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Alkali-Metal Adsorbates on W(110): Ionic, Covalent, or Metallic~
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The photoemission signal from the first atomic layer of W(110) is used to assess the nature of the in-

teraction between the surface atoms of the metal substrate and the adsorbates Na, K, and Cs for cover-

ages up to 1 atomic layer. Our results indicate that there is little or no charge transfer from the alkali
metal to the W surface, even in the limit of low coverage. The satellite structure of the photoemission
lines of the outermost p shell of the alkali metals confirms this conclusion. While contrary to the conven-

tional picture of alkali-metal-charge donation, these findings fully support recent theoretical calcula-
tions.

PACS numbers: 79.60.Gs, 68.55.Gi

Ever since the work of Tay1or and Langmuir' on the
adsorption of Cs on W, the lowering of the work function
of metals by alkali metals has been attributed to the for-
mation of a dipole layer by donation of the outer s elec-
tron of the adsorbate to the conduction band of the sub-

strate. Although it was soon realized that broadening
of the adsorbate s level modifies this purely ionic picture

by introducing some degree of covalency, the notion of
charge donation has continued to provide the framework
for the interpretation of a wide variety of experimental
data, especially in the limit of low coverage. ' Even

calculations for an isolated Li atom adsorbed on jellium,
in which distinct metal and alkali-metal states are not

defined, were interpreted as showing that the transferred
electron resides in the metal. " More recent band-
structure calculations' of c(2x 2)Cs on W(100), howev-

er, lead to an entirely diA'erent conclusion. These show

that the bonding is metallic and that the dipole layer
resides in the polarized Cs valence electrons. Other
theoretical work for Na on Al(001) (Ref. 13) and

alkali-metal overlayers on jellium' also finds that the di-

pole moment arises from the polarization of the adsor-

bate, and demonstrates that the adatom charge is insen-

sitive to coverage. These theoretical calculations thus
contradict the intuitively appealing picture of charge
donation by the strongly electropositive alkali metals,
which has been the basis for the interpretation of so
much experimental data. Significantly, while these data
are consistent with expectations based on charge
transfer, they do not discriminate against the predictions
of the more recent theories.

In this Letter we report on measurements which clear-

ly resolve this conAict by focusing not on the alkali met-

al, but on the outermost layer of the metal substrate.
The well-resolved photoemission signal from the surface
layer of W, which has been shown to be extremely sensi-
tive to the interaction of the metal with adsorbates, "'
is the tool of this study. We demonstrate that high-
resolution surface core-level photoemission measure-
ments of W 4f as a function of coverage unambiguously
support the metallic picture of the band-structure calcu-

lations. ' ' Equally important, the measurements show

that the ionic picture is not applicable even at low cover-

age.
The photoemission data were obtained at the National

Synchrotron Light Source using the AT&T Bell Labora-
tories 6-m toroidal-grating monochromator on beam line

U4A. Spectra were collected with a 100-mm Vacuum
Science Workshop hemispherical analyzer operated with

a resolution of 40 meV. The sample was a W(110) rib-
bon cleaned by standard techniques. Alkali-metal atoms
were deposited from well-degassed SAES getter sources.
Relative alkali-metal coverages were determined from
exposure times and absolute coverages from low-energy
electron diffraction (LEED) patterns, which indicate the
formation of incommensurate hexagonal overlayers for
first-layer coverages near saturation. ' ' For Na, addi-
tional calibration points are provided by commensurate
structures at —,

' - and —', -monolayer (ML) coverages. '

The coverage-dependent behavior of the alkali-metal
adsorbate is typified by the 3p spectra of K in Fig. l.
The signal from the first atomic layer (curves a and b) is

quite broad and shifts toward smaller binding energy
with increasing coverage. The signal from the second
monolayer (curve c) lies at greater binding energy and is
so much sharper that the p3g2-pip spin-orbit splitting of
240 meV is easily resolved. Beyond the second mono-
layer a new signal (curve d) appears at a somewhat
smaller binding energy, which we believe is due to bulk
K in random clusters, i.e., the growth follows the
Stranski-Krastanov mode. This photoemission behavior
is similar to that of alkali metals on other metallic' '

and semiconducting ' substrates. The coverage depen-
dence of the first-layer binding energy can be related
through a Born-Haber cycle to the change in the adsorp-
tion enthalpy, as previously pointed out. ' The other
notable feature, the large linewidth of the 3p electrons in
the first atomic layer, is due in part to vibrational
broadening and in part to an interatomic Auger process
involving an electron from the W d band. Note that a
3p hole in atomic potassium does not have an Auger de-
cay channel because there is only one 4s electron. Dona-
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erage dependence of the work function is quite similar
for the alkali metals on diverse metallic substrates [in-
cluding W(110)l, typically showing a minimum just
beyond half of saturation, shows that it does not depend
on interaction with the substrate but arises from interac-
tion of the adsorbate atoms themselves. Recent photo-
emission measurements' of K on Al, which invoked the
ionic model to explain the lack of observable 4s inten-
sity at low coverage, ignore the change in the nature
and width of the 4s state with coverage. Finally, the
coverage dependence of the bond length between
Cs and Ag(111), derived from surface extended x-ray-

absorption fine-structure measurements, is suggested to
arise from the change in the polarization of the Cs ada-

tom, which is not spherical as assumed in Ref. 9.
In summary, we find that alkali-metal atoms adsorbed

on W(110) transfer little if any charge to the substrate.
Presumably this is also the case for other % surfaces,
and in general for the other alkali metals on other met-

als. We conclude that at all coverages the change in

work function produced by alkali-metal adsorbates on

metals results from a dipole moment associated with the

polarized adsorbate atom itself. For metals, one must

consequently abjure the ionic model in favor of a metal-

lic one, in full agreement with recent theoretical calcula-
tions for alkali-metal adsorbates. '
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