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Abstract

Stroke is the fifth leading cause of death in the U.S., with more than 100,000 deaths annually. 

There are a multitude of risks associated with stroke, including aging, cardiovascular disease, 

hypertension, Alzheimer’s disease (AD), and immune suppression. One of the many challenges, 

which has so far proven to be unsuccessful, is the identification of a cost-effective diagnostic or 

prognostic biomarker for stroke. Alkaline phosphatase (AP), an enzyme first discovered in the 

1920s, has been evaluated as a potential biomarker in many disorders, including many of the co-

morbidities associated with stroke. This review will examine the basic biology of AP, and its most 

common isoenzyme, tissue nonspecific alkaline phosphatase (TNAP), with a specific focus on the 

central nervous system. It examines the preclinical and clinical evidence which supports a 

potential role for AP in stroke and suggest potential mechanism(s) of action for AP isoenzymes in 

stroke. Lastly, the review speculates on the clinical utility of AP isoenzymes as potential blood 

biomarkers for stroke or as AP-targeted treatments for stroke patients.
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1.0 Stroke: Current Biomarkers and Therapeutics

1.1 Stroke

Stroke is one of the leading causes of death and disability in the U.S., accounting for 

approximately 1 in every 19 death (Benjamin et al. 2018). When stroke occurs, oxygen and 

glucose perfusion are restricted in specific brain regions, leading to cell death and the 

subsequent loss of memory and motor function. The size of the stroke often correlates with 

the extent of disability, assessed through a simplified modified Rankin scale questionnaire 

(Bruno et al. 2013). There are two different types of stroke. Hemorrhagic strokes occur when 

a weakened blood vessel leaks out into the brain tissue. The second, and most common type 

of stroke, is known as ischemic stroke, where blood flow to a certain area of the brain is 

blocked from a blood clot or plaque lesion. Ischemic stroke can be embolic, where a clot or 

plaque lesion forms in another area within the body then travels and gets stuck in the brain, 

or thrombotic, where a clot forms within one of the vessels that supplies blood to the brain 

(Dirnagl et al. 1999).

Strokes commonly occur in the elderly and occur more often in women than men. Risk 

factors for stroke include: hypertension, high cholesterol, atherosclerosis, smoking, 

excessive drinking, and diabetes. Although reperfusion of the ischemic brain is the goal for 

treatment, intense inflammation and further tissue damage occurs during the reperfusion 

process. Clinical evidence shows that an evolution of brain injury often occurs in the hours 

to days following a stroke, which allows only a small time-frame for successful therapeutic 

intervention. Within minutes of a stroke, the neurons at the core of the infarct that are closest 

to the region of oxygen or glucose deprivation undergo necrotic cell death. The necrotic core 

is surrounded by an area of tissue, the penumbra, that is less severely impacted by the lack 

of blood flow and remains metabolically active; functionality of the penumbra may be lost 

but is salvageable. Clinicians focus on restoring the functionality of the penumbra region as 

part of their stroke treatment (Dirnagl et al. 1999; Dirnagl and Endres 2014; Benjamin et al. 

2018).

1.2. Stroke Biomarkers and Therapeutics

Although numerous biomarkers have been assessed for their use in stroke, none so far have 

proven to be reliable enough to use as a standard in the clinic. Several current or emerging 

stroke biomarkers are described in Table 1. There is a critical need to develop faster and less 

expensive diagnostic testing tools for stroke, such as the use of blood biomarker panels. 

Despite growing efforts to identify blood biomarkers that may be useful for the 

determination and differentiation of stroke, there are no current specific biomarker 

recommendations for use in the clinic. Likewise, stroke therapeutics are limited. Since the 

approval of recombinant tissue plasminogen activator (rtPA) in 1996, no other drug has 

received FDA approval to treat stroke (The National Institute of Neurological Disorders and 

Stroke rt-PA Stroke Study Group 1995; Adams et al. 1996; Report of the Quality Standards 

Subcommittee of the American Academy of Neurology 1996). The quest for new stroke 

therapeutics has been plagued by numerous clinical trial failures, due in large part to the 

discrepancy between the positive results in preclinical animal models of stroke, and the 

subsequent negative findings when the same therapeutics are tested in human clinical trials 
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(Bushnell et al. 2006; Jickling and Sharp 2015). One possible candidate for use as a 

diagnostic and prognostic marker for stroke is alkaline phosphatase (AP). Several studies 

have indicated that AP may be actively beneficial or detrimental in many inflammatory and 

ischemic settings (Heemskerk et al. 2009; Davidson et al. 2012; Shimizu et al. 2013a; Liu et 

al. 2016; Gdara et al. 2018). This review will discuss the practicality of exploring AP as a 

potential marker for stroke and how AP can be manipulated for therapeutic purposes.

2.0 Alkaline Phosphatase

2.1 Alkaline Phosphatase Genetics and Cell Biology

Alkaline phosphatase (AP) was first discovered in 1923, when Dr. Robert Robison described 

the presence of an enzyme abundant in animal bone that rapidly hydrolyzed 

hexosemonophosphoric acid into phosphoric acid (Robison 1923). AP has since been shown 

to play a significant role in human bone mineralization, confirmed by many cases of 

hypophosphatasia, a rare metabolic inherited disease caused by a mutation in the ALPL gene 

(Moore et al. 1990; Whyte et al. 2009; Barvencik et al. 2011). There are four isoenzymes of 

AP in humans, i.e. intestinal (IAP), placental (PLAP), germinal (GCAP), and tissue 

nonspecific (TNAP) (Millan 1986; Weiss et al. 1986; Berger et al. 1987; Millan and Manes 

1988), which can be reviewed in (Van Hoof and De Broe 1994; Buchet et al. 2013). The first 

three isoenzymes are expressed in the tissues for which they are named and each is encoded 

by a unique homologous gene loci in humans: ALPI, ALPP, ALPPL2, and ALPL (Harris 

1990; Buchet et al. 2013). The TNAP protein, also known as bone/liver/kidney AP, is 

expressed by a variety of tissues including multiple cell types in the brain. TNAP is the most 

abundant isoenzyme collected from blood, where approximately 50-60% is derived from 

bone, 30% from the intestines, and 10-20% from the liver (Moss 1982).

APs belong to the ectophosphatase enzyme family and are localized in multiple mammalian 

cells and tissues (Bannister and Romanul 1963; Kang and West 1982; Paiva et al. 1983; 

Mori and Nagano 1985; Van Hoof and De Broe 1994; Champion et al. 2003). This class of 

enzymes is anchored on the cell plasma membrane surface by a glycosylphosphatidylinositol 

(GPI) moiety which allows them to act on substrates in the extracellular space. APs can be 

localized in the lipid rafts of the plasma membrane outer leaflet via the C-terminus to the 

GPI, found as a soluble protein in the serum, or as a vesicle-associated protein in the 

extracellular space. GPI-anchored AP proteins can be shed from the plasma membrane by 

cleavage from phosphatidylinositol-phospholipases to take on the soluble form in blood 

(Low and Zilversmit 1980; Low 1987).

Abnormal levels of AP can result in hypophosphatasia (Waymire et al. 1995; Razazizan et 

al. 2013; Sebastian-Serrano et al. 2016). Thus, AP has a well-characterized role in skeletal 

mineralization, and speculation into other physiological function(s) of AP enzymes has 

generated the most interest with regard to host defense. The role in inflammation is due, in 

part, to its ability to neutralize endotoxins through dephosphorylation of the lipid-A moiety 

converting it to the non-toxic monophosphoryl product, and it may target bacterial 

components like CpG DNA and flagellin (Poelstra et al. 1997a, b; Chen et al. 2010). 

Similarly, AP also deactivates ATP, which when upregulated can act as an immunological 
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danger signal, while maintaining homeostasis of gut bacteria (Poelstra et al. 1997a; Malo et 

al. 2010; Peters et al. 2015). Figure 1 summarizes AP’s actions in the periphery.

Another complication of abnormal AP serum levels in Akp2 (mouse TNAP gene) null mice 

is epilepsy. Nearly three decades after its initial discovery, Shimizu showed histochemical 

evidence of TNAP in the nervous system of several animal models (Shimizu 1950). 

However, the roles of TNAP in neurological disorders remains poorly understood. Since 

TNAP has been shown to interact with multiple substrates and molecules, it is highly likely 

that TNAP exhibits multiple functions in the brain (Waymire et al. 1995; Whyte et al. 1995; 

Ermonval et al. 2009). Depending on the cell type, TNAP can be transiently or constitutively 

expressed within the central nervous system, which suggests multiple mechanisms of gene 

expression across the many cell types in the brain and spinal cord (Narisawa et al. 1994; 

MacGregor et al. 1995; Fonta 2004; Langer et al. 2008). Some data suggest that TNAP may 

play a role in neurotransmitter metabolism (Fonta 2004; Fonta et al. 2005; Balasubramaniam 

et al. 2010), and Hanics et al. used TNAP null mice to show that TNAP deficiency leads to 

decreased brain myelination and synaptogenesis. These findings suggest that TNAP plays an 

important role in brain development and that TNAP deficiency can contribute to many forms 

of neurological dysfunction, including epilepsy (Hanics et al. 2012). Figure 2 depicts 

numerous presumed functions of AP in the CNS.

3.0 Alkaline Phosphatase as a Biomarker for Stroke

3.1 Serum Alkaline Phosphatase as a Diagnostic Tool

Normal blood AP levels vary depending on sex and age, although AP levels typically display 

a wide range within these respective groups (Fenuku and Foli 1975; Lester 1977; Molla et 

al. 1990; Magnusson et al. 1995; Zierk et al. 2017; Wanjian et al. 2017; Li et al. 2018). For 

example, naturally high levels of AP are seen in children because their bones are still 

growing. Thus, clinicians and researchers rely on an average range of “normal” AP levels 

rather than a specific number. In general, abnormal AP levels are indicative there is some 

condition or disorder that has disrupted homeostasis. Some temporary conditions may also 

affect AP levels, including pregnancy, bone fractures, and taking specific medications 

(Herbeth et al. 1981; Rodin et al. 1989; Okesina et al. 1995; Choi and Pai 2000; Sadighi et 

al. 2008). For example, pregnancy can cause AP levels to be elevated 2-3 times that of 

normal due to an increase in placental AP (Okesina et al. 1995; Choi and Pai 2000). 

Alternatively, a patient’s serum total AP levels can also be increased following a meal due to 

an increase in the intestinal isoenzyme; however, this is typically a very transient elevation 

that quickly returns to normal levels if the patient is otherwise healthy (Sukumaran and 

Bloom 1953; Khan et al. 2016).

Elevated levels of AP are also indicative of numerous disorders including excessive skeletal 

mineralization, Paget’s disease, tumors, and, potentially, Alzheimer’s disease (AD) (Naik 

etal. 1977; Lampl et al. 1990; Vardy et al. 2012). The magnitude of AP elevation tends to 

reflect the extent of dysfunction. Typically, AP tends to be most markedly elevated due to 

hepatic obstruction, hepatitis, and other liver diseases (Schlaeger 1975; Paritpokee et al. 

1999). During certain conditions, AP levels can increase greater than 3-fold and are 

measured at 10-12 times the upper limit of normal, particularly in bone disorders (Mayo 
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Clinic; Moss 1982; Jassam et al. 2009; Teitelbaum et al. 2011). Interestingly, AP levels are 

generally normal during osteoporosis (Kelly et al. 1967). Although less clinically explored, 

observations of abnormal AP serum levels have also been associated with neurological 

disorders such as AD (Kellett et al. 2011; Vardy et al. 2012).

The standard clinical chemistry AP tests used in laboratory medicine report total AP enzyme 

activity rather than the amount of total AP protein. For simplicity, this review will use AP 

levels to refer to AP activity, as is commonly done in clinical practice. Thus, when used as 

part of a typical comprehensive metabolic panel, this test represents the sum of all soluble 

AP isoenzyme activity in serum or plasma. Clinicians often interpret elevated levels of AP 

with pathological conditions related to bone and liver disorders because the majority of AP 

detected in the blood comes from the liver and bone; however, this test can also indicate 

intestinal or parathyroid disease (Mayo Clinic; Posen et al. 1967; Yoneda et al. 1988; Tuin et 

al. 2009). Additional testing can also be performed to determine the source of possible 

dysregulation, including liver (L1 and L2), bone (B1, B2, B/I, and B1x), intestinal, and 

placental tissues. Normal AP ranges for these various isoenzymes also differ. Clinicians can 

continue to monitor elevated AP levels as the patient undergoes treatment to indicate that a 

treatment may or may not be working (Wolf 1978; Van Hoof and De Broe 1994).

3.2 Alkaline Phosphatase as a Putative Biomarker for Neurological Injury

Researchers have used AP activity as a brain microvessel marker in primates for decades, 

and its presence has been described in the cerebral parenchyma of both young and old 

monkeys (Friede 1966; Bell and Ball 1985; Anstrom et al. 2002; Fonta and Imbert 2002; 

Fonta 2004; Fonta et al. 2005). Primate, mouse, rat, and human brains have been used to 

demonstrate that expression of TNAP activity can be found in brain endothelial cells and 

neurons (Charegaonkar and Rindani 1961; Meyer Peter 1963; Friede 1966; Narisawa et al. 

1994; Nishihara et al. 1994; Fonta 2004; Ermonval et al. 2009; Brun-Heath et al. 2011). 

Numerous studies indicate that AP RNA expression, protein levels, or enzyme activity may 

vary significantly between primates and rodents. In primate brains, AP activity can be 

detected in one or a few cortical layers, but not in all areas, while in rodent brains, AP 

activity is more scattered with variable levels of intensity (Brun-Heath et al., 2011).

Several studies have demonstrated that TNAP is elevated in many neurological disorders, 

including some types of brain injury (Yamashita et al. 1989) and AD (Gong et al. 1993; 

Kellett et al. 2011; Vardy et al. 2012). TNAP has been shown to play a role in tau 

phosphorylation. Vardy et al. showed that TNAP is increased in both human brain tissue and 

plasma from patients with familial and sporadic AD (Vardy et al. 2012). Also, in patients 

with various brain injuries, the concentration of serum AP correlated with functional 

outcome and increased TNAP had an inverse correlation with cognitive function (Yamashita 

et al. 1989; Kellett et al. 2011; Vardy et al. 2012). Among patients with brain tumors, those 

that also had pulmonary carcinomatous meningitis were found to have elevated AP levels in 

their cerebrospinal fluid (CSF), while AP concentrations in control patients with epilepsy 

and stroke were decreased in comparison to the brain tumor group (Lampl et al. 1990). 

Increased liver AP levels were described in patients with nontraumatic intracranial 

hemorrhages (Meythaler et al. 1998).
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Elevated serum AP levels may also underscore brain-peripheral immune interactions during 

stroke, as Muscari et al. found evidence that the liver participates in the response to acute 

ischemic stroke by releasing enzymes (Muscari et al., 2014). AP levels have been shown to 

increase in relation to large-volume cerebral white matter hyperintensities and may be 

associated with multi-cerebral microbleeds in ischemic stroke patients (Ryu et al. 2014; Lee 

et al. 2015; Liu et al. 2016). While Lee et al. suggest that increased serum AP may be a 

marker for impaired cerebral microcirculation, Liu et al. were unable to replicate these 

results in their study (Lee et al. 2015; Liu et al. 2016). The authors state these differences 

may be due to the small number and clinical characteristics of their subjects, as well as the 

statistical methods used in both studies (Liu et al. In contrast, a smaller number of studies 

have reported a decrease in serum TNAP in other neurological disorders. For example, 

TNAP levels were found to be significantly decreased in traumatic brain injury (Arun et al. 

2015). Additionally, AP activity was found to be neither significantly elevated nor reduced 

in aging patients alone (Vardy et al. 2012) or in patients with multiple sclerosis (Hanna et al. 

1997; Tremlett et al. 2006). These findings underscore the importance of continued research 

to elucidate the mechanisms under which AP or TNAP levels are elevated or reduced in 

neurological disorders.

3.3 Alkaline Phosphatase as a Diagnostic and Prognostic Stroke Biomarker

Prior clinical studies have explored AP as a diagnostic and prognostic marker to assess 

stroke risk by correlating indices of AP activity such as: dysfunctional bone metabolism 

(Barnadas et al. 2014; Namba et al., 2017), cardiovascular disease (Webber et al. 2010; Kim 

et al. 2017; Makil et al. 2017), cancer (Giessen et al. 2014; Barnadas et al. 2014; Hammerich 

et al. 2017) and periodontitis (Kunjappu et al. 2012). More importantly, elevated AP levels 

in stroke patients have been correlated with stroke severity and hypertension (Pratibha et al. 

2014; Tan et al. 2017). While the underlying molecular mechanisms to support this 

association are unclear, other studies have provided additional support for this observation. 

In patients with coronary artery disease who underwent percutaneous coronary intervention, 

those with the highest AP levels had the greatest risk of 3-year mortality or secondary 

outcomes (cardiac mortality, nonfatal myocardial infarction, stent thrombosis or stroke) 

(Ndrepepa et al. 2017). A study using a cohort of patients with preserved kidney function 

reported AP as an independently useful tool for predicting mortality and stroke recurrence 

(Zong et al. 2018). Another study of acute ischemic stroke patients revealed that patients 

within the highest serum AP quartile had the highest incidence of early mortality (Zhong et 

al. 2018). Lastly, another cohort of patients who experienced a transient ischemic attack 

showed that those with increased serum AP levels on admission were more likely to have 

subsequent ischemic stroke events (Uehara et al. 2018). A smaller minority of studies do not 

support any associations between AP serum and stroke. For example, AP levels did not 

correlate with extracranial or intracranial arterial stenosis patients with ischemic stroke (Kim 

et al. 2013). Overall, evidence from most reported studies suggests a significant association 

between AP and various stroke outcomes. Table 2 describes the major direct and indirect 

mechanisms that support a role for elevated AP levels in the pathophysiology of stroke.

The majority of AP biomarker studies have explored the use of AP as a prognostic tool. 

Nearly 30 years ago, Yamashita et al. suggested AP may be useful in predicting prognosis of 
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brain damage in patients with postresuscitation encephalopathy, ruptured cerebral 

aneurysms, acute subdural hematoma and contusion, and non-traumatic intracerebral 

hemorrhage (Yamashita et al. 1989). A large retrospective study assessing serum AP levels 

in primary sclerosing cholangitis patients at the time of diagnosis and one year after 

diagnosis demonstrated that AP may hold prognostic value in prediction of endpoint-free 

survival (de Vries et al. 2016). Clinical studies have shown that increased AP is associated 

with risk of cardiovascular disease, one of the many risk factors for stroke (Tonelli et al. 

2009; Park et al. 2013; Wannamethee et al. 2013; Kunutsor et al. 2014). Elevated AP levels 

are correlated with more vascular deaths and recurrent vascular events, suggesting that AP 

may be a predictor for mortality in stroke patients (Pratibha et al. 2014; Tan et al. 2017). 

Abnormal AP has been associated with many of the risk factors leading to stroke, including 

heavy drinking (Ebuehi and Asonye 2007; Shimizu et al. 2013a), obesity (Menahan et al. 

1985; Golik et al. 1991), and hypertension (Shimizu et al. 2013b). Elevated AP has been 

shown to correlate with poor functional outcome and mortality in cardiovascular disease 

(Park et al. 2013; Wannamethee et al. 2013; Karabulut et al. 2014; Kunutsor et al. 2014) and 

in stroke patients (Ryu et al. 2010; Kim et al. 2013; Tan et al. 2016). Investigators theorize 

that the negative association between AP levels and stroke outcome may be linked to the fact 

that increased AP levels are associated with increased inflammation and enhanced vascular 

calcification leading to atherosclerosis (Tonelli et al. 2009; Kim et al. 2013; Ryu et al. 2014). 

Preclinical and clinical studies can be designed to address this question.

4.0 Alkaline Phosphatase-Based Therapeutics in Stroke

4.1 Therapeutic Administration of Alkaline Phosphatase

Exogenous administration of AP has been shown to have beneficial effects on the outcome 

of numerous inflammatory disorders in humans and animal models of the associated disease, 

including sepsis (Ebrahimi et al., 2011; Heemskerk et al., 2009; Verweij et al., 2004; 

Pickkers et al., 2009), ulcerative colitis (Lukas et al., 2010; Tuin et al., 2009), necrotizing 

enterocolitis (Whitehouse et al. 2010), and multiple sclerosis (Huizinga et al. 2012). These 

studies and a number of others which have shown positive disease outcomes using AP 

therapeutics are described in Table 3. For example, pre-symptomatic AP administration 

reduced signs of neurological distress in experimental autoimmune encephalomyelitis (EAE) 

mice (Huizinga et al. 2012). Systemic inflammation is also common after surgery and often 

complicates surgical outcomes. In some cases, exogenous administration of AP may be 

useful to reduce post-operative care requirements. Davidson et al. showed that AP’s ability 

to neutralize inflammatory substrates illustrates that it may be protective against systemic 

inflammation in post-operative patients (Davidson et al., 2012). Oral administration of AP to 

ulcerative colitis patients for one week also improved clinical response scores and decreased 

CRP levels (Lukas et al., 2010). Alternatively, intravenous administration of AP decreased 

plasma creatinine levels in patients with renal complications from severe sepsis or septic 

shock (Heemskerk et al. 2009; Pickkers et al. 2012). Phase II clinical trials have already 

shown the benefits of using bovine-derived intestinal AP in a subset of critically ill patients 

(Heemskerk et al. 2009). Administration of a human recombinant AP (recAP) consisting of 

a placental/intestinal AP hybrid resulted in positive phase I clinical trial outcome in a subset 

of septic patients (Kiffer-Moreira et al. 2014; Peters et al. 2016b), that is supported by 
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effective recAP therapeutic efficacy from preclinical models (Peters et al. 2016a, 2017). 

Thus, the use of TNAP or recombinant AP molecules may provide a viable therapeutic 

option for patients as well as provide insights on AP’s mechanism(s) of action in 

cerebrovascular disease.

4.2 AP Therapeutic Inhibition of Alkaline Phosphatase

In contrast, a smaller set of studies have proposed a therapeutic approach that inhibits TNAP. 

An emerging concept which supports a role for AP in vascular disease is that elevated serum 

AP, most likely due to elevated TNAP activity, promotes vascular calcification and leads to 

increased risk of cardiovascular disease and stroke. To prevent these outcomes, 

administration of an AP inhibitor has been suggested as one potential therapeutic option. 

Research from Pratibha and colleagues suggests that administration of AP inhibitors could 

be used to prevent cerebral ischemia in high-risk populations (Pratibha et al. 2014). A study 

in stroke-prone rats found beneficial effects against cardiovascular disease complications 

using a traditional fungal medicine and found that the number of capillaries that expressed 

AP in the heart was significantly decreased compared to untreated rats. Typically, TNAP is 

minimally localized to cardiac microvessels in comparison to its levels in cerebral 

microvessels (Koyama et al. 2006). Some of the better-known AP inhibitors, including 

tetramisole and levamisole, are no longer used in the clinic due to lack of AP isoenzyme 

specificity and serious neurological side effects associated with chronic treatment (Nowak et 

al. 2015). Sheen et al. have made efforts towards screening for promising TNAP inhibitors. 

One of their more-promising candidates, SBI-425, has been shown to reduce aortic 

calcification and prolong life in TNAP-overexpressing mice (Sheen et al. 2015). Overall, AP 

inhibitors have proven to be useful for reducing vascular calcification, an important risk 

factor for the development of stroke. Thus, it is imperative that we identify the 

circumstances when AP, and more specifically TNAP, is beneficial and when it is harmful. 

The identification of these mechanisms will prove crucial in the development of AP-based 

therapeutics to prevent or to treat cerebrovascular disorders such as stroke.

5.0 Potential Mechanistic Targets for Alkaline Phosphatase in Stroke

The proposed mechanism of action for AP’s therapeutic utility in stroke include 

enhancement of BBB integrity, relief of inflammation, and promotion of vascular 

homeostasis, as shown in Figure 3. ATP release is an important consequence of stroke-

associated inflammation, induced by multiple brain cell types, especially BBB endothelial 

cells. AP enhancement with exogenous PLAP, IAP, or recombinant alkaline phosphatase 

(recAP) may help to decrease inflammation by catalyzing the reaction of pro-inflammatory, 

toxic ATP to anti-inflammatory, nontoxic adenosine. This in turn activates neuroprotective 

signaling cascades which limit inflammation, enhance BBB integrity, and promote vascular 

homeostasis.

5.1 Blood-Brain Barrier Permeability

Increased BBB permeability is likely to have a role in the putative association between AP 

and stroke. TNAP is expressed in brain endothelial cells and may play an important role in 

BBB maintenance and integrity (El Hafny et al. 1996; Deracinois et al. 2012), as well as 
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transportation of proteins, including insulin, across the barrier (Calhau et al. 2002). The 

cerebral microvasculature is protected by astrocytes, pericytes, and the extracellular matrix 

that surrounds the vessels (ladecola and Nedergaard 2007). The primary proteins involved in 

keeping the cerebral environment separate from the rest of the body are tight junctions, and 

the dysfunction of these proteins leads to BBB breakdown and neuronal cell death. 

Following stroke, toxic proteases, cytokines, and free radicals form to aid in the removal of 

dead cells, however these molecules also cause tissue damage and participate in BBB 

disruption (Yang and Rosenberg 2011; Jiang et al. 2018). Rabbits with diabetic ketoacidosis 

exhibited increased inducible nitric oxide synthase (NOS) activity and decreased AP activity 

levels in brain endothelium (Zhu et al. 2004). One emerging concept suggests that TNAP 

may be released into the circulation to neutralize inflammation produced in response to 

damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns 

(PAMPs). The release of membrane-bound TNAP as soluble TNAP into the circulation may 

result in a compromised BBB (Pike et al. 2015). In vitro evidence for a direct role for TNAP 

in the regulation of BBB integrity was demonstrated by Deracinois and colleagues 

(Deracinois et al. 2012, 2015). Treatment of cultured brain capillary endothelial cells with 

the nonspecific AP inhibitor, levamisole, increased permeability to a fluorescent tracer and 

reorganized the actin cytoskeleton; removal of levamisole reversed the increase in 

permeability and cytoskeletal disruption (Deracinois et al. 2015). These results support a 

critical role for TNAP in the integrity of the cerebral microvasculature. TNAP’s 

mechanism(s) of action at the BBB are also summarized in Figure 2.

5.2 Neuroinflammation

Elevated serum AP is a highly characteristic part of the inflammatory response in multiple 

disorders. Prior studies have suggested that abnormal AP levels contribute to the 

development of cerebral small vessel disease and cardiovascular disease (Tonelli et al. 2009; 

Park et al. 2013; Wannamethee et al. 2013; Kunutsor et al. 2014; Lee et al. 2015). Huizinga 

et al. proposed that AP has a role in limiting neuroinflammation by interfering with immune 

activation through neutralization of LPS and endogenous substrates such as ATP. They found 

that AP administration during the priming phases of EAE reduced neurological signs of 

multiple sclerosis (MS) (Huizinga et al. 2012). Post-stroke infections are very common in 

stroke patients, particularly respiratory and urinary tract infections (Langhorne et al. 2000; 

Vernino et al. 2003). Thus, it is likely that mechanisms related to infection-induced 

inflammation are also involved in the initiation of AP upregulation in stroke patients. 

Increasing evidence suggests that infection often precedes or triggers chronic neurological 

diseases such as MS (Buljevac et al. 2002). AP’s natural ability to neutralize inflammatory 

substrates may prove that it has a beneficial role in slowing neuroinflammation. Recent 

studies have shown the importance of the gut-brain axis in MS, and demonstrate that 

microbial infection can activate myelin-reactive T cells in the CNS (Nogai et al. 2005; Berer 

et al. 2011). ATP, an endogenous damage associated molecular pattern (DAMP) signal, is 

upregulated by multiple cells in response to stress, and has been shown to activate microglia 

in response to brain injury (Davalos et al. 2005), and can also trigger oligodendrocyte 

excitotoxicity (Matute et al. 2007). In contrast, chronic liver disease also increased AP 

activity in rat brains (Dhanda et al. 2018). Elevated brain AP levels found in both CNS and 
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systemic examples of infection-induced inflammation strongly suggests that similar 

neuroinflammatory mechanisms are also present in the pathophysiology of stroke.

5.3 Altered Vascular Homeostasis

The disruption of cerebral microvascular homeostasis is another common feature of stroke. 

In contrast to other studies which suggest that serum AP levels are elevated post-stroke, 

Shimizu et al. speculated that altered vascular homeostasis plays a role in the association 

between lower AP levels and increased risk of stroke (Shimizu et al. 2013a). Endothelial 

progenitor cells (EPCs) have been shown to circulate in peripheral blood and contribute to 

maintenance of the vasculature (Asahara et al. 1997). Previous research has shown that 

reduced levels of EPCs predict atherosclerotic disease progression (Schmidt-Lucke et al. 

2005). Another study showed an association between reduced EPCs and an increased 

number of infarctions, but no significant correlation with atherosclerosis; this finding is 

likely due to the multiple risk factors and cell types that contribute to vascular dysfunction 

(Taguchi et al. 2004). Since EPCs also contribute to vascular repair, it is likely that a 

reduction in these cells may lead to increased risk of stroke (Shimizu et al. 2013a). 

Thickening of the cerebral vessel walls via increased collagen represents a normal feature of 

aging. In leukoaraiosis, which is caused by chronic ischemia, venous collagenosis is further 

increased and may be due, in part, to altered TNAP activity in cerebral microvessels (Brown 

et al. 2002). Lee et al. also speculate that the association between AP and indicators of 

cerebral small vessel disease includes issues with vascular calcification and microcirculation 

impairment (Lee et al. 2015). It is hypothesized that vascular calcification leads to stiff 

vessel walls and the resultant microcirculatory dysfunction may lead to myocardial 

ischemia, and by extension, cerebrovascular dysfunction and the onset of cerebral ischemia 

(Sigrist and McIntyre 2008). Alternatively, other studies have suggested that elevated bone 

AP levels may accelerate the development of cardiovascular disease through vascular 

calcification, presumably due to impaired vascular homeostasis (Shioi et al. 2002; Shimizu 

et al. 2013a). Thus, there are multiple putative mechanisms through which altered TNAP 

activity in endothelial cells and EPCs could impact cerebrovascular homeostasis to increase 

stroke risk or negatively impact post-stroke outcomes.

6.0 Conclusion

Although AP is a ubiquitous enzyme expressed in numerous tissues, a comprehensive 

understanding of its molecular and cellular mechanisms of action remains elusive. Emerging 

clinical evidence supports the potential utility of AP as a rapid, cost-effective blood 

biomarker to be used singly or as part of a biomarker panel in stroke patients. In light of the 

proposed mechanism in Figure 3, the complex cell biology of AP represents is an important 

consideration for the development of targeted AP-based biomarkers and therapeutics for 

stroke. It will be critically important to understand the circumstances under which AP 

administration or AP inhibition are beneficial as well as detrimental. Harnessing this 

knowledge may represent an important milestone in the development of novel therapeutic 

agents for stroke.
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Figure 1. Role of alkaline phosphatase isoenzymes in the periphery:
AP plays an important role in the physiology and pathophysiology of many organ systems. 

AP’s actions in the gastrointestinal, immune, and cardiovascular systems are most relevant 

to the systemic immune response in ischemic stroke. A.) In the gastrointestinal system, both 

TNAP and intestinal AP play an important anti-inflammatory role by neutralizing gut 

microbes. B.) Immune system: Numerous peptides, lipids, and other molecules are 

recognized by antigen-presenting cells (APC) to activate T-cells in the periphery. During T-

cell activation adenosine triphosphate (ATP) is released, contributing to the inflammatory 

environment. TNAP can convert ATP to the anti-inflammatory molecule adenosine through 

stepwise conversion of ATP to adenosine diphosphate (ADP) and adenosine monophosphate 

(AMP). C.) Cardiovascular system: An excess of bone AP contributes to vascular 

calcification, leading to stiff muscle walls and, eventually, atherosclerosis.
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Figure 2. Role of tissue nonspecific alkaline phosphatase (TNAP) in the central nervous system:
TNAP is expressed in neurons, microglia, astrocytes, oligodendrocytes, and is highly 

expressed in brain endothelial cells. TNAP is localized in the lipid rafts of the plasma 

membrane outer leaflet via its C-terminus to the GPI. It can also be found as a soluble 

protein in the serum or as a vesicle-associated protein in the extracellular space. TNAP may 

have a role in blood-brain barrier (BBB) breakdown, neuroinflammation, and vascular 

dysfunction in stroke and other neurological disorders. Inflammatory mediators such as 

reactive oxygen species (ROS), proteases, and inflammatory cytokines, promote the 

breakdown of junctional proteins at the BBB. The loss of junctional proteins weakens the 

BBB and allows activated T-cells, antigen-presenting cells (APC), other leukocytes, and pro-

inflammatory mediators to traverse the BBB, with bidirectional movement between the brain 

parenchyma and cerebral circulation. These mechanisms play an important role in the 

pathophysiology of ischemic stroke and other neuroinflammatory disorders.
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Figure 3. Proposed mechanism of action for implementation of alkaline phosphatase-based 
therapeutics in stroke:
An important consequence that results from the induction of stroke-associated inflammatory 

pathways is increased ATP release in multiple brain cell types, particularly in BBB 

endothelial cells. AP administration, via placental alkaline phosphatase (PLAP), intestinal 

alkaline phosphatase (IAP), or recombinant alkaline phosphatase (recAP) may help to 

decrease inflammation by facilitating the hydrolysis of pro-inflammatory, toxic ATP to anti-

inflammatory, nontoxic adenosine. Binding of adenosine to its receptors has been shown to 

activate neuroprotective signaling cascades which limit inflammation, enhance BBB 

integrity, and promote vascular homeostasis.
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Table 1.

Current or potential biomarkers as diagnostic or prognostic tools for stroke.

Biomarker Group Molecule or Cell Diagnostic Ability Prognostic Ability Reference

Neurotropic Factors
Brain-derived

neurotropic factor
(BDNF)

↑at stroke onset ↓ = poor prognosis (Gandolfi et al., 2017)

Myokines

Irisin ↑ = good prognosis (Gandolfi et al., 2017)

Myostatin ↑ = muscle wasting (Gandolfi et al., 2017)

Follistatin-like 1 (FSTL1) ↑ = good prognosis (Gandolfi et al., 2017)

Cytokines

IL-6, TNF-α, IL-10, IL-
4, IL-17, IL-23, TGF-α,
IL-15, IL-19, IL-33, IL-

1β

↑ at stroke onset Varies

(Beghetti et al. 2003; Sonderer and 
Katan Kahles 2015;

Bonaventura et al. 2016; Gandolfi 
et al. 2017)

Chemokines

C-X-C motif
chemokine (CXCL)12;

C-X3-C motif
chemokine ligand
(CX3CL)1; and

monocyte
chemoattractant
protein (MCP)-1

↑ at stroke onset Varies (Bonaventura et al., 2016)

Neuropeptides
Neuropeptide Y ↑ = good prognosis (Gandolfi et al., 2017)

Proenkephalin ↑ = poor prognosis (Gandolfi et al., 2017)

Growth Factors
Vascular endothelial

growth factor (VEGF)
↑ at stroke onset (Gandolfi et al., 2017)

Immune Cells

CD4+CD28− T cells ↑ = poor prognosis (Gandolfi et al., 2017)

Regulatory T cells
(Tregs)

Peripheral pattern
changes after stroke

↑ = good prognosis (Gandolfi et al., 2017)

Natural Killer (NK)
cells

↑ in brain at stroke
onset

(Gandolfi et al., 2017)

T and B Lymphocytes; CD4+ &

CD8+ T cells;
γδ-T cells

↑ at stroke onset;
peripheral pattern

changes after stroke

(Gandolfi et al., 2017; Bonaventura 
et al., 2016)

Microglia ↑ at stroke onset (Bonaventura et al., 2016)

Neutrophils ↑ at stroke onset (Bonaventura et al., 2016)

Dendritic cells ↓ during stroke (Gandolfi et al., 2017)

Protein & Enzyme

CRP, GTT, GPT,
bilirubin

↑ at stroke onset
Varies; typically ↑ =

poor prognosis

(Beghetti etal. 2003;
Pineda et al. 2008; Tang et al. 

2013; Luo et al. 2013; Muscari et 
al. 2014;

Sonderer and Katan Kahles 2015;
Bonaventura et al. 2016)

AP
Usually ↑ at stroke

onset, but some
variation

↑ = poor prognosis

(Cheung et al. 2008; Metwalli et al. 
2014; Muscari et al. 2014; Ryu et 
al. 2014; Lee et al. 2015; Schiff et 

al. 2016)

MicroRNAs

miRNA-320b
↓ = ↑ risk factor of

carotid
atherosclerosis

(Gandolfi et al., 2017)

miRNA-146a, −181b,
and −30a

Varies ↓ = ↑ neuroprotection
(Martinez and Peplow 2016; 

Gandolfi et al. 2017;
Khoshnam et al. 2017)
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Biomarker Group Molecule or Cell Diagnostic Ability Prognostic Ability Reference

miRNA-107, −128b, and −153 ↑ at stroke onset
(Martinez and Peplow, 2016; 

Khoshnam et al., 2017)

Reactive Oxygen
Species

Antioxidant enzymes
↑ at stroke onset =
redox imbalance

(Bonaventura et al., 2016; 
Khoshnam et al., 2017)

Damage Associated
Molecular Patterns

(DAMPS)

Toll-like receptors
(TLRs); neutrophil

calcium influx
↑ at stroke onset (Bonaventura et al., 2016)

Key: ↑ = increase; ↓ = decrease
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Table 2.

Direct and indirect effects of stroke on alkaline phosphatase levels

Condition Mechanism Related to Stroke Reference

Ischemia/hypoxia
↑ cellular stress → ↑ ATP release →↑ tissue 

damage
(Beghetti et al. 2003; Kunutsor et al. 2014; Peters et al. 2014; 

Khoshnam et al. 2017)

Inflammation

↑ cellular stress → ↑ ATP release →↑ tissue 
damage

(Kunutsor et al. 2014; Peters et al. 2014; Khoshnam et al. 2017)

↑ inflammatory cytokines →↑ tissue damage
(Beghetti et al. 2003; Kunutsor et al. 2014; Peters et al. 2014; 

Bonaventura et al. 2016; Khoshnam et al. 2017)

↑ NO levels →↑ tissue damage
(Kunutsor et al. 2014; Peters et al. 2014; Bonaventura et al. 2016; 

Khoshnam et al. 2017)

Liver damage ↑ enzyme release (Muscari et al., 2014)

Metab Brain Dis. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brichacek and Brown Page 28

Table 3:

Positive Therapeutic Outcomes in Preclinical and Clinical AP Studies

Type of AP 
Therapy

Study
Population Injury or Disease Model Outcome Ref.

AP Administration

PLAP Mouse LPS
PLAP administration improved 

sepsis survival, possibly by 
halting its’ development

(Bentala et al. 
2002)

PLAP Mouse LPS
PLAP treatment improved 

survival and lowered NO levels in 
septic mice

(Verweij et al. 
2004)

IAP Mouse & pig LPS

IAP administration attenuates LPS 
toxicity up to 80%, resulting in 
increased survival and inhibits 

differentiation of white blood cell 
and thrombocyte counts

(Beumer2003)

IAP Mouse Sepsis

IAP treatment reduced local and 
systemic inflammatory responses, 
as well as distant damage in the 

liver and lungs

(van Veen et al. 
2005)

IAP Sheep Sepsis

Administration of IAP in fecal 
peritonitis-induced septic shock 

improved gas exchange, decreased 
blood IL-6 levels, and increased 

survival time

(Su et al. 2006)

IAP Phase IIa clinical trial Sepsis

Infusion of IAP in severe sepsis 
and septic shock patients inhibits 
the upregulation of renal iNOS, 

leading to reduction of NO 
metabolite production and 

attenuated tubular enzymuria, 
resulting in overall improved renal 

function

(Heemskerk et al. 
2009)

IAP
Randomized, double-

blind, placebo-controlled 
clinical study

Sepsis
IAP administration significantly 
improved renal function in septic 

patients

(Pickkers et al. 
2009)

IAP Rat Inflammatory bowel disease
IAP treatment alleviates epithelial 
layer damage associated with DSS 

in rat intestines
(Tuin et al. 2009)

IAP
Open-label, first-in-

patient exploratory trial
Ulcerative colitis

IAP administration was associated 
with short-term improvement in 

UC disease activity
(Lukas et al. 2010)

IAP Rat NEC
Supplemental IAP has a protective 

role in experimental NEC
(Whitehouse et al. 

2010)

IAP Mouse
Antibiotic
treatment

IAP supplementation increased 
growth of commensal bacteria 

leading to restored gut microbiota 
lost to antibiotic treatment

(Malo et al. 2010)

IAP Mouse Sepsis
IAP treatment enhanced survival 

and reduced organ damage in 
septic mice

(Ebrahimi et al. 
2011)

IAP

Phase IIa prospective 
randomized, double-blind, 

placebo-controlled 
clinical trial

Sepsis and AKI

Overall, IAP treatment improves 
renal function in patients with 

severe sepsis or sepsis shock with 
AKI

(Pickkers et al. 
2012)

IAP Rat Inflammatory bowel disease

Intrarectally administered IAP in 
models of rats colitis resulted in a 
lower colonic weight and tissue 

damage score; normalized 

(Martinez-Moya et 
al. 2012)
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Type of AP 
Therapy

Study
Population Injury or Disease Model Outcome Ref.

expression of neutrophil markers 
and IL-1β; and counteracted 

bacterial translocation

IAP Mouse Multiple Sclerosis
Pre-symptomatic treatment of 

EAE with IAP reduces 
neurological symptoms

(Huizinga et al. 
2012)

IAP Rat NEC

IAP supplementation decreased 
histologic injury scores and 

barrier permeability in the ileum 
of rat pups with NEC

(Rentea et al. 
2012)

IAP Mouse
Metabolic
syndrome

IAP supplementation inhibited 
absorption of endotoxins and 

improved the lipid profile in mice, 
resulting in prevention or reversal 

of metabolic syndrome

(Kaliannan et al. 
2013)

IAP Rat NEC

IAP treatment decreased iNOS 
and TNF-α expression, and 

decreased LPS translocation into 
the serum of infant rats

(Rentea et al. 
2013)

IAP Rat NEC

IAP supplementation decreased 
intestinal injury and inflammation, 
including TNF-α, IL-6 and iNOS 

by LPS in preterm rat intestine

(Heinzerling et al. 
2014)

IAP Mouse
Antibiotic-
associated
infections

Antibiotics+IAP oral 
supplementation resulted in 

weight maintenance, reduced 
clinical severity, reduced gut 
inflammation, and improved 
survival following infection

(Alam et al. 2014)

recAP Rat LPS
recAP treatment has renal 

protective effects from LPS-
induced damage

(Peters et al. 2015)

recAP Rat
Renal ischemia and reperfusion; 

LPS

recAP exerted a clear renal 
protective anti-inflammatory 

effect

(Peters et al. 
2016a)

AP Inhibition

Levamisole Prospective clinical trial Colon cancer

The addition of levamisole to 
5FU-adjuvant therapy improved 
survival in stage II and III colon 

cancer patients

(Taal et al. 2001)

L-Phen Rat LPS
Suggest that lAPs in the 

gastrointestinal tract reduce LPS 
content in serum

(Koyama et al. 
2002)

SBI-425 Mouse Medial vascular calcification

TNAP inhibition significantly 
reduced aortic calcification and 

cardiac hypertrophy, and extended 
lifespan over vehicle-treated 

controls

(Sheen et al. 2015)

SBI-425 Mouse Hypophosphatasia
TNAP inhibition reduces calcium 

and lipid levels to improve the 
course of coronary atherosclerosis

(Romanelli et al. 
2017)

SBI-425 Mouse Pseudoxanthoma elasticum (PXE)

TNAP inhibition attenuated 
calcification, altering disease 

development and progression in 
vivo

(Ziegler et al. 
2017)

PLAP: placental alkaline phosphatase; IAP: intestinal alkaline phosphatase; LPS: lipopolysaccharide; NO: nitric oxide; iNOS: inducible nitric 

oxide synthase; DSS: dextran sodium sulfate; NEC: Necrotizing enterocolitis; AKI: acute kidney injury; EAE: experimental autoimmune 

encephalomyelitis; recAP: human recombinant alkaline phosphatase; L-Phen: L-phenylalanine
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