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The ESCRT pathway facilitates membrane fission events during
enveloped virus budding, multivesicular body formation, and cy-
tokinesis. To promote HIV budding and cytokinesis, the ALIX
protein must bind and recruit CHMP4 subunits of the ESCRT-III
complex, which in turn participate in essential membrane remod-
eling functions. Here, we report that the Bro1 domain of ALIX binds
specifically to C-terminal residues of the human CHMP4 proteins
(CHMP4A-C). Crystal structures of the complexes reveal that the
CHMP4 C-terminal peptides form amphipathic helices that bind
across the conserved concave surface of ALIXBro1. ALIX-dependent
HIV-1 budding is blocked by mutations in exposed ALIXBro1 resi-
dues that help contribute to the binding sites for three essential
hydrophobic residues that are displayed on one side of the CHMP4
recognition helix (M/L/IxxLxxW). The homologous CHMP1–3
classes of ESCRT-III proteins also have C-terminal amphipathic
helices, but, in those cases, the three hydrophobic residues are
arrayed with L/I/MxxxLxxL spacing. Thus, the distinct patterns of
hydrophobic residues provide a ‘‘code’’ that allows the different
ESCRT-III subunits to bind different ESCRT pathway partners, with
CHMP1–3 proteins binding MIT domain-containing proteins, such
as VPS4 and Vta1/LIP5, and CHMP4 proteins binding Bro1 domain-
containing proteins, such as ALIX.

cytokinesis � ESCRT-III � HIV � mutivesicular body

The ESCRT pathway functions in the budding of HIV-1 and
other lentiviruses (1), in the final abscission stage of cyto-

kinesis (2), and in intralumenal vesicle formation at the late
endosome or multivesicular body (MVB) (3, 4). Involvement in
these seemingly diverse biological processes can be rationalized
if the ESCRT machinery encodes membrane remodeling and
fission activities that are required to resolve the thin membrane
‘‘necks’’ created during the final stages of virus budding, MVB
vesicle formation, and cell division. Although mechanistic de-
tails are still lacking, there is increasing evidence that the
ESCRT-III proteins may mediate such vesicle extrusion and/or
membrane fission activities, possibly in conjunction with the
AAA ATPase VPS4 (for example, see ref. 5). Humans express
11 related, but distinct ESCRT-III proteins (termed the CHMP
proteins) that can be subdivided into seven different families
(CHMP1–7) based on their similarities to one another and to the
six ESCRT-III-like proteins in yeast. The different ESCRT-III
proteins apparently adopt similar folds (6) and can copolymerize
together on membranes, yet have evolved to interact differently
with other ESCRT pathway components. For example, only the
three human CHMP4 proteins (CHMP4A-C) can bind ALIX
(yeast Bro1p), another protein in the ESCRT pathway (7–16).

The ESCRT machinery functions at different membranes, and
ALIX plays important roles in targeting the pathway to function
in retrovirus budding by binding directly to viral Gag proteins
(16, 17) and to function in abscission by binding the midbody
protein CEP55 (2). In both cases, ALIX must also bind the
CHMP4 proteins, because ALIX point mutations that block
CHMP4 binding inhibit HIV-1 budding (10, 11) and abscission
(18). Thus, ALIX can serve as an adaptor that recruits CHMP4/
ESCRT-III complexes to function at distinct biological mem-
branes. Conversely, CHMP4 proteins can apparently recruit

ALIX to membranes because the membrane-bound Snf7p (yeast
CHMP4) brings Bro1p/ALIX to the endosome to function in
MVB vesicle formation (19).

In addition to its involvement in HIV budding and cytokinesis,
ALIX has been implicated in a variety of biological processes
that may reflect other ESCRT pathway functions or possibly
ESCRT-independent ALIX functions. These functions include
lysobisphosphatidic acid (LBPA) binding (reviewed in ref. 20),
endophilin binding (21), receptor trafficking (22–24), endosome
distribution (25), cell motility/adhesion (26, 27), apoptosis (re-
viewed in ref. 28), actin and microtubule binding (26, 29) and
regulation of JNK signaling (30). Thus, ALIX appears to play
widespread roles in membrane biology and cell signaling. Sim-
ilarly, ALIX has been implicated in the release of several other
classes of enveloped viruses, including hepatitis B virus (31),
human parainfluenza virus (32), and possibly Sendai virus (33)
(however, see ref. 34). Thus, ALIX may play widespread roles in
the release of highly divergent enveloped viruses.

ALIX has three distinct regions: an N-terminal Bro1 domain
(residues 1–358), a central ‘‘V’’ domain (362–702), and a C-
terminal proline-rich region (703–868). Crystal structures of
different ALIX constructs (9, 10, 35) have revealed that the
banana-shaped Bro1 domain is organized about a core of
tetratricopeptide helical hairpins and that the V domain is
composed of two extended helical arms that fold in the shape of
the letter V. YP(Xn)L sequence motifs within retroviral Gag
proteins bind on the inner face of the second arm of the V
domain (10, 17, 35–37). The proline-rich region contains binding
epitopes for a number of other cellular factors, including
TSG101 (13, 15, 16), endophilins (21), and ALG-2 (38, 39). The
Bro1 domain contains binding sites for both HIV-1 NC (40) and
the CHMP4 proteins (7–11). Mutations that inhibit CHMP4
binding cluster within an exposed hydrophobic patch on the
concave surface of the Bro1 domain, which is thought to be the
CHMP4 binding site (9–11). This important interaction has yet
to be characterized in molecular detail, however, and, we have
therefore mapped the ALIX binding sites on the three human
CHMP4 proteins and determined crystal structures of the
relevant ALIXBro1-CHMP4 complexes.

Results
CHMP4-ALIX Interactions. Deletion analyses were used in conjunc-
tion with biosensor binding experiments to map the ALIX
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binding site on CHMP4A. As summarized in Fig. 1A, an ALIX
construct spanning the Bro1 and V domains (ALIXBro1-V) bound
both full-length CHMP4A and a minimal C-terminal
CHMP4A205-222 construct with similar affinities (30 � 11 �M
and 44 � 6 �M), but did not bind detectably to a CHMP4A
construct that lacked the final 18 residues (CHMP1-204) or to a
full-length CHMP4A protein that harbored a single point mu-
tation within this region (CHMP4AL217A) (15). Thus, the ALIX-
Bro1-V binding site maps to the final 18 residues of CHMP4A.

The three human CHMP4 family members have similar but
distinct C-terminal sequences, so we tested whether peptides
corresponding to the termini of CHMP4B and CHMP4C also
bound ALIXBro1-V. As shown in Fig. 1B, terminal fragments
from all three CHMP4 proteins bound ALIXBro1-V with similar
affinities (44, 48, and 41 �M, respectively), demonstrating that
all three CHMP4 proteins encode C-terminal ALIX binding
sites. Similar binding data were also obtained for the shorter

ALIXBro1 construct (see Fig. 1 legend), and the Bro1 domain of
ALIX, therefore, binds the C termini of all three human CHMP4
proteins.

Crystal Structures of ALIXBro1-CHMP4 Complexes. Crystal structures
of ALIXBro1 in complex with peptides corresponding to the
C-terminal binding sites from each of the three human CHMP4
proteins were determined in order to visualize the molecular
basis for ALIX-CHMP4 interactions [Figs. 2 and 3 and support-
ing information (SI) Figs. S1–S3]. All three complexes crystal-
lized isomorphously in space group C2 with a single ALIXBro1-
CHMP4 complex in the asymmetric unit. The CHMP4A-C
complexes were refined to resolutions of 2.15, 2.10, and 2.02 Å,
respectively, with good geometries and Rfree values �30% (Table
S1).

As shown in Fig. 2, CHMP4A205-222 forms an amphipathic
helix that binds across the concave surface of ALIXBro1, con-
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Fig. 1. Mapping the ALIX binding sites of CHMP4 proteins. (A) Binding
isotherms and sensorgrams (Inset) showing ALIXBro1-V binding to GST-CHMP4A
(KD � 30 � 11 �M) (Inset), GST-CHMP4A205-222 (KD � 44 � 6 �M), GST-
CHMP4AL217A (binding not detectable), and GST-CHMP4A1-204 (binding not
detectable). The KD estimates are averages from best fits to single-site binding
models (mean � SD, n � 3). The shorter ALIXBro1 construct also bound to
CHMP4A205-222 (KD � 40 � 0.6 �M) and to the longer CHMP4A195-222 (KD �
40.5 � 0.4 �M) and CHMP4A174-222 (KD � 36.5 � 0.4 �M) C-terminal constructs
with comparable affinities (dissociation constant and error were estimated
from a statistical fit of a single binding isotherm derived from duplicate
measurements at 10 different ALIXBro1-V concentrations; data not shown).
Error bars are indicated on all biosensor figures, but are often too small to be
readily visible. (B) ALIXBro1 binds the C termini of CHMP4A, CHMPB, and
CHMP4C. Binding isotherms showing ALIXBro1-V binding to immobilized C-
terminal peptides from CHMP4A-C. Estimated dissociation constants were:
GST-CHMP4A205-222, 44 � 6 �M (mean � SD, n � 6); GST-CHMP4B205-224, 48 �
6 �M (mean � range, n � 2); GST-CHMP4C216-233, 41 � 10 �M (mean � range,
n � 2). Binding to a control GST surface was negligible (data not shown).
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Fig. 2. Ribbon diagram showing the ALIXBro1 domain (blue) in complex with
the C-terminal helix from CHMP4A (purple).
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Fig. 3. ALIXBro1-CHMP4 interfaces. (A) Stereoview of the ALIXBro1-CHMP4A
interface. The CHMP4A helix is oriented N to C from top to bottom, ALIX
residues within the binding interface are shown explicitly, dashed lines indi-
cate hydrogen bonds or salt bridges, and key hydrophobic CHMP4 residues are
underlined. (B) Stereo-view showing an overlay of the bound CHMP4A-C
helices. The orientation is the same as in A, and the three key hydrophobic
CHMP4 binding residues are shown in sticks. Note that the CHMP4A (purple)
and CHMP4C (orange) helices overlay well, whereas the CHMP4B helix (green)
is rotated by �20°.
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tacting helices 5–7 and the extended C-terminal strand that
traverses the domain. ALIXBro1 does not change conformation
notably upon CHMP4 binding, although several sidechains in the
binding site shift slightly, with the largest adjustment (�1.5Å)
being made by the ALIX Phe-199 ring. The CHMP4A205-222 and
CHMP4C216-233 peptides have similar lengths and sequences and
bind ALIXBro1 in very similar fashions, whereas the longer
CHMP4B205-224 peptide binds at the same site, but in a slightly
different fashion (see below).

In all three complexes, important interactions are made by
hydrophobic residues located on three successive turns of the
CHMP4 recognition helix (CHMP4A residues Leu-214, Leu-
217, and Trp-220). The most distinctive contact is made by the
indole ring of Trp-220, which binds in a hydrophobic pocket
located between helices 5 and 6 (Fig. 3A). The indole nitrogen
also forms a hydrogen bond with the conserved ALIX Asp-143
carboxylate, which in turn is buttressed by a salt bridge with the
ALIX Lys-202 side chain. Leu-217 binds in an adjacent hydro-
phobic pocket located between ALIX helices 6 and 7, whereas
Leu-214 binds on a more open hydrophobic surface of ALIX
helix 6. No other CHMP4A side chains make substantial con-
tacts, and the structures therefore indicate that the three hy-
drophobic residues of the CHMP4A recognition helices are the
primary determinants of ALIX binding and specificity. The
terminal carboxylates of CHMP4A and CHMP4C probably also
contribute to ALIX recognition, because they make water-
mediated interactions with the ALIX Lys-151 side chain.

The ALIXBro1-CHMP4B205-224 Complex. The longer CHMP4B205-224
peptide binds ALIXBro1 at the same site and forms an amphi-
pathic helix that places the same three hydrophobic side chains
in analogous binding sites. In this case, however, the helix is
rotated by �20° relative to the CHMP4A/C helices, which
displaces the N and C termini of the CHMP4B helix by �5Å and
3Å, respectively. (Fig. 3B and Figs. S2B and S3). The C-terminal
displacement allows the final two CHMP4B residues (not
present in the shorter CHMP4A/C helices) to make unique
interactions that appear to dictate the helix orientation. Specif-
ically, the CHMP4B Ser-223 hydroxyl caps the helix and hydro-
gen bonds with the ALIX Lys-147 side chain (whereas ALIX
Lys-147 hydrogen bonds with the Trp-220 main-chain carbonyl
in the CHMP4A and 4C complexes). The terminal CHMP4B
Met-224 residue, in turn, contacts a hydrophobic patch between
ALIX helices 5 and 6 (Fig. 3B and Fig. S3B). Thus, the
C-terminal helices of all three human CHMP4 proteins bind the
same site on ALIX, although the detailed interactions can differ
depending on the length of the recognition helix.

Mutational Analyses of the ALIXBro1-CHMP4A Interaction. Biosensor
binding assays were also performed to test the importance of the
three conserved hydrophobic residues of the CHMP4 recogni-
tion helix. As shown in Fig. 4A, single alanine substitutions of
CHMP4A residues Leu-214, Leu-217, and Trp-220 abolished
ALIXBro1-V binding, confirming the energetic importance of all
three residues. A cluster of acidic residues is also conserved at
the N-terminal end of the CHMP4 recognition helix (Fig. 4B).
These residues do not contact ALIX directly in the crystal
structures, but do approach basic surface residues Lys-209 and
Lys-215, and could therefore also contribute to binding. Muta-
tion of the glutamate residue present in all three human CHMP4
proteins (CHMP4A Glu-209) reduced ALIXBro1-V binding af-
finity by twofold, indicating that hydrophilic f lanking residues
can also contribute to ALIXBro1 binding, albeit modestly.

Discussion
Our biochemical and structural analyses show that ALIX binds
amphipathic C-terminal helices on all three human CHMP4 pro-
teins. Three hydrophobic residues on the CHMP4 recognition
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Fig. 4. Molecular recognition in ALIX-CHMP4 complexes. (A) Isotherms show-
ing ALIXBro1-V binding to immobilized WT CHMP4A205-222 and to CHMP4A205-222

constructs with the following mutations: W220A, L217A, L214A, and E209A. For
the E209A mutant, KD � 95 � 2 �M (dissociation constant and error were
estimatedfromastatisticalfitofasinglebinding isothermderivedfromduplicate
measurements at 10 different ALIXBro1-V concentrations.). (B) Sequences of the C
termini of human CHMP4 proteins are shown (Upper), together with a bar graph
showing sites of �50% identity across metazoan CHMP4 proteins, the resulting
CHMP4 consensus sequence (see also Table S2) and the distinct consensus se-
quence of the C-terminal amphipathic helices of CHMP1–3 proteins (Lower) (47).
(C) Model of the ALIXBro1-CHMP4A interaction, with mutation sites that block
ALIX binding and ALIX-dependent HIV-1 budding highlighted in yellow on the
ALIX surface. (D) Overlay of the C-terminal recognition helices from CHMP4A
(magenta) and CHMP1A (green, PDB 2jq9), extracted from the bound ALIXBro1-
CHMP4A205-222 and VPS4A MIT-CHMP1A180-196 complexes. The three key hydro-
phobic residues from each recognition helix are shown explicitly, and the figure
emphasizes that the first hydrophobic residue is positioned differently in the two
helices.
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helices contact ALIX extensively, and their energetic importance
was confirmed by mutagenesis. The C-terminal Leu and Trp
residues are invariant in metazoan CHMP4 proteins, whereas the
first hydrophobic position of the helix can vary between Met, Leu,
Ile, and Phe (Fig. 4B and Table S2). This pattern of conservation
is nicely explained by the ALIXBro1-CHMP4 structures, which show
that the terminal Leu and Trp residues of the CHMP4 recognition
helix bind in well defined pockets, whereas the first hydrophobic
residue in the helix binds against a flat hydrophobic surface that can
presumably tolerate greater side chain variability. Several sets of
flanking hydrophilic residues are also conserved in the recognition
helix, including an upstream acidic cluster (residues 208–212 in
CHMP4A) and two basic residues (CHMP4A Lys-206 and 215).
These side chains are solvent exposed and do not contact ALIX
extensively, but a mutation within the CHMP4A acidic cluster did
reduce ALIXBro1 binding slightly, indicating that the cluster may
interact favorably with the basic ALIXBro1 surface. It is alternatively
possible, however, that flanking hydrophilic residues are conserved
primarily because they make important contacts when CHMP4
proteins adopt alternative conformations or bind other partners.

CHMP4 binding appears to be a conserved function of Bro1
domains, because three other Bro1 domain-containing proteins,
Rim20p, HD-PTP, and Brox, also bind CHMP4 proteins (41,
42). Alignment of the Bro1 domains from metazoan ALIX
proteins, human Brox and HD-PTP, and yeast Rim20p and
Bro1p reveal strong, although not absolute conservation of
CHMP4 contact residues, suggesting that most Bro1 domains
will bind CHMP4 proteins in a similar fashion (Fig. S4). For
example, the ALIXBro1 Asp-143 and Lys-202 residues, which
form a salt bridge that buttresses the ALIXBro1 Asp-143-
CHMP4A Trp-220 hydrogen bond, are absolutely conserved as
an acidic/basic residue pair in all of the aligned Bro1 domains.

ALIX can be recruited to facilitate enveloped virus budding
and release, and this function has been studied most extensively
for HIV-1 (10, 11). These studies have identified three different
ALIX point mutations (F199D, I212D, and L216D) that block
both CHMP4 binding and ALIX-mediated release of HIV-1
constructs that cannot recruit TSG101/ESCRT-I. All three of
these residues map to the CHMP4 binding interface, and the
crystal structures are consistent with the observed loss of
CHMP4 binding for Asp mutations at these positions (Fig. 4C).
The ALIX I212D mutation has also been shown to block the
ALIX-dependent abscission step of cytokinesis (18). Thus, the
crystallographic ALIX-CHMP4 interface visualized here is es-
sential for ALIX-dependent steps in HIV-1 budding and cyto-
kinesis. This interaction recruits CHMP4 proteins, which in turn
presumably recruit additional ESCRT-III subunits and VPS4
complexes to function in membrane remodeling and fission.

The recruiting order appears to be reversed in the case of
MVB vesicle formation, where copolymerization of the different
ESCRT-III subunits on endosomal membranes creates a surface
that recruits other ESCRT pathway proteins, including ALIX,
VPS4, Doa4p, IST1, and Vta1p/LIP5. Like the CHMP4 subunits,
the CHMP1–3 subunits of ESCRT-III also have C-terminal
amphipathic helices [MIT interacting motifs (MIM)], but in
these cases the helices bind the MIT domains of VPS4, Vta1p/
LIP5, and AMSH and thereby recruit ATPase and deubiquity-
lating activities to the membrane (43–48). Hence, the terminal
helices of different ESCRT-III subunits must display distinct
binding surfaces to ensure specificity in protein recruitment.
This is borne out by the observation that the C-terminal
CHMP4A helix binds ALIXBro1 but not the VPS4A MIT do-
main, whereas the C-terminal CHMP1B helix binds the VPS4A
MIT domain but not ALIXBro1 (Fig. S5). As shown in Fig. 4D,
the MIM helices of the CHMP1–3 proteins display three key
leucine/hydrophobic residues that make important MIT domain
contacts (47, 48). In these cases, the three hydrophobic residues
are spaced by three and two intervening residues, whereas the

three hydrophobic residues of the CHMP4 recognition helix are
each separated by two intervening residues. As a result, the
initial hydrophobic residues of the CHMP1–3 and CHMP4
recognition helices occupy different relative positions. Further-
more, the terminal hydrophobic CHMP4 residue is a Trp,
whereas the terminal CHMP1–3 hydrophobic residue is a Leu.
Thus, the different identities and positions of the hydrophobic
residues in their terminal recognition helices help ensure that
each ESCRT-III subunit recruits its proper binding partner(s).

Methods
Expression Constructs and Plasmids. Expression constructs for GST-CHMP4A
(WISP06–197) and GST-CHMP4A L217A (WISP06–61) are described in ref. 15.
Quikchange mutagenesis (Stratagene) was used to create expression con-
structs for GST-CHMP4A1-204 (WISP06–198), GST-CHMP4A205-222 (WISP06–60),
GST-CHMP4B205-224 (WISP06–201), GST-CHMP4C216-233 (WISP06–202), GST-
CHMP4A205-222W220A (WISP06–203), GST-CHMP4A205-222L217A (WISP06–204),
GST-CHMP4A205-222L214A (WISP06–205), and GST-CHMP4A205-222E209A (WISP06–
206), using expression constructs for GST-CHMP4A, GST-CHMP4B (WISP06–
199), and GST-CHMP4C (WISP06–200) as templates.

ALIX and CHMP4 Protein Expression and Purification. CHMP4 peptides used for
crystallization studies were synthesized with an N-terminal acetyl capping
group: 205PKVDEDEEALKQLAEWVS222 (CHMP4A), 205KKKEEEDDDMKELEN-
WAGSM224 (CHMP4B), and 216QRAEEEDDDIKQLAAWAT233 (CHMP4C). ALIXBro1

(residues 1–359) and ALIXBro1-V (residues 1–702) proteins used in biosensor and
crystallization studies were expressed and purified as described in ref. 10.
GST-CHMP4 proteins used in biosensor experiments were expressed in
BL21(DE3) Codon� (RIPL) Escherichia coli cells grown in autoinduction media,
ZYP-50502 (49). Cells were grown at 37°C for 4 h, then transferred to 23°C or
17°C for growth to saturation. Subsequent purification steps were performed
at 4°. Cells from 100 ml of cultures were harvested, resuspended in 4 ml of 20
mM sodium phosphate (pH 7.2), 150 mM NaCl, 5 mM �-mercaptoethanol, and
protease inhibitors (Roche Diagnostics) and lysed by the addition of 1 mg/ml
lysozyme followed by sonication. The lysate was clarified by centrifugation,
and GST-CHMP4 proteins were affinity purified by incubation with 500 �l of
glutathione beads in biosensor running buffer [20 mM sodium phosphate (pH
7.2), 150 mM NaCl, 0.01% P20, 0.2 mg/ml BSA, 5 mM �-mercaptoethanol] for
30 min, washed extensively, and eluted with 20 mM reduced glutathione in
running buffer.

Biosensor Binding Studies. Binding experiments used Biacore 2000 and T100
opticalbiosensor instruments.Research-gradeCM5sensorchipswerederivatized
with anti-GST antibody, using amine coupling, and were used to capture affinity
purified GST-CHMP4 proteins or GST alone (reference) at surface densities of
300-3030 response units (RU). Similar binding data were obtained for both
ALIXBro1 and ALIXBro1-V constructs, but the ALIXBro1-V construct was more soluble
and therefore allowed more complete sampling of the binding isotherms. Pure
ALIXBro1-V (diluted in running buffer to the designated concentrations) was
injected in duplicate (50 �l/min, 20°C) and binding data were collected at 2 Hz
during the 30-s association and dissociation phases. All interactions reached
equilibrium rapidly and dissociated within seconds during the dissociation phase,
and all were studied at more than one surface density to rule out crowding and
mass transport effects. Binding responses at 10–20 sec were fit to simple 1:1
binding isotherms to obtain equilibrium constants.

Crystallization. ALIXBro1-CHMP4 crystals were grown by sitting drop vapor diffu-
sionat4°Catprotein:peptidemolar ratiosof1:1.2atfinalALIXBro1 concentrations
of 25 mg/ml (CHMP4A) or 23 mg/ml (CHMP4B/C). Crystals grew from drops
containing 0.5 �l of protein solution mixed with 0.5 �l of reservoir solution: 15%
PEG 8000, 100 mM Na MES (pH 6.5), and 200 mM Na Acetate (CHMP4A) from
drops containing 1.2 �l of protein solution mixed with 0.7 �l of reservoir solution
[15% PEG 8000, 100 mM Na MES (pH 6.5), 200 mM Na Acetate (CHMP4B)] or from
drops containing 1.2 �l of protein solution mixed with 0.7 �l of reservoir solution
[10% PEG 2000, 100 mM Na MES (pH 6.5) (CHMP4C)].

Data Collection and Structure Refinement. Crystals were cryoprotected in
reservoir solutions made up with 20% glycerol, suspended in nylon loops, and
flash frozen in liquid nitrogen. Data were collected on a copper rotating
anode generator with confocal optics (Rigaku; MicroMax 007HF) and a Rigaku
R-Axis IV image plate (CHMP4B and CHMP4C) and at beam lines 11-1(MAR325,
0.97607 Å wavelength) and 7-1 (Quantum 315, 0.98397 Å wavelength) of the
Stanford Synchrotron Radiation Laboratory (CHMP4A). Crystals were main-
tained at 100 K during data collection. Data were integrated and scaled with
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Denzo and Scalepack, using the HKL2000 suite (50). ALIXBro1-CHMP4 crystals
were isomorphous with crystals of unliganded ALIXBro1 (PDB entry 2OEW) (10).
The unliganded ALIXBro1 structure was used as a starting model for all three
refinements, which were performed with REFMAC, using the maximum like-
lihood target function and incorporating TLS analysis (51, 52) as implemented
in the CCP4 package (53). Models were built in O (54) and COOT (55), geometry
was analyzed with PROCHECK (56), and figures were generated in PyMOL (57).
The following residues were modeled in the different CHMP4 complexes:
CHMP4A, 210–222; CHMP4B, 207–224; and CHMP4C, 221–233. Crystallo-
graphic statistics are presented in Table S1.
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