to
an arc-removing ofα. Indeed,k is the first position inS
corresponding to a base present inβ(w)◦x. Soα andu have no
counterpart inβ(w)◦x, andS is obtained asα(u)◦S(v, β(w)◦
x). The resulting cost iswr(α)+Al(u, ε)+Al(v, β(w)+x).

- If i < k andl < j, we have to look further at the position
indexed byj. If it is aligned with a single base ofb of x, the
arcα is affected by an arc-altering operation. If not, the arcα
is affected by an arc-removing operation. In the first case, let y
andz such thatβ(w)◦x = y◦b◦z. S is obtained asα(S(u, y))◦
S(v, z). The resulting cost iswa(α, b)+Al(u, y)+Al(v, z). In
the latter case, lety be the largest subforest ofβ(w)◦x ending
at positionj in S, and letz be the largest subforest ofβ(w)◦x
starting at positionj in S. S is obtained asα(S(u, y))◦S(v, z).
The resulting cost iswr(α) + Al(u, y) + Al(v, z).
If k < i, then this configuration is exactly equivalent toi < k
when we exchangeα(u) ◦ v andβ(w) ◦ x.

Case 3.Let S = S(b ◦ v, β(w) ◦ x), and leti be the position
of b in S, (k, l) be the positions ofβ in S (k < l).

- If i = k and l is aligned with some position ofb ◦ v: This
configuration corresponds to an arc-breaking ofβ. Let b2 be
the base ofv occurring at positionl in the supersequence
S. b2 is necessarily a single base, since multiple incident
arcs are prohibited inS. Furthermore, there exists no arc
in v spanningb2, otherwise we would have crossing arcs
in S. So there are two (possibly empty) subforestsy and
z such thatv = y ◦ b2 ◦ z. The optimal supersequenceS
is obtained asβ(S(y, w)) ◦ S(z, x). The resulting cost is
wb(β, b, b2) + Al(y, w) + Al(z, x).

- If i = k and l does not correspond to any position in
b ◦ v: This configuration corresponds to an arc-altering of
β, whose 5’ base is aligned withb. Let y be subforest of
v starting at positioni + 1 and ending at positionk in S,
and let z be the largest subforest ofv starting at position
k + 1 in S. SinceS does not contain any two crossing arcs,
there are no arcs betweeny and z in v. It follows that S
is obtained asβ(S(y, w)) ◦ S(z, x). The resulting cost is
wa(β, b) + Al(y, w) + Al(z, x).

- If i < k : This configuration corresponds to a base-deletion
of b. The supersequenceS begins with a single base, that
corresponds tob in b◦v and that has no counterpart inβ(w)◦x.
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The remaining part ofS is obtained asS(v, β(w) ◦ x). The
total resulting cost iswd(b) + Al(v, β(w) ◦ x).

- If k < i and l is aligned with some position ofb ◦ v:
This configuration corresponds to an arc-altering ofβ, with
3’ matching base. Letb2 be the base ofv that occurs in
position l in S. b2 is necessarily a single base, since multiple
incident arcs are prohibited in the supersequence. Furthermore,
there exists no arc inv spanningb2, otherwise we would have
crossing arcs in the supersequence. So there are two (possibly
empty) subforestsy and z such thatb ◦ v = y ◦ b2 ◦ z. S
is obtained asβ( S(y, w)) ◦ S(z, x). The resulting cost is
wa(β, b2) + Al(y, w) + Al(z, x).

- If k < i andl does not correspond to any position inb◦v:
This configuration corresponds to an arc-removing ofβ. Let
y be the largest subforest ofb ◦ v ending at positionl − 1 in
S, and letz be the largest subforest ofb ◦ v starting at pistion
l+1. We haveb ◦ v = y ◦ z, y is aligned withw andz with x
in S. SinceS does not contain any crossing arcs, there are no
arcs fromy to z. S is obtained asβ(S(y, w)) ◦ S(z, x). The
resulting cost iswr(β) + Al(y, w) + Al(z, x).

C. Worst-case complexity

Let us state some definitions and notations. Letf be a forest.
We denotenf its number of nodes,ℓf its number of leaves,
andwf its width, that is the number of concatenated trees it
contains. Given a nodev of f , thedegreeof v, denoteddv, is
its number of children. Letg be a subforest off . g is said to be
a closed subforestif it contains consecutive sibling trees, i.e.
trees whose root nodes are consecutive siblings. Acomplete
subforestis a closed forest containing all the subtrees that have
the same parent. Asuffix subforestis a closed subforest that
contains the rightmost tree of a complete subforest. We write
Sf for the set of suffix subforests and subtrees off , andCf

for the set of closed subforests.

Lemma 9 Let f and g be two forests. The pairs of forests
appearing in the dynamic programming decomposition of
algorithm of Table IV are exactly those ofSf ×Cg ∪Cf ×Sg.

Proof: The proof is by induction on the sizes off and
g. Like in proof of Theorem 7, we treat cases 2 and 3, which
are representative of other cases.
Case 2:If (α(u)◦v, β(w)◦x) belongs toSf ×Cg, then(u,w),
(u, y), (v, x), (v, z), (z, x) are in Sf × Cg, and (y, w) is in
Cf ×Sg. Similarly, if (α(u)◦ v, β(w)◦x) belongs toCf ×Sg,
then (u,w), (y, w), (v, x), (z, x), (v, z) are in Cf × Sg, and
(u, y) is in Sf × Cg.
Case 3:If (b◦v, β(w)◦x) belongs toSf×Cg, then(v, β(w)◦x),
(z, x) are inSf×Cg, and(y, w) is in Cf×Sg. If (b◦v, β(w)◦x)
belongs toCf × Sg, then (v, β(w) ◦ x), (z, x), (y, w) are in
Cf × Sg too.

This lemma shows that the set of pairs of subforests
appearing in the dynamic programming decomposition is the
same as for the usual tree alignment algorithm [19]. We now
determine the exact number of elementary operations involved
in the computation.

Lemma 10 Let A be a tree.

1) the cardinality ofSA is nA + ℓA − 1, and

∑

f∈SA

wf = ℓA +
∑

v∈A

(

dv+1

2

)

2) the cardinality ofCA is
∑

v∈A

(

dv+1
2

)

, and

∑

f∈CA

wf =
∑

v∈A

(

dv+2

3

)

Lemma 11 Let A andB be two trees. The number of oper-
ations necessary to computeAl(A,B) is proportional to

(

∑

v∈B

(

dv+1
2

)

) (

ℓA +
∑

v∈A

(

dv+1
2

)

)

+(nA + ℓA − 1)
∑

v∈B

(

dv+2
3

)

+ (nB + ℓB − 1)
∑

v∈A

(

dv+2
3

)

+
(

∑

v∈A

(

dv+1
2

)

)(

ℓB +
∑

v∈B

(

dv+1
2

)

)

.

Proof: For each pair of subforests(f, g) ∈ A × B,
the number of operations needed to computeAl(f, g) is
majorized by a5(wf +wg). From Lemma 9, the total number
of operations needed to computeAl(A,B) is

5
∑

(f,g)∈SA×CB∪CA×SB

wf + wg

which is

5(|CB |
X

f∈SA

wf + |SA|
X

g∈CB

wg + |SB |
X

f∈CA

wf + |CA|
X

g∈SB

wg)

Applying Lemma 10 gives the result.
Now we can state the worst-case complexity of the algorithm.

Theorem 8 LetA andB be two trees whose maximum degree
is respectivelydA and dB . Then the number of scores to be
computed isO(nAnB(dA+dB)) and the number of operations
needed to compute them isO(nAnB(dA + dB)2).

Proof: From Lemma 10 we get for each treeT

|ST | ≤ 2nT , |CT | ≤
nT (dT +1)

2 ,
∑

f∈ST
wf ≤ 2nT dT ,

∑

f∈CT
wf ≤ nT dT (dT +1)

2 .

Putting this in Lemma 9 and Lemma 11 gives the result.
Hence the worst-case complexity of the algorithm is in

O(n4), which concludes the proof of Theorem 6.

D. Average-case complexity

We experimentally estimated the average complexity of the
algorithm by randomly generating large trees. Thanks to the
GenRGenS software [25], 1000 trees of each sizen = 50, 150,
200, 250, . . . , 2000 were generated uniformly and randomly,
giving 500 pairs of random trees for each size. Then the
number of operations needed by the algorithm was computed
for each pair, according to Lemma 11, and its mean value was
computed within each of the 41 different sizes (including size
0). Results are given in the graph of Figure 6.
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Fig. 4. RNA-like arc-annotated sequences for the example of Figure 2.

1. Al(α(u), β(w)) = min

8

<

:

wam(α, β) + Al(u, w) – arc-(mis)match betweenα andβ
wr(β) + min{Al(y, w) + Al(z, ε)|y ◦ z = α(u)} – arc-removing ofβ
wr(α) + min{Al(u, y) + Al(ε, z)| y ◦ z = β(w)} – arc-removing ofα

2. Al(α(u) ◦ v, β(w) ◦ x) = min

8

>

>

>

<

>

>

>

:

wam(α, β) + Al(u, w) + Al(v, x) – arc-(mis)match betweenα andβ
wr(β) + min{Al(y, w) + Al(z, x)|y ◦ z = α(u) ◦ v} – arc-removing ofβ
wr(α) + min{Al(u, y) + Al(v, z)| y ◦ z = β(w) ◦ x} – arc-removing ofα
wa(α, b) + min{Al(u, y) + Al(v, z)| y ◦ b ◦ z = β(w) ◦ x} – arc-altering ofα
wa(β, b) + min{Al(y, w) + Al(z, x)| y ◦ b ◦ z = α(u) ◦ v} – arc-altering ofβ

3. Al(b ◦ v, β(w) ◦ x) = min

8

>

>

>

<

>

>

>

:

wd(b) + Al(v, β(w) ◦ x) – base-deletion ofb
wr(β) + min{Al(y, w) + Al(z, x)|y ◦ z = b ◦ v} – arc-removing ofβ
wa(β, b) + min{Al(y, w) + Al(z, x)| y ◦ z = v} – arc-altering ofβ
wa(β, b2) + min{Al(y, w) + Al(z, x)| y ◦ b2 ◦ z = b ◦ v} – arc-altering ofβ
wb(β, b, b2) + min{Al(y, w) + Al(z, x)|y ◦ b2 ◦ z = v} – arc-breaking ofβ

4. Al(α(u) ◦ v, b ◦ x) = min

8

>

>

>

<

>

>

>

:

wd(b) + Al(α(u) ◦ v, x) – base-deletion of b
wr(α) + min{Al(u, y) + Al(v, z)|y ◦ z = b ◦ x} – arc-removing ofα
wa(α, b) + min{Al(u, y) + Al(v, z)| y ◦ z = x} – arc-altering ofα
wa(α, b2) + min{Al(u, y) + Al(v, z)| y ◦ b2 ◦ z = b ◦ x} – arc-altering ofα
wb(α, b, b2) + min{Al(u, y) + Al(v, z)|y ◦ b2 ◦ z = x} – arc-breaking ofα

5. Al(b ◦ v, b2 ◦ x) = min

8

<

:

wd(b) + Al(v, b2 ◦ x) – base-deletion ofb
wd(b2) + Al(b ◦ v, x) – base-deletion ofb2
wm(b, b2) + Al(v, x) – base-(mis)match betweenb andb2

TABLE IV

ALGORITHM FOR THEALIGN(NESTED, NESTED, II ) → NESTED AND ALIGN(NESTED, NESTED, III ) → NESTED PROBLEMS.

This table shows the recurrence relations for the ALIGN(NESTED, NESTED, II) → NESTED problem (Theorem 6).Al denotes the alignment score, that is
the optimal cost for the pair of subforests.y andz are (possibly empty) closed subforests. Recurrence relations when at least one arc-annotated sequence is
empty, with length0, are omitted. In this case, the mapping is composed by a series ofdeletion operations applied on the non-empty arc-annotatedsequence.
Since edit model II is a sub-model of edit model III, this algorithm also solves the ALIGN(NESTED, NESTED, II) → NESTED problem. For that, it is enough
to remove all rules concerning arc-breaking operations.

tRNA ALA /tRNA LEU

(((((((..((((........) ))).(((((.......))))).. . . . (((((.......))))))))))))....
GGGGCUAUAGCUCAGCUGGGAG-AGCGCUUGCAUGGCAUGCAAGAG--G---U-C--AGCGGUUCGAUCCCGCUUAGCUCCACCA
GCCGAAGUGGCGAAAUCGGUAGACGCAGUUGAUUCAAAAUCAACCGUAGAAAUACGUGCCGGUUCGAGUCCGGCCUUCGGCACCA
(((((((..(((...........))).(((((.......))))).(((....)))..(((((.......))))))))))))....
* * * ** * ** ** ** *** * * *** * * * * ******** *** * *****

D.desulfuricansRNase P RNA/C.jejuni RNase P RNA

((((((((((((((((((.((((((((....)))))))).............(((( ........((((((((((.....)))))(((((....)))) )((...(((((............
GGAGUCGGACGGAUCGUCGCCGCGGGGGCAACUCCGGGGAGGAAAGUCCGGGCUCC-AAAGGGCAGAACGCUGGAUAACAUCCAGGGAGGGCAACCUC-CGGACAGCGCCACAGAAAGCAAA
AAGCAUAGUAA-AUGCUCGCUUCUUU----U-U-AGGAGAGGAAAGUCCGAGCUGCUAAAGACAAACAUUCCAUCUAACAGAUGGCUAGGGUAACCUAAGGGAUAGUGCAACAGAAAGAAAA
(((((((((.( ((((((.(((((.. . . ))))).............((((.........((((((((((.....)))))(((((....)))).)((...((...............

* ** **** * * ** ************ *** * **** * * * ***** * **** ***** *** ** ** ******** ***

(((((((((....)))))))..)).......((((((.......))))))((((((((((....)))))))).)).)))..)))))))))))))...((((......(((((((((((....
CCGCCCGGCCUCGGCCGGGUAAGGGUGAAACGGUGGUGUAAGAGACCACCAGAUGCCGUGGUGACACGGCAUGCUCGGCAUACCCCGUUCGGAGCAAGACCAAAUAGGGAAGGCGGCCGGCC
CUACCACGC--AA--GUGGAAAAGGUGAAACGGCGGGGUAAAAGCCCACCAGCGAUUUUGGUAACAAUUUCGGCUAUGUAAACCCAAUGUGCAGCAAGAAGGGAU-GGUUAG-CGUCU---U
((.((((.. .. ))))...)).......((.(((.......))).))..(((..(((....)))..))).........)))))))))))))...((((((.. ..(((( ..... .
* ** ** ** ** ********** ** **** ** ******* **** *** *** * * **** * * ******* ** ** ** ** *

.)))))...)))))).....))))......((((((((....))))))))..........)))))))((((((((....))))))))...............).))))))))))....
CGGCCGAAGCCUUCCGGGUAGGUUGCUUGAGGGUGUGGGCAACCGCACUCCUAGAGGAAUGACGGUCACACGCGGGCAACCGUGUGGACAGAACCCGGCUUACAGUCCGACUCCCGCA
UG-----UU-UUAA-CC---CUUCGCUUGAUUUUGUUUGCAAAAACAAAACUAGAUAAAUGAGCAUU-CA--------A--G-----ACAGAACUCGGCUUAUC-GCUAUGCUU-UUU
.. .. )))) )) ))))......((((((((....))))))))..........)))))). .. . . ...............). ))))))))) ...

* * * ****** *** **** ** ***** ***** * ** * * ******* ******* *

Fig. 5. Gardenia alignments: two tRNA genes fromE. coli (above), andD. desulfuricansandC. jejuni RNase P RNAs (below).* indicate conserved positions.
Alignments obtained with RNAforester are identical.
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Fig. 6. Experimental average complexity on pairs of random trees for the
ALIGN(NEST, NEST, III) → NEST algorithm. The horizontal axis is the
size of the trees and the vertical axis is the number of operations.

We carried out two interpolation methods on these data:
polynomial interpolation and least squares (with the Maple
function CurveFitting[Interactive]). We made the hypothesis
that the complexity would be betweenO(n2) andO(n4), and
would possibly contain a(log n)k factor. Our results strongly
suggest that the average complexity is inθ(n2). Indeed, the
far best fit is got withf(n) = 22.09717440n2 − 67.224600n,
computed by polynomial interpolation on three experimental
values. The maximum relative error between the values of this
function and the 48 remaining experimental values is less than
6.10−3. Intuitively, this result seems natural since the average
degree of an inner node in a random tree is less than 2. Indeed,
the number of trees of sizen+1 is the Catalan numberCn =

1
n+1

(

2n
n

)

and the number of trees of sizen+1 havingk leaves
is the Narayana numberN(n, k) = 1

n

(

n
k

)(

n
k−1

)

. The average
number of leaves in a random tree is

∑

k N(n, k)/Cn = n+1
2 .

It remainsn+1
2 inner nodes in average forn edges, hence the

result.

E. Application to RNA comparison

From a historical perspective, RNA secondary structures,
corresponding to NESTED sequences, were first encoded by
labeled ordered rooted trees [24], [26], [30] provided withedit
operations of model I. Figure 7 gives such an example. The
main limitation of model I is that the evolutionary operations
are not expressive. Indeed, there are some basic modifications
in RNA structures that cannot be directly translated into a tree
operation. For example, when comparing two RNA structures,
it often happens that two nucleotides are paired in one structure
and get unpaired in the other one. A likely explanation is
that one of the two nucleotides has been mutated, so that
they can be paired in the first structure but not in the second
one. In model I, no single operation can represent this simple
evoluationary event: this should be done by deleting the base
pair, then inserting two new nucleotides.

Models II and III are more suitable for RNA structure
comparison, since they allow for arc-altering and arc-breaking
operations. As mentioned in Sections IV and V, the algorith-
mic complexity of the edition problem of two arc-annotated
sequences is a pitfall, since the EDIT(NESTED,NESTED)
problem is NP-complete. To circumvent this difficulty, some
authors have developed sequence-oriented algorithms [2].The
comparison is basically done on the nucleic sequence while
trying to incorporate information on arcs in the comparison
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Fig. 7. A secondary structure (left), its associated tree according to the
classical representation (middle), and according to [14] (right).

Sequence 1
UACUUAG
.(.)(.)

Sequence 2
CUGGUCAG
(((..)))

* *
.(---.)(.)
UA---CUUAG
CUGGUCA--G
(((..))--)
* *
(NEST, NEST)
→ UNLIM

* *
.(---.)(.)-
UA---CUUAG-
CUGGUCA---G
(((..))---)
* *

(NEST, NEST)
→ NEST

Fig. 8. Given the two input sequencessequence 1and sequence 2, the edit
distance algorithm, corresponding to the(NEST, NEST → UNLIM ) scheme,
leads to a questionnable alignment (center). Arcs are represented by a pair
of brackets, and single bases by dots here. The base pairU-G marked with
∗ in Sequence 1is modified by an arc-altering operation, followed by an
arc-breaking operation creating the base pairC-G in sequence 2. As a result,
3’ bases are matched in the superstructuree, whereas the incident arcs are
unrelated. The alignment induced by the(NEST, NEST) → NEST scheme is
more convincing (right).

process. Another line of work is focused on tree comparison
by partitioning the structures into macroscopic modules, such
as stems [13] or multiloops [1].

A thorough review of recently published tools for RNA
comparison is beyond the scope of this paper. We will not
compare our algorithm to all state-of-the-art programs. We
discuss here in further detail two program tools that address
the comparison problem at the same level as us: they allow for
arc-altering and arc-breaking operations and do not partition
structures into macroscopic modules. In [16], Jianget al. con-
sidered the EDIT(CROSSING,NESTED) problem (correspond-
ing to ALIGN(CROSSING,NESTED, III) → UNLIMITED in
our hierarchy) and proposed a polynomial time algorithm
for a restricted score scheme. Only arc-match, arc-mismatch
and arc-breaking operations are explicitly required concerning
arcs. Every arc-altering operation is treated as an arc-breaking
operation plus a base deletion, and every arc-removing oper-
ation is treated as an arc-breaking plus two base deletions.
This approach has some limitations. The first one comes from
the edit model itself. The permissivity of the comparison
model authorizes alignments with several arcs incident from
the same position in the superstructure. Figure 8 shows such
an example. Some base-pairings that seem unrelated may be
associated and matched in the alignment. The restriction on
the score scheme also changes the nature of the arc-removing
operation. Deleting a base-pairing is no longer treated as a
single evolutionary event, but as a series of three independent
evolutionary events. It can lead to non relevant edit scripts,
such as depicted in Figure 9.

The other program is the widely-distributed RNAforester
software [14], that is part of the Vienna package [15]. The
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(((....))) (((....)))
GACCAAUGUC GACCAAUGUC
GA-CAAU-UC GAC-AAU-UC
((-....-)) ((.-...-))

Fig. 9. Constraint on edit operation weights. This figure shows two alter-
native alignments for the same pair of RNA structures. The firstalignment
corresponds to the application of a single edit operation: one arc-removing.
The second alignment results from three distinct evolutionary operations: one
arc-breaking and two base-deletions. For comparison models with a restricted
score scheme, such as [16] or [14], these two alignments are equivalent, since
they have the same score, whereas the first alignment is more relevant.

(A,U)

(U,C)

(A,-)

(-,G)(-,U)

(C,C)(-,G)

(U,A)

(U,-)
(G,G)

Fig. 10. P-node supertree for sequences 1 and 2 of Figure 8. The supertree
induces the same optimal alignment as the ALIGN(NEST, NEST) → UNLIM

scheme in figure 8. Positions marked with* in the alignment are pointed with
arrows in the supertree.

algorithm is based on the tree alignment of [18]. The authors
use a clever tree-based representation of RNA structures to
incorporate arc-altering and arc-breaking operations. Each pair
of nucleotides is encoded by three nodes: an inner one,
called a P-node, which represents the arc and two leaves
that represent the nucleotides (see Figure 7). Thus, the arc-
breaking operation consists in deleting the P-node, and the
arc-altering operation consists in deleting the P-node andone
of its children. It means that the encoding suffers from the
same restriction in terms of relations between the cost of
edit operations as the previous approach. The introduction
of P-nodes has also a hidden impact on the conformation of
the supersequence. It authorizes to mix up base pairings, as
described in Figure 8 in an unexpected way. Figure 10 shows
the alignment supertree for sequences of Figure 8.

We conclude this section with some comment on the
time requirement on biological data. The algorithm has been
implemented in C language in a prototype software, called
gardenia. We ran gardenia on four pairs of RNAs – tRNA
genes fromE. coli, prokaryotic RNase P RNAs, IRES elements
and 16S rRNAs – and compare it with results obtained
with RNAforester. We have used the default score scheme
of RNAforester for both programs. In all four examples,
we get the same score and the same alignment with both
programs (up to minor local changes due to the existence of
co-optimal solutions). Figure 5 displays alignments for tRNAs
and RNase P RNAs. We also report in Figure 11 the execution
times. It appears that gardenia outperforms RNAforester. Both
algorithms have the same algorithmic asymptotic complexity.
The difference comes from the size of the input. The P-node
encoding implemented in RNAforester increases the size of the
tree by adding supplementary nodes. Each base-pair is encoded
by three nodes, instead of a single node, which penalizes the
efficiency of the algorithm.

gardenia RNAforester
tRNAs (80nt) – [14]
E. coli 0 0

RNase P RNAs (350 nt) – [7]
D. desulfuricansandC. jejuni 0.23 6

IRES RFAM 00549 (600nt) – [12]
H. sapiensandM. musculus 0.4 5

16S rRNAs (1500 nt) – [20]
B. subtilisandA. pernix 2.3 25

Fig. 11. Comparison of execution times for Gardenia and RNAforester. All
times are in seconds, on a bi-processor 3Ghz, 6GB RAM.

VI. CONCLUSION

In this paper, we have proposed and studied a new frame-
work for comparing arc-annotated sequences, namely the
alignment hierarchy. We think that this study is relevant both
from theoretical and practical perspectives. We gave a new
NP-completeness result, that enhances understanding of the
complexity of arc-annotated sequences comparison. This result
sheds a new light on the border between tractability and
untractability when dealing with arc-annotated sequences–
especially of CROSSING type. These results, combined with
the ones derived from EDIT and LAPCS comparison models,
have almost filled the complexity table of the alignment
hierarchy.

As illustrated in Table II, there still exist some open
questions for the model III. But we can notice that the edit
model III reduces to the edit model II when the cost of any
arc-breaking is arbitrary high. As a consequence, theNP-
completeness of ALIGN(NEST,NEST, II) → CROS and of
ALIGN(CROS, ∗, II) → CROS shows that there exists no
polynomial time algorithm for arbitrary values of parameters
(such as usual dynamic programming algorithms do). We, thus,
conjecture that both ALIGN(NEST,NEST, III ) → CROS and
ALIGN(CROS, ∗, III ) → CROS problems areNP-complete.

In the last section, we have also provided a polynomial time
algorithm to compare arc-annotated sequences of NESTED

type with arc-altering and arc-breaking operations, whereas
when considering other models, the problem isNP-complete.
We have briefly discussed how to apply it to the problem
of RNA secondary structure comparison. The method shows
promising results in comparison with other existing programs
that address the comparison problem at the level of individual
bases and base pairings.
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http://www.tbi.univie.ac.at/ ivo/RNA/.

[16] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between
RNA structures.Journal of Computational Biology, 9(2):371–388, 2002.

[17] T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common
subsequence problem for arc-annotated sequences.Journal of Dicrete
Algorithms, pages 257–270, 2004.

[18] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to
tree edit.Theoretical Computer Science, 143(1):137–148, 1995.

[19] Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees -
an alternative to tree edit.Theoretical Computer Science, 143:137–148,
1995.

[20] Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM,
Du Y, Feng B, Lin N, Madabusi LV, M̈uller KM, Pande N, Shang
Z, Yu N, and Gutell RR. The comparative RNA web (crw) site: an
online database of comparative sequence and structure information for
ribosomal, intron, and other RNAs.BMC Bioinformatics, 3:2, 2002.

[21] P. Klein. Computing the edit-distance between unrootedordered trees.
In 6th European Symposium on Algorithms, pages 91–102, 1998.

[22] G. Lin, Z.-Z. Chen, T. jiang, and J. Wen. The longest common
subsequence problem for sequences with nested arc annotations.Journal
of Computer and System Sciences, 65:465–480, 2002.

[23] G. Lin, B. Ma, and K. Zhang. Edit distance between two RNAstructures.
In RECOMB, pages 211–220, 2001.

[24] B. Ma, L. Wang, and K. Zhang. Computing similarity betweenRNA
structures.Theoretical Computer Sciences, 276:111–132, 2002.

[25] Yann Ponty, Michel Termier, and Alain Denise. Genrgens:software for
generating random genomic sequences and structures.Bioinformatics,
22(12):1534–1535, 2006.

[26] and Zhang KZ Shapiro BA. Comparing multiple RNA secondary
structures using tree comparisons.Comput Appl Biosci., 6(4):309–18,
1990.

[27] K.C. Tai. The tree-to-tree correction problem.Journal of the Association
for Comput. Machi., 26:422–433, 1979.

[28] S. Vialette. On the computational complexity of2-interval pattern
matching.Theoretical Computer Science, 312(2-3):223–249, 2004.

[29] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems.SIAM Journal of Computing,
18(6):1245–1262, 1989.

[30] M. Zuker and D. Sankoff. RNA secondary structures and their predic-
tion. Bull. Math. Biol., 46:591–621, 1984.


