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Figure 1: Given a pair of unaligned audio and video, our model aligns the video to the audio according to the predicted dense

correspondence.

Abstract

We present AlignNet, a model that synchronizes videos

with reference audios under non-uniform and irregular mis-

alignments. AlignNet learns the end-to-end dense corre-

spondence between each frame of a video and an audio.

Our method is designed according to simple and well-

established principles: attention, pyramidal processing,

warping, and affinity function. Together with the model, we

release a dancing dataset Dance50 for training and eval-

uation. Qualitative, quantitative and subjective evaluation

results on dance-music alignment and speech-lip alignment

demonstrate that our method far outperforms the state-of-

the-art methods. Code, dataset and sample videos are avail-

able at our project page1.

* indicates equal contribution
1https://jianrenw.github.io/AlignNet/

1. Introduction

Dancers move their bodies with music, speakers talk

with lip motions and are often accompanied by hand and

arm gestures. The synchrony between visual dynamics

and audio rhythms poses perfect performances. How-

ever, recorded videos and audios are not always temporally

aligned. e.g. dancers may not be experienced enough to

follow the music beats precisely; “Automated Dialogue Re-

placement (ADR)” is used in film making instead of simul-

taneous sounds for lip synchronization. It is not hard to

imagine the humongous amount of efforts and time required

to temporally synchronize videos and audios by aligning vi-

sual dynamics and audio rhythms. This alignment problem

is especially difficult for humans since the misalignment is

often non-uniform and irregular.

There are several previous attempts to address this prob-

lem. [8] extracted visual beats analogous to musical beats,

and applied audio-video alignment to tasks such as video

dancification and dance retargeting. Their method requires

feature engineering on visual beats and only performs align-

ment on beat-level, which makes the generated dances

3309



sometimes exaggerated. SyncNet [6] proposed to learn the

alignment features with a contrastive loss that discriminates

matching pairs from non-matching pairs. However, they as-

sume a global temporal offset between the audio and video

clips when performing alignment. [14] further leveraged

the pre-trained visual-audio features of SyncNet [6] to find

an optimal alignment using dynamic time warping (DTW)

to assemble a new, temporally aligned speech video. Their

method can therefore stretch and compress the signals dy-

namically. However, the minimum temporal resolution of

their method is limited (0.2 second). In a realistic setting,

e.g. ADR or off-beat dancing, misalignment between audio

and video can happen at any moment on arbitrary temporal

scale. Therefore, a crucial property for audio-visual align-

ment solutions is the ability to deal with arbitrary tempo-

ral distortions. Another nice property to have is end-to-end

training, as it significantly simplifies the solution to such a

hard task.

In this work, we present AlignNet, an end-to-end train-

able model that learns the mapping between visual dynam-

ics and audio rhythms, without the need of any hand-crafted

features or post-processing. Our method is designed ac-

cording to simple and well-established principles: atten-

tion, pyramidal processing, warping, and affinity function.

First, attention modules highlight the important spatial and

temporal regions in the input. Then, casting in two learn-

able feature pyramids (one for video and one for audio),

AlignNet uses the current level correspondence estimation

to warp the features of the reference modality (video or au-

dio). Warped features and reference signal features are used

to construct an affinity map, which is further processed to

estimate denser correspondence.

Together with the model, we introduce a dancing

dataset Dance50 for dance-music alignment. The dataset is

cleaned and annotated with human keypoints using a fully

automated pipeline.

We demonstrate the effectiveness of AlignNet on both

dance-music alignment and lip-speech alignment tasks,

with qualitative and quantitative results. Finally we con-

duct dance and speech retargeting experiments, and show

the generalization capabilities of our approach with subjec-

tive user studies.

2. Related Works

Audio-video alignment Audio-video alignment refers to

the adjustment of the relative timing between audio and vi-

sual tracks of a video. Automatic audio-video alignment

has been studied over decades in computer vision. Early

works like [2] and [23] used canonical correlation analy-

sis (CCA) for synchronization prediction. Later methods

tried to align video and audio based on handcrafted fea-

tures. Lewis [16] proposed to detect phonemes (short units

of speech) and subsequently associate them with mouth po-

sitions to synchronize the two modalities. Conversely, [11]

classified parameters on the face into visemes (short units

of visual speech), and used a viseme-to-phoneme mapping

to perform synchronization. [8] split videos according to vi-

sual beats and applied video-audio alignment on beat-level.

Learning multimodal features is a recent trend. Sync-

Net [6] learned a joint embedding of visual face sequences

and corresponding speech signals in a video by predicting

whether a given pair of face sequence and speech track are

synchronized. Similarly, [20] proposed a self-supervised

method to predict the alignment of motion and sound within

a certain time shift. These works attempted to detect and

correct a global error, which is a common problem in TV

broadcasting. However, they cannot address non-uniform

misalignment, e.g. dancers do not only make mistakes at

musical beats. In other words, misalignment in videos and

audios is oftentimes completely unconscious and irregular.

In these scenarios, the closest method to our work is pro-

posed by [14], which can stretch and compress small units

of unaligned video signal to match audio signal. However,

their method can only adjust audio-video misalignment on

a coarser granularity, since they assume the consistency of

information within every 0.2 second.

Time Warping Given two time series, X =
[x1, x2, ..., xnx

] ∈ Rd×nx and Y = [y1, y2, ..., yny
] ∈

Rd×ny , dynamic time warping (DTW) [22] is a tech-

nique to optimally align the samples of X and Y such

that the following sum-of-squares cost is minimized:

C(P ) =
∑m

t=1
‖xpX

t
− ypy

t
‖2, where m is the number of

indices (or steps) needed to align both signals. Although the

number of possible ways to align X and Y is exponential

in nx and ny , dynamic programming [1] offers an efficient

way to minimize C using Bellman’s equation. The main

limitation of DTW lies in the inherent inability to handle

sequences of varying feature dimensionality, which is

essential in multimodal data, like video and audio. Further-

more, DTW is prone to failure when one or more sequences

are perturbed by arbitrary affine transformations. To this

end, the Canonical Time Warping (CTW) [31] is proposed,

which elegantly combines the least-squares formulations

of DTW and Canonical Correlation Analysis (CCA) [9],

thus facilitating the utilization of sequences with varying

dimensionality, while simultaneously performing feature

selection and temporal alignment. Deep Canonical Time

Warping (DCTW) [26] further extends CTW through the

usage of deep features. These methods are widely used in

audio-audio alignment [15, 18], video-audio alignment [14]

and video-video alignment [25].

Audio-visual Datasets Most existing audio-visual

datasets focus on speech and face motion. Some early

datasets are obtained under controlled conditions: forensic
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data intercepted by police officials [27], speech recorded

from mobile devices [28], etc. In contrast, VoxCeleb [19, 5]

and AVSpeech [10] collected a large amount of audio-

visual data of human speeches in the wild. MUSIC [30, 29]

and FAIR-Play [12] are datasets of music and instruments.

In this work, we introduce a new dancing dataset to the

community, focusing on the synchronization between

music and body motions.

3. Approach

3.1. Formulation

AlignNet is an end-to-end trainable model that learns

the implicit mapping between visual dynamics and audio

rhythms at multiple temporal scales, without the need of any

post-processing. It takes in a video feature sequence Ft
v, t ∈

(1, .., n) and an audio feature sequence F
t
a, t ∈ (1, ..,m),

to predict a dense correspondence d, which is the tempo-

ral displacement for each video frame (n,m might not be

the same). To generate unaligned training data, we apply

random and non-uniform distortion temporally (speed-ups

and slow-downs) to the aligned audio-video data of differ-

ent lengths.

Different from previous methods [6, 7, 14] that use raw

image frames as inputs, which are prone to large variations

when there are changes in outfits, makeups, lighting, shad-

ows, etc., we instead use more robust pose/lip keypoint fea-

tures provided by a keypoint detector OpenPose [3]. Fur-

thermore, as suggested by [4], operating in the velocity

space improves the results of human pose forecasting. For

our task, at time t, we input velocity vv (t) and the accel-

eration av (t) of the keypoints. For audio, we use normal-

ized log-mel spectrogram as input. Note that the input video

features and audio features do not have the same shape and

granularity, but our proposed network learns to extract in-

formation from different modalities and align them on the

same scale.

The full pipeline of AlignNet is shown in Figure 2. It is

designed based on the following principles: (1) spatial and

temporal attention modules highlight the important regions;

(2) learnable feature pyramids extract features from visual

and audio inputs at multiple levels (temporal scales); (3)

inspired by [24], warping layers warp the lower-level refer-

ence modality feature based on the correspondence estima-

tion on the current level to better predict distortion on larger

scales; (4) correlation layers models the affinity between

video features with audio features; (5) final dense corre-

spondence estimation is predicted from the affinity map. We

will explain each module in details in the following para-

graphs.

3.2. Spatial and Temporal Attention Modules

Intuitively, certain keypoints are more reflective of the

visual rhythms than others, so are certain sound fragments

of the auditory beats. Hence, we use attention modules to

highlight these important parts. Applying spatio-temporal

attention jointly requires excessive parameters, so we pro-

pose to decouple it, using a spatial attention module and a

temporal attention module.

For the spatial attention, we assign a weight to each key-

point, indicating the importance of this spatial location. To

make the learning more effective and meaningful, we force

the attention of symmetric keypoints (e.g. left and right el-

bow) to be the same. Note that we assume keypoint at-

tentions are the same over the whole dataset, so they are

learned as model parameters (the number of parameters is

the same as the number of keypoints).

For the temporal attention, we train a self-attention mod-

ule conditioned on the input audio, and re-weight audio fea-

tures at each time step accordingly. Different from keypoint

attention, temporal attention varies with the input data, so

the attention weights are the intermediate outputs of the

model.

3.3. Multimodal Feature Pyramid Extraction

For each modality, we generate an N -level feature pyra-

mid, with the 0-th level being the input features, i.e., F0
p =

F
t
v/a, t ∈ (1, .., n/m). Convolutional layers then extract

the feature representation at the l-th level, Fl
p, from the fea-

ture representation at the (l − 1)-th level, Fl−1
p .

3.4. Time Warping

The concept of warping is common to flow-based meth-

ods and goes back to [17]. We introduce time warping layer

to warp the video features given the estimated correspon-

dences. The warping operation assesses previous errors

and computes an incremental update, helping the predic-

tion module to focus on the residual misalignment between

video and audio. Formally, at the l-th level, we warp refer-

ence audio features toward video features using the upsam-

pled prediction from the (l + 1)-th level, dl+1:

F
l
w(x) = F

l
a

(

upγ
(

d
l+1

)

(x)
)

(1)

where x is the frame indices and upγ is the upsampling

function with scale factor γ.

3.5. Affinity Function

In order to better model the correspondence, we em-

ploy an affinity function A at each feature pyramid level.

A provides a measure of similarity between video features

F
l
v

t
, t ∈ (1, .., nl) and audio feature F

l
a

t
, t ∈ (1, ..,ml),

denoted as A
(

Fp
l
v,Fp

l
a

)

. The affinity is the dot product
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Figure 2: Our model consists of attention, pyramidal processing, time warping, affinity and correspondence prediction.

between embeddings: for Fl
v

i
and F

l
a

j
,

A(j, i) =

(

F
l
a

j⊤
F

l
v

i
)

∑

j

(

Fl
a

j⊤
Fl

v

i
) (2)

3.6. Multimodal Dense Correspondence Estimation

Correspondences are normalized to (−1, 1). For a video

with N frames, we first include a correspondence loss,

namely an L1 regression loss of the predicted correspon-

dence at all pyramid levels:

Lfs =

N
∑

l=0

λl

nl

∑

i=0

∣

∣

∣
d
l (i)− d̃

l (i)
∣

∣

∣
(3)

where d
l (i) is the ground truth correspondence and d̃

l (i)
is the predicted correspondence of frame i at level l, and λl

is the weighting factor of level l.
To force the network to predict realistic correspondence

that are temporally monotonic, we further incorporate a

monotonic loss:

Lmono =
N
∑

l=0

λl

nl
−2

∑

i=0

max
(

0, 1− d̃
l (i) + d̃

l (i+ 1)
)

(4)

With µ being a weighting hyperparameter, our full objective

to minimize is therefore:

loss = Lfs + µLmono (5)

3.7. Model Architecture Details

AlignNet takes in normalized log-mel spectrograms with

128 frequency bins as audio input and pose/lip keypoints

as visual input with shape (2×#keypoints, #frames), where

the 2 accounts for two dimensional (x,y) coordinates. Note

that all convolutional layers in our network are 1D convo-

lutions, which speed up the prediction at both training and

testing time. We use a 4-level feature pyramid, with chan-

nels 128, 64, 32, 16 and the temporal downscale factors 1/3,

1/2, 1/2, 1/2, respectively. The final output is obtained by

upsampling the 1st-level correspondence to match with the

input dimension. Note that our model can take in videos of

arbitrary lengths.

4. Experiments

We evaluate AlignNet on two tasks: dance-music align-

ment, and lip-speech alignment. We test our method, both

quantitatively and qualitatively on the these tasks, and com-

pare our results with two benchmark methods. Finally, sub-

jective user studies are performed for dance and speech re-

targeting.

Baselines In order to compare our methods with other

state-of-the-art audio-video synchronization techniques,

we implemented two baselines: SyncNet [6] and Sync-

Net+DTW [14]. For SyncNet, we follow the exact steps

described in [6] except that we replace raw frame inputs

with pose/lip keypoints and replace MFCC feature inputs

with normalized log-mel spectrograms. Since (1) the rele-

vant features to dancing and speaking are essentially body

and lip motion and (2) MFCC features are handcrafted and

low-dimensional (i.e. contain less information than spectro-

grams), these changes should reach similar performance of

the original method, if not better. SyncNet+DTW uses the

pre-trained SyncNet as their feature extractor, so we also

replace the SyncNet here with our implementation. Then,

DTW is applied on the extracted video and audio features.

Training During training, we use online sample genera-

tion for both our method and the baselines. In our method,

the video features are randomly distorted and scaled tempo-

rally each time to prevent the network from overfitting finite

misalignment patterns. To better mimic real world situa-

tions, the distortions are always temporally monotonic, and

we linearly interpolate the keypoints from adjacent frames.

For the baselines, SyncNet is trained with random pairs of

matching / non-matching pairs with the same clip length and

maximum temporal difference as the original paper [6]. We
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Methods
Performance

AFE Accuracy

SyncNet [6] 6.58 25.88

SyncNet+DTW [14] 4.27 38.29

AlignNet (Ours) 0.94 89.60

Table 1: Performance of music-dance alignment on

Dance50 dataset.

further augment the training data by horizontally flipping

all poses in a video clip, which is a natural choice because

visual dynamics is mirror-invariant. For the audio inputs,

we employ the time masking and frequency masking sug-

gested by SpecAugment [21]. Adam is used to optimize the

network parameters with a learning rate of 3× 10−4.

Evaluation Quantitative evaluation was performed using

a human perception-inspired metric, based on the maximum

acceptable audio-visual asynchrony used in the broadcast-

ing industry. According to the International Telecommuni-

cations Union (ITU), the auditory signal should not lag by

more than 125 ms or lead by more than 45 ms. Therefore,

the accuracy metric we use is the percentage of frames in

the aligned signal which fall inside of the above acceptable

(human undetectable) range, compared to the ground truth

alignment.

We also defined Average Frame Error (AFE) as the aver-

age difference between the reconstructed frame indices and

the original undistorted frame indices. This gives a more

direct measure of how close the reconstructed video is com-

pared to the original video.

4.1. Dance­music Alignment

Dance50 Dataset We introduce Dance50 dataset for

dance-music alignment. The dataset contains 50 hours of

dancing clips from over 200 dancers. There are around

10,000 12-second videos in the training set, 2,000 in the

validation set, and 2,000 in the testing set. Our training,

validation, and testing sets contain disjoint videos, such that

there is no overlap between the videos from any two sets.

All dancing clips are collected from K-pop dance cover

videos from YouTube.com and Bilibili.com. Similar to [13],

we represent our annotations of the poses with a temporal

sequence of 2D skeleton keypoints, obtained using Open-

Pose [3] BODY 25 model, discarding 6 noisy keypoints

from the feet and keeping the rest. We refer the readers

to supplementary material for more details.

Settings We use Dance50 to evaluate the performance of

method on dance synchronization. We compare our method

against the state-of-the-art baselines using the aforemen-

tioned evaluation metrics.

Results Table 1 compares the performance of our method

and the two baselines on Dance50 testing set. Our method

significantly reduces the AFE, and achieves a gain of

51.31% in accuracy, which reaches 89.60%. Our network

obtains a satisfactory performance even on video clips com-

pletely unseen in training, and this shows that the pro-

posed method effectively learns the implicit mapping be-

tween video dynamics and audio features on multiple tem-

poral scales.

To get a better idea of how well our method aligns

the video to the audio compared to the baselines methods,

we show some visualization of the skeletons reconstructed

from the correspondence predictions in Figure 3. It can be

seen that our method closely recovers the original aligned

poses, while both SyncNet and DTW fails to align poses

warped on different temporal scales.

We also show the mean motion error and location error of

each human keypoint after alignment in Figure 4. The mo-

tion error reflects visual rhythm difference between aligned

video and original video (Figure 4 Left), while the loca-

tion error reflects the objective difference between aligned

video and original video (Figure 4 Right). For motion error,

we normalize the keypoint velocity in pixel space of both

x and y coordinates to (-1,1). Similarly, we normalize the

location of each keypoint for calculating location error. As

shown in the figure, for both motion and location, our pro-

posed method outperforms the baseline method consistently

by a large margin under all human keypoints. It’s worth

noticing that mid-hip locations are always subtracted dur-

ing preprocessing. Thus, the mid-hip error of both motion

and location is significantly smaller than other keypoints.

Furthermore, we plot examples of the ground truth dis-

tortion compared to the distortion predicted by SyncNet-

DTW and our method in Figure 6 (left). It can be seen

that SyncNet-DTW captures some of the mapping be-

tween video and audio very coarsely, while failing to align

with more subtle changes. We believe that this is be-

cause SyncNet-DTW uses SyncNet as its backbone net-

work, which is trained with blocks of matching / non-

matching pairs, assuming that the frames within each block

is temporally aligned. In our application scenario, however,

the video could be distorted at any moment on any tem-

poral scale, so their method cannot deal with such distor-

tions very well. In contrast, the prediction from our method

closely matches the ground truth distortion and is able to

undistort & recover the input video. We believe that this

is because (1) the hierarchical nature of our model helps

the network extract visual and auditory features on multi-

ple temporal scales; (2) the warping layer makes it easier

to predict coarser trends on larger temporal scales; and (3)

the affinity map helps to correlate the relationship between

video features and audio features. We also show the effec-

tiveness of each model in the ablation study later.
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Figure 3: Skeleton visualizations of the proposed method and comparison with the baselines on Dance50. For better visual-

ization, we evenly sample 20 frames from the original 180 frames.

Figure 4: Comparison of the performance (mean motion

& location error) of our method and SyncNet + DTW

(SN+DTW) on the dance-music alignment task.

4.2. Lip­speech Alignment

Settings To evaluate our model on the lip-speech align-

ment task, we assemble a subset from the VoxCeleb2

dataset [5], which is an audio-visual dataset consisting

of short clips of human speech extracted from YouTube

videos. We select and cut 22000 video clips of length 12

seconds and with 25 fps, mounting to 73 hours in total. The

dataset contains 333 different identities and a wide range

of ethnicity and languages. The dataset split is as follows:

the training set has 18000 clips, and the validation and test-

ing sets each have 2000 clips. The sets are exclusively

video-disjoint, and there is no overlap between any pair

of videos from any two sets. Similar to Dance50, to deal

with the noisy frame-wise results, we first remove the out-

lier keypoints by performing median filtering and then the

missing values are linearly interpolated and smoothed with

a Savitzky-Golay filter. Again, we compare our method

against the state-of-the-art baselines using the evaluation

metrics mentioned above, and all methods are trained with

online sample generation and data augmentation, for 500

epochs, and the best performing model on the validation set

is selected for testing.

Results Similar to Section 4.1, we show the mean motion

error and location error of each lip keypoint after alignment

in Figure 5. Keypoints labels are the same as used in Open-

Pose [3]. As shown in the figure, for both motion and loca-

tion, our proposed method outperforms the baseline method

consistently by a large margin for all the lip keypoints.

Table 2 compares the performance of our method and

the two baselines on subset of VoxCeleb2 testing set. Our

method significantly reduces the AFE , and achieves a gain

of 45.11% in accuracy, which achieves 81.05%. Note that

here the AFE is similar to the AFE on Dance50, but the
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Figure 5: Comparison of the performance (mean motion

& location error) of our method and SyncNet + DTW

(SN+DTW) on the lip-speech alignment task.

Methods
Performance

AFE Accuracy

SyncNet [6] 6.33 27.41

SyncNet+DTW [14] 3.96 35.94

AlignNet (Ours) 1.03 81.05

Table 2: Performance of speech-lip alignment on Vox-

Celeb2 dataset.

Figure 6: Qualitative results of the ground truth distortion

compared to the predicted distortions by SyncNet-DTW

and our method. Left: dance-music alignment, Right: lip-

speech alignment.

accuracy on Dance50 is much higher. This is because the

frame rates of the two datasets are different (30 fps for

Dance50 and 25 fps for VoxCeleb2), and one frame in Vox-

Celeb2 corresponds to a longer duration in ms. There-

fore, these results do not suggest the relative difficulty of

dance-music alignment and speech-lip alignment, but they

together indicate that our proposed method for audio-video

alignment works well in different application scenarios.

Methods
Performance

AFE Accuracy

Base 2.87 43.57

FP 2.45 56.88

FP+MI 1.81 67.49

FP+MI+SA 1.32 75.33

FP+MI+SA+TA 1.14 79.65

FP+MI+SA+KA 0.97 88.20

FP+MI+SA+KA+TA 0.94 89.60

Table 3: Ablation study on dance-music alignment by

adding these modules sequentially: Base (base model), FP

(feature pyramid), MI (motion inputs, velocity and accel-

eration), SA (spectrogram augmentation), KA (keypoint at-

tention) and TA (temporal attention).

Similar to the dance-music alignment task, we plot an

example of the ground truth distortion compared to the dis-

tortion predicted by DTW and our method in the bottom

part of Figure 6 (Right). This result clearly shows that our

method recover the distorted video at a very high accuracy.

4.3. Ablation Study

To show the effectiveness of each module in our method,

we conduct an ablation study on the Dance50 dataset, where

we add the modules sequentially to the pipeline and evaluate

the performance. The training setup is the same as before.

We start with a basic network, denoted as base, where direct

pose keypoints are fed in as inputs and no feature pyramid is

used, predicting the correspondence directly from an affin-

ity map. Then, the following modules are added sequen-

tially to the network: FP (feature pyramid), MI (motion in-

puts, velocity and acceleration), SA (spectrogram augmen-

tation from [21]), KA (keypoint attention) and TA (temporal

attention). Table 3 shows the results of the ablation exper-

iments. It is clear that both feature pyramid and motion

inputs boost the performance of the network by a large mar-

gin, and spectrogram augmentation further helps the net-

work to learn meaningful feature even when some temporal

and frequency information are missing and helps alleviate

overfitting.

Both keypoints attention and temporal attention can im-

prove the alignment performance. This means some key-

points and time steps are more important for alignment.

And focusing on these spatial temporal regions will signifi-

cantly improve the performance. However, temporal atten-

tion is not as effective as keypoints attention. One possi-

ble reason is that most music pieces have fixed and simi-

lar beats, which can be implicitly encoded in the network

without temporal attention module. Thus, adding tempo-

ral might have limited improvement. On the other hand,
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Figure 7: Keypoint attention visualization for the dance-

music alignment task. Circle sizes and bar lengths represent

the attention magnitudes on human keypoints.

motion rhythms are not always as clear as music beats, i.e.

dancer might dance differently given the same music piece.

Thus, focusing on specific keypoints can significantly im-

prove the performance of our proposed module.

4.4. Attention Visualizations

Keypoint Attention We visualize the learned keypoint at-

tentions by our model for the dance-music alignment task in

Figure 7, where a skeleton visualization is presented along-

side the histogram of the attention values after softmax. A

circle is drawn around each keypoint, and the radii are larger

for keypoints with larger attention values. Results show the

attention for eyes and limbs (elbows, wrists, knees, ankles)

are significantly larger than the attention for the bulk of the

body (chest, shoulders, hip). The network has learnt to rely

more on the limbs whose movements are more rapid, and

less on the bulk parts that seldom moved very fast. We also

note that the network assigns more attention to the eyes but

very little to head or ears. A possible explanation for this is

that the movements of head (like turns) is best represented

by tracking two eyes, rather than ears that are sometimes

occluded.

Temporal Attention Figure 8 shows the temporal atten-

tion on an example audio mel-spectrogram. As can be seen,

the attention module tends to focus more on the onsets of a

music piece which can be easily understood since dancers

always switch motion pattern at these onsets. Thus, focus-

ing more on these temporal regions can help with better

alignment.

4.5. Dance and Speech Retargeting

By time-warping the visual beats of existing dance

footage into alignment with new music, we can change the

song that a performer is dancing to, which is known as danc-

ing retargeting. We generate 7 evaluation pairs for dance

retargeting evaluation. Each pair contains a dancing video

directly combined with another music piece and the same

Figure 8: Mel-spectrogram (top), onset envelop (middle),

and temporal attention (bottom) on a sample audio. Atten-

tion magnitudes agree with audio onsets.

Task
Percentage

Direct Combination Ours

Dance Retargeting 31% 69%

Speech Retargeting 22% 78%

Table 4: Subjective user study for dance and speech retar-

geting.

video retargeted according to the audio using AlignNet. We

ask 13 people for their preference of all the evaluation pairs,

and the result is shown in Table 4. Similarly, we gener-

ate 7 evaluation pairs for speech retargeting evaluation. It’s

worth noticing that in these speech pairs, both videos say the

same sentence since it is not reasonable to align talking face

with different sentences. As can be seen in Table 4, sub-

jects prefer ours to direct combinations, which means that

our method can generalize well to real-world data. How-

ever, our method performs slightly worse in dance retarget-

ing. The main reason is most dancing musics have simi-

lar beats and direct combination can achieve decent perfor-

mance. Demo videos of both the retargeting task and the

synthetic re-alignment task can be found in the supplemen-

tary materials and on our webpage.

5. Conclusion

In conclusion, we proposed AlignNet, an end-to-end

model to address the problem of audio-video alignment at

arbitrary temporal scale. The approach adopts the follow-

ing principles: attention, pyramidal processing, warping,

and affinity function. AlignNet establishes new state-of-

the-art performance on dance-music alignment and speech-

lip alignment. We hope our work can inspire more studies

in video and audio synchronization under non-uniform and

irregular misalignment (e.g. dancing).
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