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Abstract

Introduction The vast increase in CO2 and waste generation in recent decades has been a
major obstacle to sustainable development and sustainability. In construction industry, the
production of ordinary Portland cement is a major greenhouse gas emitter with almost 8%
of total CO2 production in the world. To address this, Alkali-activated materials and
geopolymer have more recently been introduced as a green and sustainable alternative of
ordinary Portland cement with significantly lowered environmental footprints. Their use
to replace Portland cement products generally leads to vast energy and virgin materials
savings resulting in a sustainable concrete production. In doing so, it reuses the solid
waste generated in industrial and manufacturing sectors, which is aligned with circular
economy. In turn, it reduces the need for ordinary Portland cement consumption and its
subsequent CO2 generation.
Objective To provide further insight and address the challenges facing the substitution of
ordinary Portland cement, this article reviews different types, mechanisms, and result of
mechanical and durability properties of alkali-activated materials and geopolymer re-
ported in literature. Finally, it discusses future projections of waste materials that have
cementitious properties and can replace ordinary Portland cement and be used in alkali-

activated materials and geopolymer.
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Introduction

The search for sustainable means in engineering practices is one of the major quests in this
century. From the advised sustainable development goals (SDGs) formed by the UN [1, 2], to
the incorporation of circular economy in waste management, the vast urbanization and
population growth of the metropolitan areas has created a conundrum of cleaner production
and consumption to address the insurmountable urbanization issues such as waste production.
Such vast increase in waste materials production, as well as the ever-increasing CO2 produc-
tion in recent decades has been a major obstacle to sustainable development and sustainability.
To address this, new concepts of waste management such as circular economy that adopt a life-
cycle view of each material are being further incorporated into different fields such as
construction area.

Construction industry has been consistently reported to count for use of almost 40% of total

energy production [3], where only the cement production accounts for 8% of total global CO2

production, annually [4, 5]. In this industry, the unbridled need for construction materials and
binding agents has dedicated an ongoing body of research in understanding the most efficient
means feasible to produce a more sustainable binding agent especially through entertaining new
systems that further utilize waste materials. One of the most recent alternatives in this area can
be viewed as the emergence of Alkali-activated materials (AAMs) and geopolymerwhereby the
ordinary Portland cement (OPC) is replaced by supplementary cementitious materials (SCMs)
that have binding-ability and are generally recognized to be the most promising waste materials
added to the mixture substituting cement and acting as binding agents.

Since their recognition, AAMs have found a variety of applications including eco-friendly
concrete [6, 7], ceramic formation [8, 9], and refractories [10]. Yet, as a result of substitution of
OPC, depending on the type and content of the SCMs added, a medium in liquid or solid form
is required to increase the alkalinity of the mixture for binding purposes. This process is also
called activation which is followed by the dissolution of the aluminosilicate
bearing materials (aluminum and silicate bearing material) also known as precursors such as
calcined clays (e.g., metakaolin), ground granulated blast furnace slag (GGBFS), coal fly ash,
or other aluminosilicate-rich materials mixed with highly alkaline solutions (e.g., sodium
hydroxide or sodium silicate) [11–13].

Understanding this process, the variation in systems and properties as a result of the type of
primary precursor and activator is the first step toward entertaining this technology in
construction industry. Yet, since aluminosilicate sources used in AAMs are mainly amor-
phous, the reaction mechanism of alkali-activated materials has been a source of academic
debate that has resulted in terminology, function, and often mechanism contradictions. With
such considerations, this review provides information based on the terminology and function-
ality provided by the cited references.

In that respect, this review aims to provide a compiled content based on both general and
in-depth findings associated with AAMs and geopolymer technology as well as their prospec-
tive strength and durability characteristics. Such content would serve the literature by provid-
ing a basic understanding of this concept that supports total use of waste materials as binding
agent.
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Circular Economy

The incorporation of new concepts such as circular economy in waste management can be
seen as a result of unsustainable material development and mismanagement of resources. In
construction industry, the need for cheaper and vastly available materials as well as a detailed
life-cycle design has always been a major driver toward sustainability and greener buildings.
Such efforts, however, have been entertained through a static view of materials availability
within a dynamic and hybrid world where emergence of a new material often equals scarcity of
the other. In this environment, while the construction industry is experiencing a paradigm shift
in the availability of certain supplementary cementitious materials, such as coal fly ash, it is
imperative to search for newer waste materials in a hybrid and dynamic waste management
economy of systems. In such systemic review, this article tends to highlight the use of
alternative sources of waste materials that are projected to see higher available quantity, in
the future, whose promising results are briefly shown in the literature.

Alkali-Activated Materials

Historically, cementitious materials were chosen and used in construction due to their avail-
ability and often favorable properties. During the 1940s and 1950s, Purdon [14] and
Glukhovsky conducted major research on AAMs that was by then named “soil cements”

whereby a high content of Slag-based aluminosilicate materials (an industrial waste material)
was used as OPC substitution. Through the documented results, proved the possibility of using
such, at the time vastly available, waste material to reduce the need for OPC and reduce the
associated costs. Following such conceptual development, during the 1970s, Davidovits [15]
investigated fire-resistant materials that led to the use of metakaolin as precursor in AAMs that
further named “geopolymer” [16–18]. From there, a vast body of research interested in
developing a sustainable binding agent started to entertain the use and study of the physico-
chemical properties of AAMs through the use of a variety of, mainly waste-based, cementi-
tious materials and activators.

The basic function of AAMs can now be seen and divided into three groups of (1) low calcium
system (also referred as geopolymer), in which low calcium SCMs, such as fly ash (class F),
provide silicon and aluminum (Si + Al) as the main reactive binding agents; (2) high calcium
system, in which silicon and calcium (Si + Ca) establish a product of calcium aluminum silicate
hydrate (C-A-S-H) network which has a lower setting time and can harden in ambient temper-
ature [19–21]; and (3) hybrid systems where OPC is often used with high volume SCMs that each
partially contribute to the final and hardened materials. In all types of AAMs, however, equal to
lesser degree of greenhouse gas emissions, being a perfect material for repair purposes [22] and
having a reduced durability issues, compared to OPC system, are reported [23–25].

Mainly due to the use of high-volume waste materials and their respectively lower
reactivity, another material (an activator) in solid or liquid form has to be added to the mixture
to chemically increase the reaction rate. According to the type of activator used (e.g., whether
liquid or solid), Further research by Torgal [26–28], Luukkonen [29, 30], and Provis and
Bernal [18, 31] research groups have further divided the AAMs to two different activation
techniques with one that tends to use liquid activator, referred to as “two-part alkali-activated
materials,” while the other uses cheaper and often more eco-friendly activator in solid form
that is referred to as “one-part or ready mix alkali-activated materials”.
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With solid activator being much more recently introduced, the foundation on which the
one-part AAMs is developed is dealing with the hazardous properties of the liquid activators
that are highly corrosive and their transportation to the construction site requires following a
specific set of protective measures [32]. In contrast, Through using solid activators (One-part
AAMs), lower cost of the material, ease in transportation, lower environmental footprint [11],
and most importantly, the ability to be utilized by only adding water to the mixture which
mimics the current OPC applicability can be achieved. Yet, the chemical mechanism hierar-
chy, as discussed above, follows the same trajectory with tendency to dissolve the Si, Al, and
Ca structure of the precursor and result in hardened material, irrespective of the type of
activator (e.g., whether solid or liquid) [18, 33].

The various types of activators and the respective amount used, both in solid and liquid form,
in that respect, increases the alkalinity (pH) of the medium and act as a catalyzer [34]. This
reaction takes place according to the compositional elements available in the medium, and thus,
the degree of this reactivity can partially be defined by it to the point that a mixture mediumwith
an overall pH of 14 can potentially result in 50 times more strength development than the same
medium with a pH of 12 [35]. The resulted mechanical property, nevertheless, is not only
dependent on the type and content of the activator and precursor, but a variety of other factors
including the curing regime, the type and content of aggregate, as well as presence of fillers.

Another major influential factors in the resulted AAMs properties include but are not
limited to: the total molar ratios such as silicon to aluminum (Si/Al), alkali concentration,
and the ratio of used activators (in case of using two different activators for optimum results).
Unless such factors are addressed thoroughly, AAMs cannot potentially address the structural
or durability purposes, defined or expected. Such shortcomings include shrinkage issues [10,
36, 37], alkali-silica reaction tendency [9, 38, 39], and efflorescence [40, 41]. Yet, the variation
in properties due to mixture ratio and understanding the effect and multi-functionality of the
chain of factors makes the very basis for this review. In that context, the following sections
provide an insight on the three mentioned systems Fig. 1.

Fig. 1 Alkali-activation process in graphical illustration [42]
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High Calcium-Based Systems

The development of alkali-activated systems based on calcium-rich precursors has been
entertained for over a century [31]. In this system, precursors such as GGBFS, and class C
fly ash are used in a relatively moderate alkaline condition [43]. The calcium participation in
this system can be in form of (1) Ca (OH)2, (2) substituting cations within the mixture and
bond with it, or (3) react with dissolved silicate and aluminate species to initially form C-S-H
gel [44]. This addition of high calcium materials mainly changes the setting time and the
chemistry of the product [45] where, Al3+, Si4+, Ca2+, and Mg2+ are reported to be the main
network modifiers in the reaction chain. These modifiers with alkalis result in formation of
calcium aluminate silicate hydrate (C-A-S-H) [45–48]. Thus, the higher level of calcium leads
to faster hardening of C-A-S-H gel phase, lower setting time [46, 48], and higher early strength
[47, 49–51]. This gelation process has been reported to increase strength over longer periods of
time if followed by curing in ambient conditions, similar to OPC concrete system which
develops calcium silicate hydrate overtime [47]. On the opposite side, however, higher drying
shrinkage and cracking [52], higher risk of steel corrosion through chloride ion exchange [53],
and loss of durability especially at high temperatures (above 300°C) [54] have been reported
for high calcium systems. These adverse effects on the characteristics of AAMs, are reported to
be related to molar ratio of Ca/Si, Al/Si, and the type and amount of activator as well as the pH
level of the medium, and as described by many, the formation of gypsum due to the presence
of calcium [18, 31]. Although these factors are discussed at length in the following sections,
for further information on the kinetics of high calcium systems, diverse range of Ca-alumino-
silicate precursors, and precursor chemistry, reader is referred to [18, 31, 43, 55–58]

Low Calcium-Based Systems

Low calcium-based alkali-activated binders were initially developed as a fire resistance
material replacing organic polymeric materials while receiving attention for low cost alterna-
tives to fire resistant ceramics and OPC concrete [31, 59]. The content of low calcium system
is primarily comprised of aluminum- and silicon-rich materials where the calcium content is
kept relatively low. The fundamental binding structure in this system is reported to be highly
disordered and include numerous cross-linked Si and Al in a tetrahedral coordination [31]. The
low calcium systems have been reported for their lower permeability [60], better fire resistance
[18, 61], longer setting time [18, 21], lower shrinkage and carbonation [45, 60], less porous
microstructure [62], and higher chloride resistance [60] compared to high calcium systems.
The reaction of this system can be defined in three stages that are distinctly different from the
localized precipitation of C-A-S-H that takes place in high-calcium systems [45] which include
(1) dissolution of Si-O-Si, Al-O-Al, and Al-O-Si bonds provided by the precursor (often
referred as nucleation stage), (2) coagulation or polycondensation in which a coagulated
structure between the disbanded/disaggregated composition from precursor takes place and (3)
crystallization, in which crystals begin to develop and shape an inorganic hardened and 3-
dimensional polymer structure [18, 31, 43]. This process results in a high molecular or
macromolecule polymer that is referred to as inorganic or geopolymer [18, 43]. Geopolymers
are aluminosilicates that form through a hydrothermal condition. Such condition includes
polycondensation of geopolymers in concentrated water-based cements or resins whose
byproduct is an amorphous binding material with low crystallinity [59]. To start this reaction
process, however, major thermal (60–90°C) or alkaline media is required [18, 23, 43, 63, 64].
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This thermal curing, along with other factors including the SiO2/Al2O molar ratio, can adjust
the degree of polymerization [62, 65] where if the proper mixture ratio is not met, the
byproduct loses its applicability due to lack of strength development. In that sense, products
containing Si-poor (Si/Al<1) and Si-rich (Si/Al>5) have been reported not to be suitable in
constructional applications due to low strength and durability characteristics [31].

The final product, in this system, is N-A-S-H gel which is reported to have a higher setting
time and often requires thermal curing to develop strength. In this process, the alkali alumina
silicate with silicon and aluminum coherently binds and forms a group of 3-dimensional
framework of silicate and aluminate that are water resistant where they show higher durability
than OPC. In this system, the reaction usually requires specific thermal curing and does not
react at room temperature; upon curing at temperature threshold of around 80–100°C condi-
tions, however, a conversion into crystalline ceramic phases can be observed. Different types of
these crystalized byproducts are reported to withstand more than 1000°C before being melted.
Recent studies also showed geopolymers’ good bonding with metals [66], refractory coating,
and its application as a composite material adhesive [66], in which the degree of alkalinity can
further tailor it, has created a great interest in concrete industry for further research [67].

Hybrid Systems

The production of hybrid systems consists of a combination of OPC or Portland cement clinker
along with the use of an aluminosilicate and an alkali-binder where the byproduct has a CaO,
SiO2, and Al2O3 contents > 20% [43]. This blended system has been shown to provide
promising results in terms of mechanical performance and durability and can be divided into
two systems of (1) having OPC or Portland cement clinker and (2) having a combination of
materials from slag family as well as another low calcium precursor such as class F, fly ash
[31, 43, 67]. In this regard, the reaction byproducts are a combination of low and high calcium
systems including C-A-S-H and N-A-S-H systems [43, 68]. In general, this system has been
shown to have promising results that also do not require thermal curing as in low calcium
system and can develop proper strength. [69], for instance, showed that hybrid system
comprising of OPC and GGBFS activated with sodium hydroxide (NaOH) and sodium silicate
(Na2SiO3) can reach 4.5 and 10.8 times higher compressive strength, respectively, with a dense
microstructure as compared with the 100% OPC concrete system reference. The following
sections further review the use of different activators and precursors.

Precursors and Aluminosilicate Sources

Precursors in AAMs are those aluminosilicate-bearing raw materials that were dissolve by the
activators including fly ash [70, 71], GGBFS [29, 72], metakaolin [73], rice husk ash [74], red
mud [75, 76], and certain other reactive materials rich in silica (SiO2) and alumina (Al2O3) [77]
that alter the binder’s Si/Al ratio [78]. Since its discovery, a broad range of cementitious
materials have been entertained as precursors in AAMs. Since their use is to provide a range of
dissolved and reactive elemental materials that rearrange to harden, the variations in alumi-
num, calcium, and silicate contents of these precursors are the main measurable factors
resulting in a variety of outcomes. Such outcomes are thus in direct relationship with the
precursors’ Si/Al ratio, particle size, calcium content, as well as other elemental compositions
[79]. In that spirit, understanding the basic elements governing each precursor can provide the
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proper understanding for the function each precursor can potentially play. To provide an
insight on the elements constituting the fabrics of major precursors used, Fig. 2 shows the
approximate difference in compositional variation in the common SCMs. Following this
understanding, the following sections provide a brief overview of the most commonly used
cementitious materials as precursors Table 1.

Fly ash

Fly ash can be divided into high-calcium (class C) and low calcium (class F) materials that are
one of the most commonly used precursors in AAMs. The low calcium fly ash (class F) has
been much more widely exercised as major precursor in AAMs due to its availability, and
potentially better performance [18]. The use of low calcium fly ash allows a longer setting time
and better workability than that of high calcium which is less available and often with more
variable characteristics. Through the use of low calcium fly ash, due to reduce content of Ca,
however, the reactivity of the mixture is drastically affected to the point that either another
precursor with potentially higher content of calcium is used or thermal curing becomes the
only measure to kickstart the chemical reaction [71, 72].

Ground Granulated Blast Furnace Slag (GGBFS)

GGBFS is one of the most commonly used precursors in AAMs mainly due to its
rich sources of Ca2+ and Mg2+. The production of GGBFS is estimated to be around

Fig 2 Ternary diagram of chemical composition of major cementitious materials [114]
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300 million tons annually [115] which promises a steadily available silica-rich mate-
rial with low cost. GGBFS is generally consisted of SiO2, CaO, Al2O3, and MgO,
with almost the same composition as in metakaolin with different ratio and much
more availability. GGBFS-based AAMs have been reported to have high early me-
chanical strength and durability against sulfate and acidic presence [116], lower
greenhouse gas effect [117, 118], and higher fire resistance [119]. The reactions of
slag are reported to be predominantly dominated by particle size. In that respect, the
particles below 20 μm with majority below 2 μm are reported to react within the first
24 h of curing [18]. The use of GGBFS-based AAMs, however, is reported to have
certain drawbacks including a high rate of shrinkage and subsequent formation of
cracks as well as volumetric instability [120].

Recent studies, as in [121], have demonstrated that higher volumes of GGBFS
within the mixture can increase the number and volume of microcracks, reducing the
hardened state properties of the concrete. Yet, just as the content, the proper curing
regime is also an effective influential factor in strength and quality development. As
noted by [120], depending on the content, system, and type of activator, major
variation in crack volume and strength development can be expected.

Metakaolin

Metakaolin results from the hydroxylation of kaolinite Si2O5,Al2(OH)4 which occurs at
around 750°C. Its main chemical components include silica (SiO2, ~44.4–73%) and
alumina (Al2O3, ~14.5–47.43%), with varying particle size of 1.20–38 μm and surface
area of 2.16–22 m2/g [122, 123]. Metakaolin is a key component especially utilized
with low calcium based AAMs that adjusts Si/Al of the binder. Metakaolin is reported
to enhance the polycondensation rate and effectively increase reactivity of Class F fly
ash to form denser nano- and micro-structures, reaching higher mechanical properties
if cured at high temperature [61, 124].

Rice Husk Ash

Rice husk ash is a silica-rich aluminosilicate source after silica fume and nano-silica, having a
content of more than 90% SiO2, as compared to OPC with ~20%. Rice husk ash is reported to
enhance the bonding by creating Si-O-Si bonds which promote better mechanical properties
than Al-O-Al and Si-O-Al that is in the mixture [61, 125]. According to [75], the major
varying factor in its reactivity can be traced to its particle size that produces better performance
in smaller sizes.

Silica Fume

In general, silica fume represents a pure silica material; the use of which, in alkali-
activated mix, is generally as filler. In that regard, literature shows that the use of
silica fume due to its small particles has an invariable positive effect on the mechan-
ical and durability properties of the AAMs. This tendency is rooted in providing more
available Si content for further reaction of aluminosilicate sources in the mixture [32]
as well as acting as filler and reducing the permeability of the hardened AAMs [126].

Circular Economy and Sustainability (2022) 2:165–196 173



Other Sources of Precursors

Due to vast generation of different waste materials, there are a number of attempts in finding a
cheaper alternative for construction materials. In AAMs, red mud, paper sludge, glass powder,
and mine tailings, municipal solid waste incineration ash (MSWI ash) has been reviewed in
Table 2 for further reference.

Curing Techniques

In alkali-activated materials, since the chemical proportion of the mixture varies in accordance
to the type of precursor used, often the low reactivity requires a specific technique to heighten
the reactiveness of the mixture [18]. Depending on the system of alkali-activated materials,
heating (thermal curing or oven), sealing (wrapping), steaming, and water immersion are
usual techniques used to achieve optimum properties. In this context, in thermal curing, in
order to increase the chemical reactivity at first hardening stages, most commonly, a temper-
ature range of 60–80°C is used for the first 24 h [134, 135]. Such technique is advised to be
used on low calcium system that has a lower reactivity rate. Using such technique, recent
studies reported reduced porosity, and significant strength gain [18, 75, 136]. Elongated

Table 2 other sources of waste-based aluminosilicate precursors

Name Ref. description and comment

Red mud [106, 107] Red mud is the byproduct of alumina production and mainly consists of
Fe, Al, and Si but has a lower Si/Al ratio, yet higher alkalinity,
compared to major SCMs. Yet, it can be used in smaller quantities
(>15%), in AAMs as filler of precursor replacement

Paper sludge [127, 128] Paper sludge is the byproduct of paper making process that is made of
micro-fibers. Its use in AAMs has been reported to cause a reduction
in drying shrinkage, flowability, as well as mechanical properties.
Such results are partially associated with the major Fe and Si
compositional ratio

Glass [129–131] Glass is one of the major waste materials that can be infinitely recycled
and has a production rate of around 50–100 Mt/y. Yet, due to eco-
nomic reasons, it is estimated that around 30 to 70% of total produced
glass ends up being in the landfilled. Major compositional elements of
glass are Si, Na, and Ca. In AAMs, it can be used as precursor (in fine
powder form) due to its pozzolanic properties; it can substitute natural
aggregate or be used as filler. Previous studies have highlighted that
glass increases the alkalinity of the medium while it has expansive
characteristics in case of being used as aggregate. Depending on the
size, glass powder is less reactive than major SCMs; yet the use finer
particles, addition of activators, and proper curing techniques have
been reported to be able to compensate for it

Mine tailings [132, 133] Tailings as result of mining operations differ in their compositional
contents. In AAMs, favorable Si/Al ratio, rapid mechanical strength
development, and high acid resistance have been reported

Municipal solid waste
incineration ash

[109–112] MSW incineration ash is produced as the result of combustion plants
where the resulted ash has an estimated 10–15% and 20–35% of its
original MSW volume and weight, respectively. MSWI ash has been
reported to have an intensely heterogeneous composition. In AAMs
application, promising results such as better leaching performance,
often better mechanical properties as compared to their SCM
counterparts, have been documented
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thermal curing, however, has been associated with drying shrinkage, higher porosity, and
finally a loss of hardened state properties. Yet, water curing, depending on the system, has
been reported to cause a dilution of reaction which is the result of reduced pH, resulting in
lower strength gain, and in leaching of the activator [137]. As opposed to water immersion
technique, wrapping and sealing can reduce the environment’s effect on specimen, such as
evaporation of water in one-part alkali-activated system, which has been reported to reduce
porosity and overall shrinkage cracking [138–142]. Irrespective of the developed mechanical
properties, proper curing technique can significantly affect physico-chemical and durability
properties that can further be characterized through microscopic analyses such as Fourier
transform infrared spectroscopy (FTIR) [143, 144], X-ray diffraction (XRD) [145], scanning
electron microscopy (SEM) [30], thermogravimetric (TG/TGA), and differential thermal
analysis (DTA). According to the results outlined by [145, 146], microwave curing appears
to provide a harmonized effect on specimen that allows a full reaction aluminosilicate source,
to react in the medium (Fig. 3).

Activators

Alkali activation is a complex and multi-chain system that takes place in alkalinity of the
mixture where the aluminosilicate materials dissolve to form a new network structure. This
process starts by ion exchange and hydrolysis of Si, Al, and their network breakdown. The
alkaline solution mainly has two basic roles in the geopolymer mixture: (1) dissolving Si-O
and Al-O bonding and their subsequent re-establishment in the geopolymer network and (2)
charge-balancing of the mixture by alkali-metal cations [124]. In short, alkali activator acts as a
catalyst in the reaction allowing the new and polymeric formation. [147], for instance, showed
that the higher molar ratios of SiO2/Al2O3 and Na2O/Al2O3 lead to higher mechanical strength

Fig. 3 Microstructural assessment of differently cured specimen, based on the result of [30, 145, 146]
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and density, while in terms of activators, sodium hydroxide (NaOH) proved to have better
performance than potassium hydroxide (KOH). Table 3 outlines the recommended molar ratio
of geopolymer.

Depending on the state used, sodium hydroxide (NaOH), potassium hydroxide (KOH),
sodium sulfate (Na2SO4), potassium carbonate (K2CO3) are major activators utilized in liquid
form. In solid form, sodium metasilicate (Na2SiO3), sodium carbonate (Na2CO3), and potas-

sium hydroxide (KOH) are the major activators used. In that spirit, the sodium-based alkali-
activators are generally more available at lower costs with high reactivity, while potassium-
based activators have been numerously entertained for high temperature applications [149].
Table 4 further reviews a basic description of the mentioned activators.

Liquid Activators and Mechanical Properties

To increase the pH of the medium to dissolve the precursor, liquid activators were first used in
production of two-part alkali-activated materials. One of the major issues with such method
was then found to be transporting and handling such corrosive liquid activator. Studies that
compared the result of the two types of activators have shown that in case of utilizing liquid
activators such as sodium hydroxide or sodium silicate, in higher thermal curing temperatures,
a relatively higher degree of porosity can be expected [157]. Yet, in terms of CO2 production
of the activators, it has been reported that hybrid use of activators (liquid and solid) can be the
most optimized. [158], for instance, studied the use of composite solid activators by substitut-
ing solid sodium carbonate (Na2CO3 anhydrous) in half by liquid sodium carbonate (Na2CO3).
In their research, it has been shown that Na2CO3 has far less greenhouse effect and cost almost
half of Na2CO3 anhydrous Tables 5, 6.

Solid Activators

To avoid transportation of the hazardous liquid activator, more recently, much attention is paid
to the development of solid activators that can potentially be used by just adding water to the
medium. Sodium metasilicate (Na2SiO3) is the major type of activator used as solid activator.
According to [166], activation through sodium metasilicate offers higher ultimate strength gain
with lower porosity than sodium hydroxide. In that respect, [167] illustrated that the higher
percentage of sodium metasilicate increases the heat of hydration, while [168] showed that
sodium metasilicate-activated specimen develop a better early mechanical strength.

Other solid activators include paper sludge, red mud, and oyster shell that have recently
been used. [29], for example, exercised the use of paper sludge as a dry-solid activator and a
source of calcium carbonate along with liquid NaOH with different content ratios on slag-
based geopolymer. It was reported that higher dosage of paper sludge, even in unreacted form,
can increase compressive strength and act as filler in the geopolymerization process. In the

Table 3 Outlining the recommended molar ratios for geopolymer [15, 18, 148]

Molar ratios Range

SiO2/Al2O3 3.50–4.50
Na2O/Al2O3 0.80–1.20
H2O/Na2O 15–17.50
Na2O/SiO2 0.20–0.28
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same way, [11] exercised the use of red mud as a NaOH supplier and unburned fly ash as an
aluminosilicate precursor in one-part Alkali-activated concrete. Comparing the resulted AAM,
activated with NaOH versus that of red mud, both results have shown the same performance in
terms of mechanical characteristics and Na/Si ratio. The authors then found the same linear
increase between compressive strength and Na/Si ratio due to accelerated dissolution of
aluminosilicate precursors. In that respect, almost the same results in mechanical properties
between NaOH-activated and red mud-activated samples were found, concluding that the use

Table 4 Major activators used in literature with their state (solid or liquid) as well as their description

Name
Common
state used

description and comment
Chemical structure

Sodium

hydroxide
Liquid

Sodium hydroxide (NaOH), also known as caustic soda, is an

inorganic compound that has a variety of uses in manufacturing 

processes including soaps, paper, dye, and petroleum byproducts. 

Since it is a strong base, it has a corrosive nature and can cause 

allergenic reactions and skin irritations [150]. It can be found in

liquid and solid states that are both colorless and have no odor.

Sodium

silicate
Liquid

Sodium silicate is a general name of any chemical compound that

has sodium oxide, (Na2O)n, and silica ,(SiO2)m, in it. It has a 

variety of applications in construction industry that includes

sealing of concrete cracks, dissolving agent in AAMs, and setting 

accelerator [151]. The commercially available Sodium silicate has 

a pH of around 10 to 13, inversely relating to the silica content.

Sodium

carbonate
Solid

Sodium carbonate is another inorganic compound that is water-

soluble. With formula Na2CO3, is has a high concentration of

bicarbonate that increases pH or leads to dissolution of other 

matters within the medium [152]. This solid material can be

produced from natural sources of trona and sodium carbonate 

brines as well as nahcolite mineral (naturally occurring sodium

bicarbonate) sources [153] which commonly occurs as crystalline 

decahydrate that subsequently effloresces and forms an odorless

and white powder [154].

Sodium

metasilicate
Solid

Sodium metasilicate is main component of sodium silicate with

Na2SiO3 formula. The production of Sodium metasilicate is an

energy-intensive process that requires the fusion of Silica sand

(SiO2) with sodium carbonate (soda ash) that occurs at around

1400˚C [155].

Potassium

hydroxide
Solid

With formula KOH, potassium hydroxide is a strong base that is

commercialized in pellets, flakes and powder that is known for its 

corrosiveness tendency to absorb moisture from the environment.

The production of Potassium hydroxide is done through 

electrolysis of potassium chloride. Severe reactions, skin

irritations and other hazardous side effects have been documented

as a result of contact with it [156]

Circular Economy and Sustainability (2022) 2:165–196 177



Table 5 The type of precursors and activators used in two-part AAMs

Binder Alkali-activator Mechanical properties
(28 days)

Aggregate Curing Reference

Compressive
(Mpa)

Split
tensile

SF-MK Sodium hydroxide-sodium
silicate

28 - Max 0.6mm Air [146]

SF-MK Sodium hydroxide-sodium
silicate

38 - Max 0.6mm Heat 70°C-Air [146]

SF-MK Sodium hydroxide-sodium
silicate

41.5 - Max 0.6mm Microwave [146]

GGBFS Sodium hydroxide-sodium
silicate

52 - Max 0.6mm Air [146]

GGBFS Sodium hydroxide-sodium
silicate

54 - Max 0.6mm Heat 70°C-Air [146]

GGBFS Sodium hydroxide-sodium
silicate

65 - Max 0.6mm Microwave [146]

MK Sodium hydroxide-sodium
silicate

35 - Max 0.6mm Air [146]

MK Sodium hydroxide-sodium
silicate

39 - Max 0.6mm Heat 70°C-Air [146]

MK Sodium hydroxide-sodium
silicate

47 - Max 0.6mm Microwave [146]

FA Sodium hydroxide-sodium
silicate

37 - Max 20mm Air [159]

GGBFS Sodium hydroxide-sodium
silicate

105 - Max 20mm Air [159]

FA - GGBFS Sodium hydroxide-sodium
silicate

88 - Max 20mm Air [159]

FA - RHA Sodium hydroxide-sodium
silicate

16 - Max 20mm Air [159]

GGBFS -
RHA

Sodium hydroxide-sodium
silicate

57 - Max 20mm Air [159]

GGBFS Sodium hydroxide-sodium
silicate

42.5 - Max 19mm Air [160]

GGBFS Sodium hydroxide-sodium
silicate

32 3.1 Max 2mm Steam [161]

GGBFS Sodium hydroxide-sodium
silicate

39.5 3.3 Max 10mm water [162]

FA-GGBFS Sodium hydroxide-sodium
silicate

65 - 20mm Heat
70°C—air

[163]

FA Sodium hydroxide 1.5 - N/A Air [164]
FA-GGBFS Sodium hydroxide 18.3 - N/A Air [164]
GGBFS Sodium hydroxide 27.1 - N/A Air [164]
FA Sodium hydroxide-sodium

silicate
42.8 - N/A Air [164]

FA - GGBFS Sodium hydroxide-sodium
silicate

114.5 - N/A Air [164]

GGBFS Sodium hydroxide-sodium
silicate

171.7 - N/A Air [164]

FA-GGBFS Sodium silicate 54.9 - N/A Air [164]
GGBFS Sodium silicate 173 - N/A Air [164]
FA Sodium hydroxide 45 - Max 0.1mm Heat

(80°C)—air
[165]

SF silica fume, GGBFS ground granulated blast furnace slag, FA fly ash, MK metakaolin
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of red mud as a waste material can provide a desirable outcome. [21] exercised the use of
oyster shell as solid activator in one-part alkali-activated binder using slag as the main
precursor. In their study, 5% oyster shell was shown to be the most effective which improved

Table 6 The type of precursors and activators used in one-part AAMs

Binder Alkali-activator Mechanical properties
(28 days)

Aggregate Curing Reference

compressive
(Mpa)

split
tensile

Flex

GGBFS Sodium metasilicate 66 6 Max 2
mm

Ambient [169]

GGBFS Sodium silicate 107 - - Max 2
mm

Plastic [32]

Rice Husk Sodium hydroxide 37 - - Max 2
mm

Plastic [32]

SF Sodium hydroxide 35 - - Max 2
mm

Plastic [32]

GGBFS Sodium silicate 54 - 5 Max 1.6
mm

Water [30]

GGBFS Sodium silicate 63.5 - 8.3 Max 1.6
mm

Plastic [30]

GGBFS Sodium silicate 40.5 - 4.2 Max 1.6
mm

Air [30]

GGBFS-FA Sodium metasilicate-sodium
hydroxide

75 - - N/A N/A [170]

GGBFS-FA Sodium metasilicate-sodium
hydroxide

72 - - N/A Steam
20°C

[170]

GGBFS Sodium hydroxide-sodium
oxide

21 - - N/A Water
23°C

[171]

GGBFS Sodium silicate 30 - - N/A Steam
20°C

[172]

FA-C Sodium metasilicate 49 3.5 4.7 Max 20
mm

Water [173]

FA-C Sodium metasilicate 45 3.1 6 Max 20
mm

Air [173]

FA-C Sodium metasilicate 52 4.75 5.2 Max 20
mm

Solar 23°C [173]

FA-GGBFS Sodium metasilicate 39 - 7.4 N/A Air [174]
FA-GGBFS Sodium metasilicate 36 - 6.4 N/A Heat

80°-
C—air

[174]

FA-GGBFS Sodium metasilicate -
sodium carbonate -
potassium hydroxide

44.9 - - Max 2.5
mm

Heat
40°-
C—air

[175]

FA-GGBFS Sodium metasilicate -
sodium carbonate -
potassium hydroxide

40.9 - - Max 2.5
mm

Heat
60°-
C—air

[175]

FA-GGBFS Sodium metasilicate -
sodium carbonate -
potassium hydroxide

48 - - Max 2.5
mm

Air [175]

FA-GGBFS Sodium silicate-sodium
carbonate-potassium
hydroxide

27.9 - 3.4 Max 2.5
mm

Air [176]

SF silica fume, GGBFS ground granulated blast furnace slag, FA fly ash
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mechanical and microstructural properties. In higher dosage, however, it was shown to
decrease the reaction rate and significantly increase capillary pores.

Alkali Concentration of Activators

Considering an aqueous solution to comprise of solvent and solute, alkali concentration is a
measure of the dissolved moles in the solution. This, in other words, translates into the moles
of the solute expressed by the volume liters as written in the equation below:

Molarity Mð Þ
The number of moles of solute nð Þ

Volume of the solution vð Þ
¼

Mol

Liter

In alkali-activated materials, the molarity, or concentration of the activator, has been
proven to be an accelerating factor in the hydrolysis of the aluminosilicate materials
[177]. In lower concentrations, insufficient dissolution of the precursors as well as
lower polymerization heat is reported [178]. This, however, should not be confused
with optimum concertation. As discussed in length by [179, 180], unconditionally
high concentration of alkaline activator can result in efflorescence, brittleness, higher
porosity, and a reduction of overall mechanical and durability properties. This phe-
nomenon can be traced to premature coagulation due to potentially faster dissolution
of precursors in the mixture [177]. Outlines the variation of potassium hydroxide
concentration versus the 28 days developed compressive strength, according to which,
the optimum concentration for that specific set of variables is 10 M (Table 7).

Durability Factors

Given the generally higher porosity of AAMs as opposed to OPC system, the
durability factors can potentially be more influential and variable. In general, the
durability of concrete is significantly impacted by the presence of pores that allow
aggressive substances including Cl- and SO−2

4 to enter and transport within the

Table 7 Different concentration of potassium hydroxide with its prospective Si/Al, K/Al, and K/Si ratios
(data from [149])

Concentration (KOH) Si/Al K/Al K/Si K2SiO3/KOH Compressive strength (28 days)

6 2.4 0.15 0.36 1 19.5
8 2.4 0.18 0.44 1 20.5
10 2.4 0.21 0.51 1 24
20 2.4 0.38 0.91 1 21.5
30 2.4 0.54 1.1 1 21
40 2.4 0.7 1.69 1 23.5
6 2.46 0.13 0.33 1.5 14.5
8 2.46 0.16 0.39 1.5 17
10 2.46 0.18 0.45 1.5 29
20 2.46 0.31 0.77 1.5 26
30 2.46 0.44 1.08 1.5 16
40 2.46 0.57 1.39 1.5 21
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concrete [124]. Yet, the presence of pores has been recognized to be dependent on
factors including curing time, activator concentration, liquid to solid ratio (and water
to binder), and the dosage and availability of silica and calcium to react within the
mixture [60, 181]. In that respect, the content and type of aggregates, acid resistance,
shrinkage, porosity, permeability, fire, and temperature resistance are major influential
factors that directly affect durability and are reviewed in the following sections.

Alkali-Silica Reaction

The role of aggregate in AAMs is the same as in OPC concrete; however, high alkalinity and
reactivity are reported to increase surface reaction with the binding agent. In this context,
Alkali-aggregate (or alkali-silica) reaction is a chemical reaction caused between hydroxyl ions
in alkaline medium and reactive silica in the aggregate that creates expansive sodium calcium
silicate gel that increases cracking [18]. In this situation, the internal pressure generally cracks
the concrete, reducing durability and mechanical properties of the concrete [182]. To avoid
such phases, reduction in calcium content [183], as well as a more durable type of aggregate,
can potentially increase acidic resistance of AAMs [124].

In general, given that three phases are met, alkali-silica reaction is reported to occur: (1)
presence of excessive activator (high alkalinity), (2) availability of excessive moisture, and (3)
the presence of reactive siliceous phases in the aggregates. The mentioned reactive silica in
aggregates comprise of amorphous silica, unstable crystalline polymorphs of silica, poorly
formed crystalline silica, and some type of defectively oriented quartz [184]. Apart from the
mentioned factors, composition of the aggregate can also potentially affect the porosity, alkali-
silica reaction, and total hardened state properties. [185], for instance, showed that the
inclusion of ceramic aggregates reduces the drying shrinkage and due to their aluminum and
silica content contributes to the alkalization and increases the surface bonding of aggregate and
leads to higher compressive strength while absorbing more water from mixture and internal
pores.

Acid Resistance

One of the major superiorities of AAMs is their acidic resistance. Acidic resistance is essential
in repair applications and sewage structures that require high sulfate and acidic resistance. The
deterioration mechanism of acid exposure starts by alkali cation exchange with hydronium
ions [28] whereby the Si-O-Al bonds destabilize and forms Si-OH and Al-OH group of bonds
[186, 187]. Through this process, soluble salts emerge that is the result of a significant loss of
performance. Literature shows that the AAMs are capable of having 70–80% less acidic
degradation compared to OPC [188, 189]. Such performance can be traced to the reduced
amount of calcium present in the AAMs compared to OPC as well as higher resistance of
SCMs to acid, as compared to cement clinker [31, 42] (Fig. 4).

Shrinkage

Shrinkage constitutes major causes of cracking that allows transportation of harmful sub-
stances. Shrinkage is generally categorized into (1) drying shrinkage, (2) plastic shrinkage, (3)
autogenous shrinkage, and (4) carbonation shrinkage. Recent studies outlined the higher rate
of drying and autogenous shrinkage in high calcium systems [37]. Yet the rate of reaction,
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internal relative humidity, and surface tension have direct relationship with the size and
amount of autogenous shrinkage. In that respect, internal curing, reduced or calculated Ca/Si
ratio, as well as shrinkage reducing agents are advised to reduce shrinkage [190]. Such
methods, however, have been shown to not only reduce the strength gain but also adversely
affect setting time and modulus of elasticity [176, 191]. Yet, the influence of the type and
content of activator used has been reported to be more pronounced [192]. As depicted in Fig. 5,
higher content of activator generally results in higher overall autogenous shrinkage due to
higher intensity of hydration. This phenomenon can be traced to the increased consumption of
moisture of the micro-pores and available content of silica that results in volume change [192].

Porosity

Classification of pores within alkali-activated materials is the basis for understanding the
multi-functionality of precursors, activators, and the type of adopted curing. The system of
pores can be divided into gel pores that are within the C-S-H gel (in OPC system) or C-(N)-A-
S-H gel (in AAMs), and capillary pores that refer to the space left by water not filled during

Fig. 5 Shrinkage variation through different contents of Sodium silicate activator (4NS: 4.5% Na2O, 2NS: 2.5%
Na2O) [192]

Fig. 4 Resketched from [189], showing the acid resistance of Slag-based AAMs and OPC samples
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hydration. Other pore classification is generally either based on their shapes, such as geometric
pores [193], or their type, such as (1) open pores, (2) through pores (pores open from two
sides), and (3) closed pores [194]. In size, however, they are generally categorized as micro-
pores (below 20 nm), meso-pores (around 20 nm), macro-pore (20–50 nm), and fracture
(above 50 nm) [195, 196]. Such pores are recognized to be unharmful, unfavorable, harmful,
and detrimental, respectively, to the durability and strength of the concrete. To characterize the
size of pores, mercury intrusion porosimetry (MIP) test is used as a general means to measure
the volume and size of pores; the result of which is inversely related to bulk density.

In thermal curing, for instance, the water content within micro-pores is evaporated, leaving
a more micro-pores that decrease the overall density. Thermal curing with reduced intensity
(~60–80°C), however, has been reported to lower porosity that mainly increases the reactivity
while allowing the formation of N-(C)-A-S-H gel [197, 198]. In the same way, higher CaO
content and improper mixture ratio of activator can potentially affect the results of MIP test. In
this context, [192] showed the influence of silica content and an increase in the amount of
calcium silicate on total porosity. As shown in Fig. 6, by increasing the amount of silica and
activator, possibly, due to an increase in polymerization, the total porosity decreases to almost
half of its other counterparts.

Permeability

Unlike porosity, permeability characterizes the rate of flow of a substance (a fluid) through the
porous concrete. In general, a variety of factors affect permeability and water absorption that
include the content and type of precursors, activators’modulus and concentration, thematerials’
total surface area and size, materials’ packing (cohesion), and water/binder ratio [60, 199, 200].
In terms of the type of precursors, [201] showed the volume of permeable voids with different
ratios of GGBFS with fly ash, noting that C-A-S-H binding gels dominate the microstructure
which is denser than their counterpart, resulted from fly ash. It was then shown that the OPC
system has a relatively lower permeable voids compared to fly ash-based alkali-activated

Fig. 6 Showing the influence of addition of activator on the total porosity of slag-based AAMs (4NS: 4.5%
Na2O, 3NS: 3.5% Na2O, 2NS: 2.5% Na2O) [192]
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materials. Such results are aligned with previous studies as in [202] where it was shown that
each binding gel system promotes different pore structure and porosity. Yet, permeability has
been shown by numerous studies [201, 203] to decrease through elongated hydration and
polymerization in proper curing conditions which promotes chemical conversion of alumino-
silicate materials. A consistent relationship, in that respect, has also been shown to exist
between water permeability, total porosity, and pore diameters [204, 205] (Fig. 7).

Fire and Temperature Resistance

Alkali-activated materials have been reported to be significantly resistant to elevated temper-
atures, as compared to OPC system [206, 207]. [208], for instance, studied three main
parameters including vitrification temperature (1200 and 1300 °C), heat treatment duration
(2 h and 3 h), and the degree of alkalinity in specimen exposed to high temperatures. Using
XRD and FT-IR spectrometry, it was found that albite, microcline, quartz, calcite, and lime to
be the main components of their used precursor which, after being heated for 1300°C, in effect,
resulted in the disappearance of calcite, quartz, and lime phases and the formation of new
minerals with lower degree of crystallinity. Further research by [208, 209] showed that the
disappearance of calcite, lime, and quartz minerals is due to the formation of calcium silicate
phases which will increase by increasing the heat treatment. This phenomenon was then
concluded to prove the role of heat treatment and higher temperature on the formation of
new crystalline phases. In heat cured regime, it was reported that the specimen developed
higher mechanical strength on heating up to 200–400°C, while a moderate strength decrease
was noted from 700°C. After 1000°C, however, the strength and mass loss were noted to be
significant, addressing that the effect of high temperature on phase transformations varies
according to mix-design and Si/Al ratio (Fig. 8).

Materials Availability and Future Projections

Alkali-activated materials are generally viewed as major alternatives to ordinary Portland
cement mainly consisting of waste materials. The increase in its use can be viewed as the
excessive availability of SCMs such as fly ash and GGBFS during 1970s and 1980s. With the
current trend in the reduction of fly ash production, as a result of environmental concerns (11–

Fig. 7 Average volume of permeable voids of (a) mortar samples and (b) concrete samples based on alkali-
activated slag/fly ash blends [201]
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20% until 2050 [208, 209]), it is safe to assume that the use, entertain, and practice of newer
cementitious alternatives with often lower costs and lower greenhouse gas effects contribution
are projected to be more attractive to cement scientists. The production of slag family, however,
seems to remain unchallenged, and their use in different industries is uprising just as the search
for newer aluminosilicate sources. Materials such as glass powder, paper sludge, MSWI ash,
and red mud can directly replace cement because they have cementitious properties or can be
used as fillers increasing mechanical and durability properties of final concrete.

In any case, however, the use of safe, clean, and rather cheap binders can open new
opportunities for use in hybrid binder systems that resemble or exceed the properties of ordinary
Portland cement with reduced environmental concerns. Current trend in use of solid activators
and the documented results obtained from solid activators have provided a promising means to
the future of alkali-activated materials with reduced environmental impact due to the type of
activator and a cost reduction associated with the ease in transportation of liquid activators (Fig.
9: https://doi.org/10.1016/j.cemconres.2019.05.008, https://doi.org/10.1007/s40940-021-
00155-9) (Table 8).

Fig. 8 The effect of high temperature on residual compressive strength (RLWC reference lightweight concrete,
Fa fly ash, BFS GGBFS) [210]

Fig. 9 Estimated production and reuse of different precursors (amounts in Mt/y)
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Conclusion

In this article, a review of precursors, activators, and their reported properties have been
provided as well as the current state and projections of future material availability. The
following further summarizes and highlights the points discussed within this review:

& Fly ash, ground granulated blast furnace slag, metakaolin, and rice husk ash are major
aluminosilicate sources (precursors) used in literature.

& Three main systems in alkali-activated materials are high calcium, low calcium

(geopolymer), and hybrid (blended) systems that are made of mixtures with different ratios
of calcium and ordinary Portland cement contents.

& Sodium silicate and sodium hydroxide as opposed to sodium metasilicate are major
activators used in two-part and one-part alkali-activated materials, respectively.

& Depending on the system, heating, sealing (wrapping), steaming, and water immersion is
major curing systems used in alkali-activated materials.

& The use of proper curing technique can significantly affect the porosity, mechanical,
durability, and serviceability of the alkali-activated materials.

& Low calcium-based alkali-activated materials, often requires thermal curing to increase
their chemical reactivity.

& High calcium-based alkali-activated materials show a relatively lower durability proper-

ties such as higher shrinkage, as opposed to low calcium system.
& Both low calcium and high calcium systems have a higher temperature resistance as

opposed to ordinary Portland cement systems.
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Table 8 Compiled from [213, 214], [215–223] (mt/y: million metric ton)

Material Major compositions Production
(Mt/y)

Estimated consumption
(Mt/y)

Silica fume Si 1–2.5 70–90%
Ground granulated blast furnace slag (GGBFS) Ca-Si-Al 300–360 70–90%
Fly ash Si-Al and Si-Ca-Al 900 58–64%
Metakaolin Si-Al 2.2–2.6 N/A
Rice husk ash Si-C-K2O 100–200 Negligible
Glass powder Si-Na-Ca 50–100 35–40%
MSWI ash Si-Al-Ca 30–60 Negligible
Red mud Fe-Al-Si 140 2–4
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